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dataset using data freely available at a national scale on 
agriculture intensity and landscape composition. We found 
that species richness increased with increasing proportion 
of herbaceous semi-natural elements; species dominance 
decreased with increasing crop diversity; the proportion 
of above ground nesting species and specimens increased 
as the intensity of agricultural practices decreased. Com-
paring the results obtained with identification to species 
level and those obtained with higher taxa or parataxonomic 
approaches, we found that the loss of taxonomic resolu-
tion resulted in the non-significance of some results on the 
effects of environmental variables on bee assemblage-level 
attributes. Our study suggests that identification to species 
level is of great importance to detect the effects of global 
change on bees and that an expert-assisted citizen science 
paradigm could provide relevant results to guide conserva-
tion measures at a national scale.

Keywords  Agriculture intensity · Dominance · 
Ecological traits · Landscape composition ·  
Lasioglossum spp. · Standardized citizen data

Introduction

Data on species distribution provide baseline information in 
biogeography and population trend studies (Kerr et al. 2007; 
Cardoso et al. 2011). In the context of global change, these 
data have gained importance in the assessment of the effects 
of anthropogenic disturbances on biodiversity (Butchart et 
al. 2010). Such studies often require large datasets that can-
not be gathered by individual research teams (Devictor et al. 
2010; Dickinson et al. 2010). For centuries, amateur natu-
ralists have collected data on species occurrence (Miller-
Rushing et al. 2012; Pocock et al. 2015). In recent years, 

Abstract  Ecology studies often require large datasets. 
The benefits of citizen science for collecting such datasets 
include the extension of spatial and temporal scales, and 
cost reduction. In classical citizen science, citizens col-
lect data and send them directly to scientists. This may 
not be possible for the many biological groups for which 
specimen identification is difficult and requires high-
level expertise. Here we report the results of an expert-
assisted citizen science program where teachers from 20 
French agricultural high schools collected bees, which 
were identified to species level by a panel of expert bee 
taxonomists. Overall the dataset included 70 collections 
(year × sampling site combinations) that resulted in 4574 
specimens belonging to 195 species. We analysed this 
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citizens collect data and send them directly to scientists. In 
the expert-assisted citizen science paradigm, citizens pro-
vide material to experts that analyse it (e.g., identification of 
specimens to species level) and these experts send the data to 
scientists (Fig. 1). We here report the first results of an ongo-
ing citizen science program where a specific group of par-
ticipants, namely teachers from agricultural high schools in 
France, conducted standardized surveys of bees, which were 
then identified to species level by expert bee taxonomists. 
This approach combines the benefits of data collection by a 
national network of volunteers and those of data reliability 
to species level provided by the contribution of experts. We 
first study the effects of agriculture intensity and landscape 
composition on bee species assemblages. Then we compare 
the results obtained with the species level (i.e. with the help 
of experts) to those obtained with higher taxa or parataxo-
nomic approaches (i.e. without the help of experts and par-
ticipants being able to provide data directly to scientists). We 
hypothesise that (1) bee taxonomic richness will decrease, 
and inversely dominance (the proportion of the most abun-
dant taxon) will increase, with increasing agriculture inten-
sity and decreasing amount of semi-natural elements; (2) 
increasing agriculture intensity and decreasing amount of 
semi-natural elements will influence the functional compo-
sition of bee assemblages, with parasitic, oligolectic, and 
above ground nesting species being negatively affected; (3) 
the loss of the species level resolution will result in the non-
significance of some results on the effects of environmental 
variables on bee assemblage-level attributes.

Methods

Study sites

From 2009 onwards, volunteer biology and ecology teach-
ers from French agricultural high schools were asked to 
collect wild bees following a standardized protocol. Contri-
butions came from most continental French areas with land 
cover dominated by agricultural land-use (Fig. 2). The 20 
contributing schools were located in rural areas and com-
prised a farm for educational purposes. They encompassed 
the diversity of situations currently occurring in French 
agriculture, in terms of production types (farms devoted 
to annual or perennial crops, to livestock, or mixed farm-
ing systems), agriculture intensity, and relative surface of 
semi-natural elements in the landscape (see “Environmental 
variables”).

Bee sampling and identification

Netting, pan traps and trap nests are common methods 
used to sample bees (Westphal et al. 2008). In this study, 

citizen science programs have flourished in ecology, with 
many benefits such as an extension of spatial and tempo-
ral scales (including data collection on private areas such as 
gardens), time and cost reduction, and reconnection of peo-
ple with nature leading to an increasing public awareness 
about environmental issues (Bonney et al. 2009; Devictor et 
al. 2010; Dickinson et al. 2010; Birkin and Goulson 2015; 
van der Wal et al. 2015).

Birds and butterflies dominate as study groups in citi-
zen science (Schmeller et al. 2009; Devictor et al. 2010; 
Dickinson et al. 2010; Roy et al. 2015). In these groups, 
comprehensive identification tools exist and identification 
to species level is relatively easy. For many other biological 
groups, identification to species level is virtually impossible 
without collecting specimens and identifying them using 
both reference collections and relevant literature. In those 
cases, the alternatives to identification to species level by 
citizen scientists are the identification at higher taxonomic 
(e.g., genus, family) or at parataxonomic levels (sensu Krell 
2004) sometimes based on photographs (Deguines et al. 
2012; Casanovas et al. 2014) or the help of experts to reach 
the species level (Gardiner et al. 2012 for the Coccinellidae).

Bees (Hymenoptera: Apoidea) constitute one of these 
species-rich and diverse groups (926 species recorded in 
continental France, Kuhlmann et al. 2015) for which identi-
fication to species level is inherently challenging. Moreover, 
limited and sparse identification tools are available (Brown 
and Paxton 2009; Patiny et al. 2009). The identification to 
species level is therefore dependent on the help of a panel of 
expert bee taxonomists, i.e. persons recognised as an author-
ity in their field, typically academics or museum scientists 
but sometimes also non-academics with a deep interest in 
the natural history of a particular taxon. Bees have become 
the focus of much interest over the last decade because of 
concerns about species decline and the expected conse-
quences on wild plant and crop pollination (Steffan-Dewen-
ter et al. 2005; Biesmeijer et al. 2006; González-Varo et al. 
2013; Ollerton et al. 2014; Goulson et al. 2015; Garibaldi et 
al. 2016). Although long-term recording allowed the assess-
ment of species trends in some countries (see e.g. Biesmei-
jer et al. 2006; Ollerton et al. 2014; Thomas et al. 2015 for 
British studies based on bee records collected by the UK 
BWARS—Bees Wasps & Ants Recording Society), data are 
severely lacking regarding bee species distribution (Brown 
and Paxton 2009; Patiny et al. 2009; Nieto et al. 2014) and 
community composition (Winfree et al. 2011) to understand 
the effects of global change on bee populations and thereby 
be able to design meaningful conservation strategies (Car-
doso et al. 2011).

Our overall objective was to test an expert-assisted citi-
zen science paradigm to study the effects of global change 
on bee species assemblages in agricultural landscapes over 
a large area. In the classical citizen science paradigm, 
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(Institut National de la Recherche Agronomique), Avignon, 
France, the scientific coordinator of the program. Partici-
pants chose the number of sampling sites (ranging from one 
to seven per school, mean ± S.E. 2.25 ± 0.35) and their loca-
tion in the school. Participants were asked to make, under 
suitable weather conditions (minimum of 15 °C, low wind, 
no rain), one 24-h capture session each month from March 
to October, in order to obtain an overall assessment of the 
bee assemblage composition over the whole flying season 
(Banaszak et al. 2014). In practice, some participants could 
not carry out the required number of sessions or others 
made more than one session in a month. In order to derive 
meaningful assemblage summary statistics, we discarded 
the four annual datasets made up of <5 sampling months. 
This resulted in 70 sampling site × year combinations, 6 in 
2009, 24 in 2010, and 40 in 2011 (Online Resource 1). For 
the sake of simplicity, we further defined a collection as the 
captures made at a given sampling site during a given year. 
The number of sampling dates (that is 24-h sessions) for a 
collection ranged from 5 to 12. Participants were asked to 
keep the same number and the same location for sampling 
sites across years, but in practice these parameters changed 
somewhat as some locations became inaccessible, or enthu-
siastic participants wanted to increase their sampling effort 
after their first year in the project. We totalled 45 different 
sampling sites over the 20 schools, which were sampled 

we chose pan trapping as a standardized sampling method 
because: (1) this method is particularly well suited to mini-
mize collector biases (Westphal et al. 2008). These biases 
could have been considerable with netting in our case given 
the high number of participants, most of which had no prior 
entomological experience; (2) pan traps can provide reliable 
data to assess the overall species richness of a study site 
even though they are known to be poor in capturing species 
of genera like Bombus and Colletes (Roulston et al. 2007; 
Westphal et al. 2008; Wilson et al. 2008, but see; Wood et 
al. 2015); (3) pan traps are cheap and simple to use (LeB-
uhn et al. 2013). Traps were made of 500-ml plastic bowls 
that were sprayed inside with a UV-reflecting paint and were 
mounted on a wooden pole. One disadvantage of pan traps 
is that their effectiveness is affected by the local environ-
mental context, in particular the local floral resource avail-
ability (Westphal et al. 2008; Wilson et al. 2008; Baum and 
Wallen 2011). To cope with this bias, traps were placed near 
flowers when there were flowers at the site (flowers were 
not necessarily present all year long), at a height slightly 
above that of the average vegetation, and in the sun inas-
much as was possible so as to be clearly visible. A sam-
pling site consisted of a set of three pan traps (a blue, a 
white, and a yellow) and sampling was initiated by filling 
each bowl with 400 ml of water with a drop of detergent. 
Identical pan traps were supplied to all schools by INRA 

Fig. 1  Conceptual framework (adapted from Devictor et al. 2010) of 
the expert-assisted citizen science paradigm (in black). In the classical 
citizen science paradigm, citizens collect data that are directly sent to 
scientists. Classical citizen science requires various skill levels but the 
identification of biological material at a useful level remains doable 
with common tools (e.g., books, identification keys). In the expert-
assisted citizen science paradigm, citizens provide the material (e.g., 

specimens, photographs) to experts that analyse it (e.g., identification 
of specimens to species level) and these experts send the data to sci-
entists. The involvement of experts is required when identification 
for the biological group under study is difficult, requires high level 
of knowledge and experience, and specific tools (e.g., reference col-
lection). Grey elements illustrate the expert-assisted targeted citizen 
science program described in this paper
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Kuhlmann et al. (2015). Honey bees (Apis mellifera) were 
caught, but this species was not considered as its abundance 
is largely determined by beekeeping. Therefore we use 
“bees” synonymously with “wild bees” in the following.

Assemblage-level attributes

For each collection, we calculated two sets of attributes. 
The first set required the identification of bee specimens to 
species level, i.e. with the help of expert bee taxonomists 
(expert-assisted citizen science paradigm). The attributes of 
the second set did not require the identification to species 
level and could be obtained by teachers alone, provided that 
they received the course on bee identification to genus level 
(classical citizen science paradigm).

over 1, 2, or the 3 years (2009, 2010, and 2011). These 45 
sampling sites were located in 25 different municipalities 
(local administrative units).

At the onset of the program, all the participants followed 
a 5-day course on bee biology and systematics provided by 
scientists and bee experts, and which included training on 
techniques to prepare specimens recovered from pan traps 
and identification to genus level. Afterwards, all bees caught 
during the program were pinned, labelled and pre-identified 
to genus by the teachers, centralized and double-checked at 
INRA Avignon, and then sent to a panel of expert bee tax-
onomists to be identified to species level. Specimens were 
deposited in the collection of INRA Avignon and, for the 
most common species, in a reference collection in each par-
ticipating school. Taxonomy followed the nomenclature of 

Fig. 2  Location of the 20 agricultural high schools involved in the study in continental France. The number of collections (sampling site × year 
combinations) is given for each school (n = 70 collections in total)
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additional subdivision reduces the taxonomic resolu-
tion that is lost when using genera instead of species 
(van Rijn et al. 2015). The inter-tegular distance (ITD, 
the distance between the two insertion points of the 
wings) is often used as a proxy for body size in bees 
(Cane 1987). ITD values for our dataset were obtained 
from Fortel et al. (2014). Each genus was subdivided 
into three size classes: ITD <2.6, 2.6–4.6, and >4.6 mm. 
We defined the parataxonomic richness as the number of 
parataxonomic units caught over 1 year at the sampling 
site;

–– Parataxonomic richness, with seven subdivisions 
according to body size: This is the same approach as 
above but instead of three, seven subdivisions were con-
sidered following van Rijn et al. (2015): ITD <1, 1–1.5, 
1.5–2, 2–2.5, 2.5–3, 3–3.5, and >3.5 mm;

–– Genus dominance: This is the proportion of specimens 
for the most abundant genus;

–– Parataxonomic dominance, with three subdivisions 
according to body size: This is the proportion of the 
most abundant parataxonomic unit when considering 
three ITD subdivisions;

–– Parataxonomic dominance, with seven subdivisions 
according to body size: This is the proportion of the 
most abundant parataxonomic unit when considering 
seven ITD subdivisions.

Environmental variables

We related our ecological dataset to environmental data 
freely available at the national scale. We used informa-
tion derived from the High Nature Value (HNV) indicator 
regarding agriculture intensity and the Corine Land Cover 
(CLC) database regarding the landscape composition.

Agriculture intensity at the municipality level

We assigned each of the 25 municipalities to four variables 
regarding agriculture intensity: “Crop diversity” (a proxy 
for the crop rotation system), “Extensive farming practices” 
(an estimation of pesticide, mineral fertilizers, and irrigation 
use), “Landscape elements” (an estimation of the relative 
area of semi-natural elements), and an overall index of agri-
culture intensity. The three first variables were scored from 
0 (low crop diversity, high input level, and low availability 
of semi-natural elements, respectively) to 10. The overall 
intensity index was obtained in summing the three scores 
(with low index values corresponding to high agriculture 
intensity). These four variables were derived from the 
French HNV dataset. European Union countries have been 
required to identify HNV farmlands, i.e. areas that include 
semi-natural elements, low-intensity farming and diverse, 

First set of attributes (expert-assisted citizen science 
paradigm)

–– Species richness: This is the number of species caught 
over 1 year at the sampling site;

–– Species dominance: This is the proportion of the most 
abundant species (also known as Berger–Parker index);

–– Ecological traits: Each species was described accord-
ing to three ecological traits that have been shown to 
be important to determine the response of bees to envi-
ronmental disturbances (e.g., Moretti et al. 2009; Wil-
liams et al. 2010; Winfree et al. 2011; Sheffield et al. 
2013; Rader et al. 2014; Kremen and M’Gonigle 2015): 
reproductive strategy, trophic specialization, and nest-
ing behaviour. Information was compiled from the lit-
erature (Westrich 1989; Amiet et al. 1999, 2001, 2004, 
2007, 2010; Michener 2007). Occasionally, ecological 
traits can be inferred from the genus (e.g., all Nomada 
species are parasitic), but the species level is usually 
necessary to determine ecological traits. For examples, 
very similar (cryptic) species can have opposite behav-
iour (for example very similar Bombus species are either 
parasitic or non-parasitic) or a single genus may com-
prise both oligolectic and polylectic species (e.g., the 
genus Andrena).

For the reproductive strategy, we separated non-
parasitic from parasitic species and the subsequent 
classes were made only for non-parasitic species. For 
trophic specialisation regarding pollen use, we distin-
guished between oligolectic species collecting pollen 
on plant species from a single family and polylectic 
species collecting pollen on several plant families. For 
nesting behaviour, species nesting below ground were 
separated from those nesting above ground in cavities 
(e.g., plant stems, wood holes, snail shells). Then, we 
calculated the proportion of species and the proportion 
of specimens for modalities that have been shown to be 
negatively affected by environmental disturbances, that 
is “parasitic”, “oligolectic”, and “above ground nesting” 
modalities (Biesmeijer et al. 2006; Williams et al. 2010; 
Rader et al. 2014).

Second set of attributes (classical citizen science 
paradigm)

–– Genus richness: This is the number of genera caught 
over 1 year at the sampling site;

–– Parataxonomic richness, with three subdivisions 
according to body size: We used this attribute to test 
whether the “classical citizen science” approach could 
be improved by further subdividing genera using body 
size. Doing this, we obtained parataxonomic units, i.e. 
based on external morphology (sensu Krell 2004). This 
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inspected against fitted values to ensure residual normality 
and homoscedasticity requirements were fulfilled. Models 
were fitted using the maximum log-likelihood criteria, and 
the significance of environmental variables was assessed a 
posteriori using likelihood ratio deletion tests. When nec-
essary, unequal sampling effort (number of sampling dates 
in an annual survey) was accounted for by specifying sam-
pling effort as an offset term. This was required for analyses 
of species, genus and parataxonomic richness, but deemed 
unnecessary for dominance attributes and ecological trait 
proportions. Analyses were conducted using R software 
version 3.1.1 (R Core Team 2014), using the package lme4 
(Bates et al. 2014).

Results

Overall taxonomic and functional composition of the 
bee dataset

Participants collected a total of 4574 specimens represent-
ing 195 species (Online Resources 1, 2). The family Halic-
tidae largely dominated the captures (73.3 % of specimens 
and 31.3 % of species), followed by Andrenidae (16.2 % 
of specimens and 23.6 % of species) and Apidae (6.8 % of 
specimens and 22.6 % of species). Colletidae, Megachilidae 
and Melittidae all represented <2 % of the specimens and 
6.1, 15.4, and 1.0 % of the species, respectively. The genus 
Lasioglossum was the most abundant, representing 55.4 % 
of the specimens. The genus Andrena represented 15.6 % of 
the specimens, but it was the most species rich with 43 spe-
cies (vs. 36 species of Lasioglossum). Lasioglossum mala-
churum was a superabundant species, representing 20.0 % 
of all specimens. It was detected in 88.6 % of collections 
and dominated in 45.7 %. The second most abundant spe-
cies, L. morio, represented 5.7 % of specimens, was detected 
in 67.1 % of collections and dominated in 11.4 %. These two 
species were followed by four species of Halictidae (Lasio-
glossum glabriusculum, L. pauxillum, Halictus scabiosae, 
H. tumulorum), each making between 4 and 5 % of the spec-
imens. The following species, i.e. the most abundant non-
halictid species, was Andrena flavipes that made-up 3.1 % of 
specimens and was present in 52.9 % of collections.

Regarding the ecological traits, 30 parasitic and 165 non-
parasitic species were caught. These non-parasitic species 
included 47 above ground versus 116 below ground nesting 
species (information was missing for two species), and 36 
oligolectic versus 120 polylectic species (with diet informa-
tion lacking for nine species). All seven most abundant spe-
cies (species that accounted for more than 3 % of the total 
abundance) were non-parasitic, below ground nesting, poly-
lectic, and social bees (with the exception of H. scabiosae 
and A. flavipes that are solitary).

small-scale mosaics of land-use types. The details of how to 
implement this indicator were at the discretion of each state 
(CEC 2006). In France, indicators aggregating statistics of 
agricultural holdings were calculated at the municipality 
level (Pointereau et al. 2010; Doxa et al. 2012; Deguines et 
al. 2014). The national mean for the overall intensity index 
was 12.20 (S.E. ±1.8 × 10−4) and its values ranged from 1 
to 30 when considering all 36,027 French municipalities. In 
our dataset, the average value was nearly the same as the 
national average (mean ± S.E. 12.42 ± 0.77) and the values 
ranged from 4.92 to 25.12.

Proportion of semi-natural elements at the landscape scale

To examine the effect of landscape composition, we obtained 
land cover data from the CLC 2006 database (Bossard et 
al. 2006). CLC is a geo-referenced database including the 
main habitats for the European Union countries in con-
tiguous polygons classified according to 44 different land-
cover categories in the finest classification. We quantified 
the landscape composition in 100 and 500  m radius win-
dows centred on sampling sites by using the geographical 
information system package ArcGIS 10.1 (ESRI 2012). 
We chose these window sizes as relevant scales for flight 
and foraging distances in bees (Gathmann and Tscharntke 
2002). For each sampling site, we calculated the proportion 
of semi-natural herbaceous elements. In our case, this vari-
able included the CLC classes “Pastures”, “Complex culti-
vation patterns”, “Land principally occupied by agriculture, 
with significant areas of natural vegetation”, “Moors and 
heathland”, and “Transitional woodland-shrub”. The pro-
portion of herbaceous semi-natural elements ranged from 0 
to 100 % (mean ± S.E. 37.7 ± 5.3) in 100 m radius windows 
and from 0 to 99.05 % (mean ± S.E. 39.9 ± 3.3) in 500  m 
radius windows. We also considered a variable including 
both herbaceous and woody elements (forests), but mod-
els returned non-significant results (not shown) and so they 
were not considered further.

Statistical analyses

The assessment of assemblage-level responses to environ-
mental variables was performed within a generalized linear 
mixed model (GLMM) framework in order to cope with 
the non-independence of surveys carried out by the same 
contributing school at different sampling sites and repeated 
over several years. We therefore parameterized GLMMs 
with assemblage-level attributes as response variables, envi-
ronmental variables as fixed effect candidate covariates and 
school, municipality and sampling site identities as a suite 
of hierarchically nested random grouping variables. Nor-
mality requirements of continuous data were tested using 
the Shapiro–Wilk statistics. Model residuals were further 
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pesticide use decreased. Similarly, the proportion of the 
most abundant parataxonomic unit, when considering 
three subdivisions according to body size, decreased with 
decreasing agriculture intensity and with increasing crop 
diversity (Table 2).

Discussion

We present the results of a monitoring program conducted 
at the national scale and which involved a targeted group of 
citizens (teachers from agricultural high schools), research-
ers, and expert bee taxonomists (Fig. 1). Our dataset pro-
vided general patterns regarding functional and taxonomic 
composition of bee assemblages, as well as responses of 
bees to agriculture intensity and landscape composition. 
Comparing the results obtained through expert-assisted 
and classical citizen science paradigms, i.e. the results 
with identification to species level and those obtained with 
higher taxa or parataxonomic approaches, we found that the 
loss of taxonomic resolution resulted in the non-significance 
of some results on the effects of environmental variables on 
bee assemblage-level attributes.

Taxonomic and functional composition of assemblages

Over 3 years of sampling in 20 agricultural high schools and 
4574 individuals caught, this program provided information 
on the distribution of 195 species, representing 21.1 % of 
the 926 species recorded in continental France (Kuhlmann 
et al. 2015). The dataset did not include threatened species 
at the European level (Nieto et al. 2014), but some spe-
cies were uncommon at the national scale such as Andrena 
apicata, A. hattorfiana, and A. ventricosa (David Genoud, 
pers. comm.). Although the 45 sampling sites encompassed 
a great diversity of climate, agricultural, landscape and local 
scale contexts, we found some recurrent features across 
sites and years. The dominance of Halictidae, Lasioglossum 
sp. in particular, appeared as a general trend. This feature 
has been observed in various places across the world [e.g., 
Marini et al. (2012) in Italy; Morandin and Kremen (2013) 
in USA; Fortel et al. (2014) in France; Rader et al. (2014) 
in New-Zealand; Saunders and Luck (2014) in Australia; 
Pisanty and Mandelik (2015) in Israel; Le Féon et al. (2016) 
in Argentina]. These species are especially well caught by 
pan traps but their high abundance is also observed when 
bees are sampled by netting (e.g., Rollin et al. 2015). The 
dominance of Lasioglossum species in bee assemblages 
may be due to their eusociality (in some species) and their 
polylecty. Beyond these results at the family and genus lev-
els, our results provide insights on the status of species at the 
national scale. In particular, Lasioglossum malachurum was 
virtually omnipresent. Such information on the identity of 

Regarding richness attributes that could be obtained by 
the teachers without the help of expert bee taxonomists 
(classical citizen science paradigm), the dataset comprised 
25 genera, 31 parataxonomic units when considering three 
subdivisions according to body size, and 49 parataxonomic 
units when considering seven subdivisions.

Taxonomic and functional composition at the 
assemblage level

The number of species in a collection ranged from 7 to 34 
(mean ± S.E. 17.2 ± 0.6). The number of specimens ranged 
from 20 to 293 (mean ± S.E. 65.3 ± 6.0). The proportion of 
parasitic, oligolectic, and above ground nesting species rep-
resented on average 5.9 (±0.8), 11.1 (±1.0), and 9.3 % (±1.1) 
of the total species richness, and 2.9 (±0.5), 7.3 (±1.1), and 
3.0 % (±3.9) of the total abundance, respectively.

The dominant species made-up between 11.5 and 71.1 % 
of the total abundance (mean ± S.E. 30.8 ± 1.5), and it was 
always a non-parasitic and below ground nesting species. In 
most cases, it was social (54 collections) and polylectic (65 
collections). Oligolectic species were dominant in some rare 
cases (Dasypoda hirtipes and Tetralonia malvae both in two 
collections). L. malachurum dominated in 32 collections, 
and L. morio, H. scabiosae and H. tumulorum dominated in 
8, 5 and 5 collections, respectively.

The dominant genus made-up between 28.2 and 95.4 % 
of the total abundance (mean ± S.E. 54.3 ± 1.9). The genus 
Lasiglossum dominated in 53 collections.

Comparison between the expert-assisted and the 
classical citizen science paradigms when relating 
bee assemblage-level attributes and environmental 
variables

Species richness increased with the increasing propor-
tion of herbaceous semi-natural elements in 100 m radius 
windows (Table 1; Fig. 3a). Species dominance decreased 
with increasing crop diversity (Fig. 3b). The proportion of 
above ground nesting species and specimens increased with 
decreasing agriculture intensity (significant only for the pro-
portion of specimens), with increasing crop diversity, and 
when the intensity of fertilizer and pesticide use decreased 
(Fig.  3c). There was no significant relationship between 
attributes regarding either parasitic status or trophic special-
ization with environmental variables (Table 1).

Considering the attributes obtained without the help 
of expert bee taxonomists (classical citizen science para-
digm), there was no significant relationship between genus 
and parataxonomic richness and environmental variables 
(Table  2; Fig.  4). The genus dominance decreased with 
decreasing agriculture intensity, with increasing crop 
diversity (Fig. 3d) and when the intensity of fertilizer and 
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Assemblage-level 
attribute

Environmental variable Coefficient estimate ± S.E. F P

Species richness HNV overall index −0.051 ± 0.146 0.120 0.729
Crop diversity 0.089 ± 0.466 0.035 0.852
Extensive farming practices −0.425 ± 0.425 0.977 0.323
Semi-natural element availability −0.034 ± 0.256 0.017 0.895
Proportion of semi-natural elements 100 m 0.033 ± 0.016 3.934 0.047*
Proportion of semi-natural elements 500 m 0.034 ± 0.028 1.396 0.237

Species dominance HNV overall index −0.026 ± 0.013 3.430 0.064
Crop diversity −0.097 ± 0.045 4.443 0.035*
Extensive farming practices −0.068±0.044 2.302 0.129
Semi-natural element availability − 0.032 ± 0.024 1.686 0.194
Proportion of semi-natural elements 100 m 0.003 ± 0.002 1.860 0.173
Proportion of semi-natural elements 500 m 0.001 ± 0.003 0.068 0.794

Proportion of parasitic 
specimens

HNV overall index 0.036 ± 0.039 0.881 0.348
Crop diversity 0.221 ± 0.124 3.107 0.078
Extensive farming practices 0.026 ± 0.119 0.048 0.826
Semi-natural element availability 0.0428 ± 0.069 0.386 0.535
Proportion of semi-natural elements 100 m −0.010 ± 0.005 2.796 0.094
Proportion of semi-natural elements 500 m −0.013 ± 0.013 0.932 0.334

Proportion of parasitic 
species

HNV overall index 0.005 ± 0.027 0.037 0.848
Crop diversity 0.102 ± 0.088 1.382 0.240
Extensive farming practices −0.042 ± 0.084 0.245 0.620
Semi-natural element availability −0.001 ± 0.048 0.001 0.976
Proportion of semi-natural elements 100 m −0.004 ± 0.004 1.381 0.240
Proportion of semi-natural elements 500 m −0.006 ± 0.007 0.713 0.398

Proportion of oligolectic 
specimens

HNV overall index −0.051 ± 0.002 1.496 0.221
Crop diversity −0.090 ± 0.114 0.584 0.445
Extensive farming practices −0.058±0.112 0.255 0.614
Semi-natural element availability −0.098 ± 0.069 1.843 0.175
Proportion of semi-natural elements 100 m −0.007 ± 0.005 1.975 0.160
Proportion of semi-natural elements 500 m −0.001 ± 0.007 0.008 0.927

Proportion of oligolectic 
species

HNV overall index −0.033 ± 0.017 2.827 0.093
Crop diversity −0.096 ± 0.053 2.675 0.102
Extensive farming practices −0.087 ± 0.058 2.186 0.139
Semi-natural element availability −0.036 ± 0.036 1.028 0.310
Proportion of semi-natural elements 100 m 0.0003 ± 0.002 0.015 0.901
Proportion of semi-natural elements 500 m 0.002 ± 0.004 0.319 0.572

Proportion of above 
ground nesting 
specimens

HNV overall index 0.082 ± 0.038 4.712 0.030*
Crop diversity 0.293 ± 0.113 6.401 0.011*
Extensive farming practices 0.319 ± 0.098 10.154 0.001**
Semi-natural element availability 0.046 ± 0.073 0.413 0.521
Proportion of semi-natural elements 100 m −0.003 ± 0.004 0.426 0.514
Proportion of semi-natural elements 500 m 0.0005 ± 0.007 0.004 0.947

Table 1  Results of the generalized linear mixed models for the assemblage-level attributes based on the identification of bee specimens to species 
level (i.e. that required the help of expert bee taxonomists)

1 3



913J Insect Conserv (2016) 20:905–918

Our study suggests that identification to species level is 
of great importance for the detection of the effect of envi-
ronmental variables on bee richness. Furthermore, as many 
ecological traits are species-specific rather than genus- or 
family-specific, comprehensive functional approaches can-
not be reached without species-level identification (Wil-
liams et al. 2010).

Relationships with agriculture intensity and landscape 
composition

When ecological data collection occurs at a local scale, 
information on landscape or agricultural practices may 
be obtained simultaneously, for example by site mapping 
from aerial photographs associated to ground-checking and 
farmer surveys, respectively. For studies at the regional or 
national scales, this may not be possible and one must seek 
for environmental data already available (see also Deguines 
et al. 2012, 2014).

In France, information on agriculture intensity derived 
from HNV is given at the municipality level (i.e. 15 km2 on 
average), which may not be the most relevant scale when 
considering bee assemblages. Similarly, CLC data are sub-
ject to several drawbacks, notably poor spatial definition 
(the minimum area for an element to be represented is 25 
hectares), annual crops pooled together without information 
on cultivated species (e.g., no information on mass-flower-
ing crops, that can play a major role on bee assemblages, 
Diekötter et al. 2010; Le Féon et al. 2013).

Despite these major drawbacks, analyses of our empirical 
dataset gave significant results that confirmed at a national 
scale those of previous studies. The decrease in species rich-
ness associated with decreasing amount of semi-natural ele-
ments has been mentioned in several studies (see Winfree 
et al. 2011 for a review). The particular sensitivity of above 
ground nesting species to environmental disturbances has 
also been reported previously (see Williams et al. 2010 for 

common versus uncommon species could be trivial regard-
ing well-known groups such as butterflies but remain useful 
given the lack of knowledge on the distribution and status 
of bees in France.

From a functional point of view, non-parasitic, polylec-
tic, and below ground nesting species dominated. However 
parasitic, oligolectic and above ground nesting species each 
represented a substantial proportion of species and speci-
mens suggesting that farmland on agricultural schools may 
harbour populations of species with more specific ecologi-
cal requirements that are also more sensitive to environmen-
tal disturbances (Rader et al. 2014).

Comparison between expert-assisted and classical 
citizen science paradigms

When comparing the results obtained with identification 
to species level to the results obtained with higher taxa 
(genus) or parataxonomic (genus associated with body 
size subdivisions) approaches, we found that the effect of 
crop diversity on dominance remained significant when 
replacing the species level by alternatives that did not 
require the help of the expert bee taxonomists. On the 
other hand, the effect of landscape composition on bee 
richness was not detected when losing the species level 
resolution.

Previous citizen science programs on bees have provided 
interesting results on the broad effects of land-use changes 
(Deguines et al. 2012), on the role of hedgerows for bees 
(Kremen et al. 2011), and on the nesting ecology and the 
status of bumblebee species in the UK (Lye et al. 2012). 
These programs were based on photographic collections 
(Deguines et al. 2012) and on field observations by trained 
citizens (Kremen et al. 2011) or members of the public (Lye 
et al. 2012) and provided information at higher taxonomic 
levels (genus, family) or at morphospecies or species group 
levels.

Assemblage-level 
attribute

Environmental variable Coefficient estimate ± S.E. F P

Proportion of above 
ground nesting species

HNV overall index 0.053 ± 0.028 3.647 0.056
Crop diversity 0.204 ± 0.082 5.603 0.018*
Extensive farming practices 0.209 ± 0.064 9.660 0.002**
Semi-natural element availability 0.016 ± 0.053 0.093 0.760
Proportion of semi-natural elements 100 m 0.0002 ± 0.003 0.004 0.949
Proportion of semi-natural elements 500 m 0.002 ± 0.005 0.132 0.716

n = 70 collections and df = 1 in all cases. Significant P-values are indicated in bold (*P ≤ 0.05; **P ≤ 0.01). Models contained an assemblage-level 
attribute as the response variable, an environmental variable as fixed effects, and school, municipality and sampling site identities as a suite of 
hierarchically nested random effects. In each case, the first four environmental variables were derived from the High Nature Value (HNV) data 
and calculated at the municipality level. The proportion of herbaceous semi-natural elements was derived from Corine Land Cover data (2006) 
and calculated at two spatial scales (100 and 500 m radius centred on sampling sites)

Table 1  (continued) 
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This aspect has been little investigated in bees (but see Shef-
field et al. 2013; Marini et al. 2014). Thus our results that 
dominance at the species, genus and parataxonomic levels 
decreased with crop diversity provides new insights on 
the influence of agricultural practices on bee assemblages. 
Indeed, it provides support to the new CAP policy that 
stresses the importance of crop diversity in order for farm-
ers to be eligible for EU subsidy (European Union 2013).

Conservation implications

Getting biodiversity data at large spatial and temporal 
scales is the first stage of any conservation plan (Cardoso 

a review). Our result may be due to the direct vulnerability 
of these species to pesticide use (Vaughan et al. 2014) or to 
the hidden effects associated with agriculture intensification 
such as the loss of micro-habitats suitable for nest establish-
ment (Kremen and M’Gonigle 2015).

The presence of a few very abundant and many rare spe-
cies in biotic assemblages is an universal law in ecology 
(McGill et al. 2007) and, indeed, it has been often noticed 
in bees (e.g., Williams et al. 2001). However, in various 
groups, the degree of dominance of the most abundant taxa, 
as well as their identity, respond to environmental changes, 
sometimes more rapidly than does species richness (Caruso 
et al. 2007; Hillebrand et al. 2008; Tolkkinen et al. 2013). 

Fig. 3  Relationship between (a) bee species richness and the propor-
tion of herbaceous semi-natural elements in 100 m radius windows; 
b the proportion of the most abundant species (species dominance) 
and the index of crop diversity at the municipality level; c the propor-
tion of above ground nesting bee species and the index of extensive 
farming practices; d the proportion of the most abundant genus (genus 
dominance) and the index of crop diversity at the municipality level. 

Increasing values of the index of extensive farming practices indicates 
decreasing pesticide, irrigation, and mineral fertilizer use. Solid lines 
show significant trends returned by the model predictions. Grey areas 
indicate 95 % confidence intervals. Small vertical bars along the x-axis 
of each graph show the original values along this axis. Each bar repre-
sents a collection (sampling site × year combination, n = 70 collections 
in total)

 

1 3



915J Insect Conserv (2016) 20:905–918

programs have been proven to be very useful tools for such 
purposes (Devictor et al. 2010; Dickinson et al. 2010). 
Regarding bees, we showed that citizen science programs 
combining the collection of biological material by a targeted 
network of citizens and the identification to species level 

et al. 2011; Goulson et al. 2015). The national scale often 
has the advantage of representing both a large scale from 
an ecological point of view and a policy-relevant scale 
for the future implementation of conservation measures 
(Woodcock et al. 2014; Budge et al. 2015). Citizen science 

Table 2  Results of the generalized linear mixed models for the assemblage-level attributes based on the identification of bee specimens at genus 
level or at parataxonomic levels (i.e. that did not require the help of expert bee taxonomists)

Assemblage-level attribute Environmental variable Coefficient estimate ± S.E. F P

Genus richness HNV overall index −0.029 ± 0.055 0.257 0.612
Crop diversity 0.043 ± 0.179 0.058 0.810
Extensive farming practices −0.010 ± 0.162 0.003 0.953
Semi-natural element availability −0.109 ± 0.094 1.103 0.294
Proportion of semi-natural elements 100 m −0.001 ± 0.007 0.034 0.853
Proportion of semi-natural elements 500 m −0.001 ± 0.012 0.003 0.958

Parataxonomic richness,  
3 size classes

HNV overall index −0.039 ± 0.063 0.368 0.544
Crop diversity 0.031 ± 0.205 0.023 0.878
Extensive farming practices −0.074 ± 0.187 0.153 0.696
Semi-natural element availability −0.107 ± 0.110 0.880 0.348
Proportion of semi-natural elements 100 m 0.003 ± 0.007 0.149 0.700
Proportion of semi-natural elements 500 m 0.003 ± 0.012 0.054 0.816

Parataxonomic richness,  
7 size classes

HNV overall index −0.056 ± 0.079 0.487 0.485
Crop diversity 0.017 ± 0.255 0.005 0.946
Extensive farming practices −0.183 ± 0.229 0.613 0.434
Semi-natural element availability −0.113 ± 0.140 0.644 0.422
Proportion of semi-natural elements 100 m 0.008 ± 0.009 0.675 0.411
Proportion of semi-natural elements 500 m 0.013 ± 0.015 0.670 0.413

Genus dominance HNV overall index −0.035 ± 0.016 4.903 0.027*
Crop diversity −0.166 ± 0.050 9.862 0.002**
Extensive farming practices −0.104 ± 0.051 4.014 0.045*
Semi-natural element availability −0.034 ± 0.028 1.411 0.235
Proportion of semi-natural elements 100 m 0.004 ± 0.003 3.067 0.080
Proportion of semi-natural elements 500 m 0.002 ± 0.004 0.213 0.644

Parataxonomic  
dominance, 3 size 
classes

HNV overall index −0.039 ± 0.017 4.870 0.027*
Crop diversity −0.181 ± 0.056 9.804 0.002**
Extensive farming practices −0.091 ± 0.057 2.499 0.114
Semi-natural element availability −0.043 ± 0.031 1.946 0.163
Proportion of semi-natural elements 100 m 0.005 ± 0.003 2.618 0.106
Proportion of semi-natural elements 500 m 0.003 ± 0.005 0.331 0.565

Parataxonomic  
dominance, 7 size 
classes

HNV overall index −0.015 ± 0.011 1.913 0.167
Crop diversity −0.049 ± 0.037 1.750 0.186
Extensive farming practices −0.031 ± 0.036 0.763 0.382
Semi-natural element availability −0.025 ± 0.020 1.566 0.211
Proportion of semi-natural elements 100 m 0.003 ± 0.002 2.695 0.101
Proportion of semi-natural elements 500 m 0.001 ± 0.003 0.126 0.723

n = 70 collections and df = 1 in all cases. Significant P-values are indicated in bold (*P ≤ 0.05; **P ≤ 0.01). Models contained an assemblage-level 
attribute as the response variable, an environmental variable as fixed effects, and school, municipality and sampling site identities as a suite of 
hierarchically nested random effects. In each case, the first four environmental variables were derived from the High Nature Value data and 
calculated at the municipality level. The proportion of herbaceous semi-natural elements was derived from Corine Land Cover data (2006) and 
calculated at two spatial scales (100 and 500 m radius centred on sampling sites)
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