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Abstract

Gravitational-wave emission from stellar collapse has been studied for nearly four decades.
Current state-of-the-art numerical investigations of collapse include those that use progenitors
with more realistic angular momentum profiles, properly treat microphysics issues, account for
general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations
predict that gravitational waves from various phenomena associated with gravitational collapse
could be detectable with ground-based and space-based interferometric observatories. This
review covers the entire range of stellar collapse sources of gravitational waves: from the
accretion-induced collapse of a white dwarf through the collapse down to neutron stars or
black holes of massive stars to the collapse of supermassive stars.
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1 Introduction

The field of gravitational-wave (GW) astronomy will soon become a reality. The first generation of
ground-based interferometric detectors (LIGO [177], VIRGO [324], GEO600 [122], TAMA300 [301])
are beginning their search for GWs. Upgrades for two of these detectors (LIGO, VIRGO) have
already begun and in the next few years, the sensitivity of both these detectors will be increased.
In addition, these two detectors have begun working more closely together, improving their net
sensitivity. After these detectors are complete, they will have sensitivities necessary to regularly
detect emissions from astrophysical sources. New detectors, such as the Large-Scale Cryogenic
Gravitational-wave Telescope (LCGT) as well as technology developing sites such as the Australian
Interferometric Gravitational Observatory (AIGO) are also contributing to the progress in GW
astronomy (see [145] for a review). A space-based interferometric detector, LISA [182], could be
launched in the next decade. One important class of sources for these observatories is stellar
gravitational collapse. This class covers an entire spectrum of stellar masses, from the accretion-
induced collapse (AIC) of a white dwarf and the collapse of low-mass stars, including electron-
capture supernovae (Mo < 10 M), through the collapse of massive stars (M > 10 Mg) that
produce and the even more massive stars (M > 20 M) that produce the “collapsar” engine
believed to power long-duration gamma-ray bursts [333], massive and very massive Population III
stars (M = 20-500 M), and supermassive stars (SMSs, M > 10% M,)). Some of these collapses
result in explosions (Type II, Ib/c supernovae and hypernovae) and all leave behind neutron-star
or black-hole remnants’.

Strong GWs can be emitted during a gravitational collapse/explosion and, following the col-
lapse, by the resulting compact remnant [309, 205, 206, 88, 269, 108, 150]. GW emission during
the collapse itself may result if the collapse or explosion involves aspherical bulk mass motion or
convection. Rotational or fragmentation instabilities encountered by the collapsing star will also
produce GWs. Pulsations and instabilities in the newly formed neutron star (a.k.a. proto neutron
star) may also produce observable GWs. Asymmetric neutrino emission can also produce a strong
GW signature. Neutron-star remnants of collapse may emit GWs due to the growth of rotational or
r-mode instabilities. Black-hole remnants will also be sources of GWs if they experience accretion-
induced ringing or if the disks around the black hole develop instabilities. All of these phenomena
have the potential of being detected by GW observatories because they involve the rapid change
of dense matter distributions.

Observation of gravitational collapse by GW detectors will provide unique information, com-
plementary to that derived from electromagnetic and neutrino detectors. Gravitational radiation
arises from the coherent superposition of mass motion, whereas electromagnetic emission is pro-
duced by the incoherent superposition of radiation from electrons, atoms, and molecules. Thus,
GWs carry different kinds of information than other types of radiation. Furthermore, electro-
magnetic radiation interacts strongly with matter and thus gives a view of the collapse only from
lower density regions near the surface of the star, and it is weakened by absorption as it travels
to the detector. In contrast, gravitational waves can propagate from the innermost parts of the
stellar core to detectors without attenuation by intervening matter. With their weak interaction
cross-sections, neutrinos can probe the same region probed by GWs. But whereas neutrinos are
extremely sensitive to details in the microphysics (equation of state and cross-sections), GWs are
most sensitive to physics driving the mass motions (e.g., rotation). Combined, the neutrino and
the GW signals can teach us much about the conditions in the collapsing core and ultimately the
physics that governs stellar collapse (e.g., [7, 107, 167, 228]).

The characteristics of the GW emission from gravitational collapse have been the subject of
much study. Core-collapse supernovae, in particular, have been investigated as sources of gravita-

1 Note that some stars in M = 100500 My mass range may not collapse at all, but rather explode in a
pair-instability supernovae [136].

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-1


http://www.livingreviews.org/lrr-2011-1

6 Chris L. Fryer and Kimberly C. B. New

tional radiation for nearly four decades (see, e.g., [251, 311, 253, 64, 204, 89, 201, 350, 245, 106,
108, 67, 68, 165, 232]). However, during this time research has produced estimates of GW strength
that vary over orders of magnitude. This is due to the complex nature of core collapse. Important
theoretical and numerical issues include

e construction of accurate progenitor models, including realistic angular momentum distribu-
tions,

e proper treatment of microphysics, including the use of realistic equations of state and neutrino
transport,

e simulation in three-dimensions to study non-axisymmetric effects,
e inclusion of general-relativistic effects,

e inclusion of magnetic-field effects, and

study of the effect of an envelope on core behavior.

To date, collapse simulations generally include state-of-the-art treatments of only one or two
of the above physics issues (often because of numerical constraints). For example, those studies
that include advanced microphysics have often been run with Newtonian gravity (and approximate
evaluation of the GW emission; see, e.g., Section 4.1). Very few, if any simulations, have reached
any convergence in spatial resolution. Many of the codes have not been tested to see if their
algorithm implementations guard against standard numerical artifacts. For example, very few
codes used have tested the effects of the non-conservation of angular momentum and the numerical
transport of this angular momentum. A 3D, general relativistic collapse simulation that includes
all significant physics effects is not feasible at present. However, good progress has been made on
the majority of the issues listed above; the more recent work will be reviewed in some detail here.

The remainder of this article is structured as follows. We first review the basic modes of GW
emission in stellar collapse presenting, where they exist, analytic formulae that have been used
to estimate these GWs (Section 2). The latter half of Section 2 presents many of the numerical
approximations used to calculate GW emission. Section 3 covers the various collapse scenarios and
their GW sources: normal core-collapse supernovae (Section 3.1), the accretion induced collapse
(AIC) of a white dwarf (Section 3.2), the collapse of low mass stars and electron capture supernovae
(Section 3.3), and the collapse of massive (Section 3.4) and supermassive (Section 3.5) stars. For
each, we review the current understanding of the occurrence rate, collapse evolution, and the spe-
cific causes behind GW emission. Section 4 then discusses the current state of the calculations for
sources arising from: bounce (Section 4.1), convection (Section 4.2), bar modes (Section 4.3), neu-
trinos (Section 4.4), r-modes (Section 4.5), fragmentation (Section 4.6), and ringing (Section 4.7).
We conclude by tying together all of these sources with their emission mechanisms to predict a
complete GW sky.

One final word of warning. In many cases, the total GW signal from stellar collapse can be
tuned by altering key initial conditions (such as the rotation rate of the collapsing star). Many of
the strongest GW estimates in the literature tend to use rotation rates that are orders of magnitude
higher than that predicted for most stars. These more optimistic results often predict that the
current set of detectors should observe GWs from astrophysical sources. In many cases, studies of
these extreme conditions provide insight into possible mechanisms for GW emission. To include
these new insights, we will discuss these results in this review. The exact nature of the initial
conditions may make certain GW signals undetectable. For each of the these scenarios, we strive
to distinguish academic studies with more realistic estimates of the signal. Our summary is based
on what we judge to be the more realistic signal predictions.

Living Reviews in Relativity
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2 Gravitational Wave Emission

Most studies of GW emission use a multipole expansion of the perturbation h,, to a background
spacetime gfw. The lowest (quadrupole) order piece of this field is [306]:

26 & 8G & o

hjy = G g Lie(t =71) + oo e Skp(t = T)ng | (1)

Here, Z;;, and S;i, are the mass and current quadrupole moments of the source, d is the distance from
the source to the point of measurement, €;;; is the antisymmetric tensor, and n, is the unit vector
pointing in the propagation direction. Parentheses in the subscripts indicate symmetrization over
the enclosed indices, and the superscript TT indicates that one is to take the transverse-traceless
projection; G is Newton’s gravitational constant, and c is the speed of light.

Most GW estimates are based on Equation (1). When bulk mass motions dominate the dy-
namics, the first term describes the radiation. For example, this term gives the well-known “chirp”
associated with binary inspiral. It can be used to model bar-mode and fragmentation instabilities.
At least conceptually, this term also applies to black hole ringing, provided one interprets Z;; as a
moment of the spacetime rather than as a mass moment [310, 162]). In practice, ringing waves are
computed by finding solutions to the wave equation for gravitational radiation [303] with appro-
priate boundary conditions (radiation purely ingoing at the hole’s event horizon, purely outgoing
at infinity). The second term in Equation (1) gives radiation from mass currents, and is used to
calculate GW emission due to the r-mode instability.

When the background spacetime is flat (or nearly so) the mass and current moments have
particularly simple forms. For example, in Cartesian coordinates the mass quadrupole is given by

, 1
Tk = /dgxp [xjxk — 37“25]4 , (2)

where p is the mass density, and 6;, = 1 for j = k£ and 0 otherwise. The second term in the
integrand ensures that the resulting tensor is trace free.

There are several phases during the collapse (and resultant explosion) of a star that produce
rapidly changing quadrupole moments: both in the baryonic matter and in the neutrino emission.
We will break these phases into four separate aspects of the core-collapse explosion: the bounce
of the core, the convective phase above the proto neutron star, cooling in the neutron star, and
formation phase of a black hole. Scientists have focused on different phases at different times,
arguing that different phases dominated the GW emission. These differences are primarily due
to different initial conditions. A specific stellar collapse will only pass through a subset of these
phases and the magnitude of the GW emission from each phase will also vary with each stellar
collapse. Fryer, Holz & Hughes (hereafter FHH) [106] reviewed some of these phases and calculated
upper limits to the GWs produced during each phase [106]. Recent studies have confirmed these
upper limits, typically predicting results between 5—50 times lower than the secure FHH upper
limits [165, 228]. Before we discuss simulations of GWs, we review these FHH estimates and
construct a few estimates for phases missed by FHH.

Those collapsing systems that form neutron stars (all but the most massive stellar collapses)
will emit a burst of GWs at bounce if there is an asymmetry in the bounce (either caused by
rotation or by an asymmetry in the stellar core prior to collapse). If we represent the matter
asymmetry in the collapse by a point mass being accelerated as the core bounces, we can estimate
the GW signal from the bounce phase (using, for example, Equations (15)—(19)):

< (rhy)? >V~ G/ /8/3(apy, + vf))mp, (3)

Living Reviews in Relativity
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where a,, is the acceleration, x,, is the position (providing a lever arm for the GW emission), v, is
the velocity, and m,, is the mass of the parcel of matter driving the GW emission. If we limit our
estimate to the acceleration term, we find

< (rhy)? >Y2 = 50(a,/6 x 101! cm s72)(z,/30 km)(m, /0.1 Me). (4)

For a 0.1 Mg asymmetry, where the matter at 30 km is accelerated from —0.1c to 0.1c in 10 ms
(typical for a core-collapse bounce), the signal would be roughly 16 x 10722 at 10 kpc. Although
one could imagine increasing this signal by including the velocity term, it is unlikely that we will
be able to increase this value by more than an order of magnitude.

This formulation can also be used to estimate the GW emission for convection. After bounce,
convection begins to grow within and on top of the proto neutron star?. In this extreme case,
the GW signal convection can once again be estimated by a point source accelerating across the
convective regime. Here the acceleration of the matter occurs over a 100 ms timescale and the
velocities are peaking at roughly 0.01c. As such, we expect convective motion alone to be an order
of magnitude lower than bounce:

< (rhy)? >Y2 = 5(a,/6 x 10° cm s72)(x,/100km) (m,, /0.3 My,). (5)

That is, for typical convective regions, we expect a signal of less than 1.6 x 10722 at 10 kpc. Any
post-bounce signal stronger than this result is likely to arise from additional instabilities such as
bar modes.

FHH focused on three emission sources after the bounce. In the convective regime, they studied
the development of two different instabilities: fragmentation and bar modes. Bar modes can also
develop in the neutron star as it cools. FHH [106] also estimated the r-mode strength in neutron
stars. Let’s review these estimates.

Fragmentation can only occur in very rapidly-rotating models. Currently, the predicted rotation
rates of stellar models are simply not fast enough to develop such instabilities [245, 113, 282]. How-
ever, the argument that massive accretion disks act as gamma-ray burst (GRB) engines [242] opens
up a new scenario for fragmentation instabilities. Van Putten [320] has argued that fragmentation-
type instability can occur in black-hole—forming collapses, if it is rotating sufficiently fast to form a
massive disk. Thus far, simulations of such disks have developed Rossby-like instabilities, but these
instabilities do not lead to true fragmentation. Requiring Qc¢s/mG3 < 1 [316, 123] is a necessary,
but not sufficient condition [239]; see Zink et al. [348]. Assuming they can occur, GW estimates
of fragmentation provide a strong upper limit to the GW signal. In Keplerian orbits, with equal
massed fragments, this limit is (FHH):

-Pfragmcnt - 2/5G4/c5m5/7"57 (6)

hfragment = \/8/75G2/c4m2/(7"d), (7)
where GG is the gravitational constant, ¢ is the speed of light, m is the mass of the fragments,
r is their separation, and d is the distance to the detector. In the black-hole forming case,
when the “horizons” of the two fragments touch, the power radiated reaches a maximum: P =
c®/(80G) ~ 10°7 ergs s~!. This is a strong source, if simulations confirm that such fragments
exist. For black holes, fragmentation will lead to clump accretion and black hole ringing.

Considerably more effort has been focused on bar modes, or more generally, non-axisymmetric
instabilities. Classical, high 8 (where 3 is the ratio of the rotational to potential energy = T7'/|W1),

2 Currently, there are major discussions on the details of the drive in the convection above the proto neutron star.
Instabilities can be driven by the post—bounce-shock entropy profile, neutrino heating, or the standing accretion
shock instability (SASI). Similarly, debate surrounds the magnitude of the entropy/lepton driven convection within
the proto neutron star.

Living Reviews in Relativity
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bar modes can be separated into two classes: dynamical instabilities and secular instabilities. The
classical analysis predicts that 5 2 0.27 is needed for dynamical instabilities and (8 2 0.14) is
required for secular instabilities. Collapse calculations of many modern progenitors (e.g., [138])
followed through collapse calculations [245, 113, 69] suggest that such “classical” instabilities do
not occur in nature.

However, advances in both progenitors and non-axisymmetric instabilities have revived the
notion of bar modes. First, the search for progenitors of GRBs has led stellar and binary modelers to
devise a number of collapse scenarios with rapidly-rotating cores: mixing in single stars [338; 340],
binary scenarios [114, 240, 104, 319, 42], and the collapse of merging white dwarfs [341, 339, 342,
118, 63, 61]. Second, calculations including differentially-rotating cores also discovered that, with
differential rotation, instabilities can occur at much lower values for 3, as low as 0.01 [278, 279].
We will discuss these new discoveries in detail in Section 4.3. FHH estimated the upper limits of
the GW signals from bar-instabilities assuming a simple single bar of length 2r:

332G 4 4 ¢

Poar = Eam W (8)

Rpar = \/32/45G [c*mr?w? /d. (9)

Lastly, there has been considerable discussion about the existence of r-modes in the cooling
proto neutron star [4, 96] . FHH estimated an upper limit for the r-mode signature by using the
method of Ho and Lai [143] (which assumes amax = 1) and calculated only the emission from the
dominant m = 2 mode. This approach is detailed in [106]. If the neutron star mass and initial
radius are taken to be 1.4 Mg and 12.53 km, respectively, the resulting formula for the average

GW strain is 50 M
B(t) = 1.8 x 10720 () ( pc) , (10)

1 kHz d

where « is the mode amplitude and v is the spin frequency. Recent studies suggest that viscosities
may be quite high in a cooling proto neutron star, making this source untenable [159, 158, 248,
249, 181, 178, 132, 5]. We will review this argument, and some of the recent progress in estimating
the viscosity in a neutron star in Section 4.5.

Living Reviews in Relativity
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2.1 Making numerical estimates

In core collapse, estimates of the GW emission from simulations are usually done outside of the
actual hydrodynamics calculation — that is, there is no feedback from the loss of energy from
GWs from the system. Of course, where the GWs drive or damp an unstable mode (e.g., bar
modes, Section 4.3), this approximation will lead to erroneous results. Such an assumption is
almost always justified, as the GW emission is many orders of magnitude less than the total
energy in the system. Calculating the GW emission from a hydrodynamic simulation requires the
discretization of Equation (1) and the discretization used depends upon the numerical technique
and the dimension of the calculation. Here we present some common discretizations.

An example of a discretization in spherical coordinates for a 2-dimensional simulation is that
used by Miiller & Janka [208] (see also [306, 201]). Here they define the gravitational quadrupole
radiation field (hTT):

hoo = 1/8y/(15/7) sin? A2 /r, (11)

where r is the distance between the observer and the source, # is the angular coordinate in our
r — 6 coordinate system, and ALZ is given by:

A5 = G/ a0 VE) [ [ plrun oo 30 = 1)+ vona(2 - 307) ~ vpvy (12

— 6vvgun/1 — p2 +r0®/0r(3u* — 1) + 300 /00u\/1 — p2)ridrdu,

where yu = cos 8, v,, ve, v4 are the velocities along the ordinate axes in spherical coordinates and ®
is the Newtonian potential. In spherical coordinates, the partial derivatives in 6 and r are easily
defined® and the integrals simply become summations over the grid space.

In three dimensions, we can simplify this equation:

hi T (X, t) = 1/R[(d*Log /dt* — d° I, /dt?)e, + 2d* I, /dt’ey] (13)
where e} =eg®eg — ey ®ey and ex = eg ® eg + €4 ® ey, Where

d2[ij/dt2 = G/C4/d3.’13p(2’l)i’l)j — l‘zajq)/aj — ajjatb/(’)z), (14)

where i and j are the coordinate axes.
For smooth particle hydrodynamics (SPH), this formalism becomes [45]:

4 . . 4 . . 1 .

CS/G2<(Th+)2> = B(Im - 122)2 + B(Iyy - IZZ)2 + E(IM’ - Iyy)2
E 7 )2 i 72 i 72
3 9 9 1 . =g 2 . 9 4 .. 9 4 .. 9
/G ((rhx)") = E(I:m - Iyy) + g(lxy) + g(IwZ) + g(IyZ) ) (16)

where r is the distance to the source. The angle brackets in these equations denote averaging over
all source orientations, so that for example

wmﬂzﬁfm%mmf (17)

3 Miiller & Janka [208] did not specifically describe what they used, but any standard derivative discretization
would work, e.g., 0®/0r = (®FFT1 — dk—1)/(pk+l — pk—1),

Living Reviews in Relativity
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The quantities fij are the second time derivatives of the trace-free quadrupole moment of the
source. The diagonal elements are given by, for example,

I, = Zmp 2xpE, — Yplp — zpzp+2x —y2—22) (18)
p 1

where m,, is the mass of an SPH particle, and (zp, ¥y, 2p) is its coordinate location. The other
diagonal elements can be obtained using Equation (18) plus cyclic permutation of the coordinate
labels: Im—>IyV1ax—>y,y—>z e Im—>IZZ via x — z, z = vy, y — z. The off-diagonal
elements are given by, for example,

N

Ioy = Z myp(@pip + Yplip + 28pTp); (19)
p=1

the remaining off-diagonal elements can be found via symmetry (I ji = I”) plus cyclic permutation.
This approach provides only averaged square amplitudes, instead of the specific amplitude of the
GW signal.

For GWs from neutrinos, many groups use [208] (based on the original analysis of Epstein [76]
and Turner [317]):

t—R/c
(hTT)pole - 2G/ dt’

4 .

L, (Yt
dQ’(l—&—cosH’)cos(qu’)d ({2, ¢)

4 L, (20)

T 2G t R/C
(P )equator = E/ dt’ dQY (1 + sin @’ cos ¢')
—00 47

cos? 0’ —sin? 0’ sin® ¢ dL, (', t')
cos? @ 4 sin® @' sin? ¢/ dY

; (21)

where G is the gravitational constant, ¢ is the speed of light and r is the distance of the object.
(RET) pole denotes the emergent strain for an observer situated along the source coordinate frame’s
z-axis (or pole) and (AL1)equator 1S the comparable strain for an observer situated perpendicular
to this z-axis (or equator).

In SPH calculations, these expressions reduce to:

(hE) pole = ZAtz (14 z/r)(22%/r? — 1)AL (22)

N 2 2 / 2 /2
hTT equator — E A 1+ 1—22/r2 X, /T — == /T ( ) /T ALV, 23
(hez ) c4RZ t;( Jr(x,y)/r) IEY RS oy T (23)

where At is the timestep, the summation is over all particles emitting neutrinos that escape this
star (primarily, the boundary particles). There are some assumptions about the emission of the
neutrinos in this model, but Fryer et al. [107] argued that these assumptions lead to errors smaller
than a factor of 2. The + correspond to observers along the positive/negative directions of each
axis: for instance, in the polar equation, this corresponds to the positive/negative z-axis. In the
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equatorial region, the x,y-axis is determined by the choice of x or y position for the (x,y) coordinate
in the equation.

The signal arising from neutrino emission is an example of a GW burst “with memory”, where
the amplitude rises from a zero point and ultimately settles down to a value offset from this initial
value. The noise sources and optimal data analysis techniques for these signals will differ from, for
example, signals from bounce that do not have memory [25, 80].

Other methods have been developed to calculate the GW emission (e.g., Regge variables [328,
121], Zerilli equations [346], Moncrief metric [202], see [214] for a review). Shibata and collaborators
(e.g., [277]) have used the gauge-invariant Moncrief variables in flat spacetime:

R, (t,7) = v/2(1 = 2)1/(1 + 2)!(4karm + L1+ 1)k1pm) (24)
RO (t,r) = /2(1+ 2)!/(1 — 2)/(2C,, /7 4 10 /01 Dyyy) (25)
where
Ertm = Kim + (1 + 1)Gryp + 200/ 0rGr — 2h11m /7, (26)
k2lm = Hlm/Q + l(l + I)Glm + 2r8/8rGlm - 2h11m/7’, (27)

where Cim, Dimy, Kim, Gim, Hym are functions of r and ¢ and are two-sphere integrations with
dependencies on the coordinates r,¢,0 and the Lorentz factor . Most of these are defined in
Shibata & Nakamura [280]. With these gauge-invariant variables, we can derive the energy emitted
in GWs:

dE/dt = r*/32w > [|OR}, /0t]” + |ORE), /0[], (28)

lm

Shibata & Sekiguchi [282] define a number of other useful quantities for determining GW emission
using this formalism.
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3 Astrophysical Sources of Gravitational Wave Emission

The type of collapsing star and the explosion mechanism both determine what sources of GWs can
occur in a stellar collapse. Before we discuss the different collapses individually and the detailed
simulations, let’s discuss some of the basics behind stellar collapse and core-collapse supernovae.
In this review, the term “stellar collapse” refers to any stellar system that collapses down to a
neutron star or black hole. These stellar systems are produced by many different scenarios, but
they can be loosely grouped into two categories:

e The collapse of Oxygen-Magnesium-Neon and Carbon Oxygen White Dwarfs pushed beyond
the Chandrasekhar limit

e The collapse of Iron or Oxygen-Magnesium-Neon Stellar Cores of massive stars that become
too large to support themselves (also roughly at the Chandrasekhar limit).

For both classes of stellar collapse, the core is supported by a combination of thermal and
degeneracy pressures. When the mass is too great for these pressures to support the star/core, it
begins to compress and heat up. The compression leads to electron capture, neutrino emission, and
ultimately, dissociation of the elements. Electron capture reduces the support from degeneracy
pressure while Urca processes and dissociation of elements remove thermal support. With less
support, the core compresses further, accelerating the rate of electron capture and dissociation,
ultimately leading to a runaway implosion. This collapse continues until the matter reaches nuclear
densities and the formation of a proto neutron star, or, in the case of massive stars above 100 Mg,
a proto black hole [115]%.

In stellar collapse, it is the structure (density, entropy, rotation) of the core that determines
whether a black hole or neutron star is formed® For those stellar collapses that form neutron stars,
the structure of the star just beyond the collapsed core is critical in defining the fate of the system.
As the collapsed material reaches nuclear densities, nuclear forces and neutron degeneracy pressure
halt the collapse and send a bounce shock out through the star. For nearly all systems, this bounce
shock stalls. The shock can be revived by neutrinos leaked from the core depositing their energy
above the proto neutron star. This is the basis of the neutrino-driven supernova mechanism [56, 19].

Over the past 15 years, scientists studying the supernova engine have focused on convection
above the proto neutron star as a crucial piece of physics needed to unlock powerful supernova
explosions (Figure 1). To drive an explosion, the convective engine must overcome the ram pressure
at the top of the convective region caused by the infalling star [36, 140, 97, 156, 211]. The infalling
material creates a cap or lid on top of the convective engine that must be blown off to produce an
explosion. The strength of this “lid” is a function of the infalling accretion rate. Fryer [97] used
this simple picture and the varying accretion rates of different stars (Figure 2) to determine the
fate of massive stars. A supernova occurs if the engine can blow off the lid.

Using this simplified picture, Fryer and collaborators [97, 109, 136] were able to estimate the
fate of massive stars. Fryer and Kalogera [109] outlined three fates for the star: neutron-star
formation, black-hole formation through fallback after a weak supernova explosion, and prompt
(or direct) black-hole formation where no supernova explosion is launched. The “prompt” or
“direct” name has led to some confusion. These systems still initially form a proto neutron star.
However, they are unable to throw off the infalling lid and thus they collapse down to a black
hole without launching a supernova shock. Very massive (above ~ 300 M) stars might collapse

4 The term “proto black hole” is used to describe the large (above 50 Mg) core produced in the collapse of a
massive star. Because of high entropies, the core does not collapse down to nuclear densities but collapses straight
to a black hole, never producing a compact proto neutron star at nuclear densities.

5 Our models of these collapsing cores are also sensitive to the numerical modeling of the physics as well as
uncertainties in the physics, both leading to the current variety in results between different simulations.
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Figure 1: Diagram of the convective engine for supernova explosions.
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Figure 2: Accretion rates of different mass stars. The more massive stars have higher accretion rates and
are, hence, harder to explode. Figure 1 from Fryer [97].
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directly to a black hole without the formation of a proto neutron star and without the bounce
associated with this formation [115, 217, 218]. But rotation can allow the formation of a proto
black hole [115]. Because the binding energy of the star rises so quickly with stellar mass as the
explosion energy goes down, the line dividing proto—neutron-star and black-hole formation can be
determined fairly accurately (Figure 3). Of course, stellar winds will affect the stellar structure
and also this fate (Figure 4).
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Figure 3: Supernova explosion energies (dotted lines) based on simulation (solid circles) and observation
(solid dot of SN 1987A) as a function of progenitor mass. The binding energy of the envelop (material
beyond the 3 Mg core) rises dramatically at 20 Mg (solid line). This fast rise with mass and the decline
based on explosion simulations of the energies from the convective engine mean that even if the errors in
these estimates are large, the likely dividing line between neutron star and black hole formation can be
determined fairly accurately. Figure 1 of Fryer & Kalogera [109].

One can take this one step further. If the energy of the explosion is stored in the convective
region, one can estimate the maximum energy of the explosion based on the infalling accretion
rate. The pressure in this convective region is [99]

P(r) = [1/4MxsG(Sraa/So) " (1/r — 1/renock) + Pslh/fck]4erg em ™3, (29)

where Myg is the mass of the proto neutron star, G is the gravitational constant, S;.q is the
entropy in Boltzmann’s constant per nucleon, Sy = 1.5 x 107! and rguock and Pinock are the
radius and pressure of the accretion shock produced where the infalling stellar material hits the
convective region. If we set Pshock, the ram pressure of the infalling material, = 1/2pv%, where
p is the density of the infalling stellar material and vg is the free-fall velocity at the shock, we
can estimate the maximum energy stored in the convective region (when it exceeds this value, the
shock will move outward). This allows us to predict the explosion energy as a function of delay
time in the explosion (Figure 5).

This picture does not change even if the standing accretion shock instability contributes to
the convective instabilities. Many of the recent simulations have focused on the SASI and it
is worth reviewing how it effects the basic convective picture of supernovae. This instability
was originally discussed in the context of white-dwarf and neutron-star accretion in scenarios
under the assumption that the accretion envelope was stable to Rayleigh—Taylor instabilities [144].
Asymmetries and strong Rayleigh-Taylor convection in actual models [101] coupled with the long
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Figure 4: Fate of massive stars as a function of mass and metallicity. Figure 1 from Heger et al. [130].
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Figure 5: Explosion energy as a function of launch time of the supernova shock for four differently-massed
stars assuming the energy is stored in the convective region. The energy is then limited by the ram pressure
of the infalling stellar material. Note that it is difficult to make a strong explosion after a long delay. For
more details, see [99] and Fryer et al. (in preparation).
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predicted growth times for the SASI (~ 3 s [144]) in neutron star accretion, led the accretion
community to limit such instabilities to late times. Blondin et al. [21] introduced this instability
into the core-collapse supernovae by setting up conditions that were stable to Rayleigh-Taylor
instabilities to study the SASI. In this case, SASI dominates and, as Blondin et al. [21] found, can
produce low-mode convection.

There are two dominant questions currently under discussion with regard to this instability.
First, how dominant is SAST when entropy gradients do exist? Recall, the analytic estimates of the
SAST were originally derived under the assumption that the envelope is Rayleigh—Taylor stable [144]
and in neutron-star fallback; simulations argue that Rayleigh-Taylor instabilities dominate®. Low-
mode convection is not a sure indicator of the SASI, as Rayleigh—Taylor instabilities also predict a
growth toward low modes [139]). Second, is the SASI driven by an advective-acoustic instability or
is it simply an acoustic instability? Blondin and collaborators, who first mentioned the possibility
of advected vortices in the supernova context, later argued for an acoustic scenario [20]. Answering
these question has spawned a great deal of both simulation and analytic theory work [38, 39, 82,
81, 94, 93, 92, 116, 195, 196, 229, 264, 263, 164, 336].

Our analysis of explosion energy holds regardless of the dominant instability or the cause of
that instability if the assumption that the energy is stored in the convective region remains true.
In such a case, it is difficult to construct a strong explosion from a mechanism that has a long
delay. But other sources of energy exist. The neutron star itself can store energy in oscillations to
add to the explosion energy [40, 39]. Fallback may also drive additional explosions [101, 100]. We
will study both of these in more detail below. This has repercussions on the explosion engine and
the resultant GW mechanisms.

Alternative mechanisms for the core-collapse supernova mechanism exist, most notably the
magnetic-field mechanism [175, 299, 2, 3, 6, 35, 61, 62, 265]. The idea here is that magnetic fields
strengthened in the collapse and subsequent convection (especially if the star is rotating rapidly)
will drive an explosion. How the magnetic fields affect the GW signal will depend on how and when
the magnetic field develops. For most magnetic-field generation schemes, the field grows after the
bounce of the core, and signal from the collapse/bounce phase (and indeed some of the convective
phase) from supernovae will be the same whether the mechanism is this alternate magnetic-field
driven mechanism or the standard convective engine. For some magnetar models, the magnetic
field develops after the launch of a weak, convectively-driven explosion [304]. In such a case, the
GW signal will be identical to the convective-driven mechanism.

Finally, if the core collapses to a black hole and the infalling material has enough angular
momentum to prevent its infall directly into the event horizon, explosions might be produced. An
accretion disk forms and, either through the wind-up of magnetic fields or neutrino annihilation
above the disk, an explosion may result. This type of explosion has been posited as the engine
behind GRBs [219, 333]. The association of GRBs with supernova-like outbursts has argued
strongly for a massive-star origin for at least long-duration GRBs [335, 117].

In this section, we review the various progenitors of core collapse, describing their physical
properties, its occurrence rate, evolution, and likely GW emission mechanisms. Rather than fol-
low the order of progenitor mass, we first discuss the fate of stars in the 12—-20 My range, the
likely progenitors for core-collapse supernovae. These are the most-studied gravitational-collapse
systems. We then discuss the AIC of white dwarfs and the very similar collapse of stars in the
~ 9-12 Mg, range. We then move upwards in mass studying massive, very massive (20—-500 M)
and supermassive (> 105 M) stars.

6 In accretion, Rayleigh-Taylor instabilities occur due to entropy gradients in the envelope set up by accre-
tion [101]. In a supernova engine, where the proto neutron star is hot, neutrino heating can also produce entropy
gradients [140].
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3.1 Core-collapse supernovae

Stars more massive than ~ 10—12 Mg and less massive than ~ 20 M, are the primary candidates
for what is considered the standard formation scenario behind core-collapse supernovae. For these
stars, the current belief is that the collapse proceeds through bounce and proto neutron star
formation. Convection, or perhaps an alternate mechanism like magnetic fields, then deposits
enough energy above the proto neutron star to drive an explosion. Scientists presently think that
this process is responsible for most type Ib/c and type II supernovae’. This is the best studied,
and probably best-understood, core-collapse scenario in astronomy.

3.1.1 Core-collapse supernovae rate

The rate of core-collapse supernovae can be determined by simply multiplying the star-formation
rate times the fraction of stars in the ~ 10-12 and ~ 20 My mass range. The uncertainties
in such a calculation lie in determining the limits on either side of this range (determined by
theory), the power in the initial mass function and the star formation rate (both beyond theory at
this point). The latter two quantities, both set by observations, dominate the errors in this rate
estimate.

Indeed, especially at high redshift, the supernova rate is better constrained by observations than
the rate of star formation and it is often used to determine the star-formation history. The local
rate of supernovae as a function of galaxy type has been studied [43, 193]. The rate of supernovae
in a Milky-Way-sized galaxy is roughly 1 per 100 y for type II and type Ib/c supernovae. It is
believed that the rate has been decreasing since a redshift of roughly 1—-1.5 (Figure 6).

3.1.2 Core-collapse evolution

The evolution of a core-collapse supernova passes through a number of phases: collapse and bounce,
post-bounce and convection and neutron-star cooling. The runaway collapse of the core continues
until the core reaches nuclear densities. At this point, nuclear forces and neutron degeneracy
pressure sharply increase the core pressure, causing the core to bounce and sending a shock wave
throughout the star. The nature of the bounce depends upon the equation of state: a stiffer
equation of state causes the star to bounce more quickly but also more weakly than a softer
equation of state. Within the current uncertainties, the bounce still occurs at an enclosed mass
(mass zone measured from the center of the star) of 0.55 4+ 0.2 M. By the time the bounce shock
stalls, the mass of the core is closer to 0.9 & 0.2 M. Including the effects of general relativity
acts to effectively soften the equation of state. Rotation can cause the bounce to occur at lower
densities (as centrifugal support contributes to the bounce), but for the current fastest-rotating
cores produced in stellar models, this effect is less than 20% [113, 69].

As the bounce shock moves outward, it becomes optically thin to neutrinos and the shock
loses its internal energy. For these “standard” core-collapse explosions, the shock then does not
have enough energy to throw off the infalling star and the shock stalls. But it leaves behind an
entropy profile that is convectively unstable. Furthermore, heating from the hot core also drives
convection®. If the convective region can develop enough energy to blow off the infalling star,
a successful supernova explosion (Figure 7) results. Especially for explosions with long delays

7 These different supernova types are thought to differ primarily based on the envelope left on the star at collapse,
not based on a different collapse mechanism: type II supernovae still have a hydrogen envelope, whereas type Ib/c
SNe have lost their hydrogen, and for the type Ic SNe, most of its helium, envelopes.

8 Fryer & Young [116] have pointed out that current simulations are likely to be under-resolved and predict
less vigorous convection than what should happen in nature: see also [41, 70]. In general, models of convective
instabilities suggest that high resolution (above 5123 zones) across a convective cell is required to resolve convection
accurately (e.g., [243]). If such constraints from the turbulence community are correct, the current grid-based
simulations in core collapse (e.g., Marek & Janka [195]) remain under-resolved.
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Figure 6: Left-hand panel: Evolution of the core-collapse supernova rate with redshift. The dashed line
shows the intrinsic total supernova rate derived from the star formation density. The supernova rate that
can be recovered by optical searches is shown in light gray, and is compared with the data points from
Cappellaro et al. [44] (squares) and Dahlen et al. [59] (circles). Right-hand panel: Fraction of CC SNe
that are not present in the optical and near-IR searches as a function of redshift. (Figure 2 of Mannucci
et al. [193]; used with permission.)
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Figure 7: Six snapshots in time of the convection in the collapse of a 23 Mg star. The plot displays slices
of the data in the x-z plane. The vectors denote direction and magnitude of the particle motion. The
colors denote entropy. The convection is far from symmetric, but we do not get the single-sided downflows
seen in many recent 2-dimensional calculations. Figure 4 of [116].
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(greater than a few hundred ms), the SASI may play a strong role in the convection (see the
review at the beginning of this section).
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Figure 8: Images of the gas entropy (red is higher than the equilibrium value, blue is lower) illustrate the
instability of a spherical standing accretion shock. This model has v = 4/3 and is perturbed by placing
overdense rings into the infalling preshock gas. The shock is kept stalled by using a cooling function. Note
that with the scaling for a realistic supernova model, the last image on the right corresponds to 300 ms.
These simulations are axisymmetric, forcing a reflection symmetry about the vertical axis. (Figure 6 of [21];
used with permission.)

In any event, both instabilities, if driven to late times, will naturally produce explosions with
asymmetries that may explain the observational evidence for asphericities in the core-collapse
explosion: pulsar velocities, mixing, polarization (Figure 8). It may also produce stronger gravi-
tational wave signals than the higher-mode neutrino-driven convection. Fryer [99] has argued that
the long delays required for SASI to dominate leads to low-energy explosions that do not eject
much °°Ni and produce dim supernovae (Figure 5). If true, any extremely delayed (more than
400 ms) explosion mechanism does not match supernova observations and cannot be the dominant
fate of stellar collapse (although given the rough observed limits on the supernova rate and the
difficulty in observing dim supernovae, we cannot constrain the importance of this mechanism with
any certainty).

As the proto neutron star cools, it may also develop strong convection and this could be another
source of GWs [160, 34]. But the extent of this convection ranges from growing throughout
the entire proto neutron star [160], to select regions in the star [60], to small regions in the
star [140, 112, 113, 116]. Only when the convection is in the entire proto neutron star [160] is
it considered to play a large role in the supernova explosion. Although a small contribution to
the GW signal, this convection may not be negligible in calculating the full GW signal from core
collapse [228].

Another possible source of GWs is the oscillations in the proto neutron star [40]. But, like the
strong proto—neutron-star convection, there are arguments against such strong oscillations [116,
85, 343, 195, 327].

In strongly magnetized neutron stars, when neutrino oscillations into sterile neutrinos in the
core occur, we also expect asymmetries in the neutrino emission to lead to asymmetries in the
neutrinos escaping the core, producing GWs [170, 120].

But, by far, the most studied source of GWs from proto neutron stars are the rotationally-
induced bar-mode instabilities. All of these can contribute to the outflows from the cooling neutron
star. If magnetic fields develop or there is a high mass-infall rate [305], these outflows can add
significantly to the explosion energy and at least one supernovae seems to have experienced such
a secondary explosion [191].
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3.1.3 Core collapse: Sources of gravitational wave emission

In Section 2, we reviewed the wide variety of mechanisms that lead to GW emission, i.e., time
varying quadrupole moments in the matter or the radiation. The complex dynamics and physics
within the evolution of a standard core-collapse supernova allow for a variety of scenarios for GW
emission at different phases in the collapse.

Bounce: At core bounce, when the infalling material reaches nuclear densities and the collapse
halts, the matter reaches its peak acceleration. If the collapse phase is asymmetric, either by
asymmetries in the stellar structure or through rotation, this phase can lead to the strongest GW
emission. The primary source of this emission is the rapidly changing quadrupole moment in the
matter as the asymmetries evolve (Section 4.1). But the asymmetries in the bounce also produce
the initial asymmetry in the neutrino emission and this asymmetry may lead to a strong GW signal
as well (Section 4.4).

Post-bounce and Convection: The convection above the proto neutron star can also develop
strong asymmetries as the convective cells merge into low-mode convection. This can lead to rapidly
varying quadrupole moments in both the matter (Section 4.2) and the core (Section 4.4).

In the Neutron Star: Convection in the cooling neutron star could produce strong GW
emission. So can asymmetric neutrino emission produced by neutrino oscillations to stellar neu-
trinos in the core’. Pulsations in the newly formed proto neutron star may also produce a strong
GW signal [85, 229]. But the most-studied GW source arises from bar-mode instabilities, in part
because, if they develop, they may produce a GW signal that rivals both the bounce and convective
GW signals.

9 Neutrino emission is tied to electron spin, which is made anisotropic by strong magnetic fields [170, 120].
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3.2 Accretion-induced collapse

Stars with masses in the range ~ 1-8 Mg, through burning flashes in an Asymptotic Giant Branch
(AGB) and post-AGB phase, ultimately lose their envelopes, leaving behind their Carbon/Oxygen
(CO) cores (now CO White Dwarfs) and a planetary nebula (for a review of AGB evolution, see
Herwig [141] or recent papers [286, 287, 241]). If it were not for the fact that many of these newly
formed white dwarfs are in binary systems, such objects would be unimportant for stellar collapse.
But there is growing evidence that perhaps most planetary nebulae are formed in binaries [200].
If a white dwarf accretes enough matter through binary mass transfer, its mass can approach the
Chandrasekhar limit, causing it to collapse and produce a supernova explosion.

Whether this supernova explosion is produced by the burning of this CO white dwarf into
nickel (type Ia Supernova) or by the “Accretion Induced Collapse” (AIC) of the white dwarf down
to a neutron star (making these objects relevant to this review) depends upon the accretion rate
onto this white dwarf. Nomoto & Kondo [224] summarized the fate of an accreting white dwarf
presented as a function of its initial mass and the accretion rate. When material accretes, it ignites.
And the fate of the accreting white dwarf both depends on this ignition process (does the accreting
material explode as a nova, ejecting matter, or does it burn less explosively, accreting onto the
white dwarf) and also the ultimate ignition of the accreting white dwarf itself. Heat inflow ignites
white dwarfs with masses below about 1.2 My at low densities, causing thermonuclear explosions.
AICs are only produced in stars with masses below ~ 8 Mg in one of two categories:

e high white-dwarf mass: If the white dwarf is massive (above ~ 1.2 M), the heat inflow
to the core is minimal and the white dwarf heats up primarily due to adiabatic compression.
In this case, by the time the white dwarf ignites, it is very dense and the URCA process can
cause significant cooling, causing the star to collapse instead of explode.

e high accretion rates: If the accretion rate is very high, the accretion process will ignite
carbon at the edge of the white dwarf, burning it into an Oxygen/Neon (ONe) white dwarf.
In this case, Urca processes provide a cooling mechanism causing the star to collapse as it
reaches the Chandrasekhar limit (see [127] for review and counterexamples).

At this time, stellar modelers do not expect that Nature produces that many CO white dwarfs
with initial masses above 1.2 Mg, [287, 241]. The most massive white dwarfs are probably formed
as ONe white dwarfs from stars above 8 Mg — see Section 3.3. So this class of AIC formation is
likely to be rare. But high accretion rates are expected in a very important, and perhaps common,
event: the merger of two white dwarfs (generally a He or CO white dwarf merging with a CO
white dwarf). Most current simulations predict that this merger process is very rapid, arguing
that the more-massive white dwarf will tidally disrupt and accrete its companion in a very short
time. Such a rapid process suggests high accretion rates, arguing that most mergers produce AICs.
However, there are a number of uncertainties in such calculations and no other mechanism produces
a sufficiently high rate to explain the occurrence of type la supernovae, so we cannot rule out that
these mergers produce thermonuclear supernovae instead of AICs.

3.2.1 AIC rates

Thus far, no outburst from the AIC of a white dwarf has been observed. Given that the outburst
is expected to be very dim because the shock heating is negligible and the predicted *°Ni yields
are all low (< 0.05 Mg [102, 161, 61]), the lack of observed AICs does not place firm upper limits
on the AIC rate.

Theoretical estimates of the rate of AICs are also quite uncertain. If we accept the conclusions
of Nomoto & Kondo [224], the AIC rate may be well above the type Ia supernova rate (~ 1072 y !
in a Milky-Way—sized galaxy). This result depends upon a number of assumptions in the accretion
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process in these binary systems and the true rate of AICs could be many orders of magnitude lower
than this value. Studies of binary mass transfer [198, 199, 16, 270, 126, 203, 72, 342] and white
dwarf accretion [91] are both becoming more accurate. As they are coupled with stellar evolution
models of these systems, our understanding of the rate of AICs should become more accurate as
well.

Alternatively, one can use observed features of AIC explosions to constrain the AIC rate.
Fryer [102] argued that the neutron-rich ejecta from an AIC limits their rate to ~ 107 y . More
recent results, which eject a smaller fraction of neutron-rich material, may loosen this limit by 1
order of magnitude [161, 61].

3.2.2 Evolution of AIC

As a white dwarf accretes material up to the Chandrasekhar limit, it will begin to compress.
As it does, it heats up and, in principle, can ignite explosive burning. But the URCA process
cooling (electron capture followed by a beta decay, which leads to the emission of two neutrinos,
which escape and cool the system, see Couch & Arnett [58] for a summary) on nuclei can allow
the white dwarf to cool enough that the burning does not generate enough energy to disrupt the
white dwarf. When the white dwarf becomes sufficiently dense, the material is dissociated and the
collapse proceeds in a very similar manner to that of a “standard” core-collapse supernova. The
core proceeds through a runaway collapse that ends when nuclear forces and neutron degeneracy
pressure halt the collapse, causing a “bounce”. Especially in the case of a white dwarf/white dwarf
merger, the accretion phase just prior to collapse is likely to spin up the core and these are almost
certainly the most rapidly-rotating core-collapse models.

The structure of AIC cores is very similar to the structure of low-mass stars, and a large set
of simulations of both have been conducted in the past few decades [142, 11, 334, 102, 63, 61].
The latest simulations [63, 61] use progenitors including rotation [341, 339]. The shock stalls in
AICs, just as in standard core-collapse supernovae, but there is no stellar envelope with which to
prevent further accretion and the explosion is quickly revived (hence there will be little convective
overturn). The cooling neutron star could well develop instabilities (both to convection and to bar
modes). If magnetic fields develop, additional outflows can occur.

3.2.3 AIC: Sources of gravitational wave emission

Due to the lack of convection, AICs may only have a subset of the GW sources that we see in
core-collapse supernovae. However, AICs have the potential to be much faster rotating, which may
make them strong GW sources.

Bounce: The potentially high-rotation in AICs mean that the bounce signal in these systems
could be quite large. The primary source of this emission is the rapidly changing quadrupole
moment in the matter as the asymmetries evolve (Section 4.1), although we cannot rule out a
strong signal from asymmetric neutrino emission (Section 4.4).

In the Neutron Star: Convection in the cooling neutron star could produce GW emission.
But more likely, due to the strong rotation, bar-mode instabilities can become important in these
collapsed systems (Section 4.3).
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3.3 Electron-capture supernovae and core-collapse supernovae below
10—12 solar masses: Low mass stars

Stars below about 10—12 Mg, (286, 287, 241], Poelarends et al., in preparation) have very diffuse
envelopes surrounding their cores when they collapse. The lowest mass stars in this class lie on
the border between white dwarf (and planetary nebula) formation and the formation of an iron
core (see Herwig [141] for a review). These stars tend to form ONe white dwarfs, ejecting most of
their envelope. They are supported by electron degeneracy pressure and electron capture causes
them to collapse down to neutron stars. Their resultant explosions are termed Electron Capture
Supernovae [152]. The more massive stars in this class do form iron cores, but the envelopes
surrounding these core have low densities (when compared to normal supernovae progenitors) at
the time of collapse.

3.3.1 Rate of supernovae from low-mass stars

The rate of core collapse from low mass stars has the same uncertainties of star formation rate
and initial mass function of stars that made it difficult to estimate the normal supernova rate.
But it also has an additional uncertainty: understanding the lower limit at which these collapses
occur [197, 286, 287, 241]. This lower limit marks the dividing line between white dwarf and
neutron star formation and the explosive ejection of the star’s envelope (part of the white dwarf
formation process) has proven very difficult for traditional stellar evolution codes to model. The
actual position of this lower limit has been a matter of debate for over three decades (see Iben &
Renzini [152] for a review). The metallicity dependence on this limit is even more controversial.
Heger et al. [136] argued that the metallicity dependence was negligible and that the lower limit
was roughly at 9 My at all metallicities. Poelarends et al. [241] have studied this matter in more
detail and have a range of solutions for the metallicity dependence. For neutron stars forming
through electron capture supernovae, their “preferred” model predicts that the limit drops from
9 My, at solar metallicity down to 6.3 Mg at zmetal = 107 325. This means that for most initial mass
functions, these low mass core-collapse progenitors dominate core-collapse at low metallicities.

Unfortunately, these low-mass supernovae do not produce very much radioactive Ni, the power
source for supernova light-curves. Although their envelopes are likely to be denser than the material
surrounding AICs, the tenuous envelopes certainly affect the explosion and may limit the shock-
powered light-curve. But surveys are now catching these supernovae [288]. These surveys will
ultimately place reasonable estimates on the rate of these supernovae. Based on current estimates
of the mass limits and the initial mass function in this mass range, we expect the rate of these
supernovae to be roughly equal to that of the core-collapse supernova rate.

3.3.2 Low-mass star collapse: Evolution

The structure of the core of low-mass stars is very similar to the structure of AIC cores, and a large
set of simulations of both have been conducted in the past few decades [142, 11, 334, 102, 63, 61].
The core collapses and bounces, but the envelope is not massive enough to prevent a quick revival.
A convective region is unlikely to develop above the proto neutron star. But these stars are
probably not rotating as fast as most AICs, and their subsequent GW emission is likely to be
weaker (e.g., smaller chance of bar-mode instabilities, etc.).

3.3.3 Low-mass star collapse: Gravitational wave emission mechanisms

The GW emission mechanisms at bounce and in the neutron star are the same as AICs but the
likelihood of the development of instabilities (and the strength of the GW emission from these
instabilities) will be affected by slower rotation.
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3.4 Core-collapse supernovae from stars above 20 solar masses: Massive
star collapse

In the absence of winds, as the stellar mass approaches 20 Mg, the explosion energy predicted by
engine models decreases while the binding energy of these stars increases (recall Figure 3). As this
happens, more and more material from the stellar mantle falls back onto the newly formed neutron
star. Roughly at 20 M, so much material falls back that the mass of the compact remnant exceeds
the maximum neutron star mass and ultimately collapses to form a black hole. However, note that
Heger et al. [136] argue that, at solar metalliciety, many massive stars lose so much mass in their
winds that they will form neutron stars, not black holes (recall Figure 4).

The formation of a black hole opens up an entirely new set of physics in the stellar collapse.
Material continues to accrete onto the black hole after its formation. The angular momentum of
material in a star tends to increase with increasing radius of the star (Figure 9). For rapidly-rotating
stars, the angular momentum of the accreting material will ultimately be sufficiently high to hang
up in a disk. Astronomers have argued that energy generation in this accretion disk (either through
magnetic field generation or neutrino emission) may drive Gamma-Ray Bursts [242, 189, 244, 250].
As we shall see below, these black hole accretion disks also open up new possibilities for GW
emission.

3.4.1 Massive star collapse: Evolution

The evolution of a massive star collapse begins identically to lesser mass stars. In general, it is likely
that the core bounces just as in normal core-collapse supernovae [90, 97, 296, 295].1% The bounce
shock stalls as in normal supernovae. The primary exception are the low metallicity (< 107%Z)
stars in the 140 —260 Mg, range that produce pair-instability supernovae [114]. These stars explode
completely leaving no remnant behind. We will ignore these stars in the rest of our discussion.

These massive stars are much less likely to revive the stalled shock. Although the region above
the proto neutron star is convective, the convective engine is unable to quickly drive an explosion
(recall Section 3.1). In such cases, low-mode instabilities (e.g., SASI, see Section 3.1.2) are more
likely to dominate the convection. If the shock is revived at all, the explosion is weaker than normal
supernovae. Considerable material begins to fall back within 1—-2 s of the explosion with accretion
rates nearly at 1 Mg s=% [190, 347, 100]. This accretion may lead to additional convection and
possible further outbursts [105, 100]. With both the SASI and the accretion convection, these stars
are likely to have more asymmetric convection than normal core-collapse supernovae (beneficial
for GW emission).

Ultimately, the mass accretion causes the proto neutron star to collapse down to a black hole [55,
54]. After the collapse, a disk forms around the black hole if the star’s angular momentum is
sufficiently high. Magnetic dynamos in the disk, or neutrino emission, might lead to an additional
explosion. Indeed, this is the mechanism behind the collapsar GRB [219, 333].

Massive stars might avoid the collapse to a black hole if strong magnetar-like fields can be
produced in the dense environment produced when the above engine fails [35, 175, 2, 3, 6, 329].

3.4.2 Rates of massive star collapse

The rate of massive star collapse can be determined by the same method used to determine the
normal supernova rate: multiplying the star formation rate times the fraction of stars above
~ 20 Mg. The uncertainties in such a calculation lie in determining the lower limit for black hole

10 The possible exception is extremely massive stars above ~ 300 Mg. Fryer et al. [114, 217, 218] found that
such stars may have enough entropy and angular momentum to alter the “bounce” density (and mass) considerably.
These stars form proto black holes and collapse to a black hole shortly after the initial bounce with no supernova
explosion whatsoever.
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Figure 9: Mean angular momenta vs. mass for both merged stars just after the merger and at collapse.
The thick solid line at the top of the graph is the angular momentum just after merger. Dotted lines
correspond to different mappings of the 3-dimensional merger calculation into the 1-dimensional stellar
evolution code. We also plotted the angular momentum for material at the innermost stable circular orbit
for a non-rotating black hole vs. mass (thin solid line). Figure 5 of [104].
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formation (determined by theory, and bolstered by observations), the power in the initial mass
function and the star formation rate (both beyond theory at this point). As with core collapse,
the latter two quantities dominate the errors in this rate estimate. Fryer & Kalogera [109] argue
that between 10—-40% of all massive stars above 10 M, (those that are likely to form bright core-
collapse supernovae and contribute to the observed supernova rate) form black holes. This answer
depends primarily on their prescription for winds and the initial mass function. The fraction is
likely to be lower at low-redshift but increase with increasing redshift as winds remove less mass
from the star, allowing more stars to form black holes.

Unfortunately, there are no direct observational estimates for the black-hole—formation rate.
If we assume this collapse is the primary scenario for the production of long-duration GRBs we
can estimate a lower limit for the black-hole—formation rate (and estimate the formation rate of
fast-rotating systems). This value is roughly 0.1—-0.01% the total core-collapse supernova rate.

3.4.3 Gravitational waves from massive stars

For most massive stars, the GW signal will be similar to normal core-collapse supernovae. Massive
stars above 300 M, are likely to have much stronger signals than normal core-collapse supernovae,
but they will only occur at high redshift.

Bounce: For the lower-mass range of these stars, the signal is unlikely to be demonstrably
different than normal core-collapse supernovae.

Post-Bounce and Convection: Because the convective phase in these massive stars persists
longer than normal supernovae, it can develop strong low-mode activity. Such convective cycles
produce the strongest GWs, so we might expect stronger GWs from this convective phase for
massive stars than for any other stellar collapse scenario. Fryer et al. [115] also found that bar
instabilities could develop in ~ 300 My stars.

Black Hole Formation: The initial black-hole formation and the subsequent accretion leads
to a perturbed geometry of the black hole, initially distorting it. This distortion causes the hole
to “ring” in distinct harmonics as gravitational radiation removes the perturbation and the black
hole settles into a stationary Kerr state.

Disk Fragmentation: Depending upon the angular momentum profile, the mass in the disk
can be large enough that self-gravity can drive instabilities and induce fragmentation.

3.5 Supermassive stars

There is a large body of observational evidence that supermassive black holes (SMBHs, M 2>
105 M) exist in the centers of many, if not most galaxies (see, e.g., the reviews of Rees [246]
and Macchetto [188]). The masses of SMBHs in the centers of more than 45 galaxies have been
estimated from observations [83] and there are more than 30 galaxies in which the presence of a

SMBH has been confirmed [163].

3.5.1 Supermassive stars: Evolution

One of the possible formation mechanisms for SMBHs involves the gravitational collapse of SMSs.
The timescale for this formation channel is short enough to account for the presence of SMBHs at
redshifts z > 6 [155]. SMSs may contract directly out of the primordial gas, if radiation and/or
magnetic-field pressure prevent fragmentation [131, 75, 130, 186, 29, 1, 348]. Alternatively, they
may build up from fragments of stellar collisions in clusters [262, 14]. Supermassive stars are
radiation dominated, isentropic and convective [276, 345, 186]. Thus, they are well represented
by an n = 3 polytrope. If the star’s mass exceeds 10 M, nuclear burning and electron/positron
annihilation are not important.
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After formation, an SMS will evolve through a phase of quasi-stationary cooling and contraction.
If the SMS is rotating when it forms, conservation of angular momentum requires that it spins up
as it contracts. There are two possible evolutionary regimes for a cooling SMS. The path taken
by an SMS depends on the strength of its viscosity and magnetic fields and on the nature of its
angular momentum distribution.

In the first regime, viscosity or magnetic fields are strong enough to enforce uniform rotation
throughout the star as it contracts. Baumgarte and Shapiro [12] have studied the evolution of
a uniformly-rotating SMS up to the onset of relativistic instability. They demonstrated that
a uniformly-rotating, cooling SMS will eventually spin up to its mass shedding limit. The mass
shedding limit is encountered when matter at the star’s equator rotates with the Keplerian velocity.
The limit can be represented as Bsned = (T/|W|)shed- In this case, Bsneq = 9 x 1073. The star
will then evolve along a mass-shedding sequence, losing both mass and angular momentum. It will
eventually contract to the onset of relativistic instability [151, 49, 50, 276, 155, 185].

The SMS formation scenario for SMBHs is just one of many. It fits into a broad class of
scenarios invoking the collapse of supermassive objects formed in halos of dense gas, e.g., [15].
Although the structure used in many of these SMS calculations may not be appropriate for this
broad class of supermassive objects, many of the basic features studied in these SMS simulations
will persist.

Baumgarte and Shapiro used both a second-order, post-Newtonian approximation and a fully
general-relativistic numerical code to determine that the onset of relativistic instability occurs at a
ratio of R/M ~ 450, where R is the star’s radius and G = ¢ = 1 in the remainder of this section.
Note that a second-order, post-Newtonian approximation was needed because rotation stabilizes
the destabilizing role of non-linear gravity at the first post-Newtonian level. If the mass of the star
exceeds 10° M, the star will then collapse and possibly form a SMBH. If the star is less massive,
nuclear reactions may lead to explosion instead of collapse.

The major result of Baumgarte and Shapiro’s work is that the universal values of the following
ratios exist for the critical configuration at the onset of relativistic instability: T/|W|, R/M, and
J/M?. These ratios are completely independent of the mass of the star or its prior evolution. Be-
cause uniformly-rotating SMSs will begin to collapse from a universal configuration, the subsequent
collapse and the resulting gravitational waveform will be unique.

In the opposite evolutionary regime, neither viscosity nor magnetic fields are strong enough to
enforce uniform rotation throughout the cooling SMS as it contracts. In this case, it has been shown
that the angular momentum distribution is conserved on cylinders during contraction [22]. Because
viscosity and magnetic fields are weak, there is no means of redistributing angular momentum in
the star. So, even if the star starts out rotating uniformly, it cannot remain so.

The star will then rotate differentially as it cools and contracts. In this case, the subsequent
evolution depends on the star’s initial angular momentum distribution, which is largely unknown.
One possible outcome is that the star will spin up to mass-shedding (at a different value of Bgped
than a uniformly-rotating star) and then follow an evolutionary path that may be similar to that
described by Baumgarte and Shapiro [12]. The alternative outcome is that the star will encounter
the dynamical bar instability prior to reaching the mass-shedding limit. New and Shapiro [222, 223]
have demonstrated that a bar-mode phase is likely to be encountered by differentially-rotating SMSs
with a wide range of initial angular-momentum distributions. This mode will transport mass and
angular momentum outward and thus may hasten the onset of collapse.

3.5.2 Rates of supermassive stars

An estimate of the rate of the collapse of SMSs can be derived from the quasar luminosity function.
Haehnelt [129] has used the quasar luminosity function to compute the rate of GW bursts from
SMBHs, assuming that each quasar emits one such burst during its lifetime (and that each quasar
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is a supermassive black hole). If it is assumed that each of these bursts is due to the formation of a
supermassive black hole via the collapse of an SMS, then Haehnelt’s rate estimates can be used as
estimates of the rate of SMS collapse. This rate is likely an overestimate of the SMS collapse rate
because many SMBHs may have been formed via merger. Haehnelt predicts that the integrated
event rate through redshift z = 4.5 ranges from ~ 106 yr=! for M = 108 M, objects to ~ 1 yr—!
for M = 105 M, objects. Thus, as in the case of Population III stars, a reasonable occurrence rate
can be determined for an observation (luminosity) distance of 50 Gpc.

3.5.3 Gravitational-wave emission mechanisms of supermassive stars

The GW emission mechanisms related to the collapse of SMSs are a subset of those discussed in
the sections on AIC, SNe/collapsars, and Population IIT stellar collapse.

Bounce: Like very massive stars [97], it is likely that these SMSs will first form a proto black
hole before collapsing to form a black hole. If so, they can emit GWs from the bounce that occurs
when the proto black hole is formed. Because of the mass of the SMS, an aspherical collapse can
produce a much stronger signal than any normal supernovae.

Post-Bounce: GWs may be emitted due to global rotational and fragmentation instabilities
that may arise during the collapse/explosion and in the collapsed remnant (prior to black-hole
formation).

Black Hole: Ringing in the black hole as it forms and accretes matter may also drive a strong
signal.
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4 Gravitational Wave Emission Mechanisms

The collapse of the progenitors of core-collapse supernovae has been investigated as a source of
gravitational radiation for more than three decades. In an early study published in 1971, Ruffini
and Wheeler [251] identified mechanisms related to core collapse that could produce GWs and
provided order-of-magnitude estimates of the characteristics of such emission.

Quantitative computations of GW emission during the infall phase of collapse were performed
by Thuan and Ostriker [311] and Epstein and Wagoner [78, 77], who simulated the collapse of
oblate dust spheroids. Thuan and Ostriker used Newtonian gravity and computed the emitted
radiation in the quadrupole approximation. Epstein and Wagoner discovered that post-Newtonian
effects prolonged the collapse and thus lowered the GW luminosity. Subsequently, Novikov [225]
and Shapiro and Saenz [273, 253] included internal pressure in their collapse simulations and were
thus able to examine the GWs emitted as collapsing cores bounced at nuclear densities. The
quadrupole GWs from the ringdown of the collapse remnant were initially investigated by the
perturbation study of Turner and Wagoner [318] and later by Saenz and Shapiro [254, 255].

Miiller [204] calculated the quadrupole GW emission from 2D axisymmetric collapse based
on the Newtonian simulations of Miiller and Hillebrandt [207] (these simulations used a realistic
equation of state and included differential rotation). He found that differential rotation enhanced
the efficiency of the GW emission.

Stark and Piran [291, 238] were the first to compute the GW emission from fully-relativistic
collapse simulations, using the ground-breaking formalism of Bardeen and Piran [10]. They followed
the (pressure-cut induced) collapse of rotating polytropes in 2D. Their work focused in part on
the conditions for black-hole formation and the nature of the resulting ringdown waveform, which
they found could be described by the quasi-normal modes of a rotating black hole. In each of their
simulations, less than 1% of the gravitational mass was converted to GW energy.

Seidel and collaborators also studied the effects of general relativity on GW emission during
collapse and bounce [271, 272]. They employed a perturbative approach, valid only in the slowly-
rotating regime.

The gravitational radiation from non-axisymmetric collapse was investigated by Detweiler and
Lindblom, who used a sequence of non-axisymmetric ellipsoids to represent the collapse evolu-
tion [64]. They found that the radiation from their analysis of non-axisymmetric collapse was
emitted over a more narrow range of frequency than in previous studies of axisymmetric collapse.

For further discussion of the first two decades of study of GW emission from stellar collapse
see [87, 167, 228]. In the remainder of this section we will discuss more recent investigations.

4.1 Bounce

Most of the original GW studies of core-collapse supernovae focused on the bounce phase. Gravita-
tional radiation will be emitted during the collapse/explosion of a core-collapse SN due to the star’s
changing quadrupole moment. A rough description of the possible evolution of the quadrupole mo-
ment is given in the remainder of this paragraph. During the first 100—250 ms of the collapse, as
the core contracts and flattens, the magnitude of the quadrupole moment Z;;, will increase. The
contraction speeds up over the next 20 ms and the density distribution becomes more centrally
condensed [201]. In this phase the core’s shrinking size dominates its increasing deformation and
the magnitude of Z;, decreases. As the core bounces, Z;, changes rapidly due to deceleration
and rebound. If the bounce occurs because of nuclear pressure, its timescale will be < 1 ms. If
centrifugal forces play a role in halting the collapse, the bounce can last up to several ms [201].
The magnitude of Z;;, will increase due to the core’s expansion after bounce. As the resulting shock
moves outward, the unshocked portion of the core will undergo oscillations, causing Z;;, to oscillate
as well. The shape of the core, the depth of the bounce, the bounce timescale, and the rotational
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energy of the core all strongly affect the GW emission. For further details see [86, 201, 167, 228].

The core collapse simulations of Monchmeyer et al. [201] began with better iron core models and
a more realistic microphysical treatment (including a realistic equation of state, electron capture,
and a simple neutrino transport scheme) than any previous study of GW emission from axisym-
metric stellar-core collapse. The shortcomings of their investigation included initial models that
were not in rotational equilibrium, an equation of state that was somewhat stiff in the subnuclear
regime, and the use of Newtonian gravity. Each of their four models had a different initial angular
momentum profile. The rotational energies of the models ranged from 0.1—0.45 of the maximum
possible rotational energy.

The collapses of three of the four models of Ménchmeyer et al. were halted by centrifugal
forces at subnuclear densities. This type of low p. bounce had been predicted by Shapiro and
Lightman [274] and Tohline [312] (in the context of the “fizzler” scenario for failed supernovae; see
also [133, 134, 153]), and had been observed in earlier collapse simulations [210, 299]. Ménchmeyer
and collaborators found that a bounce caused by centrifugal forces would last for several ms,
whereas a bounce at nuclear densities would occur in < 1 ms. They also determined that a subnu-
clear bounce produced larger amplitude oscillations in density and radius, with larger oscillation
periods, than a bounce initiated by nuclear forces alone. They pointed out that these differences
in timescale and oscillatory behavior should affect the GW signal. Therefore, the GW emission
could indicate whether the bounce was a result of centrifugal or nuclear forces.

Monchmeyer et al. [201] identified two different types of waveforms in their models (computed
using the numerical quadrupole approximation discussed in Section 2.1). The waveforms they
categorized as Type I (similar to those observed in previous collapse simulations [204, 89]) are
distinguished by a large amplitude peak at bounce and subsequent damped ringdown oscillations.
They noted that Type I signals were produced by cores that bounced at nuclear densities (or
bounced at subnuclear densities if the cores had small ratios of radial kinetic to rotational kinetic
energies). The quadrupole GW amplitude A5? for a Type I waveform is shown in Figure 10
(see [306, 350] for expressions relating A2 to h). The waveforms identified as Type II exhibit
several maxima, which result from multiple bounces (see Figure 11 for an example of a Type II
waveform). Note that the waveforms displayed in Figures 10 and 11 are from the study of Zwerger
and Miiller [350], discussed below.

The model of Moénchmeyer et al. [201] that bounced due to nuclear forces had the highest GW
amplitude of all of their models, hpi ~ 1023 for a source distance d = 10 Mpc, and the largest
emitted energy Eqw ~ 10%7 erg. The accompanying power spectrum peaked in the frequency
range 5 x 10%2-10% Hz.

The most extensive Newtonian survey of the parameter space of axisymmetric, rotational core
collapse is that of Zwerger and Miiller [350]. They simulated the collapse of 78 initial models
with varying amounts of rotational kinetic energy (reflected in the initial value of the stability
parameter f3;), differential rotation, and equation of state stiffness. In order to make this large
survey tractable, they used a simplified equation of state and did not explicitly account for electron
capture or neutrino transport. Their initial models were constructed in rotational equilibrium via
the method of Eriguchi and Miiller [79]. The models had a polytropic equation of state, with
initial adiabatic index I'; = 4/3. Collapse was induced by reducing the adiabatic index to a value
I'; in the range 1.28—-1.325. The equation of state used during the collapse evolution had both
polytropic and thermal contributions (note that simulations using more sophisticated equations of
state get similar results [168]).

The major result of Zwerger and Miiller’s investigation was that the signal type of the emitted
gravitational waveform in their runs was determined by the stiffness of the equation of state
of the collapsing core (i.e., the value of T';). In their simulations, Type I signals (as labelled by
Monchmeyer et al. [201]) were produced by models with relatively soft equations of state, I', < 1.31.
Type II signals were produced by the models with stiffer equations of state, I', 2 1.32. They found

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-1


http://www.livingreviews.org/lrr-2011-1

34 Chris L. Fryer and Kimberly C. B. New

e o A 2 e
200

100 [

[cm]

E2
20

A

-100 [
200 [

300 F

400E . o b b ]
30 35 40 45 50
t [msec]

Figure 10: Type I waveform (quadrupole amplitude A% as a function of time) from one of Zwerger and
Miiller’s [350] simulations of a collapsing polytrope. The vertical dotted line marks the time at which the
first bounce occurred. (Figure 5d of [350]; used with permission.)
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Figure 11: Type II waveform (quadrupole amplitude A5 as a function of time) from one of Zwerger
and Miiller’s [350] simulations of a collapsing polytrope. The vertical dotted line marks the time at which
bounce occurred. (Figure 5a of [350]; used with permission.)
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Figure 12: Type IIT waveform (quadrupole amplitude A5§ as a function of time) from one of Zwerger
and Miiller’s [350] simulations of a collapsing polytrope. The vertical dotted line marks the time at which
bounce occurred. (Figure 5e of [350]; used with permission).

a smooth transition between these signal types if I', was increased while all other parameters
were held fixed. They also observed another class of signal, Type III, for their models with the
lowest Ty (= 1.28). Type III waveforms have a large positive peak just prior to bounce, a smaller
negative peak just after bounce, and smaller subsequent oscillations with very short periods (see
Figure 12). Type III signals were not observed in the evolution of strongly differentially-rotating
I'; = 1.28 models and were also not seen in subsequent investigations [168, 230]. Their waveforms
were computed with the same technique as used in [201].

In contrast to the results of Ménchmeyer et al. [201], in Zwerger and Miiller’s investigation the
value of p. at bounce did not determine the signal type. Instead, the only effect on the waveform
due to p. was a decrease in hpk in models that bounced at subnuclear densities. The effect of
the initial value of i on hpx was non-monotonic. For models with 3 < 0.1, hpk increased with
increasing ;. This is because the deformation of the core is larger for faster rotators. However,
for models with larger 3;, hpk decreases as fB; increases. These models bounce at subnuclear
densities. Thus, the resulting acceleration at bounce and the GW amplitude are smaller. Zwerger
and Miiller found that the maximum value of h,i for a given sequence was reached when p. at
bounce was just less than pn,.. The degree of differential rotation did not have a large effect on
the emitted waveforms computed by Zwerger and Miiller. However, they did find that models with
soft equations of state emitted stronger signals as the degree of differential rotation increased.

The models of Zwerger and Miiller that produced the largest GW signals fell into two categories:
those with stiff equations of state and 5; < 0.01; and those with soft equations of state, 5; > 0.018,
and large degrees of differential rotation. The GW amplitudes emitted during their simulations
were in the range 4 x 1072° < h <4 x 10723, for d = 10 Mpc. The corresponding energies ranged
from 10* < Eqw < 10%7 erg. The peaks of their power spectra were between 500 Hz and 1 kHz.
Such signals would fall just outside of the range of LIGO-II.

Yamada and Sato [337] used techniques very similar to those of Zwerger and Miiller [350] in
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their core collapse study. Their investigation revealed that the hp for Type I signals became
saturated when the dimensionless angular momentum of the collapsing core, ¢ = J/(2GM/c),
reached ~ 0.5. They also found that hpy was sensitive to the stiffness of the equation of state for
densities just below ppy.. The characteristics of the GW emission from their models were similar
to those of Zwerger and Miiller. A series of new results (e.g., [168, 169, 232, 233, 68, 69]) have
essentially confirmed these results.

Kotake et al. [169] found that magnetic fields can lower these amplitudes (they lower the rotation
rate) by ~ 10%, but realistic stellar profiles can lower the amplitudes by a factor of 2 4—10 [230,
209], restricting the detectability of supernovae to within our galaxy (< 10 kpc). Obviously, this
effect depends on the strength of the magnetic fields and Obergaulinger et al. [227, 226] studied this
effect by using a variety of magnetic-field strengths. General-relativistic magneto-hydrodynamic
calculations of the bounce phase have confirmed these results [48, 47]. Magnetohydrodynamic
calculations are becoming more common, gradually increasing our intuition about this important
piece of physics [267, 266, 300].

Fryer and Warren [112] performed the first 3D collapse simulations to follow the entire collapse
through explosion. They used a smoothed particle hydrodynamics code, a realistic equation of
state, the flux-limited gray diffusion approximation for neutrino transport, and Newtonian spher-
ical gravity. The gray approximation is a limiting assumption and a multi-group calculation can
produce different results [34, 325]. Their initial model was non-rotating. Thus, no bar-mode in-
stabilities could develop during their simulations. The only GW-emitting mechanism present in
their models was convection in the core. The maximum amplitude h of this emission, computed
in the quadrupole approximation, was ~ 3 x 10726 for d = 10 Mpc [108]. In later work, Fryer &
Warren [113] included full Newtonian gravity through a tree algorithm and studied the rotating
progenitors from Fryer & Heger [103]. By the launch of the explosion, no bar instabilities had
developed. This was because of several effects: they used slowly rotating, but presumably realistic,
progenitors [103], the explosion occured quickly for their models (< 100 ms) and, finally, because
much of the high angular momentum material did not make it into the inner core. These mod-
els have been further studied for the GW signals [107]. The fastest-rotating models achieved a
signal of h ~ 2 x 10724 for d = 10 Mpc and characteristic frequencies of fqw ~ 1000 Hz. For
supernovae occuring within the galaxy, such a signal is detectable by LIGO-II. Dimmelmeier et
al. [68, 69] and Ott et al. [232, 233] have studied these rotating progenitors, producing amplitudes
on par with these results, but providing much more detailed information, including spectra. These
models included full general relativity and are discussed in Section 4.1.1.

Fryer and collaborators have also modeled asymmetric collapse and asymmetric explosion cal-
culations in three dimensions [98, 110]. These calculations will be discussed in Sections 4.2 and
4.4.

4.1.1 General relativistic calculations

General-relativistic effects oppose the stabilizing influence of rotation in pre-collapse cores. Thus,
stars that might be prevented from collapsing due to rotational support in the Newtonian limit
may collapse when general-relativistic effects are considered. Furthermore, general relativity will
cause rotating stars undergoing collapse to bounce at higher densities than in the Newtonian
case [302, 350, 245, 33].

The full collapse simulations of Fryer and Heger [103] followed the axisymmetric evolution of
the collapse, bounce and explosion including equation of state and neutrino transport from which
the resultant GW emission has been studied [106, 108]. Fryer and Heger only include the effects of
general relativity in the monopole approximation. This ignores many feedback mechanisms. The
GW emission from these simulations was evaluated with either the quadrupole approximation or
simpler estimates (see below).

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-1


http://www.livingreviews.org/lrr-2011-1

Gravitational Waves from Gravitational Collapse 37

The work of Fryer and Heger [103] was an improvement over past collapse investigations because
it starts with rotating progenitors evolved to collapse with a stellar evolution code (which incor-
porates angular momentum transport via an approximate diffusion scheme) [135], incorporates
realistic equations of state and neutrino transport, and follows the collapse to late times. The val-
ues of total angular momentum of the inner cores of Fryer and Heger (0.95-1.9 x 10* g cm? s71)
are lower than has often been assumed in studies of the GW emission from core collapse. Note
that the total specific angular momentum of these core models may be lower by about a factor of
10 if magnetic fields were included in the evolution of the progenitors [2, 290, 138].

FHH’s [106] numerical quadrupole estimate of the GWs from oscillations observed in the col-
lapse simulations of Fryer and Heger [103] predicts an upper limit of the peak dimensionless am-
plitude hpx = 4.1 x 10723 (for d = 10 Mpc), emitted at fow = 20 Hz. The radiated energy
Eaw ~ 2 x 10* erg. This signal would be just out of the detectability range of the LIGO-II
detector. However, most simulations predict lower amplitudes peaking at different frequencies.

Dimmelmeier and collaborators [68, 69] have now completed a very extensive study of axisym-
metric collapse including modern equations of state and a recipe for the evolution of the electron
fraction. The range of their results was consistent with the upper limits placed by FHH, with their
strongest signal have a peak dimensionless amplitude Ay = 1.0 x 10723 (for d = 10 Mpc).

General relativity has been more fully accounted for in the core collapse studies of Dimmelmeier,
Font, and Miiller [65, 66, 67] and Shibata and collaborators [281, 283], which build on the Newto-
nian, axisymmetric collapse simulations of Zwerger and Miiller [350]. In all, they have followed the
collapse evolution of 26 different models, with both Newtonian and general-relativistic simulations.
As in the work of Zwerger and Miiller, the different models are characterized by varying degrees
of differential rotation, initial rotation rates, and adiabatic indices. They use the conformally-flat
metric to approximate the spacetime geometry [57] in their relativistic hydrodynamics simulations.
This approximation gives the exact solution to Einstein’s equations in the case of spherical sym-
metry. Thus, as long as the collapse is not significantly aspherical, the approximation is relatively
accurate. However, the conformally-flat condition does eliminate GW emission from the spacetime.
Because of this, Dimmelmeier, Font, and Miiller used the quadrupole approximation to compute
the characteristics of the emitted GW signal (see [350] for details).

The general-relativistic simulations of Dimmelmeier et al. showed the three different types
of collapse evolution (and corresponding gravitational radiation signal) seen in the Newtonian
simulations of Zwerger and Miiller (regular collapse — Type I signal; multiple bounce collapse —
Type II signal; and rapid collapse — Type III signal). Obergaulinger et al. [227, 226] identified a
fourth type caused by the effects of magnetic fields. However, relativistic effects sometimes led
to a different collapse type than in the Newtonian case. This is because general relativity did
indeed counteract the stabilizing effects of rotation and led to much higher bounce densities (up
to 700% higher)!'. They found that multiple bounce collapse is much rarer in general-relativistic
simulations (occurring in only two of their models). When multiple bounces do occur, relativistic
effects shorten the time interval between bounces by up to a factor of four. Movies of the simulations
of four models from Dimmelmeier et al. [67] are shown in Figures 13, 14, 15, and 16. The four
evolutions shown include a regular collapse (Movie 13), a rapid collapse (Movie 14), a multiple
bounce collapse (Movie 15), and a very rapidly- and differentially-rotating collapse (Movie 16).
The left frames of each movie contain the 2D evolution of the logarithmic density. The upper
and lower right frames display the evolutions of the GW amplitude and the maximum density,
respectively. These movies can also be viewed at [124].

Dimmelmeier et al. found that models for which the collapse type was the same in both New-
tonian and relativistic simulations had lower GW amplitudes hpk in the relativistic case. This is
because the Newtonian models were less compact at bounce and thus had material with higher
densities and velocities at larger radii. Both higher and lower values of hpx were observed in mod-

11 This “softening” of the equation of state has been studied for three decades [322].
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Figure 13: Still from a movie showing The evolution of the regular collapse model A3B2G4 of Dim-
melmeier et al. [67]. The left frame contains the 2D evolution of the logarithmic density. The upper
and lower right frames display the evolutions of the gravitational wave amplitude and the maximum
density, respectively. (To watch the movie, please go to the online version of this review article at
http://www.livingreviews.org/lrr-2011-1.)
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Figure 14: Still from a movie showing Same as Movie 13, but for rapid collapse model A3B2G5 of
Dimmelmeier et al. [67]. (To watch the movie, please go to the online version of this review article at
http://www.livingreviews.org/lrr-2011-1.)
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Figure 15: Still from a movie showing Same as Movie 13, but for multiple collapse model A2B4G1 of
Dimmelmeier et al. [67]. (To watch the movie, please go to the online version of this review article at
http://www.livingreviews.org/lrr-2011-1.)
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Figure 16: Still from a movie showing Same as Movie 13, but for rapid, differentially-rotating collapse
model A4B5G5 of Dimmelmeier et al. [67]. (To watch the movie, please go to the online version of this
review article at http://www.livingreviews.org/lrr-2011-1.)
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els for which the collapse type changed. Overall, the range of hp, (4 x 1024-3 x 10723, for a
source located at 10 Mpc) seen in the relativistic simulations was quite close to the corresponding
Newtonian range. The average Eqw was somewhat higher in the relativistic case (1.5 x 10*7 erg
compared to the Newtonian value of 6.4 x 10%6 erg). The overall range of GW frequencies observed
in their relativistic simulations (601000 Hz) was close to the Newtonian range. They did note
that relativistic effects always caused the characteristic frequency of emission, fgw, to increase
(up to five-fold). Studies of non-linear pulsations in neutron stars expect high frequencies between
1.8-3.6 kHz [293]. For most of their models, this increase in fgw was not accompanied by an
increase in hpk. This means that relativistic effects could decrease the detectability of GW signals
from some core collapses. However, the GW emission from the models of Dimmelmeier et al. could
be detected by the first generation of ground-based interferometric detectors if the sources were
fortuitously located in the Local Group of galaxies. A catalog containing the signals and spectra
of the GW emission from all of their models can be found at [292].

Ott et al. [232, 233] argue that the GW signal from the collapse, bounce, and early postbounce
phases of the core collapse evolution is much more generic than many of these past results show,
arguing that variations in the rotation (within the limits studied in their calculations) do not alter
the signal significantly. If these results are confirmed, firm estimates can be provided to the GW
detector community.
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4.2 Convection

As we discussed at the beginning of Section 3, it is becoming increasingly accepted that convection
above the proto neutron star plays a major role in the supernova explosion mechanism (e.g.,
Figure 1). Convectively-driven inhomogeneities in the density distribution of the outer regions of
the nascent neutron star and anisotropic neutrino emission are other sources of GW emission during
the collapse/explosion [37, 206]. Inside the proto neutron star, GW emission from these processes
results from small-scale asphericities, unlike the large-scale motions responsible for GW emission
from aspherical collapse and non-axisymmetric global instabilities. But the SASI and low-mode
convection do produce large-scale accelerated mass motions [165, 213]. Note that Rayleigh-Taylor
instabilities in the exploding star also induce time-dependent quadrupole moments at composition
interfaces in the stellar envelope. However, the resultant GW emission is too weak to be detected
because the Rayleigh—Taylor instabilities occur at very large radii (with low velocities) [206].

4.2.1 Asymmetric collapse

Since convection was suggested as a key ingredient in the explosion, it has been postulated that
asymmetries in the convection can produce the large proper motions observed in the pulsar pop-
ulation [139]. Convection asymmetries can either be produced by asymmetries in the progenitor
star that grow during collapse or by instabilities in the convection itself. Burrows and Hayes [37]
proposed that asymmetries in the collapse could produce pulsar velocities. The idea behind this
work was that asymmetries present in the star prior to collapse (in part due to convection during
silicon and oxygen burning) will be amplified during the collapse [13, 172]. These asymmetries will
then drive asymmetries in the convection and ultimately, the supernova explosion. Burrows and
Hayes [37] found that not only could they produce strong motions in the nascent neutron star, but
detectable GW signals. The peak amplitude calculated was hpx ~ 3 x 10724, for a source located
at 10 Mpc.

Fryer [98] was unable to produce the large neutron star velocities seen by Burrows and Hayes [37]
even after significantly increasing the level of asymmetry in the initial star in excess of 25%. More
recent results by Burrows’ group [212] suggest that the Burrows and Hayes results were not quanti-
tatively correct. However, the GW signal produced by the more recent and the original simulations
is comparable. Figure 17 shows the gravitational waveform from the Burrows & Hayes simulation
(including separate matter and neutrino contributions). Note that the neutrinos dominate the
amplitude of the GW signal. As we shall see in Section 4.4, the neutrino contribution may dom-
inate the GW signal from many asymmetric collapse simulations. Figure 18 shows the matter
contribution to the gravitational waveforms for the Fryer results.

The study by Nazin and Postnov [220] predicts a lower limit for Egw emitted during an asym-
metric core-collapse SN (where such asymmetries could be induced by both aspherical mass motion
and neutrino emission). They assume that observed pulsar kicks are solely due to asymmetric col-
lapse. They suggest that the energy associated with the kick (Mwv?/2, where M and v are the
mass and velocity of the neutron star) can be set as a lower limit for Fgw (which can be com-
puted without having to know the mechanism behind the asymmetric collapse). From observed
pulsar proper motions, they estimate the degree of asymmetry e present in the collapse and the
corresponding characteristic GW amplitude (h o /¢). This amplitude is 3 x 10725 for a source
located at 10 Mpc and emitting at fow = 1 kHz.

4.2.2 Proto neutron star convection

Miiller and Janka [208] performed both 2D and 3D simulations of convective instabilities in the
proto neutron star and hot bubble regions during the first second of the explosion phase of a
Type IT SN. They numerically computed the GW emission from the convection-induced aspherical
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Figure 17: The gravitational waveform (including separate matter and neutrino contributions) from the
collapse simulations of Burrows and Hayes [37]. The curves plot the GW amplitude of the source as a

function of time. (Figure 3 of [37]; used with permission.)
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Figure 18: The gravitational waveform for matter contributions from the asymmetric collapse simulations
of Fryer et al. [107]. The curves plot the GW amplitude of the source as a function of time. (Figure 3

of [107]; used with permission.)
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mass motion and neutrino emission in the quadrupole approximation (for details, see Section 3 of
their paper [208]).

Figure 19: Convective instabilities inside the proto neutron star in the 2D simulation of Miiller and
Janka [208]. The evolutions of the temperature (left panels) and logarithmic density (right panels) distri-
butions are shown for the radial region 15—-95 km. The upper and lower panels correspond to times 12
and 21 ms, respectively, after the start of the simulation. The temperature values range from 2.5 x 10'° to
1.8 x 10" K. The values of the logarithm of the density range from 10.5 to 13.3 g cm 3. The temperature
and density both increase as the colors change from blue to green, yellow, and red. (Figure 7 of [208]; used
with permission.)

For typical iron core masses, the convectively unstable region in the proto neutron star extends
over the inner 0.7-1.20 Mg of the core mass (this corresponds to a radial range of ~ 10—50 km).
The convection in this region, which begins approximately 10—20 ms after the shock forms and
may last for ~ 20 ms—1 s, is caused by unstable gradients in entropy and/or lepton number
resulting from the stalling of the prompt shock and deleptonization outside the neutrino sphere.
Miiller and Janka’s simulations of convection in this region began with the 1D, non-rotating, 12 ms
post-bounce model of Hillebrandt [142]. This model included general-relativistic corrections that
had to be relaxed away prior to the start of the Newtonian simulations. Neutrino transport was
neglected in these runs (see Section 2.1 of [208] for justification); however, a sophisticated equation
of state was utilized. Figure 19 shows the evolution of the temperature and density distributions
in the 2D simulation of Miiller and Janka.

The peak GW amplitude resulting from convective mass motions in these simulations of the
proto neutron star was ~ 3 x 1072* in 2D and ~ 2 x 1072° in 3D, for d = 10 Mpc. More recent
calculations get amplitudes of ~ 10726 in 2D [209] and ~ 3—5 x 10726 in 3D [107]. The emitted
energy was 9.8 x 10%* erg in 2D and 1.3 x 10*2 erg in 3D. The power spectrum peaked at frequencies
of 200—600 Hz in 2D and 100—200 Hz in 3D. Such signals would not be detectable with LIGO-II.
The reasons for the differences between the 2D and 3D results include smaller convective elements
and less under and overshooting in 3D. The relatively low angular resolution of the 3D simulations
may also have played a role. The quadrupole GW amplitude A5Z from the 2D simulation is shown
in the upper left panel of Figure 20 (see [350, 306] for expressions relating AS? to h).
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Figure 20: Quadrupole amplitudes AS¢ [cm] from convective instabilities in various models of [208]. The
upper left panel is the amplitude from a 2D simulation of proto neutron star convection. The other three
panels are amplitudes from 2D simulations of hot bubble convection. The imposed neutrino flux in the
hot bubble simulations increases from the top right model through the bottom right model. (Figure 18

of [208]; used with permission.)
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4.2.3 Convection above the proto neutron star

Convection in the hot bubble region between the shock and neutrino sphere arises because of
an unstable entropy gradient resulting from the outward moving shock and subsequent neutrino
heating. Figure 21 shows a movie of the development of this entropy-driven convection. This
unstable region extends over the inner mass range 1.25—1.40 My, (corresponding to a radial range
of ~ 1001000 km). Convection in the hot bubble begins ~ 5080 ms after shock formation and
lasts for ~ 100—500 ms. Only 2D simulations were performed in this case. These runs started
with a 25 ms post-bounce model provided by Bruenn [32]. A simple neutrino transport scheme
was used in the runs and an imposed neutrino flux was located inside the neutrino sphere. Due
to computational constraints, the computational domain did not include the entire convectively
unstable region inside the proto neutron star (thus, this set of simulations only accurately models
the convection in the hot bubble region, not in the proto neutron star).

The peak GW amplitude resulting from these 2D simulations of convective mass motions in the
hot bubble region was hpi &~ 5 x 10725, for d = 10 Mpc. The emitted energy was < 2 x 1042 erg.
The energy spectrum peaked at frequencies of 50—200 Hz. As the explosion energy was increased
(by increasing the imposed neutrino flux), the violent convective motions turn into simple rapid
expansion. The resultant frequencies drop to faw ~ 10 Hz. The amplitude of such a signal would
be too low to be detectable with LIGO-II.

The case for GWs from convection-induced asymmetric neutrino emission has also varied with
time. Miiller and Janka estimated the GW emission from the convection-induced anisotropic
neutrino radiation in their simulations (see [208] for details). They found that the amplitude
of the GWs emitted can be a factor of 5—10 times higher than the GW amplitudes resulting
from convective mass motion. More recent simulations by Miiller et al. [209] argue that the GWs
produced by asymmetric neutrino emission is weaker than that of the convective motions. But
Marek et al. [196] have argued strongly that calculating the GW signal from asymmetries in
neutrinos is extremely difficult and detailed neutrino transport is required to determine the GW
signal from neutrinos.

4.2.4 Low-mode convection and the standing accretion-shock instability

Our understanding of the convective engine is deepening with time. The latest focus of attention
has been the SASI instability, which produces, at late times, extremely low mode convection. This
topic is currently a matter of heated debate. Whether this instability dominates at late times,
or whether the late-time, low-mode convection is simply the merger of convective cells [139] is,
in the opinion of these authors, yet to be conclusively determined. Convection is very difficult to
simulate and has been studied for many decades on a variety of applications from the combustion
engine to astrophysics, with no accepted resolution. But many groups are now finding low-mode
convection above the proto neutron star (which can heighten the GW emission) and all agree that
this occurs at late times (more than a few hundred milliseconds after bounce). As we have shown
in Figure 5, such late explosions will be weak and, if the assumptions of that analysis are correct,
these late explosion mechanisms cannot explain the observed core-collapse supernovae. Marek &
Janka [195] believe otherwise. Certainly, if material can continue to accrete onto the neutron star
after the launch of the explosion, which it does in some of the recent results of the Mezzacappa
team (in preparation), stronger explosions may be produced.

In addition, Burrows et al. [40] found that the downstreams in the SASI can drive oscillations
in the neutron star, which may also be a source for GWs (see Figure 22). Many groups have shown
that the convection does not, and can not in semi-analytic studies, excite the strong oscillations
observed [116, 343, 195], but see Weinberg & Quataert [327]. When low-mode convection does
occur as in the SASI, a GW signal is produced and has been modeled by several groups [85,
229, 228, 196, 165]. Most find that the actual matter signal is quite weak: hpi ~ 5 x 10725, for
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Figure 21: Still from a movie showing Isosurface of material with radial velocities of 1000 km s for three
different simulation resolutions. The isosurface outlines the outward moving convective bubbles. The open
spaces mark the downflows. Note that the upwelling bubbles are large and have very similar size scales
to the two-dimensional simulations. From Fryer & Warren [112]. (To watch the movie, please go to the
online version of this review article at http://www.livingreviews.org/lrr-2011-1.)
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d = 10 Mpc, but the SASI can drive oscillations in the neutron star that produce a potentially
important neutrino signal.

Time = -0.50 ms Width = 50.00 km

Figure 22: Still from a movie showing The oscillation of the proto neutron star caused by downstreams
in the SASI-induced convective region above the proto neutron star. From Burrows et al. [40]. (To
watch the movie, please go to the online version of this review article at http://www.livingreviews.org/
lrr-2011-1.)
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4.3 Bar modes

Rotational instabilities in proto neutron stars, if they exist, could be very powerful GW sources.
Global rotational instabilities in a collapsed core lead to rapid variations in the quadrupole mo-
ment, and hence, strong GW emission. Global rotational instabilities in fluids arise from non-
axisymmetric modes e*"?  where m = 2 is known as the “bar mode” [302, 5]. It is convenient
to parameterize a system’s susceptibility to these modes by the stability parameter 5 = Tyo1/|W].
Here, T}, is the rotational kinetic energy and W is the gravitational potential energy. Dynami-
cal rotational instabilities, driven by Newtonian hydrodynamics and gravity, develop on the order
of the rotation period of the object. For the uniform-density, incompressible, uniformly-rotating
MacLaurin spheroids, the dynamical bar-mode instability sets in at 84 ~ 0.27. These instabilities
have been confirmed by a number of studies [276, 192, 74, 313, 331, 314, 147, 289, 148, 146, 237,
315, 154, 221, 30, 184, 232, 233], and we will discuss some of these results here. At lower rota-
tion rates, a secular instability may develop that produces bar modes if viscous or gravitational
radiation reaction forces can redistribute the angular momentum [52, 173, 171, 236].
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Figure 23: A comparison between the GW amplitude h(f) for various sources and the LIGO-II sensitivity
curve based on the analytic estimates from FHH [106]. See the text for details regarding the computations
of h. The SNe sources at 10 Mpc; and the Population III sources at a luminosity distance of ~ 50 Gpc.
Secular bar-mode sources are identified with an (s), dynamical bar modes with a (d). This assumes strong
bar modes exist, which has not been demonstrated robustly.

FHH [106] (and [108]) compute an upper limit (via Equation (9)) to the emitted amplitude
from their dynamically unstable model of h ~ 3 x 10722 (if coherent emission from a bar located
at 10 Mpc persists for 100 cycles). The corresponding frequency and maximum power are faw ~
10% Hz and Pgw = 10° erg s~!'. LIGO-II should be able to detect such a signal (see Figure 23,
where FHH’s upper limit to A for this dynamical bar mode is identified).
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The GW emission from proto neutron stars that are secularly unstable to the bar mode has
been examined by Lai and Shapiro [173, 171]. They predict that such a bar located at 10 Mpc
would emit GWs with a peak characteristic amplitude h ~ 1072!, if the bar persists for 102 —10*
cycles. The maximum fgw of the emitted radiation is in the range of 102 ~10% Hz. This type of
signal should be easily detected by LIGO-I (although detection may require a technique like the
fast chirp transform method of Jenet and Prince [157], due to the complicated phase evolution of
the emission). Ou et al. [236] found that a bar instability was maintained for several orbits before
sheer flows disintegrate the instability, producing GW emissions that would have a signal-to-noise
ratio greater than 8 for LIGO-II out to 32 Mpc. A movie of this simulation is shown in Figure 24.

Many stellar models models (e.g., [135, 138]) do not produce stars with sufficiently high spin
rates to produce fast-rotating cores [245, 103, 113, 325, 231, 69]. Fryer & Heger [103] argued that
the explosion phase could eject a good deal of low angular-momentum material along the poles in
their evolutions. Roughly 1 s after the collapse, the angular momentum in the faster cores will
exceed the secular bar instability limit. It is also possible that standard stellar evolution models
underestimate the rotation rate. Many scenarios for GRBs require much higher rotation rates than
these models predict. This requirement has led to a host of new models predicting much faster
rotation rates: mixing in single stars [338, 340], binary scenarios [114, 240, 104, 319, 42], and the
collaspe of merging white dwarfs [341, 339, 342, 118, 63, 61]. For example, Fryer & Heger [104]
merged helium stars in an effort to increase this angular momentum (Figure 9). For Population III
300 M, stars, the situation may be better. Figure 25 shows the £ value and growth time for such
a 300 Mg, star at bounce and just prior to the collapse to a black hole. This bounce is caused by a
combination of thermal and rotational support and hence the bounce is very soft. Fryer et al. [115]
argued that bar modes could well develop in these systems.

Figure 24: Still from a movie showing Evolution of a secular bar instability, see Ou et al. [236] for details.
(To watch the movie, please go to the online version of this review article at http://www.livingreviews.
org/lrr-2011-1.)

First, scientists have learned that dynamical instabilities can excite m = 1 modes as well as
the well-studied, m = 2 bar modes [46, 258, 234, 235, 260]. Second, scientists have discovered that
non-axisymmetric instabilities can occur at much lower values of 5 when the differential rotation
is very high [278, 279, 282, 326, 257, 260]. For some models, cores with high differential rotation
have exhibited non-axisymmetric instabilities for values of 5 ~ 0.01. These results may drastically
change the importance of these modes in astrophysical observations.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2011-1


http://www.livingreviews.org/lrr-2011-1
http://www.livingreviews.org/lrr-2011-1
http://www.livingreviews.org/lrr-2011-1

50 Chris L. Fryer and Kimberly C. B. New

10 EI T T I LI I LI I |:| T I T |_ 0.3
Hoz25
[ B ~N
55 : = 0.2 =
(A ]
—0.15
0.1 ]
E Tgrowlh ]
-I 1 1 I 11 1 I 11 1 I 11 1 I 1 1 I_ 0.1

0 20 40 60 80 100
Enclosed Mass (M)

Figure 25: [ and instability growth time versus mass in the proto black hole formed in the collapse of a
300 Mg star at bounce (dotted line) and just prior to black-hole formation (solid line). Figure 10 of [115].

4.3.1 Equilibrium models to study instabilities

One way to determine whether a specific star collapses to develop bar modes is through equilib-
rium models as initial conditions for hydrodynamical simulations (e.g., [289, 237, 221, 46]). Such
simulations represent the approximate evolution of a model beginning at some intermediate phase
during collapse or the evolution of a collapsed remnant. These studies do not typically follow
the intricate details of the collapse itself. Instead, their goals include determining the stability of
models against the development of non-axisymmetric modes and estimation of the characteristics
of any resulting GW emission.

Liu and Lindblom [184, 183] have applied this equilibrium approach to AIC. Their investigation
began with a study of equilibrium models built to represent neutron stars formed from AIC [184].
These neutron star models were created via a two-step process, using a Newtonian version of
Hachisu’s self-consistent field method [128]. Hachisu’s method ensures that the forces due to
the centrifugal and gravitational potentials and the pressure are in balance in the equilibrium
configuration.

Liu and Lindblom’s process of building the nascent neutron stars began with the construction
of rapidly-rotating, pre-collapse white dwarf models. Their Models I and IT are C-O white dwarfs
with central densities p. = 10!° and 6 x 10° g cm ™2, respectively (recall this is the range of
densities for which AIC is likely for C-O white dwarfs). Their Model III is an O-Ne-Mg white
dwarf that has p. = 4 x 10° g cm™® (recall this is the density at which collapse is induced by
electron capture). All three models are uniformly rotating, with the maximum allowed angular
velocities. The models’ values of total angular momentum are roughly 3—4 times that of Fryer
et al.’s AIC progenitor Model 3 [102]. The realistic equation of state used to construct the white
dwarfs is a Coulomb-corrected, zero temperature, degenerate gas equation of state [261, 51].

In the second step of their process, Liu and Lindblom [184] built equilibrium models of the
collapsed neutron stars themselves. The mass, total angular momentum, and specific angular mo-
mentum distribution of each neutron-star remnant is identical to that of its white dwarf progenitor
(see Section 3 of [184] for justification of the specific angular momentum conservation assumption).
These models were built with two different realistic neutron-star equations of state.

Liu and Lindblom’s cold neutron-star remnants had values of the stability parameter S ranging
from 0.23-0.26. It is interesting to compare these results with those of Villain et al. [323] or of
Zwerger and Miiller [350]. Villain et al. [323] found maximum g values of 0.2 for differentially-
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rotating models and 0.11 for rigidly-rotating models. Zwerger and Miiller performed axisymmetric
hydrodynamics simulations of stars with polytropic equations of state (P oc p'). Their initial
models were I' = 4/3 polytropes, representative of massive white dwarfs. All of their models
started with p. = 10 g ecm™3. Their model that was closest to being in uniform rotation (A1B3)
had 22% less total angular momentum than Liu and Lindblom’s Model I. The collapse simulations
of Zwerger and Miiller that started with model A1B3 all resulted in remnants with values of
B < 0.07. Comparison of the results of these two studies could indicate that the equation of state
may play a significant role in determining the structure of collapsed remnants. Or it could suggest
that the assumptions employed in the simplified investigation of Liu and Lindblom are not fully
appropriate.

In a continuation of the work of Liu and Lindblom, Liu [183] used linearized hydrodynamics
to perform a stability analysis of the cold neutron-star AIC remnants of Liu and Lindblom [184].
He found that only the remnant of the O-Ne-Mg white dwarf (Liu and Lindblom’s Model III)
developed the dynamical bar mode (m = 2) instability. This model had an initial 5 = 0.26. Note
that the m = 1 mode, observed by others to be the dominant mode in unstable models with values
of 8 much lower than 0.27 [314, 332, 237, 46], did not grow in this simulation. Because Liu and
Lindblom’s Models I and IT had lower values of 8, Liu identified the onset of instability for neutron
stars formed via AIC as 84 = 0.25.

Liu estimated the peak amplitude of the GWs emitted by the Model III remnant to be hpx ~
1.4 x 10724 and the LIGO-II signal-to-noise ratio (for a persistent signal like that seen in the
work of [221] and [30]) to be S/N < 3 (for fow =~ 450 Hz). These values are for a source
located at 100 Mpc. He also predicted that the timescale for gravitational radiation to carry away
enough angular momentum to eliminate the bar mode is Tqw ~ 7's (~ 3 x 10® cycles). Thus,
h~ 8x10723. (Note that this value for h is merely an upper limit as it assumes that the amplitude
and frequency of the GWs do not change over the 7 s during which they are emitted. Of course,
they will change as angular momentum is carried away from the object via GW emission.) Such a
signal may be marginally detectable with LIGO-II (see Figure 23). Details of the approximations
on which these estimates are based can be found in [183].

Liu cautions that his results hold if the magnetic field of the proto neutron star is B < 10'2 G. If
the magnetic field is larger, then it may have time to suppress some of the neutron star’s differential
rotation before it cools. This would make bar formation less likely. Such a large field could only
result if the white dwarf progenitor’s B field was > 10 G. Observation-based estimates suggest
that about 25% of white dwarfs in interacting close binaries (cataclysmic variables) are magnetic
and that the field strengths for these stars are ~ 107 -3 x 108 G [330]. Strong toroidal magnetic
fields of B > 10'* G will also suppress the bar instabilities [119)].

4.3.2 Hydrodynamic models

The GW emission from non-axisymmetric hydrodynamics simulations of stellar collapse was first
studied by Bonazzola and Marck [194, 23]. They used a Newtonian, pseudo-spectral hydrodynamics
code to follow the collapse of polytropic models. Their simulations covered only the pre-bounce
phase of the collapse. They found that the magnitudes of hpy in their 3D simulations were within a
factor of two of those from equivalent 2D simulations and that the gravitational radiation efficiency
did not depend on the equation of state.

The first use of 3D hydrodynamics collapse simulations to study the GW emission well beyond
the core bounce phase was performed by Rampp, Miiller, and Ruffert [245]. These authors started
their Newtonian simulations with the only model (A4B5G5) of Zwerger and Miiller [350] that had
a post-bounce value for the stability parameter 5 = 0.35 that significantly exceeded 0.27 (recall
this is the value at which the dynamical bar instability sets in for MacLaurin spheroid-like models).
This model had the softest equation of state (I', = 1.28), highest §; = 0.04, and largest degree of
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differential rotation of all of Zwerger and Miiller’s models. The model’s initial density distribution
had an off-center density maximum (and therefore a torus-like structure). Rampp, Miiller, and
Ruffert evolved this model with a 2D hydrodynamics code until its § reached ~ 0.1. At that point,
2.5 ms prior to bounce, the configuration was mapped onto a 3D nested cubical grid structure and
evolved with a 3D hydrodynamics code.

Before the 3D simulations started, non-axisymmetric density perturbations were imposed to
seed the growth of any non-axisymmetric modes to which the configuration was unstable. When the
imposed perturbation was random (5% in magnitude), the dominant mode that arose was m = 4.
The growth of this particular mode was instigated by the cubical nature of the computational grid.
When an m = 3 perturbation was imposed (10% in magnitude), three clumps developed during
the post-bounce evolution and produced three spiral arms. These arms carried mass and angular
momentum away from the center of the core. The arms eventually merged into a bar-like structure
(evidence of the presence of the m = 2 mode). Significant non-axisymmetric structure was visible
only within the inner 40 km of the core. Their simulations were carried out to ~ 14 ms after
bounce.

The amplitudes of the emitted gravitational radiation (computed in the quadrupole approxi-
mation) were only ~ 2% different from those observed in the 2D simulation of Zwerger and Miiller.
Because of low angular resolution in the 3D runs, the energy emitted was only 65% of that emitted
in the corresponding 2D simulation.

The findings of Centrella et al. [46] indicate it is possible that some of the post-bounce config-
urations of Zwerger and Miiller, which have lower values of § than the model studied by Rampp,
Miiller, and Ruffert [245], may also be susceptible to non-axisymmetric instabilities. Centrella et
al. have performed 3D hydrodynamics simulations of I' = 1.3 polytropes to test the stability of
configurations with off-center density maxima (as are present in many of the models of Zwerger
and Miiller [350]). The simulations carried out by Centrella and collaborators were not full collapse
simulations, but rather began with differentially-rotating equilibrium models. These simulations
tracked the growth of any unstable non-axisymmetric modes that arose from the initial 1% ran-
dom density perturbations that were imposed. Their results indicate that such models can become
dynamically unstable at values of § 2 0.14. The observed instability had a dominant m = 1 mode.
Centrella et al. estimate that if a stellar core of mass M ~ 1.4 Mg and radius R ~ 200 km
encountered this instability, the values of hpy from their models would be ~ 2 x 10724 -2 x 10723,
for d = 10 Mpc. The frequency at which hpi occurred in their simulations was ~ 200 Hz. This
instability would have to persist for at least ~ 15 cycles to be detected with LIGO-II.

Brown [31] carried out an investigation of the growth of non-axisymmetric modes in post-
bounce cores that was similar in many respects to that of Rampp, Miiller, and Ruffert [245]. He
performed 3D hydrodynamical simulations of the post-bounce configurations resulting from 2D
simulations of core collapse. His pre-collapse initial models are I' = 4/3 polytropes in rotational
equilibrium. The differential rotation laws used to construct Brown’s initial models were motivated
by the stellar evolution study of Heger, Langer, and Woosley [137]. The angular velocity profiles
of their pre-collapse progenitors were broad and Gaussian-like. Brown’s initial models had peak
angular velocities ranging from 0.8 —2.4 times those of [137]. The model evolved by Rampp, Miiller,
and Ruffert [245] had much stronger differential rotation than any of Brown’s models. To induce
collapse, Brown reduced the adiabatic index of his models to I' = 1.28, the same value used by [245].

Brown found that 8 increased by a factor < 2 during his 2D collapse simulations. This is much
less than the factor of ~ 9 observed in the model studied by Rampp, Miiller, and Ruffert [245].
This is likely a result of the larger degree of differential rotation in the model of Rampp et al.

Brown performed 3D simulations of the two most rapidly-rotating of his post-bounce models
(models Q24 and Q20, both of which had 8 > 0.27 after bounce) and of the model of Rampp et al.
(which, although it starts out with 8 = 0.35, has a sustained 8 < 0.2). Brown refers to the Rampp
et al. model as model RMR. Because Brown’s models do not have off-center density maxima, they
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are not expected to be unstable to the m = 1 mode observed by Centrella et al. [46]. He imposed
random 1% density perturbations at the start of all three of these 3D simulations (note that this
perturbation was of a much smaller amplitude than those imposed by [245]).

Brown’s simulations determined that both his most rapidly-rotating model €24 (with post-
bounce 8 > 0.35) and model RMR are unstable to growth of the m = 2 bar mode. However, his
model 220 (with post-bounce 8 > 0.3) was stable. Brown observed no dominant m = 3 or m =4
modes growing in model RMR at the times at which they were seen in the simulations of Rampp et
al. This suggests that the mode growth in their simulations was a result of the large perturbations
they imposed. The m = 2 mode begins to grow in model RMR at about the same time as Rampp
et al. stopped their evolutions. No substantial m = 1 growth was observed.

The results of Brown’s study indicate that the overall 5 of the post-bounce core may not be a
good diagnostic for the onset of instability. He found, as did Rampp, Miiller, and Ruffert [245],
that only the innermost portion of the core (with p > 101 g cm™3) is susceptible to the bar mode.
This is evident in the stability of his model 220. This model had an overall 8 > 0.3, but an inner
core with ;. = 0.15. Brown also observed that the 8 of the inner core does not have to exceed 0.27
for the model to encounter the bar mode. Models 224 and RMR had (i &~ 0.19. He speculates
that the inner cores of these later two models may be bar-unstable because interaction with their
outer envelopes feeds the instability or because 84 < 0.27 for such configurations.

The GW emission from non-radial quasinormal mode oscillations in proto neutron stars has
been examined by Ferrari, Miniutti, and Pons [85]. They found that the frequencies of emission
fow during the first second after formation (600—1100 Hz for the first fundamental and gravity
modes) are significantly lower than the corresponding frequencies for cold neutron stars and thus
reside in the bandwidths of terrestrial interferometers. However, for first generation interferometers
to detect the GW emission from an oscillating proto neutron star located at 10 Mpc, with a signal-
to-noise ratio of 5, Eqw must be ~ 10721072 Myc?. It is unlikely that this much energy is
stored in these modes (the collapse itself may only emit ~ 1077 Mg c? in gravitational waves [67]).

Shibata et al. [278, 279] found that, with extremely differentially-rotating cores, a bar mode
instability can occur at 8 values of 0.01. They found that such an instability was weakly dependent
on the polytropic index describing the equation of state and on the velocity profile (as long as the
differential rotation is high). They predict an effective amplitude of roughly 10722 at a distance of
100 Mpec.

Studies of systems with extreme differential rotation have also discovered the development of
one-arm (m = 1) instabilities. The work of Centrella et al. [46] has been followed by a large
set of results, varying the density and angular velocity profiles [46, 258, 234, 235, 260]. Ou &
Tohline [235] argued that these instabilities are akin to the Rossby wave instabilities studied in
black-hole accretion disks [176]. These one-armed spirals could also produce a considerable GW
signal.

Watts et al. [326] argue that these low-S instabilities can be explained if the corotating f-
mode develops a dynamical shear instability. This occurs when the corotating f-mode enters
the corotation band and when the degree of differential rotation exceeds a threshold value (that
is within those produced in some collapse progenitors). These new instabilities are drastically
changing our view of non-axisymmetric modes.
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4.4 Neutrinos

Up until now, we have focused on the GWs from a changing quadrupole moment of the baryonic
matter. Anisotropic neutrino emission may also produce GWs. Although less studied than baryonic
motions, GW emission from aniostropic neutrino emission [76, 317] has been investigated in proto
neutron star convection, convection above the proto neutron star, and in asymmetric collapse
(caused either by asymmetries in the collapse or by rotation).

Miiller et al. [209] have modeled the emission of GWs from anisotropic neutrino emission from
convection both inside and above the proto neutron star for non-rotating models. The signal from
the proto neutron star is shown in Figure 26. Note that although the quadrupole amplitude for the
neutrino emission is much higher, it varies slower than the mass motions. Hence, it only dominates
the signal at low frequencies. This model is of a cooling, isolated proto neutron star that developed
much stronger convection than is seen in proto neutron star models of full systems. As such, it
represents an upper limit for the GW signal of non-rotating proto neutron stars. Figure 26 shows
the signal for the convection above the proto neutron star. Like in the case of neutrino emission
for proto neutron star convection, anisotropic neutrino emission from convection above the proto
neutron star dominates the low-frequency part of the signal.

For mass motions, rotation strongly increases the signal at bounce and during the convective
phase. But the neutrino signal does not increase as dramatically. Kotake et al. [166] found
that the signal from a rotating collapse is dominated at nearly all frequencies by the matter
contribution (Figure 27). This is because the neutrino signal is axially symmetric and the variation
in the quadrupole moment is fairly weak. However, within the SASI paradigm, Kotake et al. [165]
found that the amplitude of the GW signal is two orders of magnitude larger than those from
convective matter motions outside the proto neutron star. This result has been confirmed by
several groups [195, 228].

The asymmetric collapse simulations discussed in Section 4.2 are one way to increase the GW
signal from anisotropic neutrino emission. Recall from Figure 17 that Burrows & Hayes found that
the neutrino-induced term dominated the GW signal for their asymmetric collapse simulations.
Fryer et al. [107] found the same result. The GW amplitude is dominated by the neutrino com-
ponent and can exceed hpk ~ 6 X 1024, for a source located at 10 Mpc in Fryer’s most extreme
example. A caveat in this result is that Fryer et al. were artificially increasing the level of the
asymmetry in the collapse in an attempt to obtain strong neutron star kicks and it is unlikely that
any stellar system will have such large asymmetries in nature. This signal estimate should be seen
as an extreme upper limit.

Anisotropic neutrino emission has several distinguishing features that will allow us to differen-
tiate it from a matter-driven GW signal. It has much less variation in the time structure and will
produce a stronger signal at lower frequencies. But much more work must be done to understand
fully the neutrino-driven GW signal. For example, GWs can be produced by asymmetric neutrino
emission from the core (e.g., from oscillations with sterile neutrinos [187]). If magnetic fields induce
asymmetries in this oscillation and the neutron star is rotating, the sterile neutrino emission can
produce a neutrino-driven GW signature that is very different from what was shown here.
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Figure 26: The GW signal from convection in a proto neutron star. The top panel shows the GW
quadrupole amplitude AS# as a function of time for both the convective mass flow (thick line) and
anisotropic neutrino emission (thin line). The combined spectral energy distribution of the quadrupole
radiation for both sources is shown in the middle figure, with just the neutrino component alone in the
bottom panel. Note that although the quadrupole amplitude for the neutrino emission is much higher,
it varies slower than the mass motions. Hence, it only dominates the signal at low frequencies. (Figures
from [209]; used with permission.)
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Figure 27: Detection limits of TAMA, first LIGO, advanced LIGO, and Large-scale Cryogenic Gravita-
tional wave Telescope (LCGT) with the expected GW spectrum obtained from the numerical simulations.
The left panel shows the GW spectrum contributed from neutrinos (solid) and from the matter (dashed)
in a rotating model with Q = 4 rad s~! imposed initially on a 15 Mg progenitor model. In the right
panel, the open circles and the pluses represent the amplitudes of h, .q with the characteristic frequencies
of veq for the models with the cylindrical and the shell-type rotation profiles, respectively. Under the
frequency of veq, the GWs from the neutrinos dominate over those from the matter contributions. From
the panel, it is seen that the GWs from neutrinos dominate over the ones from the matter in a lower
frequency (f < 100 Hz). Note that the source is assumed to be located at the distance of 10 kpc. (Figures

from [166]; used with permission.)
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Figure 28: The gravitational waveform for neutrino contributions from the asymmetric collapse simula-
tions of Fryer et al. [107]. The curves plot the product of the GW amplitude to the source as a function
of time. (Figures from [107]; used with permission.)
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4.5 r-Modes

r-modes are quasitoroidal oscillations in rotating fluids that occur because of the Coriolis effect
(akin to the Rossby modes studied in planetary “spots”). In GWs, these modes are driven unstable
by gravitational radiation reaction. The primary questions surrounding these instabilities arise in
calculating the saturation amplitude of 7-modes. The GW emission from r-mode unstable neutron-
star remnants of core-collapse SNe would be easily detectable if apax ~ 1. In rotating stars,
gravitational radiation reaction drives the r-modes toward unstable growth [4, 96]. In hot, rapidly-
rotating neutron stars, this instability may not be suppressed by internal dissipative mechanisms
(such as viscosity and magnetic fields) [179]. If not limited, the dimensionless amplitude « of the
dominant (m = 2) r-mode will grow to order unity within ten minutes of the formation of a neutron
star rotating with a millisecond period. The emitted GWs carry away angular momentum, and
will cause the newly-formed neutron star to spin down over time. The spin-down timescale and
the strength of the GWs themselves are directly dependent on the maximum value auax to which
the amplitude is allowed to grow [180, 181].

Originally, it was thought that amax ~ 1. In such a case, we can estimate the GW signal
from stellar collapse. We expect multiple GW bursts to occur as material falls back onto the
neutron star and results in repeat episodes of r-mode growth (note that a single r-mode episode
can have multiple amplitude peaks [180]). Using Equation (10), FHH [106] calculate that the
characteristic amplitude of the GW emission from this r-mode evolution tracks from 61 x 10722,
over a frequency range of 10 —102 Hz for a source driven by fallback at 10 Mpc. They estimate
the emitted energy to exceed 10°2 erg.

Later work indicated that ama.x may be > 3 [180, 294, 268, 181]. But most recent research
suggests that magnetic fields, hyperon cooling, and hyperon bulk viscosity may limit the growth
of the r-mode instability, even in nascent neutron stars [159, 158, 248, 249, 181, 178, 132, 5]
(significant uncertainties remain regarding the efficacy of these dissipative mechanisms). One way
to reduce this viscosity is to invoke non-standard physics in the dense equation of state, e.g., quark
material, anti-kaon core [53, 71]. Even with this more exotic physics, the reduction in viscosity
is limited to specific regions in the neutron star and in the spin/temperature phase space. More
work is needed to determine if such modifications can allow r-modes to make a detectable signal.

In addition, a study of a simple barotropic neutron star model by Arras et al. [8] argue that
multimode couplings could limit apay to values < 1. If qpax is indeed < 1 (see also [125,
27, 26, 28, 252, 24]), GW emission from r-modes in collapsed remnants is likely undetectable.
From Equation (10), we can see that the GW signal is proportional to the mode amplitude, so a
decrease in the maximum amplitude by an order of magnitude corresponds to an order of magnitude
decrease in the GW strain. If correct, and much of the community believes the maximum of the
mode amplitude may be even smaller than 0.1, the GW signal from r-modes is much lower than
any other GW source and will not contribute significantly to the observed signal in stellar collapse.
Because of this, r-mode sources are omitted from figures comparing source strengths and detector
sensitivities and from discussions of likely detectable sources in the concluding section.

r-modes may still produce signals in accreting systems such as low-mass X-ray binaries. Work
continues in this subject for these systems, but this is beyond the subject of this review.
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4.6 Fragmentation

Fragmentation requires even more extreme spin rates than bar-mode instabilities. It is unlikely
that any neutron-star—forming systems will have enough rotation to produce fragmentation. For
most stellar models, the angular momentum increases with radius (or enclosed mass). When black
holes form, material further out in the star (with higher angular momentum) becomes part of the
compact remnant and it is possible to form proto black holes with higher spin rates than proto
neutron stars. These proto black holes may be more likely to fragment. Even so, fragmentation
requires extreme levels of rotation. As we shall see, some cases of GW emission from fragmentation
is intimately related to black-hole ringing and some of the GW sources discussed here will also be
discussed in Section 4.7.

Duez et al. [73] found that if a black hole does form, but the disk is spinning rapidly, that
the disk will fragment and its subsequent accretion will be in spurts, causing a “splash” onto the
black hole, producing ringing and GW emission. Their result implies very strong GW amplitudes
> 102! at distances of 10 Mpc. Black hole ringing was also estimated by FHH [106], where they too
assumed discrete accretion events. They found that, even with very optimistic accretion scenarios,
such radiation will be of very low amplitude and beyond the upper frequency reach of LIGO-II
(see [106] for details).

The general-relativistic hydrodynamics simulations of Zanotti, Rezzolla, and Font [344] suggest
that a torus of neutron-star matter surrounding a black-hole remnant may be a stronger source
of GWs than the collapse itself. They used a high-resolution shock-capturing hydrodynamics
method in conjunction with a static (Schwarzschild) spacetime to follow the evolution of “toroidal
neutron stars”. Their results indicate that if a toroidal neutron star (with constant specific angular
momentum) is perturbed, it could undergo quasi-periodic oscillations. They estimate that the
resulting GW emission would have a characteristic amplitude h. ranging from 6 x 10724 -5 x 10723,
for ratios of torus mass to black-hole mass in the range 0.1-0.5. (These amplitude values are likely
underestimated because the simulations of Zanotti et al. are axisymmetric.) The corresponding
frequency of emission is fow ~ 200 Hz. The values of h. and fgw quoted here are for a source
located at 10 Mpc. This emission would be just outside the range of LIGO-II (see Figure 23).
Further numerical investigations, which study tori with non-constant angular momenta and include
the effects of self-gravity and black hole rotation, are needed to confirm these predictions. Movies
from the simulations of Zanotti et al. can be viewed at [247].

Magnetized tori around rapidly-spinning black holes (formed either via core collapse or neutron-
star—black-hole coalescence) have been examined in the theoretical study of van Putten and Levin-
son [321]. They find that such a torus—black-hole system can exist in a suspended state of accretion
if the ratio of poloidal magnetic-field energy to kinetic energy Ep/Ey is less than 0.1. They esti-
mate that ~ 10% of the spin energy of the black hole will be converted to gravitational-radiation
energy through multipole mass-moment instabilities that develop in the torus. If a magnetized
torus-black-hole system located at 10 Mpc is observed for 2 x 10* rotation periods, the charac-
teristic amplitude of the GW emission is ~ 6 x 1072°. It is possible that this emission could take
place at several frequencies. Observations of x-ray lines from GRBs (which are possibly produced
by these types of systems) could constrain these frequencies by providing information regarding
the angular velocities of the tori: preliminary estimates from observations suggest fow ~ 500 Hz,
placing the radiation into a range detectable by LIGO-I [321].

By studying the results of current stellar-collapse models, FHH [106] predict that a fragmenta-
tion instability is unlikely to develop during core-collapse SNe because the cores have central density
maxima (see also [108]). However, they do give estimates [calculated via Equations (7) and (6)] for
the amplitude, power, and frequency of the emission from such an instability: hpx &~ 2 x 10722,
Pow = 10°* erg s71, fow =~ 2 x 10® Hz. Again, this signal would fall just beyond the upper limit
of LIGO-II’s frequency range.
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Three-dimensional models of black-hole formation in a rotating stellar collapse are needed to
truly study fragmentation. Zink et al. [348, 349] have found that with appropriate initial conditions,
fragmentation can occur with even modest values of T'/|W|: ~ 0.2. But for current stellar models,
fragmentation remains difficult to achieve. Rockefeller et al. [250] modeled in three dimensions
the collapse of a 60 My star using a range of angular momenta to study the effects of the spin
on the GW signal. For moderate spin rates, the instabilties in the disk grow and form pockets
of denser material, but strong fragmentation does not occur (Figure 29). The GW signal is far
lower than the upper limits from FHH or those predicted by van Putten. Liu et al. [185] have
performed axisymmetric calculations of the collapse of an SMS using a magneto-hydrodynamic
code. As this group moves to 3-dimensional calculations, we will be able to test the development
of these instabilities within strong magnetic fields.

Figure 29: The matter density in the equatorial plane of the rapidly-rotating collapsar simulation, 0.44 s
after collapse. The spiral wave forms near the center of the collapsar 0.29 s after collapse and moves
outward through the star. (Figure 4 of [250]; used with permission.)
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4.7 Ringing

Most studies of quasi-normal modes in black holes (black-hole ringing) have focused on the collapse
of SMSs. A number of reviews already exist on this topic [162, 18, 17, 84] and we refer the reader
to these texts for more details. For stellar-massed black holes, ringing is intimately connected to
fragmentation. As we discussed in Section 4.6, although Duez et al. [73] found that fragmentation
could lead to black-hole ringing with very strong GW amplitudes > 10 2! at distances of 10 Mpc,
FHH found that even with very optimistic accretion scenarios, such radiation will be of very low
amplitude and beyond the upper frequency reach of LIGO-II (see [106] for details). In numerical
studies, Nagar et al. [215, 216] argue that this accretion is not a superposition of quasi-normal
modes (although see [9], indicating that the signal would be even lower than simple analytic
estimates might predict). The strongest black-hole ringing signal will occur in SMBHs and the
rest of this section will focus on the GW signal from these objects.

The outcome of SMS collapse can be determined only with numerical, relativistic 3D hydrody-
namics simulations. Until recently, such simulations had been published only for nearly spherical
collapse. The spherical simulations of Shapiro and Teukolsky [275] produced collapse evolutions
that were nearly homologous. In this case, the collapse time 7o) is roughly the free-fall time at

the horizon
R3 1/2 M —1
<ol = [ —— =14 —_— .
Teoll (47TM> S(106 MQ) (30)

The peak GW frequency fow = T(;lll is then 1072 Hz, if the mass of the star is 106 M. This is in
the middle of LISA’s frequency band of 10 %—1 Hz [308, 95].

The amplitude A of this burst signal can be roughly estimated in terms of the star’s quadrupole
moment

2M?
h <
=“Rd

M d \*
< €- —18 .
=€ 110 (106 M@) (50 GpC) (31)

Here d is the distance to the star and e ~ T'/|W]| is a measure of the star’s deviation from spherical
symmetry. In this case, € will be much less than one near the horizon, since the collapse is nearly
spherical.

There are two possible aspherical collapse outcomes that have been studied. The first outcome
is direct collapse to a SMBH. In this case, ¢ will be on the order of one near the horizon. Thus,
according to Equation (31), the peak amplitude of the GW burst signal will be

M d \'
~ 1x107'8 . 2
pic ~ 110 (106 M@> <50 Gpc) (32)

Alternatively, the star may encounter the dynamical bar mode instability prior to complete
collapse. Baumgarte and Shapiro [12] have estimated that a uniformly-rotating SMS will reach
B~ 0.27 when R/M = 15. The frequency of the quasiperiodic gravitational radiation emitted by
the bar can be estimated in terms of its rotation frequency to be

GM 1/2
fGVV = 2fbar ~ 2 <m>
M -1
=2x107% Hz <> , 33
106 M, (33)
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when R/M = 15. The corresponding hpy, again estimated in terms of the star’s quadrupole
moment, is

M d -1
< —19 .
110 (106 M@> (50 (}pc) (34)

The LISA sensitivity curve is shown in Figure 30 (see [149] for details on the computation of this
curve; a mission time of three years has been assumed). The GW signal from this dynamical bar
mode could be detected with LISA.
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Figure 30: A comparison between the GW amplitude h(f) for various sources and the LISA noise curve.
See the text for details regarding the computations of h. The SMS sources are assumed to have masses of
~ 10°% Mg and be located at a luminosity distance of 50 Gpc. The bar-mode source is a dynamical bar
mode.

Shibata and Shapiro [284] have published a fully general-relativistic, axisymmetric simulation of
the collapse of a rapidly, rigidly-rotating SMS. They found that the collapse remained homologous
during the early part of the evolution. An apparent horizon does appear in their simulation,
indicating the formation of a black hole. Because of the symmetry condition used in their run,
non-axisymmetric instabilities did not develop.

The collapse of a uniformly-rotating SMS has been investigated with post-Newtonian hydro-
dynamics, in 3+1 dimensions, by Saijo, Baumgarte, Shapiro, and Shibata [259]. Their numerical
scheme used a post-Newtonian approximation to the Einstein equations, but solved the fully rela-
tivistic hydrodynamics equations. Their initial model was an n = 3 polytrope.

The results of Saijo et al. (confirmed in conformally-flat simulations [256]) indicate that the
collapse of a uniformly-rotating SMS is coherent (i.e., no fragmentation instability develops). The
collapse evolution of density contours from their model is shown in Figure 31. Although the work
of Baumgarte and Shapiro [12] suggests that a bar instability should develop prior to black-hole
formation, no bar development was observed by Saijo et al. They use the quadrupole approximation
to estimate a mean GW amplitude from the collapse itself: h = 4 x 10721, for a 10° M, star located
at a distance of 50 Gpc. Their estimate for fqw at the time of black-hole formation is 3 x 10~3 Hz.
This signal would be detectable with LISA (see Figure 30).
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Figure 31: Meridional plane density contours from the SMS collapse simulation of Saijo, Baumgarte,
Shapiro, and Shibata [259]. The contour lines denote densities p = pe x d*~"/'9) where p. is the central
density. The frames are plotted at (t/tp, pe, d) = (a) (5.0628 x 107, 8.254 x 107°, 1077), (b) (2.50259,
1.225 x 107*, 10°®), (c) (2.05360, 8.328 x 102, 5.585 x 10°7), (d) (2.50405, 3.425 x 1072, 1.357 x 10°7).
Here ¢, tp, and My are the time, dynamical time (= 1/ R2/M, where R, is the initial equatorial radius and
M is the mass), and rest mass. (Figure 15 of [259]; used with permission.)
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Saijo et al. also consider the GW emission from the ringdown of the black-hole remnant. For the
I = m = 2 quasi-normal mode of a Kerr black hole with a/M = 0.9, they estimate the characteristic
amplitude of emission to be h ~ 1.2 x 10"2°[(AEqw/M)/10~4]Y/? at faw ~ 2 x 1072 Hz for an
M = 10% M, source located at a luminosity distance of 50 Gpc (see [174, 307, 285] for details).
Here, AEqw/M is the radiated energy efficiency and may be < 7 x 107* [291]. This GW signal
is within LISA’s range of sensitivity (see Figure 30).
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5 Summary

How likely are we to detect GWs from stellar collapse? And if we detect them, will we be able to use
the observation to constrain our understanding of their source? The former question has been at the
head of almost every investigation of GWs from gravitational collapse. But with the almost certain
detection of neutron-star mergers with advanced LIGO'2, the question of detection is gradually
being superseded by the question of what we will learn from the detection. To answer either
question, a key first step is to determine how nearby the stellar collapse must be to be detectable
by current or up-and-coming instruments. Improvements on both the LIGO and VIRGO detectors
as well as new observatories, such as LCGT, will soon make GW astronomy a reality. For SMSs,
low-frequency detectors like LISA will also play a role. For our discussion, we will use LIGO and
LISA as our guides, but bear in mind that these other detectors have comparable detection limits
and will be crucial for the success of GW astronomy.

5.1 Detection of collapse GW signals

Let’s review some of the GW sources and mechanisms discussed in this paper. Figure 32 shows the
GW signal from matter motions from bounce and convection in normal stellar collapse assuming
a source at 10 kpc (within the Milky Way). The strong signals presented here are upper limits,
assuming asymmetries and stellar spin rates that are greater than the values that are produced in
the current best-estimates from stellar models (current models are better at placing upper limits
than quantitative results). The corresponding signal from neutrinos is shown in Figure 33. For
asymmetric collapse, the neutrino-induced GW signal may dominate the signal detected by LIGO.
But, in general, it is likely that the matter-induced signal will dominate the signal observed by
LIGO.

In general, the signal at bounce is strongest for the rotating (and most asymmetric) explosions.
The strong bounce signal is possible in AICs, low-mass collapse and normal core-collapse super-
novae. The rest of the signals in Figures 32 and 33 are only appropriate for normal core-collapse
supernovae. Except in the fastest-rotating cases, the signals from AICs, low-mass collapse and
normal supernovae are only observable if they occur within local group galaxies. We are unable to
observe stellar collapse in the nearby Virgo cluster. A detection of a stellar collapse in this cluster
would argue that either extreme rotation does occur in stars or that bar modes exist in these cores.

If bar modes do develop in the proto neutron star, the GW signal may be orders of magnitude
higher amplitude than that produced in the bounce or convective phase. Figure 23 shows the
signal for bar-mode sources assuming the source is at 10 Mpc instead of the 10 kpc. Dynamical
bar modes could be easily detected out to the Virgo cluster. Even secular bar modes should be
detected out to Virgo. If such modes are produced in even 1/10th of all stellar collapses, advanced
LIGO should detect multiple GW outbursts per year as soon as it reaches its design specifications.
Non-detections place limits on the spin rate of stars.

Black hole forming systems have the potential to form stronger GWs. But the fragmentation
claimed in many results did not occur in the 3-dimensional models by Rockefeller et al. [250]. Their
predicted GW signal was on par with the upper limits to rotational collapse shown in Figure 32.
Like normal stellar collapse, black-hole—forming objects are unlikely to be observed as far out as
the Virgo cluster.

Although the signal for very massive stars (~ 300 M) is expected to be much larger than other
black-hole—forming systems, these objects are believed to only form in the early universe (modest
metallicities cause these stars to lose most of their mass in winds, in case they behave more like
lower-mass black-hole—forming systems). At such distances, these collapses will be difficult to

12 Even the more pessimistic/realistic estimates of the rate of neutron-star mergers predict that such a detection
will occur within a few years of operation.
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Figure 32: GW signals from matter motions in the bounce and convection phases of stellar collapse. These
limits and estimates have not changed from the previous publication of this Living Reviews article [111].
Uncertainties in the estimates still allow variations within an order of magnitude of these results. The
LIGO and advanced LIGO sensitivities are included for reference. The limits are not upper limits of a
single signal, but upper limits of all possible signals (varying the conditions of the collapse). This figure

does not represent a single signal.
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Figure 33: GW signals from asymmetric neutrino emission in the bounce and convection phases of stellar
collapse. These limits and estimates have not changed from the previous publication of this Living Reviews
article [111]. Uncertainties in the estimates still allow variations within an order of magnitude of these
results. The LIGO and advanced LIGO sensitivities are included for reference. The limits are not upper
limits of a single signal, but upper limits of all possible signals (varying the conditions of the collapse).
This figure does not represent a single signal.
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observe. However, if the rate of these objects is high, it may be that future detectors such as the
DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) and the Big Bang Observer
(BBO) may be able to detect GW emission from these objects [298].

The possible exception for detectable GW emission from black-hole formation is the formation
of SMBHs. SMBHs exist. If they are formed in the collapse of an SMS, a number of observational
sources should allow us to observe these objects with LISA (Figure 30).

5.2 Using GWs to study core collapse

Beyond the detection of GWs, GW observations of stellar collapse allow us to probe the mechanism
behind core-collapse explosions. Along with neutrinos, GWs provide one of the few windows into
the heart of the core-collapse supernova explosion mechanism. As we have already discussed, the
detection (or lack thereof) of a GW signal can tell us something about the spin rate of the core. For
instance, a strong signal from a supernova at the Virgo cluster would require bar-mode instabilities
and, hence, a rotation rate in the core that is much faster than we currently believe. Likewise, a
strong GRB GW signal would imply fragmentation in the disk that we, as yet, do not observe.
This would lead to a major rethinking in the GRB engine.

Scientists also argue that the strength and form of the GW signal in a galactic supernova would
allow us to distinguish between asymmetric and rotating collapse and determine the magnitude
of rotation (or degree of asymmetry) in these collapse models (e.g., [107, 228, 297]). If we knew
the theoretical signal unambiguously, scientists could determine the progenitor rate and degree of
differential rotation [297]. Unfortunately, at this time, the range of results discussed in this review
is too large for such a study; it points out the potential for GW to address very specific astronomy
questions if collapse models reach some agreement on the exact GW signal.

But precision measurements in gravitational collapse have been hampered by the lack of true
verification and validation studies of the existing codes. Although the amount of angular momen-
tum in the core is critical to determining the exact wave signal, very few solid tests of angular
momentum conservation (and artificial angular-momentum transport) have been made on most
codes. This issue is even more important for three-dimensional calculations. Until this source of
error can be quantified and minimized, the errors in the GW signal will remain large, stagnating
this field and limiting what we can learn from an observed signal.

The detection of GWs from weak or dim supernovae will provide clues to these rarely-observed
classes of supernovae. Dim supernovae can be produced both by the collapse of low-mass stars
(electron-capture supernovae) or the collapse of massive stars that have considerable fallback.
Models argue that these explosions are difficult to observe and such supernovae may occur nearby
without detection in the optical. GWs may provide the only direct means to study these super-
novae. Similarly, different GRB models predict very different GW signals and the GW detection
of a GRB will place strong constraints on the current engine models.

Finally, detectors such as LIGO will build up a sample of merging systems consisting of neutron
stars or black holes. From these detections, we can derive strong observational constraints on
the birth mass distributions of both neutron stars and stellar-massed black holes. This set of
observations will indirectly constrain the explosion mechanisms for core collapse.

Current studies have begun to probe the tip of the iceberg of what we will be able to study
in core collapse with GWs and we expect the number of papers probing this topic to increase
dramatically in the next few years.
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