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Abstract
In the note, we study the normality of families of meromorphic functions. We
consider whether a family of meromorphic functions F is normal in D if, for a normal
family G and for each function f ∈F , there exists g ∈ G such that f nf ′ = ai implies
gng′ = ai for two distinct nonzero points ai , i = 1, 2 and an integer n. An example
shows that the condition in our results is best possible.
MSC: Primary 30D45; secondary 30D35

Keywords: holomorphic function; normal family; meromorphic function; shared
value

1 Introduction andmain results
Let f (z) and g(z) be two nonconstantmeromorphic functions in a domainD⊆ C, and let a
be a finite complex value. We say that f and g share a CM (or IM) in D provided that f – a
and g – a have the same zeros counting (or ignoring) multiplicity in D. If g = a whenever
f = a, we denote it by f = a �⇒ g = a. When a =∞, the zeros of f – ameans the poles of f
(see []). It is assumed that the reader is familiar with the standard notations and the basic
results of Nevanlinna’s value-distribution theory (see [–] or []).
Bloch’s principle [] states that every condition which reduces a meromorphic function

in the plane C to be a constant forces a family of meromorphic functions in a domain D
to be normal. Although the principle is false in general (see []), many authors proved
normality criterion for families of meromorphic functions corresponding to a Liouville-
Picard type theorem (see []).
It is also more interesting to find normality criteria from the point of view of shared val-

ues. In this area, Schwick [] first proved an interesting result which states that a family of
meromorphic functions in a domain is normal if every function shares three distinct finite
complex numbers with its first derivative therein. Later, more results about normality cri-
teria concerning shared values have emerged; for instance, see [–]. In recent years, this
subject has attracted the attention of many researchers worldwide. Studying normal fam-
ilies of functions is of considerable interest. For example, they are used in operator theory
on spaces of analytic functions (see, for example, [], [, Lemma .], [, Lemma .]).
We now first introduce a normality criterion related to a Hayman normal conjecture

[].

Theorem . LetF be a family of meromorphic functions on D and n ∈N. If each function
f (z) of family F satisfies f n(z)f ′(z) �= , then F is normal in D.
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The proof of Theorem . is due to Gu [] for n≥ , Pang [] for n = , Chen and Fang
[] for n = . In , by the ideas of shared values, Fang and Zalcman [] obtained the
following.

Theorem . Let F be a family of meromorphic functions on D and n ∈ N. If for each pair
of functions f and g inF , f and g share the value  and f nf ′ and gng ′ share a nonzero value
a in D, then F is normal in D.

In , Zhang [] obtained some criteria for normality ofF in terms of the multiplic-
ities of the zeros and poles of the functions in F and used them to improve Theorem .
as follows.

Theorem . Let F be a family of meromorphic functions in D satisfying that all of zeros
and poles of f ∈ F have multiplicities at least . If for each pair of functions f and g in F ,
f ′ and g ′ share a nonzero value a in D, then F is normal in D.

Theorem . Let F be a family of meromorphic functions on D and n ∈ N. If n ≥  and
for each pair of functions f and g in F , f nf ′ and gng ′ share a nonzero value a in D, then F
is normal in D.

Zhang [] gave the following example to show that Theorem . is not true when n = ,
and therefore the condition n≥  is best possible.

Example . The family of holomorphic functions F = {fj(z) =
√
j(z + 

j ) : j = , , . . .} is
not normal in D = {z : |z| < }. This is deduced by f #j () =

j
√

j
j+ → ∞ as j → ∞ and Marty’s

criterion [], although for any fj(z) ∈ F , fjf ′
j = jz + . So, for each pair m, j, fmf ′

m and fjf ′
j

share the value .
Here f #(ξ ) denotes the spherical derivative

f #(ξ ) =
|f ′(ξ )|

 + |f (ξ )| .

Recently, Yuan et al. [] improved Theorem . and used it to consider Theorem .
when n = . They proved the following theorems.

Theorem . Let F be a family of meromorphic functions on D such that all of zeroes of
each f ∈ F have multiplicities at least  and all of poles of f ∈ F are multiple. If for each
pair of functions f and g in F , f ′ and g ′ share a nonzero value a in D, then F is normal
in D.

Theorem . Let F be a family of meromorphic functions on D such that all of zeroes
of each f ∈ F are multiple. If for each pair of functions f and g in F , ff ′ and gg ′ share a
nonzero value a in D, then F is normal in D.

Remark . Example . shows that the condition that all of zeros of f ∈ F are multiple
in Theorem . is best possible.
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In this paper, we will consider the related problems concerning two families. Our main
results are as follows.

Theorem . Let F and G be two families of meromorphic functions in D ⊆ C, k be a
positive integer and ai (i = , ) be two distinct nonzero constants. Suppose that for each
function f ∈F , all its zeros are of multiplicity at least k +  and all its poles are multiple.
IfG is normal and for each function f ∈F , there exists g ∈ G such that f (k) = ai �⇒ g(k) = ai

for i = , , then F is normal in D.

Theorem . Let F and G be two families of meromorphic functions on D and ai (i = , )
be two distinct nonzero constants. If all of zeroes of f ∈ F have multiplicities at least , G
is normal and for each function f ∈ F , there exists g ∈ G such that f ′ = ai �⇒ g ′ = ai for
i = , , then F is normal in D.

Example . The family of meromorphic functions F = {fj(z) = 
jz : j = , , . . .} is not nor-

mal in D = {z : |z| < }. This is deduced by f #j () = j → ∞ as j → ∞ and Marty’s crite-
rion []. The family of holomorphic functions G = {gj(z) : j = , , . . .} is normal in D, where

gj(z) =
zk+

(k + )(k) · · · (k + )
+

(
 –

(–)kk!
j

)
zk

k!
+ .

However, for any fj(z) ∈ F and gj(z) ∈ G , fj(z) �=  and gj(z) �=  and f (k)j (z) =  if and only if
g(k)j (z) =  in D.

Noting that normality of families ofF andF∗ = { f |f ∈F} is the same by famousMarty’s
criterion, we obtain the following criteria.

Theorem . LetF and G be two families of meromorphic functions on D and ai (i = , )
be two distinct nonzero constants. Suppose that n (n �= , – and –) is an integer number. If
G is normal and for each function f ∈F , there exists g ∈ G such that f nf ′ = ai �⇒ gng ′ = ai
for i = , , then F is normal in D.

Theorem . LetF and G be two families of meromorphic functions on D and ai (i = , )
be two distinct nonzero constants. If all of poles of f ∈F have multiplicities at least , G is
normal and for each function f ∈ F , there exists g ∈ G such that f –f ′ = ai �⇒ g–g ′ = ai
for i = , , then F is normal in D.

Remark . Example . shows that the condition in Theorem . and Theorem . that
for each f ∈ F , there exists g ∈ G such that f (k) = ai �⇒ g(k) = ai for ai �= , i = , , is best
possible.

2 Preliminary lemmas
In order to prove our result, we need the following lemmas. The first one is an extension
of a result by Zalcman in [] concerning normal families.

Lemma . [] Let F be a family of meromorphic functions on the unit disc such that all
zeros of functions inF have multiplicity greater than p and all poles of functions inF have
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multiplicity greater than q. Let α be a real number satisfying –q < α < p. Then F is not
normal at  if and only if there exist
(a) a number  < r < ;
(b) points zn with |zn| < r;
(c) functions fn ∈F ;
(d) positive numbers ρn → 

such that gn(ζ ) := ρ–αfn(zn + ρnζ ) converges spherically uniformly on each compact subset
of C to a non-constant meromorphic function g(ζ ), its all zeros are of multiplicity greater
than p and its all poles are of multiplicity greater than q and its order is at most .

Remark . IfF is a family of holomorphic functions on the unit disc in Lemma ., then
g(ζ ) is a nonconstant entire function whose order is at most .
The order of g is defined by using the Nevanlinna’s characteristic function T(r, g):

ρ(g) = lim
r→∞ sup

logT(r, g)
log r

.

Lemma . ([] or []) Let f (z) be a meromorphic function of finite order in the plane,
k be a positive integer and a ∈ C\{}. Suppose that all its zeros are of multiplicity at least
k +  and all its poles are multiple. If f (k)(z) �= a, then f (z) is constant.

Lemma . [] Let f be a meromorphic function of finite order in the plane and a ∈
C\{}. If all its zeros are of multiplicity at least  and f ′(z) �= a, then f (z) is a constant.

3 Proofs of the results

Proof of Theorem . Suppose that F is not normal in D. Then there exists at least one
point z such that F is not normal at the point z. Without loss of generality, we assume
that z = . By Lemma ., there exist points zj → , positive numbers ρj →  and func-
tions fj ∈F such that

Fj(ξ ) = ρ–k
j fj(zj + ρjξ ) ⇒ F(ξ ), (.)

locally uniformly with respect to the spherical metric, where F is a non-constant mero-
morphic function in C satisfying all of whose zeros are of multiplicity at least k +  and all
of whose poles are multiple. Moreover, the order of F is less than two.
From (.) we know

F (k)
j (ξ ) = f (k)j (zj + ρjξ ) ⇒ F (k)(ξ ) (.)

also locally uniformly with respect to the spherical metric.
Combining with Lemma ., we know that F (k)(ξ ) takes two distinct nonzero finite val-

ues {a,a}. Set ξ and ξ ∗
 to be two zeros of F (k) –a and F (k) –a, respectively. Obviously,

ξ �= ξ ∗
 , and then choose δ (> ) small enough such that D(ξ, δ) ∩ D(ξ ∗

 , δ) = φ, where
D(ξ, δ) = {ξ : |ξ – ξ| < δ} and D(ξ ∗

 , δ) = {ξ : |ξ – ξ ∗
 | < δ}. From (.), by Hurwitz’s theo-

rem, there exist points ξj ∈D(ξ, δ), ξ ∗
j ∈D(ξ ∗

 , δ) such that for sufficiently large j,

f (k)j (zj + ρjξj) – a = , f (k)j
(
zj + ρjξ

∗
j
)
– a = . (.)
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It follows from (.) and the hypothesis of Theorem . that

g(k)j (zj + ρjξj) = a, g(k)j
(
zj + ρjξ

∗
j
)
= a. (.)

Since G is normal, without loss of generality, we assume that

gj(z) → g(z), (.)

locally uniformly with respect to the spherical metric.
By (.), (.) and taking j → ∞, we have

 < |a – a| =
∣∣g(k)j (zj + ρjξj) – g(k)j

(
zj + ρjξ

∗
j
)∣∣ → ∣∣g(k)() – g(k)()

∣∣.
It is a contradiction.
The proof of Theorem . is complete. �

Proof of Theorem . By Lemma ., similar to the proof of Theorem ., we can give the
proof of Theorem .. We omit the details.
The proof of Theorem . is complete. �

Proof of Theorem . and Theorem . Set F∗ = { f n+n+ |f ∈F}, G∗ = { gn+n+ |g ∈ G}.
Noting that for each function f ∗ ∈ F∗, all of whose zeros and poles are multiple if n /∈

{–,–, }, and all of whose zeros have multiplicities at least  if n = –. For each f ∗ ∈F∗,
there exists g in G such that (f ∗)′ = ai �⇒ (g∗)′ = ai for i = ,  in D, we know that F∗ is
normal in D by Theorem . and Theorem .. Therefore, F is normal in D.
The proof of Theorem . and Theorem . is complete. �
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