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Abstract
This paper addresses the stability analysis problem for a class of discrete-time
switched nonlinear time-delay systems with polytopic uncertainties. These
considered systems are characterized by delayed difference nonlinear equations
which are given in the state form representation. Then, a transformation under the
arrow form is employed. Indeed, by constructing an appropriated common Lyapunov
function, and also by resorting to the Kotelyanski lemma and the M-matrix
proprieties, new delay-independent stability conditions under arbitrary switching law
are deduced. Compared with the existing results of switched systems, those obtained
results are formulated in terms of the unknown polytopic uncertain parameters,
explicit and easy to apply. Moreover, this method allows us to avoid the search for a
common Lyapunov function which is a difficult matter. Finally, a numerical example is
presented to illustrate the effectiveness of the proposed approach.
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1 Introduction
Switched systems are an important class of hybrid systems. Generally speaking, a switched
system is composed of a family of subsystems described by differential or difference
equations and a switching rule orchestrating the switching between the subsystems that
have attracted much attention in control theory and practice during recent decades.
Switched systems can be efficiently used to model many practical systems which are in-
herently multi-model in the sense that several dynamical systems are required to describe
their behavior. For example, many physical processes exhibit switched and hybrid nature.
Switched systems have strong engineering background in various areas and are often used
as a unified modeling tool for a great number of real-world systems, such as power elec-
tronics, chemical processes, mechanical systems, automotive industry, aircraft and air
traffic control and many other fields [–].
Undoubtedly, stability is the first requirement for a system to work properly; thus, sta-

bility analysis of switched systems presents a theoretical challenge, which has attracted
growing attention in the literature [–]. However, stability under arbitrary switching is
a fundamental issue and an important topic in the design and analysis of these systems.
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To solve this matter, many effective methods have been developed [, , , ]. Within
this framework, we are required to find conditions that guarantee asymptotic stability
under arbitrary switching rules. Indeed, it is well known that the existence of a common
Lyapunov function [–] for all subsystems is sufficient to guarantee the stability under ar-
bitrary switching law. However, finding such a function is often difficult even for discrete-
time switched linear systems []. Consequently, this problembecomesmore complicated
for discrete-time switched nonlinear systems, and relatively fewer results have been re-
ported in this context.
On the other hand, to avoid the problem of the existence of a common Lyapunov func-

tion, some attention has been widely given to seeking conditions that guarantee the sta-
bility of the switched systems under restricted switching. Although many efficient ap-
proaches and important results have been proposed for this alternative, such as the mul-
tiple Lyapunov function approach [] and average dwell time method [, ], stability
under arbitrary switching, which is considered in this work, remains most preferable for
practical systems. Indeed, it offers great flexibility and it allows us to achieve other perfor-
mances for designing a control law along stability maintained.
As is well known, time-delay phenomena are usually confronted in many engineer-

ing systems [, –, –, , ], such as chemical engineering systems, hydraulic
systems, inferred grinding model, neural network, nuclear reactor, population dynamic
model and rolling mill. Recently, stability analysis for discrete-time switched time-delay
systems has been investigated [, –, –].
It is noteworthy that there are two divisions in the recent literature addressing the stabil-

ity analysis of time-delay systems, namely delay-independent criteria and delay-dependent
criteria. Therefore, in view of delay-independent criteria, this paper will try to aid the sta-
bility analysis under arbitrary switching law.
On the other hand, when practical systems are modelled, uncertainties of system pa-

rameters are often included. Therefore, most of the systems refer to uncertainties in real
applications. Indeed, basically, two kinds of uncertainties are simultaneously encountered
in the open literature, widely polytopic uncertainties and norm-bounded. From the prac-
tical viewpoint, it is important to investigate switched systems with uncertain parameters
[, , , –, , ]. Thus, polytopic uncertainties exist in many real systems, and
most of the uncertain systems can be approximated by systems with polytopic uncertain-
ties []. On the other hand, the polytopic uncertain systems are less conservative than
systems with norm-bounded uncertainties [].
Up to now, discrete-time uncertain switched time-delay systems have receivedmore and

more attention. Althoughmany interested and significant results on stability problems for
those systems have been established [, , , –], those previousworksweremainly
focused on several hot topics of Lyapunov stability theory and most of them were inter-
ested in the linear case [, –, –]. Thus, due to the complexity of switched non-
linear systems, unfortunately, the available results on the stability of uncertain discrete-
time switched nonlinear time-delay systems are limited [].
Motivated by these mentioned shortcomings for the existing results as well as in the

sense of various methods that can be employed, in this paper we aim to establish new sta-
bility analysis for a class of discrete-time switched time-delay systems with polytopic un-
certainties. Indeed, based on transforming, the representation of these systems are studied
under consideration into the arrow formmatrix [–, –]. Then, by constructing an
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appropriated common Lyapunov function and by resorting to the Kotelyanski lemma []
and theM-matrix proprieties [, ], new delay-independent stability conditions under
arbitrary switching law are deduced.
Within the frame of studying the stability analysis, the said approach has already been

introduced in [, ] for continuous-time delay systems and in our previous work []
for discrete-time switched linear time-delay systems in a field related to the study of con-
vergence.
To the best of the authors’ knowledge, no results have been reported in the literature on

the stability of discrete-time switched time-delay systems with polytopic uncertainties by
employing the Kotelyanski stability conditions that can be very effective in dealing with a
class of more general nonlinear systems.
The contributions in ourworkmainly include two aspects. First, due to the conservatism

of the methods for stability analysis which are based on the common Lyapunov function,
this proposed method can guarantee stability under arbitrary switching and allows us to
avoid searching for a common Lyapunov function. Second, these obtained results are for-
mulated in terms of the unknown polytopic uncertain parameters, explicit and easy to
apply. Furthermore, this proposed approach could be further used as a constructive solu-
tion to the problems of state and static output feedback stabilization.
The layout of the paper is as follows. Section  presents the problem formulation and

some preliminaries. The main results of this paper are presented in Section . Section  is
devoted to deriving newdelay-independent conditions for asymptotic stability of switched
nonlinear systems defined by difference equations. Some remarks and a numerical exam-
ple are presented in Section  to illustrate the theoretical results. Finally, Section  con-
cludes this paper.

Notation Thenotation used throughout this paper is as follows. For amatrixA, we denote
the transpose by AT . Let � denote the field of real numbers, �n denote an n-dimensional
linear vector space over the reals with the norm ‖ · ‖. For any u = (ui)≤i≤n, v = (vi)≤i≤n ∈
�n, we define the scalar product of the vectors u and v as 〈u, v〉 = ∑n

i= uivi; �n×n is the
space of n × n matrices with real entries. �+ is a set of positive real numbers. I[k k]
is a set of integers {k,k + ,k + , . . . ,k} and In is an identity matrix with appropriate
dimension.

2 Problem formulation and preliminaries
2.1 Problem formulation
In this section, consider the discrete-time switched time-delay systems:

{
x(k + ) = Aσ (k)(·)x(k) +Dσ (k)(·)x(k – τ ),
x(s) = φ(s), s = –τ , –τ + , . . . , –,

(.)

where x(k) ∈ �n is the state vector of the system at time k, τ is the time-delay of state, φ(s)
is a vector-valued initial function, Aσ (k)(·) ∈ �n×n, Dσ (k)(·) ∈ �n×n and σ (k) is the switch-
ing rule defined by σ (k) : �+ → I[ N], assumed to be available in real time. Therefore,
the switched system is composed of N discrete-time subsystems which are expressed as
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follows:

x(k + ) = Ai(·)x(k) +Di(·)x(k – τ ), i ∈ I[ N], (.)

where Ai(·), i ∈ I[ N] and Di(·), i ∈ I[ N] are matrices that have nonlinear elements with
appropriate dimensions.
Let ξ (k) = [ξ(k), . . . , ξN (k)]T be an indication function such that

ξi(k) =

{
 if σ (k) = i;
 otherwise.

(.)

It is obvious that
∑N

i= ξi(k) = .
Assume that all subsystems are uncertain systems of polytopic type described as follows:

Ai(·) =
Nl∑
l=

μil(k)Ail(·), i ∈ I[ N], (.)

Di(·) =
Nq∑
q=

λiq(k)Diq(·), i ∈ I[ N], (.)

whereAil(·), l ∈ I[Nl] andDiq(·), q ∈ I[Nq] are respectively the vertexmatrices denoting
the extreme points of the polytopeAi(·), i ∈ I[N] andDi(·), i ∈ I[N],Nl is the number of
the vertex matrices Ai(·), Nq is the number of the vertex matrices Di(·) and the weighting
factors μil(k), l ∈ I[ Nl], λiq(k), q ∈ I[ Nq] are unknown polytopic uncertain parameters
for each i ∈ I[ N] belong to μi(k) :

∑Nl
l= μil(k) = , μil(k) ≥  and λiq(k) :

∑Nq
q= λiq(k) = ,

λiq(k)≥ .
Then the switched system (.) can be written as follows:

{
x(k + ) =

∑N
i= ξi(k)(

∑Nl
l= μil(k)Ail(·)x(k) +∑Nq

q= λiq(k)Diq(·)x(k – τ )),
x(s) = φ(s), s = –τ , –τ + , . . . , –, .

(.)

2.2 Preliminaries
Now, the following definition, theorem and lemma are preliminarily presented for further
development.
For system (.) or (.) we can give the following definition.

Definition  System (.) is said to be uniformly robust asymptotically stable if for any
ε > , there is δ(ε) >  such thatmax–d≤l≤ ‖φ(k)‖ < δ implies ‖x(k,φ)‖ ≤ ε, k ≥ . For arbi-
trary switching law σ (k) and all admissible uncertainties (.) and (.), there is also δ′ > 
such that max–d≤l≤ ‖φ(k)‖ < δ′ implies ‖x(k,φ)‖ →  as k → ∞ for arbitrary switching
signal (.).

The following lemma and theoremwill play an important role in our later development.

Kotelyanski lemma [] Real parts of the eigenvalues of thematrix A(·),with nonnegative
off-diagonal elements, are less than a real number μ if and only if all those of the matrix
M(·), where M(·) = μIn –A(·), are positive with In being the n identity matrix.
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In this case, all the principal minors of matrix (–A(·)) are positive. Then, the Kotelyanski
lemma permits to deduce the stability properties of the system given by A(·).

Theorem  The matrix A(·) is said to be an M-matrix if the following properties are veri-
fied:
• All the eigenvalues of A(·) have a positive real part;
• The real eigenvalues are positive;
• The principal minors of A(·) are positive:

(
A(·))

(
  · · · j
  · · · j

)
> , ∀j ∈ I[ n]; (.)

• For any positive real numbers η = (η, . . . ,ηn)T , the algebraic equations A(·)x = η have a
positive solution w = (w, . . . ,wn)T .

Remark  A discrete-time system given by a matrix A(·) is stable if the matrix (In –A(·))
verifies the Kotelyanski conditions, in this case (In –A(·)) is anM-matrix.

3 Main results
This section will present the main results on the robust stability conditions for the
discrete-time nonlinear switched time-delay system with polytopic uncertainties (.).
Such sufficient conditions, which are the main theoretical contribution of the paper, are

stated in the theorem below.

Theorem  System (.) is robust asymptotically stable under arbitrary switching rule
(.) and all admissible uncertainties (.) and (.) if the matrix (In – Tc(·)) is an M-
matrix with

Tc(·) = max
≤i≤N

(
Tσ (k)(·)

)
(.)

and

Tσ (k)(·) =
(∣∣Aσ (k)(·)

∣∣ + ∣∣Dσ (k)(·)
∣∣), (.)

where

Aσ (k)(·) =

⎡
⎢⎢⎢⎢⎢⎣

∑N
i= ξi(k)

∑Nl
l= μil(k)(ail (·)) . . . . . .

∑N
i= ξi(k)

∑Nl
l= μil(k)(anil (·))

...
...

...
...

...
...

...
...∑N

i= ξi(k)
∑Nl

l= μil(k)(anil (·)) . . . . . .
∑N

i= ξi(k)
∑Nl

l= μil(k)(annil (·))

⎤
⎥⎥⎥⎥⎥⎦
(.)
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and

Dσ (k)(·) =

⎡
⎢⎢⎢⎢⎢⎣

∑N
i= ξi(k)

∑Nq
q= λiq(k)(d

iq (·)) . . . . . .
∑N

i= ξi(k)
∑Nq

q= λiq(k)(dn
iq (·))

...
...

...
...

...
...

...
...∑N

i= ξi(k)
∑Nq

q= λiq(k)(dn
iq (·)) . . . . . .

∑N
i= ξi(k)

∑Nq
q= λiq(k)(dnn

iq (·))

⎤
⎥⎥⎥⎥⎥⎦ .

(.)

Proof Let us consider system (.) of any switching law (.) and all admissible uncertain-
ties (.) and (.), let w ∈ �n with components (wp > , ∀p = , . . . ,n) and x(k) ∈ �n be the
state vector.
Now, define the function below as a common Lyapunov functional

v
(
x(k),k

)
= v

(
x(k),k

)
+

r∑
j=

vj
(
x(k),k

)
, (.)

where{
v(k) = 〈|x(k)|,w〉,
vj(k) = 〈|Dc(·)||x(k – j)|,w〉, ∀j = , . . . , r

(.)

with

Dc(·) = max
≤i≤N

(
Dσ (k)(·)

)
. (.)

Thus, the difference of the Lyapunov functional has the following form:


v
(
x(k),k

)
= v

(
x(k + ),k + 

)
– v

(
x(k),k

)
=
v

(
x(k),k

)
+

r∑
j=


vj
(
x(k),k

)
. (.)

The above equality can be rewritten as


v
(
x(k),k

)
+

r∑
j=


vj
(
x(k),k

)

=
v
(
x(k),k

)
+
v

(
x(k),k

)
+
v

(
x(k),k

)
+ · · · +
vr–

(
x(k),k

)
+
vr

(
x(k),k

)
, (.)

where


v
(
x(k),k

)
=

〈∣∣x(k + )
∣∣,w〉

–
〈∣∣x(k)∣∣,w〉

(.)

and


vj
(
x(k),k

)
=

〈∣∣Dc(·)
∣∣∣∣x(k – j + )

∣∣,w〉
–

〈∣∣Dc(·)
∣∣∣∣x(k – j)

∣∣,w〉
, j = , . . . , r. (.)

http://www.advancesindifferenceequations.com/content/2014/1/233
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Using (.) we can obtain

〈∣∣x(k + )
∣∣,w〉

=
〈∣∣Aσ (k)(·)x(k) +Dσ (k)(·)x(k – r)

∣∣,w〉
<

〈∣∣Aσ (k)(·)
∣∣∣∣x(k)∣∣ + ∣∣Dσ (k)(·)

∣∣∣∣x(k – r)
∣∣,w〉

=
〈∣∣Aσ (k)(·)

∣∣∣∣x(k)∣∣,w〉
+

〈∣∣Dσ (k)(·)
∣∣∣∣x(k – r)

∣∣,w〉
<

〈∣∣Ac(·)
∣∣∣∣x(k)∣∣,w〉

+
〈∣∣Dc(·)

∣∣∣∣x(k – r)
∣∣,w〉

(.)

with

Ac(·) = max
≤i≤N

(
Aσ (k)(·)

)
. (.)

By (.) and (.) we have that


v
(
x(k),k

)
=
v

(
x(k),k

)
+

r∑
j=


vj
(
x(k),k

)

=
〈∣∣x(k + )

∣∣,w〉
–

〈∣∣x(k)∣∣,w〉
+

(〈∣∣Dc(·)
∣∣∣∣x(k)∣∣,w〉

–
〈∣∣Dc(·)

∣∣∣∣x(k – )
∣∣,w〉)

+
(〈∣∣Dc(·)

∣∣∣∣x(k – )
∣∣,w〉

–
〈∣∣Dc(·)

∣∣∣∣x(k – )
∣∣,w〉)

+ · · ·
+

(〈∣∣Dc(·)
∣∣∣∣x(k – r + )

∣∣,w〉
–

〈∣∣Dc(·)
∣∣∣∣x(k – r)

∣∣,w〉)
=

〈∣∣x(k + )
∣∣,w〉

–
〈∣∣x(k)∣∣,w〉

+
(〈∣∣Dc(·)

∣∣∣∣x(k)∣∣,w〉
–

〈∣∣Dc(·)
∣∣∣∣x(k – r)

∣∣,w〉)
. (.)

Thus, by (.) we can obtain the following inequality:


v
(
x(k),k

)
<

〈∣∣Ac(·)
∣∣∣∣x(k)∣∣,w〉

+
〈∣∣Dc(·)

∣∣∣∣x(k – r)
∣∣,w〉

–
〈∣∣x(k)∣∣,w〉

+
(〈∣∣Dc(·)

∣∣∣∣x(k)∣∣,w〉
–

〈∣∣Dc(·)
∣∣∣∣x(k – r)

∣∣,w〉)
. (.)

By some simple derivations, we have


v(k) <
〈∣∣Ac(·)

∣∣∣∣x(k)∣∣,w〉
–

〈∣∣x(k)∣∣,w〉
+

〈∣∣Dc(·)
∣∣∣∣x(k)∣∣,w〉

=
〈(∣∣Ac(·)

∣∣ + ∣∣Dc(·)
∣∣ – In

)∣∣x(k)∣∣,w〉
=

〈(
Tc(·) – In

)∣∣x(k)∣∣,w〉
, (.)

where the matrix Tc(·) is defined in (.).
On the other hand, we assume that (In – Tc(·)) is an M-matrix, and according to the

M-matrix proprieties, we can find a vector ρ ∈ �∗n
+ (ρp ∈ �∗

+, p = , . . . ,n) satisfying the
relation (In – Tc(·))Tw = ρ , ∀w ∈ �∗n

+ . Then we can write

〈(
In – Tc(·)

)∣∣x(k)∣∣,w〉
=

〈(
In – Tc(·)

)Tw, ∣∣x(k)∣∣〉 = 〈
ρ,

∣∣x(k)∣∣〉. (.)

This implies

〈(
Tc(·) – In

)∣∣x(k)∣∣,w〉
=

〈
–ρ,

∣∣x(k)∣∣〉. (.)

http://www.advancesindifferenceequations.com/content/2014/1/233
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From the above derivations, we can obtain the following result:


v(k)≤ 〈(
Tc(·) – In

)∣∣x(k)∣∣,w〉 ≤ –
n∑
p=

ρp
∣∣xp(k)∣∣ < . (.)

Therefore, switched system (.) is robust asymptotically stable under switching law (.)
and all admissible uncertainties (.) and (.). This completes the proof. �

4 Application to discrete-time uncertain switched nonlinear time-delay
systems defined by difference equations

In this section, to demonstrate the potential and validity of our developed results, we will
presented an application for discrete-time uncertain switched nonlinear time-delay sys-
tems governed by the following switched nonlinear difference equation []:

y(k + n) +
N∑
i=

ξi(k)

( Nl∑
l=

μil(k)
n–∑
p=

an–pil (·)y(k + p)

+
Nq∑
q=

λiq(k)
n–∑
p=

dn–p
iq (·)y(k + p – τ )

)
= , (.)

where ξi(k), i ∈ I[ N] are the components of the switching function given in (.), μil(k),
l ∈ I[ Nl] and λiq(k), q ∈ I[ Nq] are unknown polytopic uncertain parameters given in
(.) and (.) for each i ∈ I[ N].
Therefore, the presence of time-delay terms, the nonlinearities of coefficients, and un-

known polytopic uncertain parameters makes the stability analysis for system (.) very
difficult.
To solve this problem, the following change of variable will be adopted:

xp+(k) = y(k + p), p = , . . . ,n – . (.)

Substituting relation (.) in equation (.), we obtain

xp(k + ) = xp+(k), p = , . . . ,n – , (.)

xn(k + ) =
N∑
i=

ξi(k)

(
–

Nl∑
l=

μil(k)
n–∑
p=

an–pil (·)xp+(k)

–
Nq∑
q=

λiq(k)
n–∑
p=

dn–p
il (·)xp+(k – τ )

)
, (.)

or under matrix representation, we have

{
x(k + ) =

∑N
i= ξi(k)(

∑Nl
l= μil(k)Ail(·)x(k) +∑Nq

q= λiq(k)Diq(·)x(k – τ )),
x(s) = φ(s), s = –τ , . . . , –, ,

(.)

where x(k) is the state vector of components xp(k), p = , . . . ,n. ξi(k), i ∈ I[N] are the com-
ponents of the switching function given in (.), μil(k), l ∈ I[ Nl] and λiq(k), q ∈ I[ Nq]
are unknown polytopic uncertain parameters given in (.) and (.) for each i ∈ I[ N].

http://www.advancesindifferenceequations.com/content/2014/1/233
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From (.) and (.), it is clear that the vertex matrices Ail(·), l ∈ I[ Nl] and Diq(·), q ∈
I[ Nq] for each i ∈ I[ N] are defined as follows:

Ail(·) =

⎡
⎢⎢⎢⎢⎢⎣

  · · · 

 
. . .

...
...

...
. . . 

–anil(·) –an–il (·) · · · –ail(·)

⎤
⎥⎥⎥⎥⎥⎦ , (.)

Diq(·) =

⎡
⎢⎢⎢⎢⎢⎣

  · · · 

 
. . .

...
...

...
. . . 

–dn
iq(·) –dn–

iq (·) · · · –d
iq(·)

⎤
⎥⎥⎥⎥⎥⎦ , (.)

where ajil(·) is a coefficient of the instantaneous characteristic polynomial Pil(λ), i ∈ I[N]
and l ∈ I[ Nl] of the vertex matrix Ail(·) which is given by

Pil(λ) = λn +
n–∑
p=

an–pil (·)λp (.)

and dj
iq(·) is a coefficient of the instantaneous characteristic polynomial Qiq(λ), i ∈ I[ N]

and q ∈ I[ Nq] of the vertex matrix Diq(·) which is defined as follows:

Qiq(λ) =
n–∑
p=

dn–p
iq (·)λp. (.)

To simplify the application to the Kotelyanski lemma, we consider a coordinate transfor-
mation into the arrow matrix form.
Therefore, to accomplish this aim, the following new state vector [] will be considered:

z(k) = Px(k) (.)

with

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

  . . .  
α α . . . αn– 

(α) (α) . . . (αn–)
...

...
... . . .

... 
(α)n– (α)n– . . . (αn–)n– 

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (.)

where αj (j = , . . . ,n – ), αj �= αq, ∀j �= q, are free real parameters that can be chosen arbi-
trarily.
Now, substituting (.) and (.) into (.) yields the following representation:

{
z(k + ) =

∑N
i= ξi(k)(

∑Nl
l= μil(k)Eil(·)z(k) +∑Nq

q= λiq(k)Fiq(·)z(k – τ )),
z(s) = Pφ(s), s = –τ , . . . , –, ,

(.)
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where P is the corresponding passage matrix, Eil(·), l ∈ I[ Nl] and Fiq(·), q ∈ I[ Nq] for
each i ∈ I[ N] are vertex matrices in the arrow form given as follows:

Eil(·) = P–Ail(·)P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α  · · ·  β


. . . . . .

...
...

...
. . . . . . 

...
 · · ·  αn– βn–

γ 
il (·) · · · · · · γ n–

il (·) γ n
il (·)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (.)

Fiq(·) = P–Diq(·)P =

[
n–,n– n–,

δiq(·) · · · δn–iq (·) δniq(·)

]
. (.)

Then, let us introduce the elements of the vertex matrices Eil(·) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

βj =
n–∏
q=
q �=j

(αj – αq)–, ∀j = , . . . ,n – ,

γ
j
il(·) = –Pil(αj), ∀j = , . . . ,n – ,

γ n
il (·) = –ail(·) –

∑n–
j= αj

(.)

and the elements of the vertex matrices Fiq(·) are
{

δ
j
iq(·) = –Qiq(αj), ∀j = , . . . ,n – ,

δniq(·) = –d
iq(·).

(.)

Due to the previous relations, thematrix Ti(·) for each i ∈ I[N] will be defined as follows:

Ti(·) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

|α|  · · ·  |β|


. . . . . .
...

...
...

. . . . . . 
...

 · · ·  |αn–| |βn–|
ti (·) · · · · · · tn–i (·) tni (·)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(.)

with

{
tji(·) = |∑Nl

l= μil(k)γ
j
il(·)| + |∑Nq

q= λiq(k)δ
j
iq(·)|, j = , . . . ,n – ,

tni (·) = |∑Nl
l= μil(k)γ n

il (·)| + |∑Nq
q= λiq(k)δniq(·)|.

(.)

Then, the matrix Tσ (k)(·) is given as follows:

Tσ (k)(·) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

|α|  · · ·  |β|


. . . . . .
...

...
...

. . . . . . 
...

 · · ·  |αn–| |βn–|∑N
i= ξi(k)ti (·) · · · · · · ∑N

i= ξi(k)tn–i (·) ∑N
i= ξi(k)tni (·)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (.)

http://www.advancesindifferenceequations.com/content/2014/1/233


Kermani and Sakly Advances in Difference Equations 2014, 2014:233 Page 11 of 22
http://www.advancesindifferenceequations.com/content/2014/1/233

Now, after the above formulation, based on the Kotelyanski lemma, we are in a position
to give sufficient stability conditions for system (.) that are presented in the following
theorem.

Theorem  System (.) is globally robust asymptotically stable, for any arbitrary switch-
ing signal (.) and all admissible uncertainties (.) and (.), if there exist αj (j =
, , . . . ,n – ), αj �= αq, ∀j �= q, such that

(i)  – |αj| > , j = , . . .n – , (.)

(ii)  –
(
t̄n(·)) – n–∑

j=

(
t̄j(·))|βj|

(
 – |αj|

)– >  (.)

with
{
t̄n(·) =max≤i≤N (tni (·)),
t̄j(·) =max≤i≤N (t

j
i(·)), j = , . . . ,n – .

(.)

Proof For an arbitrary choice |αj| < , j = , . . . ,n – , αj �= αq, ∀j �= q, we obtain the matrix
Tc(·) as follows:

Tc(·) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

|α|  · · ·  |β|


. . . . . .
...

...
...

. . . . . . 
...

 · · ·  |αn–| |βn–|
t̄(·) · · · · · · t̄n–(·) t̄n(·)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (.)

where the elements t̄j(·) are defined in (.).
From (.), it is clear that all the elements of Tc(·) are positive. Therefore, the applica-

tion of the Kotelyanski lemma to the matrix (In –Tc(·)) enables us to conclude the stability
of system (.).
Due to (.), the following sufficient robust asymptotic stability conditions are obtained:

(
In – Tc(·)

)(
  · · · j
  · · · j

)
>  (j = , , . . . ,n). (.)

It is clear that for j = , . . . ,n – , condition (.) is verified as follows:  < |αj| < .
Therefore, the last condition j = n yields

det
(
In – Tc(·)

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

 – |α|  · · ·  –|β|


. . . . . .
...

...
...

. . . . . . 
...

 · · ·   – |αn–| –|βn–|
–t̄(·) · · · · · · –t̄n–(·)  – t̄n(·)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (.)

It follows that  – (t̄n(·)) –∑n–
j= (t̄j(·))|βj|( – |αj|)– > .
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This ends the proof of Theorem . �

To simplify the use of the stability conditions, Theorem  can be reduced to the corollary
below.

Corollary  If system (.) is robust asymptotically stable, for any arbitrary switching sig-
nal (.) and all admissible uncertainties (.) and (.), the following conditions are satis-
fied ∀αj ∈ ] [ (j = , . . . ,n–), αj �= αq, ∀j �= q, for each i ∈ I[N], l ∈ I[Nl] and q ∈ I[Nq]:

(i) βj

( Nl∑
l=

μil(k)Pil(·,αj) +
Nq∑
q=

λiq(k)Qiq(·,αj)

)
< , (.)

(ii)

( Nl∑
l=

μil(k)Pil(·,λ = ) +
Nq∑
q=

λiq(k)Qiq(·,λ = )

)
> , (.)

(iii)

( Nl∑
l=

μil(k)γ n
il (·) +

Nq∑
q=

λiq(k)δniq(·)
)
> . (.)

Proof ([]) Due to (.), we can formulate the following inequality easily:

max
≤i≤N

(∣∣∣∣∣
Nl∑
l=

μil(k)γ n
il (·) +

Nq∑
q=

λiq(k)δniq(·)
∣∣∣∣∣
)

+
n–∑
j=

(
max
≤i≤N

(∣∣∣∣∣
Nl∑
l=

μil(k)γ
j
il(·) +

Nq∑
q=

λiq(k)δ
j
iq(·)

∣∣∣∣∣
))

|βj|
(
 – |αj|

)– < . (.)

This implies

 – max
≤i≤N

(∣∣∣∣∣
Nl∑
l=

μil(k)γ n
il (·) +

Nq∑
q=

λiq(k)δniq(·)
∣∣∣∣∣
)

–
n–∑
j=

(
max
≤i≤N

(∣∣∣∣∣
Nl∑
l=

μil(k)γ
j
il(·) +

Nq∑
q=

λiq(k)δ
j
iq(·)

∣∣∣∣∣
))

|βj|
(
 – |αj|

)– > . (.)

Then we can easily deduce that the relation below is more restrictive than relation (.)
for each i ∈ I[ N]:

 –

(∣∣∣∣∣
Nl∑
l=

μil(k)γ n
il (·) +

Nq∑
q=

λiq(k)δniq(·)
∣∣∣∣∣
)

–
n–∑
j=

(∣∣∣∣∣
Nl∑
l=

μil(k)γ
j
il(·) +

Nq∑
q=

λiq(k)δ
j
iq(·)

∣∣∣∣∣
)

|βj|
(
 – |αj|

)– > . (.)

Now, by considering relations (.) and (.) in Corollary  and substituting (.),
(.) into (.), we obtain (.).
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Then, to accomplish this aim, relation (.) becomes

 –

(( Nl∑
l=

μil(k)γ n
il (·) +

Nq∑
q=

λiq(k)δniq(·)
))

–
n–∑
j=

(( Nl∑
l=

μil(k)γ
j
il(·) +

Nq∑
q=

λiq(k)δ
j
iq(·)

))
βj

(
 – |αj|

)– > . (.)

It follows that

 +

( Nl∑
l=

μil(k)ail(·) +
Nq∑
q=

λiq(k)(·)d
iq(·)

)

+
n–∑
j=

αj +
n–∑
j=

(


( – αj)

( (λ – αj)(
∑Nl

l= μil(k)Pil +
∑Nq

q= λiq(k)(·)Qiq)
H(λ)

))
λ=αj

> 

(.)

with

H(λ) =
n–∏
j=

(λ – αj). (.)

To complete this proof, let us first simply see that

(
∑Nl

l= μil(k)Pil(·,λ) +∑Nq
q= λiq(k)(·)Qiq(·,λ))

H(λ)

= λ +

( Nl∑
l=

μil(k)ail(·) +
Nq∑
q=

λiq(k)(·)d
iq(·)

)

+
n–∑
j=

αj +
n–∑
j=

( (λ – αj)(
∑Nl

l= μil(k)Pil(·,λ) +∑Nq
q= λiq(k)(·)Qiq(·,λ))

( – αj)H(λ)

)
λ=αj

. (.)

From (.), (.) and (.), we can deduce that

(∑Nl
l= μil(k)Pil(·,λ) +∑Nq

q= λiq(k)(·)Qiq(·,λ)
H(λ)

)
λ=

> . (.)

By a simple verification, we can get

H(λ = ) =
n–∏
j=

( – αj) > , ∀αj ∈ ] [. (.)

And finally, substituting (.) into the foregoing (.), gives

( Nl∑
l=

μil(k)Pil(·,λ = ) +
Nq∑
q=

λiq(k)Qiq(·,λ = )

)
> ,

which indicates that condition (.) is satisfied.
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Robust asymptotical stability of system (.) under any arbitrary switching law (.) and
all admissible uncertainties (.) and (.) follows. This completes the proof. �

5 An illustrative example
In this section, as an application of our results, let us consider system (.) with two sub-
systems described by the following switched difference equation:

y(k + ) =
∑
i=

ξi(k)

( ∑
l=

μil(k)
∑

p=

a–pil (·)y(k + p)

+
∑

q=

λiq(k)
∑

p=

d–p
iq (·)y(k + p – τ )

)
= ,

where τ is the time-delay, ail(·) and diq(·) are nonlinear coefficients, μil(k) and λiq(k) are
unknown polytopic uncertain parameters for each i ∈ I[ ], l ∈ I[ ] and q ∈ I[ ]. ξi(k)
is the arbitrary switching rule given in (.).
By (.), (.) and (.) this system will be given in the state form defined as follows:

{
x(k + ) =

∑
i= ξi(k)(

∑
l= μil(k)Ail(·)x(k) +∑

q= λiq(k)Diq(·)x(k – τ )),
x(s) = φ(s), s = –τ , . . . , –, ,

where the vertex matrices and the parameters are listed below:

A(·) =
[

 
–. + .f (·)  – .f (·)

]
,

A(·) =
[

 
–. + .f (·) . – .f (·)

]
,

A(·) =
[

 
–. + .f (·)  – .f (·)

]
,

A(·) =
[

 
–. + .f (·) . – .f (·)

]
,

D(·) =
[

 
–. + .�(·) . – .�(·)

]
,

D(·) =
[

 
–. + .�(·) . – .�(·)

]
,

D(·) =
[

 
–. + .�(·) . – .�(·)

]
,

and

D(·) =
[

 
–. + .�(·) . – .�(·)

]
,

where f (·) and �(·) are general nonlinear functions.
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Let us introduce unknown uncertainty parameters satisfying the following conditions:
μ(·) = λ(·) = ρ(·), μ(·) = λ(·) =  – ρ(·), μ(·) = λ(·) = ρ(·) and μ(·) = λ(·) =  –
ρ(·) with ρ(·) being a general nonlinearity such that  ≤ ρ(·)≤ .
Now, due to (.), (.), (.), (.), (.), (.) and (.), the vertex matrices in

arrow form are the following:

E(·) =
[

α 
γ 
(·) γ 

(·)

]
, E(·) =

[
α 

γ 
(·) γ 

(·)

]
, E(·) =

[
α 

γ 
(·) γ 

(·)

]
,

E(·) =
[

α 
γ 
(·) γ 

(·)

]
, F(·) =

[
 

δ(·) δ(·)

]
, F(·) =

[
 

δ(·) δ(·)

]
,

F(·) =
[

 
δ(·) δ(·)

]
and F(·) =

[
 

δ(·) δ(·)

]

with the following parameters:

{
γ 
(·) = –P(α) = –[α + (– + .f (·))α + . – .f (·)],

γ 
(·) = –(– + .f (·) + α),{

γ 
(·) = –P(α) = –[α + (–. + .f (·))α + . – .f (·)],

γ 
(·) = –(–. + .f (·) + α),{

γ 
(·) = –P(α) = –[α + (– + .f (·))α + . – .f (·)],

γ 
(·) = –(– + .f (·) + α),{

γ 
(·) = –P(α) = –[α + (–. + .f (·))α + . – .f (·)],

γ 
(·) = –(–. + .f (·) + α),{

δ(·) = –Q(α) = –[(–. + .�(·))α + . – .�(·)],
δ(·) = –(–. + .�(·)),{
δ(·) = –Q(α) = –[(–. + .�(·))α + . – .�(·)],
δ(·) = –(–. + .�(·)),{
δ(·) = –Q(α) = –[(–. + .�(·))α + . – .�(·)],
δ(·) = –(–. + .�(·)),

and
{

δ(·) = –Q(α) = –[(–. + .�(·))α – . + .�(·)],
δ(·) = –(–. + .�(·)).

Then, by applying Corollary , with α = . and β = , we deduce the following stability
conditions:

(i)  < α < ,
(ii) ρ(·)(P(α) +Q(α)) + ( – ρ(·))(P(α) +Q(α)) < ,
(iii) ρ(·)(P(α) +Q(α)) + ( – ρ(·))(P(α) +Q(α)) < ,
(iv) ρ(·)(P() +Q()) + ( – ρ(·))(P() +Q()) > ,
(v) ρ(·)(P() +Q()) + ( – ρ(·))(P() +Q()) > ,
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Figure 1 Robust stability domain obtained from Corollary 1: ρ(·) = 0.

Figure 2 Robust stability domain obtained from Corollary 1: ρ(·) = 0.5.

(vi) ρ(·)(γ 
(·) + δ) + ( – ρ(·))(γ 

(·) + δ) > ,
(vii) ρ(·)(γ 

(·) + δ) + ( – ρ(·))(γ 
(·) + δ) > .

Thus, by (ii), (iii), (iv), (v), (vi) and (vii) we obtain:
(i) (α – .α + . + f (·)(.α – .) +�(·)(.α – .)) + (ρ(·))(–.α – . +

f (·)(.α – .) +�(·)(–.α – .)) < ,
(ii) (α – .α + . + f (·)(.α – .) +�(·)(.α – .)) + (ρ(·))(.α – . +

f (·)(–.α – .) +�(·)(.α – .)) < ,
(iii) (–.f (·) + .�(·) + .) + (ρ(·))(.f (·) – .�(·) – .) > ,
(iv) (.f (·) + .�(·) – .) + (ρ(·))(–.f (·) + .�(·) – .) > ,
(v) (–.f (·) – .�(·) + . – α) + (ρ(·))(–.f (·) + .�(·) – .) > ,
(vi) (–.f (·) – .�(·) + . – α) + (ρ(·))(.f (·) – .�(·) – .) > .
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Figure 3 Robust stability domain obtained from Corollary 1: ρ(·) = 1.

Figure 4 The state’s norm of the switched system in the example with t1 = k1Te = 0.4s.

Due to those inequalities, the robust stability domains given by the nonlinear f (·) relative
to the nonlinear �(·) for different values chosen of the nonlinear incertitude parameter
ρ(·) = , . and  are illustrated in Figure , Figure  and Figure , respectively.
Based on these typical results plotted in Figures -, we can see that the stability domains

are closely related to the values taken by the uncertainty parameters.
Now, according to the previous robust stability domains, for particular values chosen of

the uncertain parameter ρ(·) = ., the nonlinearities f (·) = . and �(·) = .. The sim-
ulation results are obtained with sampling period Te = .s. We suppose that the vector-
valued initial function φ(s) = [ ]T for all s = –, . According to the switched law (), the
final time tf = kTe = s and the switched time t = kTe = .s, a typical result is plotted
in Figure , Figure  and Figure  which show the norm of the state, the system state and
the state space converge to zero.

http://www.advancesindifferenceequations.com/content/2014/1/233


Kermani and Sakly Advances in Difference Equations 2014, 2014:233 Page 18 of 22
http://www.advancesindifferenceequations.com/content/2014/1/233

Figure 5 The state response of the switched system in the example with t1 = k1Te = 0.4s.

Figure 6 The state of the switched system in the example with t1 = k1Te = 0.4s.

It can be seen from Figures - that the system is stable, which demonstrates the effec-
tiveness of the proposed method.
Next, we study the case that we have the same values chosen of the uncertain parameter

ρ(·) = ., the nonlinearities f (·) = . and�(·) = ., and the sampling time Te = .s. The
switched time t = kTe = s, and we suppose that the initial state vector is φ(s) = [ ]T

for all s = –,–,–,–,–, . The norm of the state, evolution of the states and the state
space are shown in Figure , Figure  and Figure , respectively.
Therefore, Figures - allow to conclude that the switched system converges to zero.
This example was used to illustrate the effectiveness of our developed approach with

different values of delay and different switched time. Besides, this example shows that the
obtained stability conditions are sufficient and very close to be necessary.
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Figure 7 The state’s norm of the switched system in the example with t1 = k1Te = 5s.

Figure 8 The state response of the switched system in the example with t1 = k1Te = 5s.

It is should be noted that this proposed approach is less conservative that searching for a
common Lyapunov function. In fact, in [] the authors introduced a simple linear exam-
ple without time-delay for which a common Lyapunov function does not exist. Therefore,
we cannot guarantee stability under arbitrary switching.

6 Conclusions
This paper has investigated new robust delay-independent stability conditions for a class
of discrete-time switched nonlinear time-delay systems with polytopic uncertainties.
These stability conditions were deduced with the help of the construction of an appro-
priated common Lyapunov function, and also by the resort to the Kotelyanski lemma and
theM-matrix proprieties.

http://www.advancesindifferenceequations.com/content/2014/1/233


Kermani and Sakly Advances in Difference Equations 2014, 2014:233 Page 20 of 22
http://www.advancesindifferenceequations.com/content/2014/1/233

Figure 9 The state of the switched system in the example with t1 = k1Te = 5s.

Compared with the existing results of switched systems, these obtained results are for-
mulated in terms of the uncertain parameters, explicit and easy to apply. Moreover, this
method allows us to avoid searching for a common Lyapunov function. A numerical ex-
ample is given to show the effectiveness of our proposed approach.
This proposed approach could be further used as a constructive solution to the problems

of state and static output feedback stabilization.
The limits of this paper are that it has been confined to the boundaries of numerical

examples. It would be beneficial to extend the research further so as to include real sys-
tems and to conduct a comparative study with an example for which a common Lyapunov
function exists.
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