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Surfactant protein D, Club cell protein 16,
Pulmonary and activation-regulated chemokine,
C-reactive protein, and Fibrinogen biomarker
variation in chronic obstructive lung disease
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Abstract

Chronic obstructive pulmonary disease (COPD) is a multifaceted condition that cannot be fully described by the
severity of airway obstruction. The limitations of spirometry and clinical history have prompted researchers to
investigate a multitude of surrogate biomarkers of disease for the assessment of patients, prediction of risk, and
guidance of treatment. The aim of this review is to provide a comprehensive summary of observations for a selection
of recently investigated pulmonary inflammatory biomarkers (Surfactant protein D (SP-D), Club cell protein 16 (CC-16),
and Pulmonary and activation-regulated chemokine (PARC/CCL-18)) and systemic inflammatory biomarkers (C-reactive
protein (CRP) and fibrinogen) with COPD. The relevance of these biomarkers for COPD is discussed in terms of
their biological plausibility, their independent association to disease and hard clinical outcomes, their modification by
interventions, and whether changes in clinical outcomes are reflected by changes in the biomarker.
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Introduction
Chronic obstructive pulmonary disease (COPD) is a com-
mon disease worldwide [1] and is forecasted to be the 3rd
leading cause of death globally in 2030 [2]. There is an un-
met need for easily obtained biomarkers that can identify
subtypes of COPD, predict outcomes of COPD, and that
can evaluate and facilitate targeting in management of
COPD. To aid in the evaluation and development of
biomarkers for COPD, Sin & Vestbo have formulated 5
criteria as an extension from the criteria for a biomarker
proposed by Bucher et al. [3]. These criteria are: bio-
logical plausibility, independent association to disease,
hard clinical outcomes, modification by interventions,
and whether changes in clinical outcomes are reflected
by changes in the biomarker [4]. The aim of this review
is to summarize observations for a selection of investi-
gated biomarkers for COPD, with guidance from these
criteria. The selected biomarkers are recently validated
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with regards to sensitivity, accuracy, precision and re-
producibility [5]. Surfactant protein D (SP-D), club cell
protein 16 (CC-16, previously named Clara cell pro-
tein), and pulmonary and activation-regulated chemo-
kine (PARC/CCL-18) are categorized as pulmonary
inflammatory markers, while C-reactive protein (CRP)
and fibrinogen are systemic inflammatory markers.

SP-D
SP-D is a member of the collectin family [6] and is pri-
marily produced in type II pneumocytes [7-9].

Biological plausibility
SP-D plays an essential role in pulmonary innate im-
mune defense [10] and SP-D deficient mice exhibit ab-
normal accumulation of apoptotic macrophages. These
animals also exhibit increased cytokine activation ac-
companied by lymphocyte infiltration and emphysema
development [11-15], suggesting a protective role for
SP-D in the pathogenesis of COPD. Several single nu-
cleotide polymorphisms (SNPs) in the SP-D gene
(Sftpd) have shown to associate with serum SP-D levels.
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In a twin-study, the coding SNP rs721917 was associ-
ated with lower SP-D levels in serum [16]. This finding
was replicated in a cohort consisting of 1,719 COPD
subjects in the “Evaluation of COPD Longitudinally to
Identify Predictive Surrogate Endpoints” Study (ECLIPSE),
where 28 SNPs were shown to influence serum SP-D.
However, the strongest effect occurred with a promotor
SNP (rs1885551), where the minor allele associated with
lower serum SP-D [17]. In addition, three Sftpd SNPs (in-
cluding rs721917) have been associated with forced ex-
piratory volume (FEV1)% predicted [17], and five SNPs in
Sftpd have been associated with an increased risk of
COPD development in a Genome Wide Association study
(GWAS) [18]. Lastly, a Japanese study reported one Sftpd
SNP in association with emphysema [19].

Independent association to disease
SP-D has been measured in bronchoalveolar lavage
fluid (BALF) and in blood. Among smokers, most stud-
ies have reported reduced levels of SP-D in BALF
[20-23] and increased circulating levels [16,22,24,25].
Some studies have noted significant decreases in SP-D
in BALF from COPD patients compared with current
smokers [22] while others have not [20,21]. SP-D exists
in different molecular forms (full-length, nitrosylated
and cleaved). Yet, attempts to construct assays for the
breakdown products of SP-D have not provided add-
itional information regarding COPD [26].
Factors associated with increasing circulating SP-D in

healthy subjects include age, BMI and male gender
[16,27,28]. Circulating SP-D has been correlated with a
variety of pulmonary pathologies [29], and a small com-
parative study showed that serum SP-D levels could not
distinguish COPD from the other pulmonary patholo-
gies [30].
A recent population-based study demonstrated a cor-

relation between serum SP-D and reduced pulmonary
function in tobacco smokers [31], suggesting that serum
SP-D may serve as a marker for subclinical cigarette
smoke induced lung damage. In concordance with this,
in a relatively small COPD study, an inverse correlation
between serum SP-D and FEV1/forced vital capacity
(FVC) ratio was found in smokers [22]. This result was
however not replicated in the ECLIPSE multi-center co-
hort study [25,32], nor in a Swedish twin study [33],
both of which contained non-smoker control subjects in
addition to smoker control subjects.
In the ECLIPSE cohort, higher serum SP-D levels were

reported among COPD patients relative to current and
former smokers. COPD subjects who had serum SP-D
concentrations in the upper 5th percentile of non-
smokers had (i) increased risk of exacerbations over the
following 12 months [25], and (ii) increased serum SP-D
concentrations during exacerbation of COPD compared
with stable COPD [34,35]. Data from the ECLIPSE co-
hort have further demonstrated that baseline serum SP-
D levels were associated with a decline in lung density
as measured by low-dosage high-resolution computed
tomography [36].

Hard clinical outcomes
Further reports from the ECLIPSE cohort found that
baseline serum SP-D levels were associated with 3-year
all-cause mortality [37].

Modification by interventions and correlations between
changes in clinical outcomes and biomarker changes
Three cohort studies have showed that treatment with
oral corticosteroids resulted in suppressed serum SP-D
levels [25,38,39], whereof one showed that serum SP-D
correlated with symptom relief and change in FEV1%
predicted [38].

In summary, results from GWAS and animal studies
suggest a strong link between SP-D levels and COPD.
Smoking highly influences systemic SP-D levels and may
be an explanation of the inconclusive findings of associ-
ation between severity of COPD and systemic SP-D
levels. SP-D has so far not proven to be a reliable prog-
nostic tool in advanced COPD; however, stratification
for tobacco smoking is warranted in such analyses and
has been lacking. Although large studies have found as-
sociations between SP-D levels and early loss of pulmon-
ary function as well as mortality and decline in lung
density in COPD, these findings need to be further vali-
dated and the data representing intervention effects on
SP-D are sparse.

CC-16
CC-16 is predominantly secreted from non-ciliated club
cells [22] and is localized to both terminal bronchial
epithelia [40] and respiratory bronchiolar epithelia [41,42].
An identical protein, human urinary protein 1 (P1), is se-
creted in the urogenital tract [43]. Systemic levels of
CC-16 correlate well with BALF levels, and appear to
be unaffected by the release of P1 from the urogenital
tract in healthy subjects [44,45]. Circulating CC-16 levels
reflect different chronic pulmonary pathologies, with
circulating CC-16 levels being positively associated with
severity in sarcoidosis and asbestos-exposed workers
[45-49]. However, circulating levels are negatively asso-
ciated with the severity of asthma [50], cystic fibrosis
(CF) [51] and lung cancer [45].

Biological plausibility
CC-16-deficient mice challenged with hyperoxia showed
augmented pulmonary inflammation [52], and in vitro
studies have indicated that CC-16 inhibits phospholipase
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A2 activity [53] suggesting an anti-inflammatory role of
CC-16.
Candidate gene studies have reported an association

between a SNP in the SCGB1A1 gene (Chromosome
11, A38G). Carriers exhibited reduced CC-16 plasma
levels and an increased risk of asthma in a child cohort
with European ancestry [54]; this association between
asthma and SNP A38G was further replicated in adults
[55]. However, in a Chinese population, no association
between this SNP and COPD was found [56]. In a
GWAS where serum CC-16 levels were measured in
1951 COPD subjects, associations between 11 SNPs on
chromosome 11 (one of which was located in the
SCGB1A1 gene) and serum CC-16 were found. These 11
SNPs were further evaluated in an additional 2,939 COPD
cases and 1,380 smoking controls, and one SNP, located
near the AHNAK gene, was associated with both COPD
risk and frequency of exacerbation during a 2-year
follow-up. However, in the same study, this finding
could not be replicated in two additional control/COPD
populations [18].

Independent association to disease
Confounding factors that increase systemic levels of CC-
16 in healthy subjects include age [57,58], BMI (though
with conflicting findings) [33,59], and a decline in glom-
erular filtration rate [60].
Several studies have shown that circulating levels of

CC-16 are lower in healthy smokers relative to non-
smokers, while other studies, examining the amount of
smoking, have been inconclusive [50,61-63].
In the ECLIPSE study, CC-16 levels were reduced in

former and current smokers with COPD relative to
current smoking controls [63]. This finding was consistent
with findings from previous smaller studies [33,45,64].
When stratifying COPD patients into GOLD groups and
by current smoking, lower serum CC-16 levels were seen
in current smoking COPD patients relative to former
smokers in GOLD2 and GOLD3 but not in GOLD4. In
former-smoking COPD patients, a significant inverse cor-
relation was observed between CC-16 and COPD severity.
Additionally, CC-16 could distinguish between patients
with or without reversibility in former smoking COPD
patients [63]. The evaluation of FEV1 decline over time
in the ECLIPSE cohort showed a weak positive associ-
ation between serum CC-16 and annual rate of decline
in FEV1 [2]. This was recently validated in a cohort
consisting of 4,724 COPD subjects, where reduced
levels of CC-16 were associated with accelerated de-
cline in FEV1 over 9 years [65].
Repeated measurements of CC-16 in a sub-population

from the ECLIPSE cohort found that serum CC-16 is a
stable marker over time [66]. In a study including 357
twins with respiratory symptoms, a positive association
with FEV1 and an inverse association with residual vol-
ume/total lung capacity were found. However, analysis
of a sub-cohort of 100 COPD patients within this twin
population found no significant association to these mea-
sures [33].

Hard clinical outcomes
Serum CC-16 did not associate independently with mor-
tality in the ECLIPSE cohort [37].

Modification by interventions and correlations between
changes in clinical outcomes and biomarker changes
A pilot randomized clinical trial (RCT) with 16 cachectic
COPD patients and 25 controls treated with TNF-α anti-
body reported a rise in plasma CC-16 in COPD patients
after 8 weeks of treatment; treatment effects on other
end-points were not considered in this study [67]. In an
RCT with approximately 100 subjects in three treat-
ment arms (a p38 mitogen-activated protein kinase
(p38 MAPK) inhibitor, salmeterol/fluticasone propion-
ate and placebo), a reduction in CC-16 levels was seen
in the salmeterol/fluticasone group after 2 weeks treat-
ment [68].

In summary, results from animal studies suggest a
causal role of CC-16 in COPD. However, the lack of a
strong association between genotype variations, circulat-
ing CC-16 levels and risk of COPD indicates that CC-16
associates with pulmonary inflammation in general ra-
ther than with COPD pathogenesis explicitly. Further-
more, the inconsistent association to severity in COPD,
the lack of association to mortality, the confounding ef-
fects in basal variation and the close association between
CC-16 and asthma, all make the use of CC-16 as a bio-
marker in COPD problematic. However, additional stud-
ies validating the association between CC-16 and FEV1

decline are warranted.

PARC/CCL-18
PARC/CCL-18 is a chemokine highly expressed in the
lungs [69] with a chemotactic effect on primarily lym-
phocytes [70]. PARC/CCL-18 is synthesized mainly in
dendritic and monocytic cells [71], but has also been
shown to stimulate fibrinogenic activity and collagen
production in lung fibroblasts [72,73]. Due to its pre-
dominant production in the lungs, PARC/CCL-18 has
been evaluated in multiple pulmonary pathologies. In
pulmonary fibrosis, an up-regulation in lung tissue [74]
and an association to mortality has been reported [75].

Biological plausibility
No studies have directly addressed a mechanistic role
for PARC/CCL-18 in COPD.
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Independent association to disease
LPS-inhalation challenge in smokers increased levels of
PARC/CCL-18 in serum after 24 h [76]. Few studies have
evaluated PARC/CCL-18 as a biomarker for COPD. One
small study has shown an association between PARC/
CCL-18 and FEV1, Body Mass Index, Obstruction,
Dyspnea score and Exercise capacity (BODE) index, and
exacerbation rate [77]; another study reported elevated
PARC/CCL-18 during COPD exacerbation [78]. The lar-
gest study to date of PARC/CCL-18 in COPD, included
different COPD populations: 4,800 subjects from lung
health study (LHS) with mild or moderate COPD, 1,800
COPD subjects from the ECLIPSE study representing
all GOLD stages, 312 smoking and 226 non-smoking
controls, and 89 COPD subjects from a prednisolone
intervention study [79]. The results were somewhat
contradictory. In LHS, higher PARC/CCL-18 levels as-
sociated with lower baseline FEV1 and increasing car-
diovascular mortality. In the ECLIPSE subjects, PARC/
CCL-18 levels were higher in COPD subjects than in
controls, but the association with FEV1 could not be
replicated.

Hard clinical outcomes
PARC/CCL-18 was associated with all-cause mortality in
the ECLIPSE cohort [79].

Modification by interventions and correlations between
changes in clinical outcomes and biomarker changes
Two weeks treatment with prednisolone was associated
with a significant reduction in PARC/CCL-18 levels com-
pared to placebo in the ECLIPSE cohort [79].

In summary, although some evidence of association
between PARC/CCL-18 and severity and mortality in
COPD exists, additional validation and data regarding
intervention effects on PARC/CCL-18 are warranted.

CRP
CRP is an acute phase protein, mainly induced by inter-
leukin 6 (IL-6) and is a component of the innate im-
mune response [80]. Increased systemic levels of CRP
are seen in a variety of inflammatory conditions, particu-
larly in infections.

Biological plausibility
The direct link between systemic inflammation and the
development and progression of COPD is debated;
however, the effect of CRP on activation of the com-
plement system [80] can serve as a factor in maintain-
ing an inflammatory state in stable COPD and thereby
contribute to the negative systemic effects associated
with COPD.
Although CRP levels are genetically determined [81],
SNPs or haplotypes known to effect CRP levels have not
been associated COPD risk [18,81-83].

Independent association to disease
In large population based case–control studies [84], as
in large COPD cohorts [84-86] levels of CRP are demon-
strably higher in stable COPD patients than in controls
after adjusting for the confounding factors: sex, age, to-
bacco consumption and ischemic heart disease. Reported
associations between CRP and airflow limitation have
been inconsistent, with reports of weak to moderate un-
adjusted correlations between FEV1 and CRP [87-90].
Analysis of CRP association with COPD severity, after
adjustment for age, gender, pack-year history, presence
of cardiovascular risk factors or disease and treatment
with inhaled corticosteroids, showed an inverse associ-
ation with 6-minute walking distance (6MWD) [88,91],
diffusing capacity (adjusted for age, gender, height,
smoking and BMI) [33], and hypoxemia (adjusted for
sex, age, body composition and smoking) [87]. However,
in one additional study (n = 222) no association with
6MWD or BODE index was found [92].
A link between systemic inflammation and comorbid-

ity in COPD has been suggested, and elevated CRP
levels in COPD patients with cardiovascular disease
(CVD) [93,94], type II diabetes [94], and lung cancer
[94] have been reported. CRP furthermore associated
with cardiovascular and cancer mortality [95]. In a re-
cent study, higher levels of CRP were found in a “meta-
bolic” comorbidity cluster with the characteristics of
obesity, hyperglycemia, dyslipidemia, hypertension, and
atherosclerosis when compared with the cluster of CVD
without the metabolic features [96], indicating that the
link between COPD, systemic inflammation and CVD
could be metabolic impairment. CRP levels are higher
during exacerbations than during stable COPD (AUC:
0.73) [78] and can be used to distinguish between ex-
acerbation with or without bacterial infection (AUC: 0.8)
[97,98]. In addition, CRP levels were higher in patients
with frequent exacerbations compared to stable state pa-
tients [85], although CRP levels were not predictive of
an exacerbation [99].
CRP has been shown to exhibit high variability over

time. For example, in 201 COPD patients with CRP
measured at baseline and 3 months later, only 21% had
values within 25% of each other [66].

Hard clinical outcomes
CRP levels have been shown to predict all-cause mor-
tality in a group with mild to moderate disease in a
population-based cohort (n = 5000) [95], but not in a
smaller (n = 218) cohort with moderate to severe
COPD [90]. In the ECLIPSE cohort, higher CRP
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associated with all-cause mortality but did not alone
contribute to better prediction of mortality than a
multivariate model [88]. Another large COPD popula-
tion study found that CRP levels predicted mortality
and hospitalization [84].

Modification by interventions and correlations between
changes in clinical outcomes and biomarker changes
In a RCT with 41 COPD subjects, randomized to oral
prednisolone, inhaled glucocorticoid or placebo, there
was a significant fall in oral prednisolone and inhaled
glucocorticoid compared to placebo [100].

In summary, evidence that CRP plays a causal role
in COPD is controversial. There have been conflicting
reports regarding the value of CRP to predict mortality
and hospitalizations. Although associations with COPD
have been reported, CRP may not be a suitable biomarker
in COPD, due to its low specificity and high variability.

Fibrinogen
Fibrinogen is primarily synthesized in the liver [101], is
involved in clotting formation [102] and systemic levels
are elevated in an IL-6-stimulated acute phase response
[103,104].

Biological plausibility
The genes coding for three peptide chains in fibrinogen
are located on chromosome 4 [105]. Circulating fibrino-
gen levels are genetically determined [106] and SNPs
have been associated with risk of cardiovascular disease
[106]. A candidate gene study with selected SNPs in the
FBG gene encoding fibrinogen did not find an associ-
ation with circulating fibrinogen levels [107]. A direct
role in COPD is not found.

Independent association to disease
After adjusting for cardiovascular risk factors, several
large population based cohorts have found an associ-
ation between smoking and elevated systemic fibrinogen
levels in healthy subjects [108-110]. A meta-analysis from
“Fibrinogen Studies Collaboration” consisting of 154,211
apparently healthy subjects from 31 cohorts reported a
positive association between fibrinogen and age, female
gender, and alcohol abstinence [111].
Fibrinogen is shown to associate with the risk of

COPD [112-114]. Higher fibrinogen levels were associ-
ated with the rate of decline in FEV1/FVC in a popula-
tion of elderly subjects [115], and in cohorts with stable
COPD patients, fibrinogen was shown to associate with
FEV1 [2], dyspnea, exercise capacity [87] and the com-
posite BODE index [116]. However, a study of 102
COPD patients did not report a significant association
of fibrinogen with FEV1, but with diffusing capacity of
the lung for carbon monoxide (DLCO) [117]. There
have further been conflicting reports about the association
between fibrinogen and decline in FEV1. In a COPD
cohort, comprising 148 patients [118] an association
between increasing fibrinogen levels and decline in
FEV1 was found. However, this was not replicated in a
small Japanese study (n = 73) [119], nor in the ECLIPSE
investigation [2].
Fibrinogen has moreover been evaluated as a tool for

distinguishing subgroups of COPD. In a small study of
male COPD patients, a group with emphysematous
lesions involving more than 15% of the lung paren-
chyma (n = 24) had higher fibrinogen levels than controls
(n = 25) [120]. Elevated levels of fibrinogen in stable COPD
patients have been shown to be predictive of risk of exacer-
bation [99,121,122], and elevated fibrinogen levels have
been reported during an exacerbation [121]. Lastly, there
has been a trend towards higher fibrinogen levels in
patients suffering from exacerbations with accompanying
purulent sputum [121], or virus infection [123].
Increased circulating fibrinogen levels have been sug-

gested as a risk factor for cardiovascular disease and
associated mortality [124]. In the meta-analysis from
“Fibrinogen Studies Collaboration”, a moderately strong
association between fibrinogen and risk of coronary heart
disease was reported [111]. However, a recent study from
same group reported that cardiovascular event risk predic-
tion when adding fibrinogen to a model with established
risk factors gave little improvement [125]. In a Danish
cohort of 8,656 COPD patients, fibrinogen alone was not
a strong predictor for ischemic heart disease or myocardial
infarction; however, together with CRP and leukocyte
count, and hazard ratios for ischemic heart disease, myo-
cardial infarction and heart failure were approximately
two-fold higher in the group with high levels of the
biomarkers compared to those with low-levels [94]. On
the other hand, a small study of 60 COPD patients along
with 20 smoking and 20 non-smoking controls showed
no independent association between fibrinogen and
flow-mediated vasodilatation (an independent predictor
of cardiovascular morbidity and mortality) [38].

Hard clinical outcomes
Fibrinogen has been shown to associate with both the
risk of COPD and of hospitalizations in a Swedish
population cohort (n = 5,247) [112], in a Danish popu-
lation cohort (n = 8,955), which also showed an inverse
association to decline in FEV1 [113], and in a US
population cohort (n = 20,192), that also found associ-
ations with GOLD group and mortality [114]. Fibrino-
gen has further been shown to predict all-cause
mortality in COPD [37,126], although in a later inves-
tigation, when comparing c-statistics, fibrinogen alone
did not contribute to a better prediction of mortality
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than a basic model (including age, BODE index and
hospitalizations).
Modification by interventions and correlations between
changes in clinical outcomes and biomarker changes
In a small study of patients with exacerbation (n = 30), fi-
brinogen was suppressed by systemic corticosteroid treat-
ment [127]. However, in a study of stable COPD, plasma
fibrinogen was not affected by oral prednisolone [25]. In an
RCT with approximately 100 subjects in three treatment
arms (p38 mitogen-activated protein kinase (p38-MAPK)
inhibitor, salmeterol/fluticasone propionate and placebo),
treatment with a p38-MAPK inhibitor resulted in an 11%
reduction in plasma fibrinogen levels [68].

In summary, there has been no emerging evidence of
direct causality between circulating fibrinogen levels and
COPD. Fibrinogen levels have nevertheless been shown to
be independently associated with COPD, prediction of all-
cause mortality, and risk of exacerbation. In addition, fi-
brinogen levels are modifiable by treatment interventions.
As a systemic inflammatory marker with less variability
over time than CRP, fibrinogen is an interesting candidate
biomarker with putative value in distinguishing subtypes
Table 1 Summary of evidence of reviewed biomarkers in rela

SP-D CC-16

Is there a strong biological
plausibility in terms of its role
in pathogenesis of disease?

Evidence from
animal studies and
gene-association
studies [10-19]

Suggested from
vitro, animal stud
gene-association
[18,52,53]

Is there a strong, consistent and
independent association between
the biomarker and COPD?

Level IIb[16,20-35] Level IIb [33,45,6

Is there a strong, independent
association between the
biomarker and hard clinical
outcomes such as mortality and
hospitalisations?

Level IIa [36,37] No evidence [37

Is there evidence from
randomised controlled trials that
the biomarker is modifiable by
interventions?

Evidence from 3
cohort studies of
prednisolone
treatment [25,38,39]

Evidence from o
of TNF-R antibod
treatment [67] an
RCT in salmetero
fluticasone propi
arm [68]

Is there evidence from
randomised controlled trials that
changes in the biomarker status
results in changes in an
important (and accepted) clinical
outcome (e.g. mortality,
exacerbations, rate of decline in
FEV1 and health status)?

N.A. N.A.

Ia - Evidence from Meta-analysis of Randomized Controlled Trial, Ib - Evidence from
designed controlled trial which is not randomized, IIb - Evidence from at least one
comparative studies, IV - Evidence from a panel of experts. SP-D: Surfactant protein
activation-regulated chemokine 18, CRP: C-reactive protein. N.A.: no available studie
and comorbidity clusters in COPD and is currently being
taken forward by the collaborative COPD Biomarker
Qualification Consortium [128]. However, further investi-
gations of fibrinogen in the assessment of treatment re-
sponse are still needed.

Summary and conclusion
A summary of conclusions is provided in Table 1.

Biological plausibility
Findings from animal studies and gene-association stud-
ies point at a plausible role of the pulmonary proteins
SP-D and CC-16 in COPD.

Independent association to disease and hard clinical
outcomes
There is evidence that SP-D, CC-16 and PARC/CCL-18
reflect disease severity. Findings indicate association
between pulmonary inflammatory proteins and risk of
exacerbations, hospitalizations and death. However, re-
sults do not show the same consistency as with sys-
temic inflammatory proteins. Fibrinogen appears to be
a more specific biomarker for COPD than CRP, and is
demonstrated to predict exacerbation risk and all-cause
tion to questions raised by Sin & Vestbo [4]

PARC/
CCL-18

CRP Fibrinogen

in
y and
studies

N.A. Experimental data
suggest role in
systemic effects and
comorbidity [81]

Experimental data
suggest role in
systemic effects and
comorbidity [108,109]

3-66] Level III
[77-79]

Conflicting results
from large
population studies
[78,85-99]

Level IIb
[32,87,112-122,125]

] Level IIb [79] Level IIa; on all cause
mortality [84,86,99]

Level IIa
[37,112-114,126]

ne RCT
y
d one
l/
onate-

Evidence
from one
RCT with
prednisolone
treatment
[79]

Evidence from one
RCT with inhaled
glucocorticoid,
prednisolone or
placebo [100]

Evidence from one
RCT with p38 MAPK
inhibitor[68,127]

N.A. N.A. N.A.

at least one Randomized Controlled Trial, IIa - Evidence from at least one well
well designed experimental trial, III - Evidence from case, correlation, and
D, CC-16: club cell protein 16, PARC/CCL-18: pulmonary and
s.
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mortality. However, systemic inflammatory proteins are
influenced by additional pathologies such as heart dis-
ease and metabolic disturbances, which are both com-
mon comorbidities in COPD. As the only one of the
above reviewed biomarkers CC-16 has showed to asso-
ciate with decline in lung function, which indicates a
utility in evaluation of disease activity.

Modification by interventions and correlations between
changes in clinical outcomes and biomarker changes
All of the reviewed biomarkers have showed to be
modifiable by either oral prednisolone or inhaled gluco-
corticoid to different extents. However, only few ran-
domized clinical trials have been evaluating this matter.
Though biomarkers in COPD are extensively investi-
gated, most of the studies comprise cohort and experi-
mental studies. Randomized clinical trials evaluating
changes in biomarkers in relation to interventions and
clinical outcome are lacking.

In conclusion, none of the biomarkers in this review
fulfill all of the criteria presented by Sin & Vestbo [4]
and an additive approach, with different biomarkers
combined, may contribute to increased specificity and
sensitivity for prognosis of COPD.
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