
Hindawi Publishing Corporation
EURASIP Journal on Wireless Communications and Networking
Volume 2007, Article ID 34869, 20 pages
doi:10.1155/2007/34869

Research Article
Unifying View onMin-Max Fairness,
Max-Min Fairness, and Utility Optimization in
Cellular Networks

Holger Boche,1, 2 MarcinWiczanowski,1 and Slawomir Stanczak2

1Heinrich Hertz Chair for Mobile Communications, Faculty of Electrical Engineering and Computer Science (EECS),
Berlin University of Technology, Einsteinufer 25, 10587 Berlin, Germany

2German-Sino Lab for Mobile Communications (MCI), Fraunhofer Institute for Telecommunications, Einsteinufer 37,
10587 Berlin, Germany

Received 23 March 2006; Revised 21 September 2006; Accepted 3 November 2006

Recommended by Ivan Stojmenovic

We are concerned with the control of quality of service (QoS) in wireless cellular networks utilizing linear receivers. We investigate
the issues of fairness and total performance, which are measured by a utility function in the form of a weighted sum of link QoS.
We disprove the common conjecture on incompatibility of min-max fairness and utility optimality by characterizing network
classes in which both goals can be accomplished concurrently. We characterize power and weight allocations achieving min-max
fairness and utility optimality and show that they correspond to saddle points of the utility function. Next, we address the problem
of the difference between min-max fairness and max-min fairness. We show that in general there is a (fairness) gap between the
performance achieved under min-max fairness and under max-min fairness. We characterize the network class for which both
performance values coincide. Finally, we characterize the corresponding network subclass, in which both min-max fairness and
max-min fairness are achievable by the same power allocation.
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1. INTRODUCTION

In concurrent wireless cellular networks the data links al-
ready outnumber traditional voice connections. Moreover,
the importance of data links is going to increase within future
wireless standards. The data links serviced within one cell
have in general different priorities and requirements in terms
of the perceived user QoS (quality of service). The problem
of optimal service of such heterogeneous multiuser traffic is
nowadays the dominant design problem on and above the
second layer of the communication stack.

On the one side, the traffic heterogeneity forces the net-
work operator to service the links with higher QoS expecta-
tions with the corresponding higher priority. On the other
side, some notion of fundamental fairness in link service has
to be maintained, so that even the users associated with the
lowest priority links are kept satisfied. Hence, due to the con-
strained power and bandwidth resources in the network, the
operator has to find the best possible trade-off between (a
suitable notion of) fairness and the efficiency of overall QoS
provision.

There is some degree of freedom in nominating an ap-
propriate notion of network fairness. However, the usual and
best established fairness notion is the notion which is re-
ferred to in this work as min-max fairness and corresponds
to ideal social fairness in the behavioral and economic sci-
ence [1]. In our framework, min-max fairness is the notion
of fairness which implies that the worst link QoS in the net-
work is maximally improved [2]. Such goal is achieved by the
classical power control for CDMA (code division multiple ac-
cess) networks [3–5]. Hereby, the total power is minimized,
while the worst ratio of the link QoS and the corresponding
link QoS requirement is optimized and takes value one at the
optimum [6–10]. Some considerations on the min-max fair
service in multihop wireless networks can be also found in
[11, 12].

The overall network performance can be measured by a
utility function, which is, in the cellular case, the function
of all link QoS in the cell. The best established and most
intuitive form of a utility function is the weighted sum,
with weights expressing the traffic or link priorities. The
weighted sum as the performance measure originates from
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the optimization of bandwidth sharing schemes in wired net-
works [13–19]. In the wireless case the weighted sum objec-
tive is used both in the multihop context [20] and in the cel-
lular context [21–23]. The weighted sum optimization is not
always of purely heuristic nature. When link QoS parameters
correspond to link data rates and weights express the buffer
occupancies on the corresponding links, the optimization of
the weighted sum of link QoS leads to the largest stability re-
gion of the network [24].

In this work we address the problem of the interdepen-
dence between min-max fairness and utility optimality in
cellular networks. To the best of our knowledge this work is
the first analytic approach to this problem for cellular net-
works (see [19] for the corresponding results in the context
of high-speed wireless medium access). An analogous prob-
lemwas however addressed in a number of recent works con-
cerning wired networks. In the wired case, a common con-
jecture had been originally that min-max fairness and opti-
mization of the utility value are two incompatible goals. This
was prompted by some network examples, for example, in
[15, 16, 18]. The authors in [25] disproved the general in-
compatibility conjecture, by giving some network topology
examples, for which min-max fairness is achievable concur-
rently with utility optimality.

As the first fundamental step we characterize the network
class for which a min-max fair allocation exists. We then
show that in some cellular networks min-max fairness and
utility optimality can be achieved concurrently. We charac-
terize the class of networks for which it is possible in terms
of the interference situation, by using matrix-theoretic and
combinatorial arguments.We further characterize power and
weight allocations combining min-max fairness and utility-
optimality in such networks. We prove the interpretation of
such allocations as saddle points of the utility function as
a function of powers and weights. This in particular mir-
rors the fairness utility trade-off, as it implies that the util-
ity optimum achieved together with min-max fairness is the
worst-case utility optimum among all utility-optimal power
and weight allocations. Next, we address the problem of the
difference between min-max fairness and max-min fairness.
Our results show that in general there is a nonzero difference
in performance between the approach of maximal improve-
ment of the worst link QoS (min-max fairness) and the ap-
proach of maximal degradation of the best link QoS (max-
min fairness). We characterize a special class of networks
for which such performance gap is zero, that is, for which
min-max fairness and max-min fairness achieve equal per-
formance. Finally we prove that for some class of networks,
there exist power allocations, which concurrently achieve
min-max fairness and max-min fairness.

We present the system model in Section 2. Next, in
Section 3 we introduce in short the fundamentals of fairness
and utility optimization. In Section 4 we address the prob-
lem of concurrently achieving min-max fairness and utility
optimum in a special class of networks. Section 5 provides
the generalization of the results from Section 4 to arbitrary
networks and characterizes the cases of existence of alloca-
tions combining min-max fairness and utility optimality. In

Section 6 we prove that any min-max fair and utility-optimal
power and weight allocation represents a saddle point of
the utility function, as a function of weights and powers. In
Section 7 we address the problem of the gap between min-
max fairness and max-min fairness performance. We char-
acterize there the classes of networks for which both notions
achieve the same performance and for which there exist al-
locations achieving both notions concurrently. We conclude
the work in Section 8. Some necessary background knowl-
edge is placed in the appendices.

2. SYSTEMMODEL

We consider a single-cell cellular network with K links de-
noted by indices 1 ≤ k ≤ K . The results presented hold both
for the uplink (multiple access) and the downlink (broad-
cast) case. The transmit powers allocated to the links are
grouped in the power vector p = (p1, . . . , pK ). Any power
vector is assumed to be included in the set1 P ⊆ RK

+ , P �= ∅

of feasible power vectors, referred to as the power region. In
the real world downlink, the power region is likely to be con-
strained by the transmit sum power P of the base station, that
is, P = {p ≥ 0 : ‖p‖1 ≤ P}, while in the real world uplink
the link (or batch of links) of each node k is likely to be con-
strained by the corresponding node transmit power limit p̂k,
that is, P = {p ≥ 0 : p ≤ p̂}.

Some remarks on the power region

All the results in the work are independent of the form of the
power region. Precisely, the considered optimization prob-
lems over P easily follow to be equivalent to optimization
problems over RK

+ . Thus, in the entire work we can assume
P = RK

+ without loosing the link to the real world net-
works with constrained power budgets. As a consequence of
the equivalence to the optimization problems over RK

+ , one
can show that the constraint qualification holds for any op-
timization problem considered in this work [26]. Hence, for
simplicity of formulation, the requirement of satisfied con-
straint qualification is omitted in each statement which needs
this assumption.

We assume the receivers in the cell to be single-user re-
ceivers. We choose the link SIR (signal-to-interference ratio)
as the function characterizing the link signal at the receiver
output. Denoting each link SIR as γk, 1 ≤ k ≤ K , we can
write

γk = γk(p) = pk
∑K

i=1Vki pi
= pk
(Vp)k

, 1 ≤ k ≤ K. (1)

To exclude “pathological” interference scenarios, we make a
nonrestrictive assumption that

∑K
i=1Vki pi > 0, 1 ≤ k ≤ K ,

for some p ∈ P . Each interference coefficientVkl ≥ 0models
the interference influence of the lth link signal on the kth link

1 As usual, RK
+ denotes the K-dimensional nonnegative orthant and RK

++ is
its interior, that is, the K-dimensional positive orthant.
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receiver, k �= l. The resulting interference matrix V, which
describes the interference coupling within the network, is de-
fined as

(V)kl =
⎧

⎨

⎩

Vkl k �= l,

0 k = l,
1 ≤ k, l ≤ K. (2)

Independently of the system realization, all factors Vkl in-
clude the influence of channels. In particular linear receiver
systems, the factors Vkl depend additionally on other factors,
for example, on aperiodic cross-correlations of sequences in
the CDMA case [3], on beamforming type and beamforming
filter coefficients in theMISO (multiple-input single-output)
downlink case [27], on spatial receiver type and spatial fil-
ter coefficients in the SIMO (single-input multiple-output)
case [28]. The interference matrix is nonnegative and we de-
note its spectral radius as ρ(V) and its left and right Perron-
Frobenius eigenvectors (PF eigenvectors) as l = l(V) and
r = r(V), respectively. Note that we do not assume here the
normalization of the PF eigenvectors to ‖r‖2 = ‖l‖2 = 1
in general. Vectors l, r are included in the left and right PF
eigenmanifolds, which we denote as L = L(V) = {x �= 0 :
VTx = ρ(V)x} and R = R(V) = {x �= 0 : Vx = ρ(V)x},
respectively, where L,R ⊆ RK

+ is obvious from the nonneg-
ativity of V [29].

Some remarks on the SIRmodel

The link SIR can be considered to take the role of the usual
SINR (signal-to-interference-and-noise ratio) function in the
case when at each receiver 1 ≤ k ≤ K the multiple access
interference (MAI) power, or simply interference power,
∑K

i=1Vki pi, dominates the variance σ2k of the Gaussian noise
perceived at the output of the receiver. Thus, the SIR model
can correspond to an asymptotic SINR model in the regime
of high received powers (both the received own link pow-
ers and the interference powers). On the other side, the
use of the SIR model is justified in networks, which utilize
transceivers with especially low-noise figures, since then the
received noise variance at each receiver output is likely to be
low in relation to the corresponding MAI power. Low-noise
figure can be expected in specialized transceiver designs with
high-end components. Finally, the use of SIR model for net-
work optimization purposes might be suitable in the case
when the noise variances σ2k , 1 ≤ k ≤ K , or the noise fig-
ures of all receivers 1 ≤ k ≤ K are not known to the net-
work control unit (which is usually at the base station). In
such case the assumption σ2k = 0, 1 ≤ k ≤ K , which gives
rise to the SIR model, is one of the options how the network
control unit can handle the lack of the noise knowledge in
power control. The SIR-based considerations constitute a sig-
nificant part within the established theory of power control,
see, for example, [6, 9] and references therein.

We group the link QoS parameters of interest, for ex-
ample, the data rate, the bit error rate under some fixed
code, and so forth, in the QoS vector q = (q1, . . . , qK ). We
assume each link QoS parameter to be associated with the

corresponding link SIR by the relation

qk = qk
(

γk
)=F

(

1
γk

)

, (3)

where F : R++ → I ⊆ R is an increasing, continuously dif-
ferentiable bijection. Clearly, from the increase of F follows
the decrease of the QoS-SIR function qk(γk). It is further easy
to see with (1) that this implies the decrease of the resulting
QoS-power function qk(γk(p)) = F((Vp)k/pk) in the corre-
sponding link power pk, 1 ≤ k ≤ K . The introduced de-
pendence (3) is special, but applies to any QoS parameter
which is expressible as a monotone function of the SIR. For
instance, the function F(x) = −B log(1 + x−1), with B as the
system bandwidth, gives rise to −qk(γ) = B log(1+ γ), which
is the data rate in Gaussian channel.2 Similarly, the function
F(x) = cxa, with a ∈ N+ and some system-dependent con-
stant c, corresponds to qk(γ) = c/γa, which is the channel-
averaged bit error rate (slope) in fading Gaussian channel
under receiver diversity a.

Due to bijectivity of functions (1) and (3), the power re-
gion P characterizes one-to-one the set of achievable QoS
vectors. We denote such set as QF={q(p) = (q1(p), . . . ,
qK (p)) : p ∈ P }, and refer to it as the QoS region.

3. FAIRNESS ANDUTILITY

The optimization of an aggregated utility and ensuring some
notion of fairness among the links are intuitively incompati-
ble goals. However, depending on the fairness and utility def-
inition, further strong relations between both goals can be
recognized.

3.1. Min-max fairness and proportional fairness

The analysis of fairness issues in networks has its origin in
the framework of wired networks [2, 13, 14]. Although we
are free to define specialized notions of fairness for particu-
lar networks of interest, two fundamental fairness principles
are established. These principles give rise to the majority of
related fairness notions applicable to different network types
(wired/wireless), different network topologies (cellular/ad-
hoc networks), and different QoS parameters (e.g., the end-
to-end delay in multihop ad hoc networks or data rate in cel-
lular networks).

The first fairness principle is referred to in this work as
min-max fairness and consists in making the worst QoS pa-
rameter (of a route, link, etc.) as good as possible. In wired
networks the min-max fair equilibrium of QoS parameters
is the one at which no QoS parameter qi can be improved
without degradation of any QoS parameter qj , j �= i, which is

2 The sign of the considered QoS parameters has to be chosen so that
qk(γk), 1 ≤ k ≤ K , are decreasing, since we consider minimization prob-
lems in the remainder. Hence, QoS parameters being nondecreasing func-
tions of SIR have to be taken with the minus sign.
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already inferior to qi [13–18, 25]. The same definition trans-
lates usually to the case of wirelessmultihop ad hoc networks,
when the QoS parameters are associated with routes (end-to-
end QoS) [11, 12].

Some remarks on denoting the fairness asmin-max

The fairness principle referred to here as min-max fairness
is equivalent to the notion of max-min fairness in the ref-
erences and in the majority of related literature. Neverthe-
less, we chose here a different convention to comply with the
fact that the problem of ensuring this notion of fairness (i.e.,
maximally improving the worst QoS parameter) takes the
min-max form. This problem form is actually caused by our
assumption that the QoS parameter in (3) is an increasing
function of inverse SIR, and thus a decreasing function of the
corresponding resource (transmit power). Consequently, it is
desired to minimize each QoS parameter and the worst pa-
rameter value is the maximal one. The difference in fairness
results precisely from the fact that the majority of references
assumes the increase of the QoS parameter as the function of
the corresponding resource. Hence, the desired optimization
principle there is of max-min type.

The formulation of the problem of ensuring min-max
fairness as an optimization problem is prohibited in wired
networks by the network topology constraints, and precisely
by the existence of so-called bottleneck links [15, 16, 25].
Similarly, in considerations of end-to-end QoS in wireless
multihop ad hoc networks such formulation is prohibited by
the natural constraints on the routing policy [12]. For the
considered cellular network model with minimum per-link
service requirements qreq, we are able to formulate the min-
max criterion in the obvious form

inf
p∈P++

max
1≤k≤K

qk(p)

q
req
k

= inf
p∈P++

max
1≤k≤K

F
(

(Vp)k/pk
)

F
(

1/γ
req
k

) , (4)

where γ
req
k = 1/F−1(qreqk ), 1 ≤ k ≤ K , are the SIR require-

ments (see [5] for the special case qk = 1/γk). The incorpora-
tion of link-specific requirements/weights in (4) lets us refer
to the fairness notion arising from (4) as the weighted min-
max fair one. This parallels the fairness definition in [12]
with respect to end-to-end QoS. The pure min-max fairness
neglects unequal per-link requirements and corresponds to
the special case qreq = c1, 1 := (1, . . . , 1), c > 0. In the behav-
ioral and economic science such notion parallels ideal social
fairness [1]. The (pure) min-max fairness is analyzed in the
remainder.

In the following proposition we provide a simple exten-
sion of the Collatz-Wielandt min-max formula for the Per-
ron root. The Collatz-Wielandt formulae are two character-
izations, in min-max and max-min problem forms, of the
spectral radius of a nonnegative matrix. For the basics we re-
fer here to [29]. The proposition is fundamental for all the
characterizations in the remainder.

Proposition 1. For any interference matrixV and any increas-
ing bijection F, one has

inf
p∈P++

max
1≤k≤K

F

(

(Vp)k
pk

)

= F
(

ρ(V)
)

, (5)

where F((Vr)i/ri) = F(ρ(V)), 1 ≤ i ≤ K whenever r > 0.

Since Proposition 1 is essential for the considerations
in Section 7, we defer the proof of it to Section 7, where
the proposition is proven. With increasing F, the optimiza-
tion approach (5) is interpretable as improving the worst
link QoS parameter as much as possible. In analogy, we
can think of a goal of degrading the best link QoS per-
formance as much as possible. This can be formulated as
supp∈P++

min1≤k≤K F((Vp)k/pk). In analogy, it is intuitive to
refer to such optimization approach as to ensuring max-min
fairness. (Notice that the notion of max-min fairness intro-
duced here should not be confused with the notion of max-
min fairness used in the given references. The latter notion
corresponds to the notion of min-max fairness in this paper;
see the remarks given above.) One is tempted to ask if (or
when) the notions of min-max fairness and max-min fair-
ness coincide. This problem is in the focus of Section 7.

It may misleadingly appear that any solution to (5) is a
min-max fair allocation. This is not always the case. Precisely,
the following subtlety has to be accounted for. By the defini-
tion of the infimum it follows from (5) that for any accu-
racy ε > 0, there exists a power vector p(ε) > 0, which is ε-
near the solution, precisely F((Vp(ε))k/pk(ε)) ≤ F(ρ(V))+ε.
If the accuracy is increased according to ε → 0, the exis-
tence of some link subset K ⊂ {1, . . . ,K}, such that p(0) =
limε→0 p(ε) = r with rk = 0, k ∈ K , cannot be excluded in
general. This means that although the link SIR values γk(r),
k ∈ K , are positive and finite at the optimum of (5), they
in fact represent the limits of ratios with numerator and de-
nominator both approaching zero. In other words, the links
k ∈K are practically shut off, while their associated SIR val-
ues are formally positive. Consequently, we cannot speak of
γk(r), 1 ≤ k ≤ K , as of an achieved tuple of SIRs in the net-
work and consequently, any allocation r with zero compo-
nents cannot be regarded as a valid allocation in real world
networks. Due to this fact, in [30, 31] such SIR tuples, which
are given by (1) under not (strictly) positive power vectors,
are referred to as ineffective. Clearly, when r > 0 exists, then
no such difficulty is encountered and r is implied by (5) to be
valid andmin-max fair. Hence, we can summarize as follows.

Observation 1. The infimum in (5) is attained if and only if
there exists some right PF eigenvector r > 0. In such case r is
a min-max fair allocation.

Observation 2. Any right PF eigenvector r, which does not
satisfy r > 0, is not a valid allocation.

Remark 1. In the context of nonvalid allocations r, it is im-
portant to notice that an allocation r > 0 is always valid, re-
gardless how small its elements are. This is a consequence of
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the multiplicative homogeneity of the SIR function, that is,
Vpk/pk = cVpk/cpk, c > 0. Thus, an arbitrarily small allo-
cation r > 0 is equivalent in terms of the SIR to a suitably
upscaled allocation cr > 0 (within P ). In other words, in
considerations relying on the SIR model, the relations of link
powers within an allocation are sufficient to determine the
resulting SIR tuple.

For completeness, we have to address in short the sec-
ond fairness principle, which was introduced in [13] and is
referred to as proportional fairness. This notion was estab-
lished originally for wired networks, but is meanwhile well
understood also in the wireless context. The proportional
fair equilibrium qpf of QoS parameters is the one at which
the difference to any other QoS vector q measured in the
aggregated proportional change is nonnegative.3 Precisely,
with our model qpf being a proportional fair QoS vector if
∑K

k=1((qk − q
pf
k )/q

pf
k ) ≥ 0, q ∈ QF . Interestingly, propor-

tional fairness corresponds to the optimum of a specific util-
ity function (Section 3.2) with logarithmic QoS parameters
[32, 33]. The motivation for the formulation of the propor-
tional fairness principle was the observed significant utility
inefficiency (emphatic preferential treatment of small net-
work flows [13, 14]) of a min-max fair allocation in wired
networks. The conclusion of Section 6 is an analogy of this
behavior.

3.2. Utility optimization

Complying with the established terminology, we refer to the
(global) utility as to the aggregation of link- or route-specific
utilities. The optimization of utility of this form is a usual
bandwidth/rate sharing approach for wired networks [13–
16, 18, 25] and one of possible scheduling approaches in
wireless multihop ad hoc networks [12, 20]. In both cases
the single utilities are associated with routes from different
sources. Clearly, in our context of cellular networks, the sin-
gle utilities are associated with links and correspond sim-
ply to link QoS parameters (see also [21–23] and references
therein). The arising utility optimization problem takes then
the form

inf
p ∈ P++

K
∑

k=1
αkF

(

(Vp)k
pk

)

, α = (α1, . . . ,αK
) ∈A, (6)

with α as the vector of link priority/weight factors from the
set of weight vectors

A := {α ≥ 0 : ‖α‖1 = 1
}

. (7)

The utility-based scheduling approach (6), which aims at the
optimization of some global performance measure, stands in
opposition to the traditional power control approach, which

3 Clearly, in the case of QoS parameters increasing in service quality the
nonnegativity condition has to be replaced by the nonpositivity condi-
tion.

aims at the most power-efficient achievement of minimum
required QoS for each link. The latter approach is well under-
stood and extensively studied in a huge framework, see, for
example, [3–10] and references therein. The traffic type for
which the utility-based scheduling is favorable is sometimes
referred to illustratively as elastic, since no fixed per-link re-
quirements have to be accounted for.

It is worth noting that there is a specific form of the utility
optimization problem, which is sometimes of special interest.
This is the case when the weights in the utility are chosen as
linear functions of buffer occupancies on the source nodes of
the corresponding links (cellular case), or routes (multihop
case), and theQoS parameters express the capacity of the cor-
responding links/routes. It was shown originally in [34] (see
also [35–37]) that the optimization of such utility provides
the largest stability region of the network. Hereby, the size
of the stability region of the network can be seen, in broad
terms, as a measure of robustness of the network with respect
to arrival rates of bursty traffic on the physical layer [38].

3.3. The trade-off ofmin-max fairness and
utility optimality

For particular wired networks, min-max fairness and util-
ity optimality of bandwidth sharing schemes were shown in
[16, 18, 19] to be incompatible goals. However, such incom-
patibility is in general strongly topology-dependent. This
follows from [25], where the corresponding conditions for
compatibility/incompatibility were stated and some exam-
ples of min-max fair and utility-optimal schemes were con-
structed. A kind of similar incompatibility was observed in
[12] in the context of wireless multihop ad hoc networks. To
the best of our knowledge, the trade-off between min-max
fairness and utility optimality has not been studied yet for
cellular networks.

We restrict our analysis to the following class of func-
tions F.

Definition 1. Given some interference matrix V, the function
F is included in the class E(V) if and only if the problem (6)
is well defined for any α ∈ A and all locally optimal power
allocations in the problem (6) are also globally optimal.

Definition 1 indicates that the class E(V) is the class of
QoS parameters, which allows for efficient online utility op-
timization, since for F ∈ E(V) locally converging iterative
methods applied to (6) exhibit global convergence.4 Given
some V, a complete characterization of the class E(V) re-
mains an open question. However, for the cases of individual
per-link power constraints (usually as in the uplink) and sum
power constraint (usually as in the downlink) the characteri-
zation of a specific subclass of E(V) follows from [30, 39, 40].
The following proposition is a modified restatement of the
results from [39], [40, Theorem 3], and [30, Lemma 2].5

4 Under some nonrestrictive technical conditions [26].
5 The proposition is slightly modified compared to the references, since in
[39, 40] a different SIR-QoS relation qk = F(γk) is analyzed.
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Proposition 2. Let the class of increasing, continuously dif-
ferentiable functions F be defined as F := {F : G(q) :=
1/F−1(q) is log-convex}. Then,

(i) F ∈ F if and only if Fe(x) := F(e−x) is convex,
(ii) for any V such that the solution to (6) exists for any
α ∈A, one has F ⊂ E(V),
(iii) QF is a convex set.

Subclass F includes a number of functions of great use
for QoS considerations. Two prominent members of F are
the following.

(i) F(x) = cxa, a ∈ N+, c > 0, giving rise to the QoS pa-
rameter qk(γ) = c/γa, which is the channel-averaged
bit error rate in fading Gaussian channel under re-
ceiver diversity a.

(ii) F(x) = B log(x), with B as the system bandwidth,
giving rise to the QoS parameter −qk(γ) = B log(γ),
which is the approximation of the data rate in Gaus-
sian channel for large γ.

4. MIN-MAX FAIR ANDUTILITY OPTIMAL
ALLOCATION: THE UNIQUENESS CASE

We first concentrate on so-called entirely interference-
coupled networks. These are networks with a specific form
of coupling of links by interference. The coupling of links is
in such case described by an irreducible interference matrix.
Let the interference graph be defined as a V-dependent di-
rected graph on the node set {1, . . . ,K}, which has an edge
(i, j) wheneverVij > 0. Then, irreducibility ofV is equivalent
to the property that any pair of nodes in the corresponding
interference graph is joined by a path [31, 41]. For the inter-
pretation of irreducibility in terms of the canonical form of
V see Appendix A.1.

For an entirely coupled network there exists a unique
power and weight allocation, which combines min-max fair-
ness and utility optimality. This is shown in the following
proposition.

Proposition 3. For an irreducible interference matrix V, let
F ∈ E(V) and w = (w1, . . . ,wK ), wk := rklk, 1 ≤ k ≤ K .
Then the following are true.

(i) r, l > 0, and r, l are unique up to a scaling constant.
(ii) r = argminp∈P++

∑K
k=1 αkF((Vp)k/pk) if and only if

α = w.
(iii) The equality

min
p ∈ P++

K
∑

k=1
αkF

(

(Vp)k
pk

)

= F
(

ρ(V)
)

(8)

is satisfied if and only if α = w, with w unique inA.

Proof. (i) Follows directly from the properties of nonnegative
irreducible matrices [29].

(ii) With F ∈ E(V) a power vector solves equation (6) if
and only if it satisfies the Karush-Kuhn-Tucker (KKT) con-
ditions for equation (6). From the definition of P , the prop-
erty γk(cp) = γk(p), c > 0, and bijectivity of F follows

minp∈P++

∑K
k=1αkF((Vp)k/pk)=minp∈RK

+

∑K
k=1αkF((Vp)k/pk).

Hence, the KKT conditions for (6) correspond to the gradi-
ent set to zero, which yields

K
∑

j=1
j �=k

αjF
′
(

(Vp) j
p j

)

Vjk

pj
= αkF

′
(

(Vp)k
pk

)

(Vp)k
p2k

, 1 ≤ k ≤ K.

(9)
With the definition β(α,p) := (α1/p1,α2/p2, . . . ,αK/pK ) we
can write (9) in an equivalent matrix form

(

F′(p)V
)T
β(α,p) = F′(p)Γ−1(p)β(α,p), (10)

with F′(p) := diag(F′((Vp)1/p1), . . . ,F′((Vp)K/pK )) and
Γ(p) := diag(p1/(Vp)1, . . . , pK/(Vp)K ). By the definition of
the right PF eigenvector we can write

rk
(Vr)k

= 1
ρ(V)

, 1 ≤ k ≤ K. (11)

Hence, with the definitions of F′ and Γ, setting p = r in the
optimality condition (10) yields (for (11)),

VTβ(α, r) = ρ(V)β(α, r). (12)

This implies immediately β(α, r) = lwhich, by the definition,
is equivalent to α = w and completes the proof of the if part
of (ii). For the only if part assume by contradiction that r
satisfies the KKT conditions for some α �= w. This means that
(12) is satisfied for some β(α, r) �= l, which is a contradiction
and completes the proof of (ii). (iii) From part (ii), the fact
that ‖w‖1 = 1 (sincew ∈A by definition), and (11), we have

min
p ∈ P

K
∑

k=1
wkF

(

(Vp)k
pk

)

=
K
∑

k=1
wkF

(

(Vr)k
rk

)

=
K
∑

k=1
wkF

(

ρ(V)
) = F

(

ρ(V)
)

.

(13)

The uniqueness of w inA follows directly from its definition
and the uniqueness property (i). To show that w is the only
vector inA satisfying (13), assume by contradiction that (8)
is satisfied for some α �= w. Then, by (11) and α ∈ A we
have that r is still a minimizer. This further yields with (ii)
that α = w, which is a contradiction and completes the proof
of (iii).

The obvious part (i) of the proposition means that for
entirely interference-coupled networks the min-max fair al-
location exists and is unique (up to a scaling constant). Part
(ii) says that a min-max fair allocation is utility optimal for
the specific weight vector w, corresponding to component-
wise product of PF eigenvectors of the interference matrix.
Such weighting is unique in the normalized class A due
to the uniqueness of the eigenvectors of an irreducible ma-
trix. Moreover, the min-max fair allocation is strictly utility
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suboptimal for any other weight vector. Precisely, we have
from part (ii),

K
∑

k=1
αkF

(

(Vr)k
rk

)

> min
p ∈ P++

K
∑

k=1
αkF

(

(Vp)k
pk

)

, α �= w. (14)

Summarizing, we can state what follows.

Observation 3. Under entire interference coupling in the net-
work, the power and weight allocation (r,w) combines utility
optimality and min-max fairness, and any other power and
weight allocation in {v : ‖v‖1 = c} × A, for any c > 0, is
either not min-max fair or utility suboptimal, or both.

From the practical point of view it has to be noted
that the uniqueness of the min-max fair and utility optimal
weight and power allocation in {v : ‖v‖1 = c} × A is a
disadvantage. This is because to achieve fairness and utility
optimality at least approximatively, it is necessary that the
weights of links be determined by some vector in a suffi-
ciently small neighborhood of a specific unique vector w. If
however there is a degree of freedom in choosing the weights
for the links (and thus the optimization over the weight vec-
tors can be taken into account), Observation 3 becomes in-
teresting also from the view of practical power and weight
control.

5. MIN-MAX FAIR ANDUTILITY OPTIMAL
ALLOCATION: THE GENERAL CASE

The characterization from Proposition 3 does not hold if
the network is not entirely interference-coupled. For such
case, even the existence of a min-max fair allocation is not
ensured, since some r̃∈R, r̃>0, may not exist (Observa-
tion 1) [29]. In a general network, not necessarily en-
tirely interference-coupled, the existence of interference-
decoupled link pairs is allowed. Equivalently, the corre-
sponding interference graph may include some pair of nodes
which is not joined by a path [41]. In terms of the representa-
tion of V in the canonical form, this means that the network
can be partitioned into two or more subnetworks which are
entirely interference-coupled in themselves and, in general,
interfere with each other (see Appendix A).

The characterization of the trade-off of min-max fairness
and utility optimality, which generalizes Proposition 3 to the
case of arbitrary networks, is as follows.

Proposition 4. Let F ∈ E(V) and W := {ŵ = (ŵ1, . . . , ŵK )
∈ A : ŵk = r̂k̂lk, r̂ = (r̂1, . . . , r̂K ) ∈ R, ̂l = (̂l1, . . . ,̂lK )∈L}.
Then, the following are true.

(i) For any r̃ ∈ R, r̃ = arg infp∈P++

∑K
k=1 αkF((Vp)k/pk)

if and only if α ∈W .
(ii) The equality

inf
p ∈ P++

K
∑

k=1
αkF

(

(Vp)k
pk

)

= F
(

ρ(V)
)

(15)

is satisfied if and only if α ∈W .

Proof. (i) The proof is a straightforward generalization of the
proof of Proposition 3(ii), with r replaced by any r̃ ∈R, due
to the nonuniqueness of PF eigenvectors for general matri-
ces V. (ii) Construct a matrix Vε = V + ε11T , ε > 0. From
the construction follows that Vε is irreducible for any ε > 0
(because it is positive for any ε > 0). We have

(

Vεp
)

k

pk
= (Vp)k

pk
+ ε

‖p‖1
pk

, p ∈ P , 1 ≤ k ≤ K. (16)

From the increase of F we have F((Vεp)k/pk)≥F((Vp)k/pk),
1 ≤ k ≤ K . Let w̃(ε) ∈ A be some parameterized vector.
Since A is compact, there exist sequences {εn}n∈N such that
limn→∞ εn = 0 and

lim
n→∞

∥

∥w̃
(

εn
)− w̃

∥

∥ = 0 (17)

for some vector w̃ ∈ A. Choose any such sequence {εn}n∈N.
With continuity of the spectral radius as a function of matrix
elements, Proposition 3(iii), and the increase of F it follows
then

F
(

ρ(V)
) = lim

n→∞F
(

ρ
(

Vεn
))

= lim
n→∞

inf
p ∈ P++

K
∑

k=1
w̃k
(

εn
)

F

((

Vεnp
)

k

pk

)

≥ lim
n→∞

inf
p ∈ P++

K
∑

k=1
w̃k
(

εn
)

F

(

(Vp)k
pk

)

= inf
p ∈ P++

K
∑

k=1
w̃kF

(

(Vp)k
pk

)

.

(18)

On the other side we can also write

inf
p ∈ P++

K
∑

k=1
w̃k
(

εn
)

F

((

Vεnp
)

k

pk

)

= inf
p∈P++

( K
∑

k=1

(

w̃k(ε)− w̃k
)

F

((

Vεnp
)

k

pk

)

+
K
∑

k=1
w̃k

(

F

((

Vεnp
)

k

pk

)

− F

(

(Vp)k
pk

))

+
K
∑

k=1
w̃kF

(

(Vp)k
pk

))

.

(19)

The first two sums on the right-hand side of (19) can be up-
per bounded using the Cauchy-Schwarz inequality and the
bounds disappear with n → ∞ due to (16) and (17). Hence,
for the limit transition we get

F
(

ρ(V)
) = lim

n→∞
inf

p ∈ P++

K
∑

k=1
w̃k
(

εn
)

F

((

Vεnp
)

k

pk

)

≤ inf
p ∈ P++

K
∑

k=1
w̃kF

(

(Vp)k
pk

)

.

(20)

Inequalities (20) and (18) together imply now F(ρ(V)) =
infp∈P++

∑K
k=1 w̃kF((Vp)k/pk) for w̃ ∈ W . The if and only
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if property in (ii) parallels the if and only if property in
Proposition 3(iii). Thus, the proof of the if and only if prop-
erty is analogous to the corresponding proof in Proposition
3(iii).

Hence, one can say that the characterization of the trade-
off for entirely coupled networks translates to the general
network case, except the uniqueness property. Thus, Propo-
sitions 3 and 4 can be summarized as follows. Whenever a
min-max fair allocation (i.e., a PF eigenvector r̃ ∈ R, r̃ > 0)
exists, then any such allocation remains utility optimal for
specific weight vectors constituting setW . Moreover, for any
weight vector not in W any min-max fair allocation, if exis-
tent, remains strictly utility suboptimal, that is,

K
∑

k=1
αkF

(

(Vr)k
rk

)

> inf
p ∈ P++

K
∑

k=1
αkF

(

(Vp)k
pk

)

, α /∈W .

(21)

In the particular case of entire interference coupling, the sets
W and {v : ‖v‖1 = c} ∩R, c > 0, become singletons so that
the min-max fair power and weight allocation exists and is
unique on {v : ‖v‖1 = c} ∩A, c > 0. Hence, together with
Observation 1, we can extend Observation 3 as follows.

Observation 4. Any power and weight allocation (r̃, w̃), sat-
isfying r̃ ∈R∩RK

++ and w̃ ∈W , combines utility optimality
and min-max fairness. Whenever r̂ ∈ R and r̂ /∈ RK

++, then
(r̂, ŵ) is not a power and weight allocation. Whenever r̂ /∈R
or ŵ /∈W , then the power and weight allocation (r̂, ŵ) either
does not achievemin-max fairness or is utility suboptimal, or
both.

The nonuniqueness of the power and weight allocation
(r̂, ŵ) ∈ RK

++ × W makes Observation 4 practically more
relevant than Observation 3. In the restricted case of en-
tirely coupled networks, fairness and utility optimality is
approximatively achievable under a power and weight allo-
cation from a neighborhood of (r̂, ŵ), which is unique in
{v : ‖v‖1 = c} × A (Observation 3). As is implied by
Observation 4, in the general case of interference coupling, to
achieve this goal it suffices to choose a power and weight allo-
cation from the neighborhood of the entire set ∈ RK

++ ×W .
Thus, in the general case it is more likely that some weight
vector from the neighborhood of W is suitable for the link
priorities on hand. If this is the case, the choice of a power
vector from the neighborhood of the set∈RK

++ allows for the
achievement of fairness and utility optimality concurrently.

5.1. Existence of amin-max fair allocation

Recall from Section 4 that in entirely coupled networks a
min-max fair allocation exists and is additionally unique. In
this section we characterize the class of all networks, includ-
ing in particular the class of entirely coupled networks, for
which a min-max fair allocation is existent. The characteri-
zation is in terms of the canonical form of the interference
matrix. The result is a straightforward consequence of [31,
Theorem 3], which can be restated for our purposes in the

following equivalent form. (In the remainder we denote by
I andM the sets of isolated and maximal diagonal blocks of
an interference matrix. See Appendix A for the definitions of
isolation, maximality, and other issues related to the canoni-
cal form.)

Proposition 5. Let {V(n)}n∈I and {V(m)}m∈M be the sets of
isolated and maximal diagonal blocks in the canonical form of
the interference matrix V, respectively. Matrix V has a right PF
eigenvector r̃ ∈R satisfying r̃ > 0 if and only if I =M.

The isolation property of some diagonal block in V is
equivalent to the isolation of the corresponding subnetwork
from the interference from other subnetworks (Appendix A).
Analogously, the nonisolated blocks correspond to subnet-
works which include some nodes which perceive interfer-
ence from some nodes in other subnetworks. Since the dis-
tinguished subnetworks are entirely interference-coupled in
itself, we can interpret Proposition 5 as follows.

Observation 5. A min-max fair allocation exists for any net-
work with interference matrix V such that

(i) the interference matrix V(n) of each interference-
isolated and entirely coupled subnetwork n ∈ I satisfies
ρ(V(n)) = ρ(V),

(ii) the interference matrix V(m) of each entirely coupled
subnetworkm ∈ {1, . . . ,K} \ I perceiving interference from
some other entirely coupled subnetwork satisfies ρ(V(m)) <
ρ(V). For any network violating either (i) or (ii) no min-max
fair allocation exists.

It is clear that the values of spectral radii ρ(V(n)), 1 ≤
n ≤ N , are determined solely by the interference coupling, so
that the fulfillment of the conditions (i), (ii) in Observation 5
cannot be influenced by link powers and weights. Thus, ex-
cept the fact that we know that ρ(V(n)) = ρ(V) for some n,
the prediction of the probability that (i) and (ii) are satis-
fied in a real world network requires some assumptions on
the distribution of the interference coefficients in the entire
network. Under some specific assumptions, the probability
that (i) and (ii) are satisfied might be quantified by means of
the general results on eigenvalue distribution of randomma-
trices (e.g., with [42]). This is however a topic for a separate
treatment and cannot be addressed in this work. This remark
holds also for all the results in the remainder which concern
the relations of spectral radii of interference matrices of sub-
networks.

It is worth pointing out an interesting relation between
the min-max fair allocation for the entire network and for
its entirely interference-coupled subnetworks. Denote the left
and right eigenvectors of the nth diagonal block of the in-
terference matrix V as l(n) and r(n), respectively, and notice
that both are unique up to a scaling constant due to the irre-
ducibility of each diagonal block. From the eigenvalue equa-
tion for the canonical form of V it is then easy to see that
the eigenvectors l(n), r(n) of any isolated and maximal diago-
nal block V(n) (if existent) correspond to the projections of

any ˜l ∈ L and r̃ ∈ R, respectively, on the subspace with
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dimensions restricted to the diagonal block V(n). Precisely,

(

r̃k1(n), r̃k1(n)+1, . . . , r̃kM(n)
) = r(n), r̃ ∈R,

(

˜lk1(n),˜lk1(n)+1, . . . ,˜lkM(n)
) = l(n), ˜l ∈ L,

(22)

whenever the diagonal block of V(n) is isolated and maximal,
and corresponds to the components k1(n) ≤ l ≤ kM(n), with
1 ≤ k1(n), kM(n) ≤ K in the matrix V. We can interpret this
property as follows.

Observation 6. Let the network satisfy (i) and (ii) in
Observation 5. Then, any min-max fair allocation for an en-
tirely interference-coupled and interference-isolated subnet-
work corresponds to the restriction of the min-max fair allo-
cation for the entire network to such subnetwork.

Clearly, the eigenvalue equation implies also that the pro-
jection property (22) cannot hold for nonisolated diagonal
blocks of V.

5.2. Existence of a positive weight allocation

The setW of utility optimal and min-max fair weight alloca-
tions is in general not guaranteed to include positive weight
allocations. In fact, even for networks satisfying (i), (ii) in

Observation 5, the existence of ˜l ∈ L, ˜l > 0 is not ensured,
so that the construction of w̃ ∈ W , such that w̃ > 0, may
be prevented. Therefore, the characterization of the class of
networks for which a positive utility optimal and min-max
fair weight allocation exists is here of interest. It is clear from
the construction of W that such class must be included in
the class of networks having some r̃ ∈ R, ṽer > 0, which is
characterized in Proposition 5. The corresponding character-
ization follows straightforwardly from [41] or, equivalently,
from [31, Theorems 3 and 4].

Proposition 6. Let {V(m)}m∈M be the set of maximal diago-
nal blocks in the canonical form of the interference matrix V.
Matrix V has right and left PF eigenvectors ˜l ∈ R, ˜l ∈ L

satisfying ˜l, r̃ > 0 if and only if it is block-irreducible and
M = {1, . . . ,N}.

The existence of positive left and right PF eigenvectors
following from above proposition makes the construction of
a weight vector w̃ ∈W∩RK

++ possible. Proposition 6 charac-
terizes a subclass of interferencematrices from Proposition 5,
for which I =M = {1, . . . ,N}, that is, for which no noniso-
lated diagonal blocks exist. We can interpret Proposition 6 as
follows.

Observation 7. A positive utility optimal and min-max fair
weight allocation exists for any network with interference
matrix V such that

(i) the network consists of a number of entirely inter-
ference coupled and pairwise interference-isolated subnet-
works,

(ii) the interference matrix V(n) of each entirely coupled
subnetwork satisfies ρ(V(n)) = ρ(V). For any network violat-

ing either (i) or (ii), no positive utility optimal and min-max
fair weight allocation exists.

Obviously, the entirely interference-coupled networks
are the trivial case of networks satisfying (i), (ii) in Observ-
ation 7, as they formally consist of one entirely interference-
coupled subnetwork.

Some remarks on the role of block irreducibility for
utility optimization

The networks with the properties characterized in Observ-
ation 7 (i.e., with interference matrices characterized in
Proposition 6) play a specific role not only in terms of the
trade-off between min-max fairness and utility optimality.
Such networks have also a specific property of the QoS re-
gion, which we describe here briefly. As a slight difference to
Proposition 6 and Observation 7, the discussion below con-
cerns a weighted interference matrix.

From [31] we know that the QoS region QF can be rep-
resented alternatively as

QF =
{

q =
(

F
(

1
γ1

)

, . . . ,F
(

1
γK

))

: ρ(ΓV) ≤ 1
}

, (23)

with Γ := diag(γ1, . . . , γK ). From the normal form of the in-
terference matrix we have further

ρ(ΓV) = max
1≤n≤N

ρ
(

Γ(n)V(n)
)

, (24)

where the diagonal components of Γ(n) are γl, with k1(n) ≤
l ≤ kM(n) as the interval of components corresponding to
the diagonal block V(n). Consequently it follows that QF =
�
N
n=1Q

(n)
F , with Q(n)

F = {q(n) = (F(1/γk1(n)), . . . ,F(1/γkM(n))) :
ρ(Γ(n)V(n)) ≤ c(n)}, 1 ≤ n ≤ N , where for the constant c(n)
we have c(n) ≤ 1, 1 ≤ n ≤ N , due to (23) and (24). In other
words, QoS region of the network is the Cartesian product
of QoS regions of entirely coupled subnetworks. By the one-
to-one correspondence q(p) (on {p : ‖p‖1 = c}, c > 0) we
can get the link between the utility optimization in the form
(6) and the utility optimization with QF as the optimization
domain. Precisely, we have

min
q ∈ QF

K
∑

k=1
αkqk =

N
∑

n=1
min

q(n) ∈ Q(n)
F

kM(n)
∑

l=k1(n)
αlql

= inf
p ∈ P++

K
∑

k=1
αkF

(

(Vp)k
pk

)

, α ∈A.

(25)

Assume now α > 0 and notice that the minimum of the
partial objective

∑kM(n)
l=k1(n) αlql is achieved on the boundary

of the QoS region Q(n)
F , 1 ≤ n ≤ N . Consequently, when-

ever there exists some subnetwork n, such that c(n) < 1,
the corresponding partial objective

∑kM(n)
l=k1(n) αlql achieves a

value which is strictly suboptimal compared to the case when
c(n) = 1 holds for subnetwork n. Consequently, the opti-
mal partial utility values in all subnetworks, and hence the
overall optimal network utility value, are achievable exactly



10 EURASIP Journal on Wireless Communications and Networking

in the case when all weighted subnetwork interference ma-
trices Γ(n)V(n), 1 ≤ n ≤ N , correspond to maximal diagonal
blocks of ΓV, that is,

ρ
(

Γ(n)V(n)) = 1, 1 ≤ n ≤ N. (26)

In other words, in some sense the farthest boundary part of
the QoS region QF is achievable in the utility optimization
exactly when (26) is true.

6. THE TRADE-OFF BETWEENMIN-MAX FAIRNESS
ANDUTILITY OPTIMALITY AS A SADDLE POINT

In the last section we showed that the power and weight al-
locations of the form (r̃, w̃), r̃ ∈ R, w̃ ∈ W , combine min-
max fairness and utility optimality. In this section we assume
that the link weights are variables and study the problems
of minimization/maximization of utility over weight vectors
from the set A. This approach is followed in order to illus-
trate the relation of the power and weight allocation com-
bining fairness and utility optimality with general power and
weight allocations. In this way we are able to characterize the
mechanism of the trade-off occurring under combination of
fairness and utility optimality. Precisely, we prove that such
trade-off has the interpretation of a saddle point of the util-
ity function as a function of power and weight allocations.
For this purpose we need to consider two problem forms, a
min-max problem and a max-min problem.

6.1. Themin-max problem

Consider first the problem of utility optimization for a worst-
case weight vector. In such case we have the following prop-
erty.

Lemma 1. Let V be any interference matrix and let F ∈ E(V).
Then

inf
p∈P++

max
α∈A

K
∑

k=1
αkF

(

(Vp)k
pk

)

= F
(

ρ(V)
)

, (27)

with r̃ = arg infp∈P++ maxα∈A
∑K

k=1 αkF((Vp)k/pk), r̃ ∈ R.
If V is irreducible, then r > 0 is the unique (up to a scaling
constant) vector satisfying

r = arg min
p ∈ P++

max
α ∈A

K
∑

k=1
αkF

((

Vp
)

k

/

pk
)

. (28)

Proof. It is clear that infp∈P++ maxα∈A
∑K

k=1 αkF((Vp)k/pk) =
infp∈P++ max1≤k≤K F((Vp)k/pk), α ∈ A. With Proposition 1
it follows further that

inf
p∈P++

max
1≤k≤K

F

(

(Vp)k
pk

)

= F

(

(Vr̃)k
r̃k

)

= F
(

ρ(V)
)

, r̃ ∈R.

(29)

By Proposition 3(i) in the special case of irreducible V there
is an up to a scaling constant unique vector r > 0, and the
proof is completed.

Lemma 1 characterizes the right PF eigenvectors of V as
those which optimize the utility function for the worst-case
vector of weights. Equivalently, the min-max fair allocation
r̃ ∈ R, r̃ > 0, (which exists whenever the interference ma-
trix V satisfies (i), (ii) in Observation 5) is the optimal power
vector when a weight vector in A is chosen which yields the
largest value of the utility. For entirely coupled networks the
lemma shows that given a worst-case weight vector, the util-
ity optimum is achieved under a min-max fair allocation and
under no other allocation.

6.2. Themax-min problem

In what follows we denote the utility function as a function
of powers and weights as

U : P ×A −→ J ⊆ R, U(p,α) =
K
∑

k=1
αkF

(

(Vp)k
pk

)

(30)

and additionally

Up :A −→ J ⊆ R, Up(α)= min
p ∈ P++

K
∑

k=1
αkF

(

(Vp)k
pk

)

.

(31)

For the utility function (31) we have first the following in-
sight.

Lemma 2. Let V be any irreducible interference matrix and let
F ∈ E(V). Then, Up is strictly concave.

Proof. FunctionUp is concave by definition, due to the prop-
erties of the minimum function [43]. Assume now by con-
tradiction that Up is not strictly concave. Hence, there exist
α(1),α(2), α(1) �= α(2) such that

Up
(

(1− t)α(1) + tα(2)
)

= (1− t)Up
(

α(1)
)

+ tUp
(

α(2)
)

, for some t ∈ (0, 1).
(32)

As a first case assume that
(i) if p(1)=argminp∈P++

∑K
k=1 α

(1)
k F((Vp)k/pk) and p(2)=

argminp∈P++

∑K
k=1 α

(2)
k F((Vp)k/pk), then p(1) �= p(2). Let

p(t) := argminp∈P++

∑K
k=1((1 − t)α(1)k + tα(2)k )F((Vp)k/pk).

Then,

Up
(

(1− t)α(1) + tα(2)
)

=
K
∑

k=1

(

(1− t)α(1)k + tα(2)k

)

F

((

Vp(t)
)

k

pk(t)

)

= (1− t)
K
∑

k=1
α(1)k F

((

Vp(t)
)

k

pk(t)

)

+ t
K
∑

k=1
α(2)k F

((

Vp(t)
)

k

pk(t)

)

.

(33)
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Hence, (32) and (33) together imply that

p(t) = arg min
p∈P++

K
∑

k=1
α(1)k F

((

Vp
)

k

/

pk
)

(34)

and p(t) = argminp∈P++

∑K
k=1 α

(2)
k F((Vp)k/pk). This contra-

dicts (i) and completes the proof under assumption (i). As-
sume now the complementary case:

(ii) there exists p̃ ∈ P , such that

p̃ = arg min
p∈P++

K
∑

k=1
α(1)k F

((

Vp
)

k

/

pk
)

= arg min
p∈P++

K
∑

k=1
α(2)k F

((

Vp
)

k

/

pk
)

.

(35)

With (1) and (3), and the assumption α(1) �= α(2), it fol-
lows that (ii) corresponds to the vertex property of the
point q(p̃), which is on the boundary of the QoS region
QF . This implies that at the point q(p̃) the Frechet deriva-
tive is not defined. The boundary of the QoS region QF

can be bijectively mapped, by means of the componentwise
mapping F, onto the boundary of the manifold {Γ(p) =
diag(γ1(p), . . . , γK (p)) : p ∈ P }. Such boundary is known
to be representable as the manifold {Γ(p) : ρ(Γ(p)V) = 1}
[31]. Since the spectral radius is a smooth function of ma-
trix elements and F is continuously Frechet differentiable by
our assumptions, the boundary of QF must be Frechet dif-
ferentiable. This contradicts the existence of a vertex on the
boundary of QF . Hence, condition (ii) is never satisfied and
the proof is completed.

With the above lemma we can provide a max-min char-
acterization, which is complementary to the max-min char-
acterization from Lemma 1. For clarity, we split the presenta-
tion into the one for entirely interference-coupled networks
only and the one generalizing it to arbitrary networks.

Proposition 7. LetV be an irreducible interference matrix and
let F ∈ E(V). Then

max
α∈A

min
p∈P++

K
∑

k=1
αkF

(

(Vp)k
pk

)

= F
(

ρ(V)
)

, (36)

and α̃ = argmaxα∈Aminp∈P++

∑K
k=1 αkF((Vp)k/pk) if and

only if α̃ = w, with w = (w1, . . . ,wK ), wk = lkrk, 1 ≤ k ≤ K ,
which is unique inA.

Proof. It is clear that

K
∑

k=1
αkF

(

(Vp)k
/

pk
) ≤ max

1≤k≤K
F
(

(Vp)k
/

pk
)

, (37)

p ∈ P , α ∈A. This yields with Proposition 1 that

min
p∈P++

K
∑

k=1
αkF

(

(Vp)k
pk

)

≤ min
p∈P++

max
1≤k≤K

F

(

(Vp)k
pk

)

=F
(

ρ(V)
)

,

(38)

where we can take the minimum instead of the infimum in
(5), since r > 0 due to irreducibility. Inequality (38) is further
equivalent to

Up(α) ≤ F
(

ρ(V)
)

, α ∈A. (39)

By Lemma 2, function Up is strictly concave under irre-
ducibility of V, and thus has a unique maximum. With the
definition of Up and Proposition 3(iii) it follows then with
(39),

max
α∈A

Up(α) = max
α∈A

min
p∈P++

K
∑

k=1
αkF

(

(Vp)k
pk

)

= min
p∈P++

K
∑

k=1
α̃kF

(

(Vp)k
pk

)

= F
(

ρ(V)
)

,

(40)

if and only if α̃ = w, with vector w = (w1, . . . ,wK ), wk =
rklk, 1 ≤ k ≤ K , which is unique in A. This completes the
proof.

The proposition states that for entirely coupled networks
the weight vector w, unique in A, is the one for which the
optimum utility value achieved is the worst possible, that is,
largest. Moreover, for any other weight vector the achieved
optimum utility value is smaller, that is, the optimal util-
ity performance is better. At this point notice a crucial but
subtle difference between the min-max and max-min con-
siderations in Lemma 1 and Proposition 7, respectively. Pre-
cisely, between utility optimality under worst-case weights
(Lemma 1) and worst-case weights for the utility optimum
(Proposition 7).

The generalization of Proposition 7 to arbitrary networks
is as follows.

Proposition 8. Let V be any interference matrix and let F ∈
E(V). Then

max
α∈A

inf
p∈P++

K
∑

k=1
αkF

(

(Vp)k
pk

)

= F
(

ρ(V)
)

, (41)

with α̃ = argmaxα∈A infp∈P++

∑K
k=1 αkF((Vp)k/pk) if and

only if α̃ ∈ W := {ŵ = (ŵ1, . . . , ŵK ) ∈ A : ŵk = r̂k̂lk, r̂ =
(r̂1, . . . , r̂K ) ∈R,̂l = (̂l1, . . . ,̂lK ) ∈ L}.

Proof. As in the proof of Proposition 4 we construct an irre-
ducible (since positive) matrix Vε = V+ ε11T , ε > 0. Hence,
(16) is true and implies with the increase of F that

K
∑

k=1
αkF

(

(Vp)k
pk

)

≤
K
∑

k=1
αkF

((

Vεp
)

k

pk

)

, α ∈A, p ∈ P .

(42)

This further implies with Proposition 7,

max
α∈A

inf
p∈P++

K
∑

k=1
αkF

(

(Vp)k
pk

)

≤ max
α∈A

inf
p∈P++

K
∑

k=1
αkF

((

Vεp
)

k

pk

)

= F
(

ρ
(

Vε
))

.

(43)



12 EURASIP Journal on Wireless Communications and Networking

The left-hand side of (43) does not depend on ε. Hence, tak-
ing the limit of both sides of (43) by letting ε → 0 yields
with continuity of the spectral radius as a function of matrix
elements

max
α∈A

inf
p∈P++

K
∑

k=1
αkF

(

(Vp)k
pk

)

≤ F
(

ρ(V)
)

. (44)

From Proposition 4(ii) we further have

max
α∈A

inf
p∈P++

K
∑

k=1
αkF

((

Vp
)

k

/

pk
) ≥ F

(

ρ(V)
)

. (45)

Hence, together with (44) the equality

max
α∈A

inf
p∈P++

K
∑

k=1
αkF

(

(Vp)k
pk

)

= inf
p∈P++

K
∑

k=1
α̃kF

(

(Vp)k
pk

)

= F
(

ρ(V)
)

(46)

for some α̃ ∈ A is true. By Proposition 4(ii) again, it follows
that the equality holds if and only if α̃ ∈W , which completes
the proof.

The generalization of Proposition 7 by Proposition 8
is analogous to the generalization of Proposition 3 by
Proposition 4. It implies that for arbitrary networks any
weight vector from the specific set W , which is a singleton
under irreducibility of the interference matrix, makes the
achieved optimum utility value the worst among all weight
vectors in A. The optimum utility value achievable under
any weight vector from outside of W is superior to the one
achieved for α̃ ∈W .

6.3. The saddle point conclusion

With Proposition B.2 in the appendix it is now easily seen
that the min-max andmax-min relations from Lemma 1 and
Propositions 7, 8 describe together a saddle point of the util-
ity function as a function of weight and power vectors. We
can formulate the following corollary.

Corollary 1. Let V be any interference matrix and let F ∈
E(V). Then, any vector pair (r̃, w̃) from the set S := {(r̂, ŵ) ∈
P ×A : r̂ ∈R, ŵ ∈W}, withW defined as in Propositions 4
and 8, is a saddle point of the utility U from (30) and one has

inf
p∈P++

max
α∈A

K
∑

k=1
αkF

(

(Vp)k
pk

)

= F
(

ρ(V)
) = max

α∈A

inf
p∈P++

K
∑

k=1
αkF

(

(Vp)k
pk

)

.

(47)

If the interference matrix is irreducible, then S is a singleton
representing a unique saddle point of U .

It is an easy consequence of Corollary 1 and Observation
4 that the set of min-max fair and utility-optimal power and

weight allocations corresponds to the subset S∩(RK
++×A) of

the set of saddle points S. Recall that such subset is nonempty
if and only if the network pertains to a class of networks sat-
isfying (i), (ii) in Observation 5.

The saddle point property is a compact illustration of the
trade-off between fairness in the min-max sense and utility
optimality. It shows that the min-max fair allocation r̃ ∈ R,
r̃ > 0 (if existent), optimizes the utility under the penalty that
the worst possible weight vector is chosen. Consequently, for
any nonworst-case choice of the weight vector the optimum
performance in terms of the utility is better than the one
achieved by min-max fair allocation. On the other side, any
weight vector w̃ ∈ W corresponding to the weight alloca-
tion achieving min-max fairness and utility-optimality has
the property of yielding the worst-case utility performance
among the utility optima achieved under any weight vector.
Thus, under any choice w̃ /∈ W , the achieved optimal utility
performance is better than under the choice w̃ ∈ W . These
features can be expressed compactly by the chain inequality

inf
p∈P++

K
∑

k=1
αkF

(

(Vp)k
pk

)

≤
K
∑

k=1
αkF

(

(Vr̃)k
r̃k

)

≤ inf
p∈P++

K
∑

k=1
w̃kF

(

(Vp)k
pk

)

=
K
∑

k=1
w̃kF

(

(Vr̃)k
r̃k

)

≤
K
∑

k=1
w̃kF

(

(Vp)k
pk

)

, (r̃, w̃) ∈ S.

(48)

The chain inequality (48) contains the relation

K
∑

k=1
αkF

((

Vr̃
)

k

/

r̃k
) ≤

K
∑

k=1
w̃kF

((

Vr̃
)

k

/

r̃k
)

≤
K
∑

k=1
w̃kF

((

Vp
)

k

/

pk
)

,

(49)

which is, by Definition B.1 in the appendix, another verifica-
tion of the saddle point property of any vector pair (r̃, w̃) ∈
S.

The saddle point property can be summarized as follows.

Observation 8. For any power and weight allocation (r̃, w̃),
r̃ > 0 combining utility optimality and min-max fairness, the
following are true.

(i) The min-max fair allocation r̃ > 0 yields the optimal
utility value under the worst-case choice of the weight vector.

(i′) If the network is entirely interference-coupled, then
the min-max fair allocation r̃ > 0 is the unique (up to a scal-
ing constant) allocation yielding the optimal utility value un-
der the worst-case choice of the weight vector.

(ii) Under the weight vector w̃ the worst-case of the opti-
mum utility value is yielded.

(ii′) If the network is entirely interference-coupled, the
weight vector w̃ is the unique weight vector inA under which
the worst-case of the optimum utility value is yielded.

In Figure 1 we illustrate the saddle point property
of a min-max fair and utility-optimal power and weight
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α �A
p � �p : �p�1 = c�, c > 0

r

w

U(α,p) =
K
∑

k=1
αkF

(

(Vp)k
pk

)

Figure 1: Figurative visualization of the saddle point property of
the min-max fair and utility-optimal power and weight allocation.
The two scalar dimensions represent the spaces of power allocations
and weight allocations, respectively. The visualized saddle point is
unique, as would be the case for entirely interference-coupled net-
works.

allocation. The visualization is figurative since the vector di-
mensions corresponding to the power vector and the weight
vector are represented by two scalar dimensions.

7. THE FAIRNESS INEQUALITY

Up to now the focus of our considerations was on the notion
of fairness in the min-max sense

inf
p∈P++

max
1≤k≤K

F

(

(Vp)k
pk

)

. (50)

Under increasing function F, problem (50) can be inter-
preted as improving the worst link QoS performance as
much as possible. An interesting question in this context is
the relation to the problem

sup
p∈P++

min
1 ≤ k ≤ K

F

(

(Vp)k
pk

)

, (51)

which is in some way dual to finding the min-max fair al-
location. Problem (51) can be interpreted as degrading the
best link QoS performance as much as possible and hence,
by analogy to (50) and to the notion of min-max fairness, we
propose referring to such problem as ensuring max-min fair-
ness, since the corresponding optimization problem takes a
max-min form (recall the remarks on denoting fairness no-
tions from Section 3.1: the max-min fairness defined by (51)
is not equivalent to the usual max-min fairness in the liter-
ature.). From this interpretation of max-min fairness (51) it
is apparent that the applicability of this fairness notion is in
general limited. In fact, providing the maximal degradation
of the best link QoS is intuitively not a notion of optimality
desired in the network (it is rather a notion of a worst case).

However, the situation changes if the notions of min-max
fairness and max-min fairness are related by some known
deterministic relation. In particular, there is an interest in
achieving max-min fairness (51) if it coincides, in terms of
the achieved value or even in terms of the optimizers, with
the notion of min-max fairness (50). In such case max-min
fairness (51) is an alternative characterization/interpretation
of the common notion of min-max fairness. Precisely this is-
sue of coincidence is addressed in the remainder of this sec-
tion.

From convex analysis we have that for any network, pre-
cisely for any interference matrix V,

sup
p∈P++

min
1 ≤ k ≤ K

F

(

(Vp)k
pk

)

≤ inf
p∈P++

max
1≤k≤K

F

(

(Vp)k
pk

)

. (52)

Inequality (52) suggests the following question. For which
class of networks (i.e., matrices V) we have the following.

Property i. The optimal values in problems (50) and (51) co-
incide.

However, even under equality of optimal values, the op-
timizers of (50) and (51) may not coincide. Therefore we are
also interested in the answer to the following related ques-
tion. For which class of networks we have the following.

Property i′. The optimal values in problems (50) and (51)
coincide and there exists a positive allocation which solves
both (50) and (51)?

By complementarity to Property i, a question is also: for
which class of networks we have the following.

Property ii. The optimal value in problem (50) is larger than
the optimal value in problem (51)?

Assume for a while that a min-max fair allocation ex-
ists, that is, the network satisfies conditions (i), (ii) in
Observation 5. Then, the networks having Property i can be
regarded as those having no gap between min-max and max-
min fairness performance, or simply having no (or zero) fair-
ness gap. In other words, the maximally degraded best link
QoS performance exactly meets the performance of the max-
imally improved worst link QoS in such networks. For net-
works with no fairness gap which have a stronger Property i′

we are additionally free to choose between (50) and (51) as
equivalent problem formulations. This provides an alterna-
tive in the design of online optimization routines. Depending
on hardware constraints, signaling constraints and protocol
type, the alternative formulation (51) may happen to be fa-
vorable in terms of implementation issues. On the other side,
networks having Property ii can be interpreted as those with
(nonzero) fairness gap. Thus, for such networks we know
that the maximally degraded best link QoS performance is
still superior to the maximally improved worst link QoS per-
formance. In such networks, one cannot resort to (51) as an
equivalent formulation of the min-max fairness problem for
implementation purposes.
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Some remarks on themaximally degraded best link QoS

Consider for a while max-min fairness in the SINR-based
network model, that is, when the SIR expression (1) is re-
placed by γk(p) = pk/(Vpk + σ2k ), 1 ≤ k ≤ K , with some
additional nonzero background noise variance σ2k on each
link. Assuming (3) with increasing F, it can be deduced that
the best link QoS performance is maximally degraded in the
trivial case of all-zero power allocation p = 0. When us-
ing the SIR model (1) however, this is no longer the case.
Precisely, let some parameterized allocation p(ε) ∈ P con-
verge to p(0) = limε→0 p(ε) = 0. Then, all SIR values
converge to finite values, each one representing a ratio of
two values approaching zero. This is the same mechanism
as the one described in Section 3.1 in the context of valid-
ity/nonvalidity of allocations. Consequently, we deduce that
the optimal value in (51) is assumed by a max-min fair al-
location which is in general not all-zero. In comparison with
the SINRmodel this feature slightly contradicts the intuition.
However, from the algorithmic point of view such feature
may provide advantages compared to the SINR model and
SINR-based power control. Precisely, if Property i′ is true, the
already described degree of freedom occurs: the online opti-
mization algorithms computing the min-max fair allocation
can be designed to solve either of the two problems (50) or
(51). Such degree of freedom cannot occur in the SINR-based
power control.

7.1. The cases of zero and nonzero fairness gap

The first step towards the characterization of the network
classes having zero and nonzero fairness gap is a simple
lemma.

Lemma 3. For any interference matrix V and any increasing
bijection F, one has

inf
p∈P++

max
1≤k≤K

F

(

(Vp)k
pk

)

≥ F
(

ρ(V)
)

. (53)

Proof. Construct first a matrix Vε = V + ε11T , ε > 0, which
is positive. Denote f (X,p) := max1≤k≤K ((Xp)k/pk).We have
obviously f (Vε,p) ≥ (Vεp)k/pk, 1 ≤ k ≤ K , ε > 0, for any
p ∈ P++. Hence, it follows f (Vε,p)p ≥ Vεp, ε > 0, p ∈ P++.
Let lε be the left PF eigenvector of Vε such that lTε (p)p = 1
(thus, lε = lε(p), since in general lTε p > 0). Thus, we have

f
(

Vε,p
) = f

(

Vε,p
)

lTε p ≥ lTεVεp = ρ
(

Vε
)

lTε p

= ρ
(

Vε
)

, ε > 0, p ∈ P++.
(54)

Hence, with the definitions and the nondecrease of the spec-
tral radius as a function of matrix elements it follows from
(54),

max
1≤k≤K

(

(Vp)k
pk

+

(

ε11Tp
)

k

pk

)

≥ ρ(V), ε > 0, p ∈ P++.

(55)

Notice now that F(max1≤k≤K xk) = max1≤k≤K F(xk), 1 ≤ k ≤
K , due to the increase of F. Hence, transforming by F both

sides of (55) and taking infimum over ε > 0 and p ∈ P++

of both sides of (55) yield infp∈P++ max1≤k≤K F((Vp)k/pk) ≥
F(ρ(V)) and complete the proof.

The lemma specifies a lower bound on the maximally de-
graded best link QoS performance. This bound can be shown
to be tight in Proposition 1. This proposition and the subse-
quent results can be regarded as an extension of the known
Collatz-Wieland characterization to the case of general non-
negative matrices [29].

Proposition 1 can now be proven, where F((Vr̃)i/r̃i) =
F(ρ(V)), 1 ≤ i ≤ K whenever r̃ ∈R, r̃ > 0.

Proof of Proposition 1. Let S(n) ⊂ {1, . . . ,K} denote the set
of row/column indices corresponding to the nth diagonal
block V(n) in the normal form of V. Let p(λ) ∈ RK

++ be
some vector associated with λ > 0, where λ = λ(ε) is a func-
tion of ε > 0. The idea of the proof is the construction of a
vector p(λ), which achieves max1≤k≤K F((Vp(λ))k/pk(λ)) =
F(ρ(V)). Together with Lemma 3 this will yield the proof.

Assume for the components of p(λ) that pk(λ) = λr(n)k ,
k ∈ S(n), whenever block V(n) is maximal (r(n) is the right
eigenvector of the diagonal block V(n) and we have r(n) > 0,
1 ≤ n ≤ N , due to irreducibility of the diagonal blocks).
Then we can write from the construction of the normal form
of V for any maximal block V(n),

(

Vp(λ)
)

k

pk(λ)
=
(

V(n)λr(n)
)

k

λr(n)k

+

(∑n−1
m=1V(n,m)p(m)(λ)

)

k

λr(n)k

, λ(ε)>0, k∈ S(n),

(56)

where for any vector p ∈ RK
++ the notation p(n) means a vec-

tor in R|S(n)|+ with components p(n)k = pk, k ∈ S(n). Define
now t(n)(p) := ∑n−1

m=1V(n,m)p(m), 1 ≤ n ≤ N . Choose now

λ(ε) such that t(n)k (p(λ))k/λr
(n)
k ≤ ε, k ∈ S(n), holds and

transform both sides of (56) by F. Then we get from (56)
due to maximality of block V(n) and the increase of F,

F

((

Vp(λ)
)

k

pk(λ)

)

= F

(

ρ(V) +
t(n)k

(

p(λ)
)

λr(n)k

)

≤ F
(

ρ(V) + ε
)

, λ(ε) > 0, ε > 0, k ∈ S(n).
(57)

Consider now nonmaximal blocks. For any nonmaximal
block V(n) assume for the components of p(λ) that pk(λ) =
r̃k, r̃ ∈ R, k ∈ S(n). Then, from the eigenvalue problem for
the normal form of V follows for any nonmaximal block V(n)

that

ρ(V)p(n)(λ) = V(n)p(n)(λ) + t(n)
(

p(λ)
)

, λ(ε) > 0. (58)

After restatement we get p(n)(λ) = (ρ(V)I−V(n))−1t(n)(p(λ)),
which implies with ρ(V(n)) < ρ(V) and t(n)(p(λ)) ≥ 0 that

p(n)k (λ) = r̃k > 0, λ(ε) > 0, k ∈ S(n) whenever block V(n) is
nonmaximal [29]. Hence, from componentwise division of
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both sides of (58) by pk(λ) and transformation by increasing
function F follows

F

((

Vp(λ)
)

k

pk(λ)

)

= F

(

ρ(V)− t(n)k

(

p(λ)
)

pk(λ)

)

≤ F
(

ρ(V)
)

, λ(ε) > 0, k ∈ S(n),

(59)

for any nonmaximal block V(n). Summarizing now (57) and
(59) we have max1≤k≤K F((Vp(λ))k/pk(λ)) ≤ F(ρ(V) + ε),
ε > 0. Hence it must hold

lim
ε → 0

max
1≤k≤K

F
((

Vp
(

λ(ε)
))

k

/

pk
(

λ(ε)
)) ≤ F

(

ρ(V)
)

, (60)

which together with Lemma 3 implies

lim
ε → 0

max
1≤k≤K

F
((

Vp
(

λ(ε)
))

k

/

pk
(

λ(ε)
))

= inf
p∈P++

max
1≤k≤K

F
((

Vp
)

k

/

pk
) = F

(

ρ(V)
) (61)

since the infimum over P++ equals the infimum over RK
++

due to γk(p) = γk(cp), p ∈ RK
++ c > 0. This proves (5).

Further, for maximal diagonal blocks V(n) we have by con-
struction of p(λ) and irreducibility of the diagonal blocks in
the normal form of V that pk(λ(0)) = limε→0 pk(λ(ε)) =
limε→0 λ(ε)r

(n)
k > 0, k ∈ S(n). For nonmaximal diagonal

blocks V(n) we have pk(0) = r̃k, k ∈ S(n). Hence from
the eigenvalue problem for the normal form of V follows
p(λ) ∈ R. Consequently, we have p(λ(0)) > 0 and we can
then write F((Vp(0))i/ pi(0)) = F(ρ(V)), 1 ≤ i ≤ K , when-
ever r̃k > 0, k ∈ S(n) for V(n) nonmaximal. A sufficient con-
dition for it is r̃ ∈ R, r̃ > 0 (see Proposition 5). This com-
pletes the proof.

Hence, as discussed in preceding sections, we have r̃ ∈R
as a vector solving (50) and F(ρ(V)) as the optimum value in
(50).

The following simple consequence of (52) follows by
Proposition 1.

Corollary 2. For any interference matrixV and any increasing
bijection F holds

sup
p∈P++

min
1 ≤ k ≤ K

F

(

(Vp)k
pk

)

≤ F
(

ρ(V)
)

. (62)

To describe the network classes with zero and nonzero
fairness gap it remains now to characterize the case in which
F(ρ(V)) is achieved, respectively not achieved, as an optimal
value in (51). Strict inequality in (62) can be shown to be true
for a particular network class.

Lemma4. Let {V(n)}n∈I and {V(m)}m∈M be the sets of isolated
and maximal diagonal blocks in the canonical form of the in-
terference matrixV, respectively. If there exists some n ∈ I such
that n /∈M, then for any increasing bijection F, one has

sup
p∈P++

min
1 ≤ k ≤ K

F

(

(Vp)k
pk

)

< F
(

ρ(V)
)

. (63)

Proof. LetV(n) be such that n ∈ I and n /∈M. Then from the
construction of the normal form of V follows (V(n)p)k/pk =
(V(n)p(n))k/p

(n)
k , p ∈ RK

++, k ∈ S(n), where S(n) and p(n)

are defined as in the proof of Proposition 1. Since the non-
maximal block V(n) is irreducible it follows from the classical
Collatz-Wielandt characterization and the increase of F that
[29]

F

⎛

⎝ sup
p∈RK

++

min
k ∈ S(n)

(

V(n)p(n)
)

k

p(n)k

⎞

⎠ = F
(

ρ
(

V(n))) < F
(

ρ(V)
)

.

(64)

Clearly, with min1≤k≤K (Vp)k/pk ≤ mink∈S(n) (V(n)p(n))k/

p(n)k , p ∈ RK
++, 1 ≤ n ≤ N , and using the increase of F five

times, let us write

sup
p∈RK

++

min
1 ≤ k ≤ K

F

(

(Vp)k
pk

)

= sup
p∈RK

++

F

(

min
1≤k≤K

(Vp)k
pk

)

= F

⎛

⎝ sup
p∈RK

++

min
1 ≤ k ≤ K

(Vp)k
pk

⎞

⎠≤F

⎛

⎝ sup
p∈RK

++

min
k ∈ S(n)

(

Vp(n)
)

k

p(n)k

⎞

⎠

= sup
p∈RK

++

F

(

min
k∈S(n)

(

Vp(n)
)

k

p(n)k

)

= sup
p∈RK

++

min
k ∈ S(n)

F

((

Vp(n)
)

k

p(n)k

)

.

(65)

The inequalities (64) and (65) together give

sup
p∈P++

min
1 ≤ k ≤ K

F
(

(Vp)k
/

pk
)

< F
(

ρ(V)
)

, (66)

since the infimum over P++ equals the infimum over RK
++

due to γk(p) = γk(cp), p ∈ RK
++, c > 0. This completes the

proof.

We can interpret the condition in Lemma 4 as the
existence of some entirely coupled subnetwork which is
interference-isolated and its interferencematrix, sayV(n), sat-
isfies ρ(V(n)) < ρ(V) (Appendix A). By Lemma 4, networks
having such property cannot pertain to the class with Prop-
erty i and hence cannot pertain to its subclass with Property
i′ as well. An immediate consequence from Lemma 4 is as
follows.

Corollary 3. Let {V(n)}n∈I and {V(m)}m∈M be the sets of iso-
lated and maximal diagonal blocks in the canonical form of the
interference matrix V, respectively. If for any increasing bijec-
tion F, one has

sup
p∈P++

min
1 ≤ k ≤ K

F

(

(Vp)k
pk

)

= F
(

ρ(V)
)

, (67)

then I ⊆M.

With Proposition 1 and inequality (52) we see that
Corollary 3 formulates a necessary condition for the inclu-
sion of a network in the class with Property i and hence also
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in its subclass with Property i′. This condition is precisely
that the interference matrix, say V(n), of any entirely cou-
pled and interference-isolated subnetwork satisfies ρ(V(n)) =
ρ(V). The following lemma shows even more.

Lemma 5. Let {V(n)}n∈I and {V(m)}m∈M be the sets of iso-
lated and maximal diagonal blocks in the canonical form of the
interference matrix V, respectively. If I ⊆M, then for any in-
creasing bijection F, equality (67) is satisfied.

Proof. Let S(n), 1 ≤ n ≤ N , and p(n) (for any p ∈ RK
++) be

defined as in the proof of Proposition 1. Let p(λ) ∈ RK
++ be

some vector associated with λ > 0, where λ = λ(ε) is a func-
tion of ε > 0. As in the proof of Proposition 1 the idea of
the proof is the construction of a vector p(λ), which achieves
equality (67). Let first V(n), n ∈ I. Assume for the compo-

nents of p(λ) that pk(λ) = r(n)k , k ∈ S(n), whenever n ∈ I
(r(n) is the right eigenvector of the diagonal block V(n) and
we have r(n) > 0, 1 ≤ n ≤ N , due to irreducibility of diagonal
blocks). From the construction of the normal form of V and
the increase of F follows then

F

((

Vp(λ)
)

k

pk(λ)

)

= F

((

V(n)r(n)
)

k

r(n)k

)

= F
(

ρ(V)
)

,

λ(ε) > 0, k ∈ S(n), n ∈ I,

(68)

since n ∈M by assumption.
Let now V(n), n /∈ I and consider first the case when

n ∈M additionally. Assume for the components of p(λ) that
pk(λ) = r(n)k , k ∈ S(n), whenever n /∈ I, n ∈ M and define
t(n)(p), 1 ≤ n ≤ N , as in the proof of Proposition 1. Then,
from the construction of the normal form of V and the in-
crease of F follows again

F

((

Vp(λ)
)

k

pk(λ)

)

= F

((

V(n)r(n)
)

k

r(n)k

+
t(n)k

pk(λ)

)

= F

(

ρ(V) +
t(n)k

pk(λ)

)

≥ F
(

ρ(V)
)

,

λ(ε) > 0, k ∈ S(n), n /∈ I, n ∈M.

(69)

For the remaining case n /∈ I, n /∈M assume for the compo-
nents of p(λ) that pk(λ) = λr̃k, r̃ ∈R, k ∈ S(n). Then, from
the eigenvalue problem for the normal form of V follows

ρ(V)p(n)(λ) = V(n)p(n)(λ) + t(n)
(

p(λ)
)

,

λ(ε) > 0, n /∈ I, n /∈M.
(70)

After restatement we get p(n)(λ) = (ρ(V)I−V(n))−1t(n)(p(λ)),
which implies with n /∈ M (i.e., ρ(V(n)) < ρ(V)) and

t(n)(p(λ)) ≥ 0 that p(n)k (λ) = λr̃k > 0, for any λ > 0, r̃ ∈ R,

k ∈ S(n) [29]. Choose now λ(ε) such that t(n)k (p(λ))k/λr̃k ≤
ε, k ∈ S(n), n /∈ I, n /∈M. Hence, from componentwise di-
vision of both sides of (70) by pk(λ) and transformation by

increasing function F follows

F

((

Vp(λ)
)

k

pk(λ)

)

= F

(

ρ(V)− t(n)k

(

p(λ)
)

λr̃k

)

≥ F
(

ρ(V)− ε),

λ(ε) > 0, ε > 0, k ∈ S(n), n /∈ I, n /∈M.
(71)

Summarizing (68), (69), and (71) we have

min
1≤k≤K

F
((

Vp
(

λ(ε)
))

k

/

pk
(

λ(ε)
)) ≥ F

(

ρ(V)− ε), ε > 0.

(72)

Hence, it must hold

lim
ε → 0

min
1≤k≤K

F
((

Vp
(

λ(ε)
))

k

/

pk
(

λ(ε)
)) ≥ F

(

ρ(V)
)

, (73)

which together with Corollary 2 implies

lim
ε → 0

min
1≤k≤K

F
((

Vp
(

λ(ε)
))

k

/

pk
(

λ(ε)
))

= sup
p∈P++

min
1 ≤ k ≤ K

F
(

(Vp)k
/

pk
) = F

(

ρ(V)
) (74)

since the supremumoverP++ equals the supremumoverRK
++

due to γk(p) = γk(cp), p ∈ RK
++, c > 0. This completes the

proof.

As a consequence of Corollary 3 and Lemma 5 we rec-
ognize the following necessary and sufficient condition for a
network to have Property i.

Proposition 9. Let {V(n)}n∈I and {V(m)}m∈M be the sets of
isolated and maximal diagonal blocks in the canonical form of
the interference matrix V, respectively. Then, the equality

sup
p∈P++

min
1 ≤ k ≤ K

F

(

(Vp)k
pk

)

=F
(

ρ(V)
)= inf

p∈P++

max
1≤k≤K

F

(

(Vp)k
pk

)

(75)

is satisfied for any increasing bijection F if and only if I ⊆M.

Thus, for a network with interference matrix V, the con-
dition that any isolated diagonal block in the canonical form
of V is maximal is a necessary and sufficient condition to
have Property i for the network. Automatically we have also
that the existence of an isolated diagonal block which is not
maximal in the canonical form of the interference matrix is
a necessary and sufficient condition for the corresponding
network to have Property ii. The complete interpretation of
Proposition 9 is as follows.

Observation 9. For a network with interference matrix V the
following are true.

(i) The value of a maximally degraded best link QoS per-
formance (max-min fairness performance) coincides with
the value of a maximally improved worst link QoS perfor-
mance (min-max fairness performance) exactly in the case
when the interferencematrixV(n) of any entirely coupled and
interference-isolated subnetwork n ∈ I satisfies ρ(V(n)) =
ρ(V).
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(ii) The value of a maximally degraded best link QoS per-
formance is greater than the value of a maximally improved
worst link QoS performance exactly in the case when there
exists some entirely coupled and interference-isolated sub-
network with interference matrix V(n) satisfying ρ(V(n)) <
ρ(V).

7.2. The case of common optimizers

The question of the network class with Property i′ remains to
be answered. It is precisely the question of description of the
subclass of networks with zero fairness gap, for which some
allocation achieves both min-max fairness in the sense of
(50) and max-min fairness in the sense of (51). The follow-
ing description of such class is possible with Proposition 1
and Lemma 5.

Proposition 10. Let {V(n)}n∈I and {V(m)}m∈M be the sets of
isolated and maximal diagonal blocks in the canonical form of
the interference matrix V, respectively.

(i) There exists some vector p̃ > 0 satisfying

p̃=arg inf
p∈P++

max
1≤k≤K

F

(

(Vp)k
pk

)

=arg sup
p∈P++

min
1 ≤ k ≤ K

F

(

(Vp)k
pk

)

(76)

if and only if I =M.
(ii)Moreover, p̃ satisfies (76) if and only if p̃ ∈R ∩P++.

Proof. We prove the statements (i) and (ii) jointly in the cir-
cular manner. For the proof of the if part of (i), assume that
some p̃ > 0 satisfying (76) exists. By (76) it is implied that
max1≤k≤K F((Vp̃)k/ p̃k) = min1≤k≤K F((Vp̃)k/ p̃k). Hence, by
(5) or (67) we have F((Vp̃)k/ p̃k) = F(ρ(V)), 1 ≤ k ≤ K , and
consequently p̃ ∈ R ∩ P++. By Proposition 9 and (76) we
already know that I ⊆ M. Hence, assume by contradiction
I ⊂ M, that is, there exists some nonisolated block V(n) of
V, such that ρ(V(n)) = ρ(V). With p̃ ∈ R ∩P++ from above
it follows for such block from the eigenvalue problem for the
normal form of V,

ρ(V)p̃(n) = V(n)p̃(n) +
n−1
∑

m=1
V(n,m)p̃(m), n ∈M, n /∈ I,

(77)

with p̃(n)k := p̃k, k ∈ S(n) (S(n) defined as in the proof
of Proposition 1). Due to n /∈ I at least one of the matri-
ces V(n,m), 1 ≤ m ≤ n − 1, is nonzero and nonnegative.
Hence with p̃ > 0 it follows from (77) that there exists some
k ∈ S(n) such that ρ(V)p̃(n)k > (V(n)p̃(n))k, which implies
further ρ(V(n)) < ρ(V). This is a contradiction and the if
part of (i) is proven. The next step to prove is that I = M
implies that there exists some p̃ ∈ R ∩ P++. But this fol-
lows from Proposition 5. The last step to show is the only if
part of (ii), that any p̃ ∈ R ∩ P++ satisfies (76). But with
p̃ ∈ R ∩ P++ we have (as before) max1≤k≤K F((Vp̃)k/ p̃k) =
min1≤k≤K F((Vp̃)k/ p̃k), which implies with (5) or (67) that
(76) holds for p̃ ∈ R ∩ P++. With this, the circle of three if
relations is completed and (i), (ii) are proven.

Hence, the class of networks for which min-max fairness
and max-min fairness can be concurrently achieved by some
allocation consists of networks for which the isolated diag-
onal blocks coincide with maximal diagonal blocks in the
canonical form of their interference matrices. Consequently,
whenever some maximal diagonal block in the canonical
form of the interference matrix is not isolated, then there ex-
ists no allocation which is both min-max fair and max-min
fair for the corresponding network. Similarly, the min-max
fair and max-min fair allocation does not exist in the case
when some isolated diagonal block is not maximal in the
canonical form of the corresponding interference matrix. In
both cases the networks satisfy Property i, but do not satisfy
Property i′. The above can be interpreted as follows.

Observation 10. For a network with interference matrix V
the following are true.

(i) An allocation which achieves both max-min fairness
and min-max fairness exists, when any entirely coupled sub-
network with interference matrix V(n) satisfies ρ(V(n)) =
ρ(V) exactly in the case when it is interference-isolated.

(ii) Whenever there exists some not interference-isolated
entirely coupled subnetwork with interference matrix V(n)

satisfying ρ(V(n)) = ρ(V), then an allocation achieving both
max-min fairness and min-max fairness does not exist.

(iii) Whenever there exists some interference-isolated en-
tirely coupled subnetwork with interference matrix V(n) sat-
isfying ρ(V(n)) < ρ(V), then an allocation achieving both
max-min fairness and min-max fairness does not exist.

Finally, notice the subtlety that there may exist some al-
location which maximally improves the worst link QoS per-
formance (in the sense of (50)) and at the same time maxi-
mally degrades the best link QoS performance (in the sense
of (51)) without being both min-max fair and max-min fair.
From the discussion in Section 3.1 we know that this is the
case when both (50) and (51) are solved by an allocation
with some zero components. Clearly, the class of networks
for which such allocation exists is included in the class with
Property i, but it includes the class with Property i′.

8. SUMMARY AND FINAL REMARKS

In this work we studied the interdependence between achiev-
ing min-max fairness and optimality of a weighted sum of
QoS values in a wireless cellular network with single-user re-
ceivers. We characterized the networks for which a min-max
fair allocation exists. We showed that the min-max fair allo-
cation optimizes the utility function when specifically con-
structed vectors of weights are chosen. We characterized the
class of networks, for which such weight vectors have all
weights positive. Next, we proved that a min-max fair and
utility-optimal allocation of powers and weights corresponds
to a saddle point of the utility, as a function of powers and
weights. Precisely, we showed that the min-max fair alloca-
tion optimizes the utility for a worst-case vector of weights,
and that under such weight vector the utility-optimum is
worse than under any other weight vector. The proven saddle
point property is a compact analytical interpretation of the
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trade-off between min-max fairness and utility optimality in
cellular networks. Finally, we showed that the approach of
ensuring min-max fairness, consisting in maximally improv-
ing the worst QoS, and the approach of ensuring max-min
fairness, consisting in maximally degrading the best QoS, are
in general not equivalent. We showed the existence of a gap
in performance under both approaches and the difference in
corresponding optimizers. We characterized network classes
for which both notions coincide in terms of the achieved per-
formance and for which an allocation achieving both goals
exists.

We believe that the assumption of the SIR model, which
gave rise to all the results in this work, is in numerous cases
justified or inevitable (as described in Section 2). For such
case a stringent analytic framework for the network opti-
mization approaches of interest is needed. This work was in-
tended to be a part of such framework. A continuation and
extension of this work can be found in [44, 45], where similar
issues are addressed in the case when the interference power
is not a linear function of the transmit power allocation.

It is unfortunately not completely clear which of the
proved interdependencies and features translate to the SINR-
based network optimization, that is, when some nonzero
background noise at each receiver is accounted for. It can be
intuitively expected that some of the features proved in this
work are qualitatively retained when the noise variance in the
SINRmodel is small compared with the interference power at
each receiver. Nevertheless, even if the theory of power con-
trol is relatively saturated, the joint framework of SINR-based
fairness and utility optimization which addresses such ques-
tions, and parallels this work, is still an attractive research
issue.

APPENDICES

A. CANONICAL FORMOF A NONNEGATIVEMATRIX

It is known that the spectrum and the eigenmanifolds are in-
variant with respect to the permutation of rows and columns
of the matrix (the permutation effect on eigenmanifolds is
merely the corresponding permutation of the dimensions)
[29]. By such permutation, any nonnegative matrix V can be
represented in the canonical form, referred also to as Frobe-
nius normal form. The canonical form can be written as

X =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

X(1) 0 · · · 0

X(2,1) X(2) . . .
...

...
... · · · 0

X(N ,1) X(N ,2) · · · X(N)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (A.1)

with the diagonal blocks X(n), 1 ≤ n ≤ N , as square irre-
ducible matrices. We have ρ(X) = max1≤m≤N ρ(X(m)), and
any diagonal block X(n) with ρ(X(n)) = ρ(X) is referred to as
maximal. Further we refer to a diagonal block X(n) as an iso-
lated one, if X(n,m) = 0, 1 ≤ m < n. If all nondiagonal blocks
in the normal form are identical to zero, thematrix is referred
to as block-irreducible. Clearly, irreducibility is a special case
of block-irreducibility with N = 1.

A.1. Interference interpretation of the canonical form

Interpret X as an interference matrix. Since the diagonal
blocksX(n), 1 ≤ n ≤ N , in the canonical form are irreducible,
they represent interference matrices of entirely interference-
coupled link subsets, which we interpret as subnetworks.
Clearly, N is then the maximal number of entirely coupled
subnetworks, into which the network can be partitioned. The
nondiagonal block V(n,m) contains interference factors ex-
pressing the interference from links in the nth subnetwork
perceived by the links in the mth subnetwork. The isolation
of the diagonal block V(m) means that the mth subnetwork
does not perceive interference from other subnetworks and
hence can be referred to as interference-isolated. Under block-
irreducibility ofV the network consists solely of interference-
isolated subnetworks.

B. SADDLE POINT DEFINITION AND CONDITIONS

The saddle point is defined as follows (see, e.g., [26]).

Definition B.1. A vector (x̃, ỹ) is called a saddle point of a
function φ : X × Y → Z ⊆ R, if and only if φ(x̃, y) ≤
φ(x̃, ỹ) ≤ φ(x, ỹ), x ∈X, y ∈ Y.

Instead of verifying the pair of inequalities in the defini-
tion, a saddle point can be identified by means of an equality,
called sometimes minmax-maxmin equality. Such equality is
a necessary and sufficient condition for the saddle point. See
[46] for further reading.

Proposition B.2. A vector (x̃, ỹ) is a saddle point of function
φ : X × Y → Z ⊆ R, if and only if infx∈X supy∈Yφ(x, y) =
supy∈Y infx∈X φ(x, y) and x̃ = argminx∈Xsupy∈Yφ(x, y),
and ỹ = argmaxy∈Y infx∈X φ(x, y).
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