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This paper addresses the implementation of a filterbank for digital hearing aids using a multi-dimensional logarithmic number
system (MDLNS). The MDLNS, which has similar properties to the classical logarithmic number system (LNS), provides more
degrees of freedom than the LNS by virtue of having two, or more, orthogonal bases and the ability to use multiple MDLNS com-
ponents or digits. The logarithmic properties of the MDLNS also allow for reduced complexity multiplication and large dynamic
range, and a multiple-digit MDLNS provides a considerable reduction in hardware complexity compared to a conventional LNS
approach. We discuss an improved design for a two-digit 2D MDLNS filterbank implementation which reduces power and area
by over two times compared to the original design.
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1. INTRODUCTION

Digital signal processing for hearing aids is providing possi-
bilities for new signal processing strategies to compensate for
hearing loss [1]. Hearing loss compensation in a typical dig-
ital hearing instrument is performed by separating the input
signal into multiple frequency bands which are then com-
pressed to allow the amplification of low-level signals while
maintaining the amplitude of high-level signals. We there-
fore require a processor that is able to both perform linear
processing (band separation) and nonlinear processing (sig-
nal compression). In order to be able to adequately repre-
sent the very low-level signals that are subject to the maxi-
mum amplification in the processor, very large word lengths
are required, and floating-point representation is quite usual

in this regard [2]. To be practically usable in a completely-
in-canal (CIC) device [3], the digital circuitry needs to ful-
fill the joint requirements of low-power consumption and
small size. The multi-dimensional logarithmic number sys-
tem (MDLNS) is a recently developed number system [4]
that appears to be a good candidate for implementing hear-
ing instrument processors. Although the logarithmic num-
ber system (LNS) [5] has been previously considered for dig-
ital hearing-aid processors [6], this research presents an ex-
ploration of the MDLNS for digital hearing-aid circuitry. As
with the LNS, the MDLNS provides a reduction in the size
of the number representation, but the MDLNS promises a
lower-cost (area × power) implementation of the arithmetic
operations required in both the linear and nonlinear do-
mains of filtering and compression. In this research, we apply
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the MDLNS to the construction of a finite impulse response
(FIR) filterbank; a major component of any digital hearing-
aid processor. Most binary implementations of filterbanks
for hearing instruments either use a modulated DFT or in-
terpolated FIR filter (IFIR) approach to perform the signal
separation because they reduce the number of multiplica-
tions. With MDLNS a binary multiplication component is
never used, only addition/subtraction components. There-
fore, a simple FIR filter structure can be easily implemented
in theMDLNS for use in separating the input signal. We have
previously done so and fabricated the filterbank design and
achieved promising results [7]. However, the published de-
sign was a first attempt and in this paper we will use recently
developed MDLNS techniques [8] to considerably improve
the performance of the filterbank design.

We start by defining the MDLNS [4], demonstrating its
logarithmic-like properties, and then discussing its applica-
tion to the filterbank construction. We will then discuss the
filterbank specifications, our original design, the improve-
ments made, and how they reduce the resource and power
consumption of the new implementation.

2. MDLNS REPRESENTATION

2.1. Definition

The MDLNS representation of a number differs somewhat
from the traditional fixed radix form of linear representation.
In a fixed radix positional system, a number is represented in
the form

χ =
N∑

i=0
mi · ri, (1)

where N is the number of digits,m ∈ {0, 1, . . . , r − 1}, i is an
integer, and r is the radix. For example, in the decimal system
r = 10, and in the binary system r = 2.

In the logarithmic number system (LNS), a number is
represented by

x = s · 2a, (2)

where a is an arbitrary real number and s ∈ {−1, 0, 1}. Note
that the ability to set the sign to −1 and 0 allows an exact
representation of 0 or negative numbers (not representable
using logarithms).

A multi-dimensional logarithmic number system is
based on computing with exponents of multiple base rep-
resentations (or representations with s-integers [9]). In this
paper, we will restrict ourselves to 2DLNS systems. A single-
digit 2DLNS represents unsigned numbers in the form

x ≈ 2a · 3b, (3)

where a and b are signed integers. A 2DLNS is defined more
generally as

x ≈
n∑

i=1
si · 2ai ·Dbi , (4)

where n is the number of digits, and D is the second base
(and not necessarily an integer). We often refer to bi as the
nonbinary exponent, and we will drop the index i, where it
is obvious by context. We define R as the constrained preci-
sion of the nonbinary exponent (i.e., bi = {−2R−1, . . . , 2R−1−
1}).

We may look at this representation as a two-dimensional
generalization of the binary logarithmic number representa-
tion. The important advantage of this generalization is that
the binary and second-base exponents are operated on in-
dependently from each other, with an attendant reduction
in complexity of the implementation hardware. As an exam-
ple, a VLSI architecture for inner-product computation with
the MDLNS proposed in [4, 10] has an area complexity de-
pendent entirely on the dynamic range of the second-base
exponents. Providing that the range of the second-base ex-
ponent is smaller than the LNS dynamic range for equiv-
alent precision, then we have the potential for a large re-
duction in the MDLNS hardware compared to that required
by the LNS. We can capitalize on this potential improve-
ment by placing design constraints on the second-base ex-
ponent size. For example, if we want to represent digital
filter coefficients in the MDLNS, then we can design the
coefficients in such a way that the second-base exponent
is minimized; an integer programming task [11]. Although
this approach is sound and can produce modest improve-
ments, generalizing the representation to multi-dimensions
and/or multiple digits has the potential to bring about very
large reductions in hardware complexity of DSP implemen-
tations.

2.2. Mathematical operations

To summarize, a 2DLNS representation provides a triple,
{si, ai, bi}, for each digit, where si is the sign bit and ai, bi
are the exponents of the binary and nonbinary bases, and a
number x is approximated by (4).

Multiplication and division

MDLNS multiplication and division are the simplest of the
arithmetic operations. The equations for multiplication and
division, given a single-digit 2DLNS representation of x =
{sx, ax, bx} and y = {sy , ay , by}, are [12]

x · y = {sx · sy , ax + ay , bx + by
}
,

x

y
= {sx · sy , ax − ay , bx − by

}
.

(5)

The above two equations show that single-digit 2DLNS mul-
tiplication can be implemented in hardware using two inde-
pendent binary adders and simple logic for the sign correc-
tion. As we start to add digits to the representation, we will
face the equivalent of implementing multiplication with the
addition of partial products. A two-digit representation will
produce four independent partial products that will have to
be added, and since addition is an expensive operation, we
try to optimize this process as much as possible (we will show
an optimized structure later).
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Addition and subtraction

Unfortunately, as with logarithms, addition and subtraction
operations are not as simple as multiplication and division
operations. Traditionally, addition and subtraction must be
handled through a set of identities and lookup tables. The
identities are [12]

(
2a1 ·Db1

)
+
(
2a2 ·Db2

) = (2a1 ·Db1
) · (1 + 2a2−a1 ·Db2−b1)

≈ (2a1 ·Db1
) ·Φ(a2 − a1, b2 − b1

)
,

(
2a1 ·Db1

)− (2a2 ·Db2
) = (2a1 ·Db1

) · (1− 2a2−a1 ·Db2−b1)

≈ (2a1 ·Db1
) ·Ψ(a2 − a1, b2 − b1

)
.

(6)

The operators Φ and Ψ are lookup tables (LUTs) that store
the precomputed 2DLNS values of

Φ(x, y) = 1 +
(
2x ·Dy

)
,

Ψ(x, y) = 1− (2x ·Dy
)
.

(7)

The use of large LUTs, implemented through the use of
ROMs, for the evaluation of addition and subtraction opera-
tions, is the traditional approach in systems such as the LNS
[13]. This technique is only feasible for very small ranges of
2DLNS numbers. It is more practical, in most cases, to con-
vert the 2DLNS numbers to binary and perform the addition
and subtraction using a binary representation.

The conversions from 2DLNS to binary will still require
an LUT, but one that is much smaller than required for han-
dling 2DLNS addition and subtraction. The LUT is used to
convert the second-base portion of the 2DLNS number into
a binary representation. Therefore, the size of the LUT is de-
pendent on the number of bits used to represent the second-
base exponent.

Multidigit MDLNS arithmetic

Multidigit MDLNS arithmetic is simply an extension of the
single-digit MDLNS arithmetic, and is necessary when num-
bers are represented by more than one MDLNS digit. When
performing a computation using multidigit MDLNS, each
digit can be treated as an independent MDLNS number and
the operations handled separately. For example, if X and Y
are two-digit MDLNS numbers such that X = x1 + x2 and
Y = y1 + y2, then

X · Y = (x1 + x2
)(
y1 + y2

)

= (x1 · y1
)
+
(
x1 · y2

)
+
(
x2 · y1

)
+
(
x2 · y2

)
,

(8)

where xi and yi are single-digit MDLNS numbers. The inde-
pendence of the arithmetic operations is very important, as
it allows for parallel architectures.

a1 a2 b1 b2 s1, s2

+/− +/−

Lookup table

Exponent Mantissa

+/−

ξB ξM

Barrel shifter

Sign corrector/
zero generator

y(n)

+/−

y(n + 1)

Figure 1: Single-digit 2DLNS inner product computation unit.

2.3. Hardware complexity

In order to provide complexity results for the 2DLNS inner-
product computation unit, we expand on the inner-product
processor architecture initially developed for the single-digit
2DLNS [12]. The processor can be used in a filter for one-
dimensional convolution [14].

Single-digit computational unit

Figure 1 shows the structure of the proposed single-digit
computation unit (CU). Since we do not wish to retain the
2DLNS representation of the accumulated output, and also
since the CU is feedforward, we can use the 2DLNS domain
for the coefficient multiplication and a binary representation
for the accumulated output.

The computation performed by the CU is given in (9):

y(n + 1) = (s1 · 2a1 ·Db1
)× (s2 · 2a2 ·Db2

)
+ y(n)

= (s1 · s2
)× (2(a1+a2) ·D(b1+b2)

)
+ y(n).

(9)

The multiplication is performed by small parallel adders for
each of the data and coefficient base exponents. The addition
output for the nonbinary exponent is the input address for
an LUT (ROM). This table produces an equivalent floating-
point value for the product of the nonbinary base raised to
the exponent sum, as shown below:

D(b1+b2) ≈ 2ξB · ξM. (10)
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Table 1: Octave bands of human hearing and their characteristics.

Octave Frequency range Characteristics

1st
2nd

20–40Hz
40–80Hz

Low bass—these frequencies add fullness, power,
and boom to sound. Lowest notes of bass, piano,
and tuba fall into this category.

3rd
4th

80–160Hz
160–320Hz

Upper bass—these frequencies provide a balance in
the structure of sound. Without them, sound is
thin. The lower tones of the cello, trombone, and
rhythm sections produce sounds in this range.

5th
6th
7th

320–640Hz
640–1280Hz
1280–2560Hz

Midrange—sounds get their intensity from this range
of frequencies. Fundamentals and lower harmonics of
most sound sources fall into this category.

8th 2560–5120Hz

Upper midrange—humans hear this range of frequencies
best. 3000–3500Hz contains information which improves
the intelligibility of speech and lyrics. If this band is
incorrectly processed, sound becomes unpleasant.
Frequencies above 3500Hz give sound realism and clarity.
Listeners perceive sound in this section of this octave (and
up to about 6000Hz in the 9th octave) as being close.
Thus 3500–6000Hz is known as the presence range.

9th
10th

5120–10 240Hz
10 240–20 480Hz

Treble—frequencies in this range give sound
sparkle and brilliance. Most humans do not
hear much beyond 16 000Hz.

We find that the size of the exponents of the nonbinary base
in a 2DLNS representation (where there are at least two-
digits) is usually very small, which acts to exponentially re-
duce the hardware complexity of the CU (assuming that it is
dominated by the size of the LUT).

3. ORIGINAL 2DLNS FILTERBANK DESIGN

As noted above, the 2DLNS inner product CU can be used
to create an FIR filter. By using a controller circuit (state ma-
chine), we can easily schedule the data flow of the two input
operands (from RAM/ROM components) and accumulation
output of the CU in order to implement an MDLNS filter-
bank. However, before implementing any design, the con-
straints of a hearing instrument filterbank should be known
in order to build a competitive design.

Frequency range

The frequency range of human hearing is from 20Hz to
20 kHz [15] (see Table 1). Because of the octave-band char-
acteristic of human hearing, good quality sound can still be
achieved with half the frequency range covered. In our filter-
bank design, we sample the audio input at 16 kHz assuming
that the input is bandlimited to 8 kHz. This will cover more
than the first eight octaves, as summarized in Table 1.

Number of channels or banks

Another important constraint is the frequency resolution.
The monitoring of hearing loss is accomplished through the

generation of audiograms, which record measurements at
eight different frequencies. Therefore, 8 channels is an ac-
ceptable resolution for hearing instruments with more res-
olution at lower frequencies because of the octave character-
istic of human hearing [1]. This approach is used in [16].
However, in the design discussed here, we apply an efficient
2DLNS architecture to a filterbank with equally spaced filters
which results in perfectly flat overall magnitude response and
a reduction in filter coefficients. We note, however, that the
2DLNS can be used in any filterbank design (including oc-
tave separation filters) with similar gains to those obtained
with our current design.

Stopband attenuation

The stopband attenuation in each channel determines the
gain range of the hearing instrument, and at least 50 dB
of gain adjustment in each bank are required. The order
of the filter is proportional to stopband attenuation and
passband ripple. When the order of the filter increases, the
group delay and implementation cost increases. Therefore,
the tradeoff between these parameters should be well ad-
justed to achieve an optimum design [15]. For our design, we
chose a 0.01 dB passband ripple and stopband attenuation of
60 dB.

Linear phase

In a compression system, gain changes are dynamic. This
may cause anomalies in the overall frequency response if
phase differences exist between adjacent bands. To avoid
these undesirable frequency response notches or peaks at the
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Figure 2: Dual 2DLNS processor for symmetrical filters (w/o accu-
mulator).

band edges (which frequently occur in analog systems), it is
necessary to constrain the filter channel impulse responses to
be linear phase and of equal delay.

From the above constraints, we chose an 8-band linear
phase filterbank with a 0.01 dB passband ripple and a 60 dB
stopband attenuation. These values are comparable to those
found in commercial hearing instrument processors [17].

Dual inner-product computational unit

A major advantage of choosing filters that are equally spaced
with identical bandwidths and overlaps is that they are
symmetrical allowing a perfectly flat composite magnitude
response (0 dB) across the whole frequency range and du-
plication of the magnitude of coefficients between the low
and high bands. Since the coefficients are shared, the inner-
product CU can be modified to process both the low and
high filters at the same time. Since only the magnitude of
the coefficients may be different (depending on the symme-
try of the filters), only the final binary accumulator need be
duplicated to output each band (see Figure 2). As we have
previously stated, although some hearing instruments use
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Figure 3: Histogram of error in coefficient optimized high/low
2DLNS input mapping.

different bandwidths for the filterbanks (e.g., larger for the
low pass, smaller for the high pass), using symmetric filters
saves resources over nonsymmetrical filters in an FIR imple-
mentation. By using enough filter bands, custom-tailoring
of bandwidths for the individual user should not be neces-
sary.

Choice of the 2DLNS second base

Using the 8 separate equal bands, filters were designed us-
ing Matlab (“fir1” function with a Kaiser window). Eight 75-
tap filters were deemed acceptable with a 0.0128 dB passband
ripple and 58.9 dB stopband attenuation (these are worst-
case results for all the filters in the filterbank). The specifi-
cations are met with 89 coefficients. Of the 600 coefficients
generated, only 132 of them are unique in magnitude which
simplifies the search for an optimal base with a minimum
value of R. In the case of the above filter specifications, with
an optimal base of 1.28308348549366 and R = 2, the filter-
bank responses are slightly worse with a 0.0176 dB passband
ripple and a 57.7 dB stopband attenuation. As R is increased,
the specifications are matched to that of the Matlab 64-bit
floating-point values. Clearly, however, we need to keep R as
low as possible.

Binary-to-2DLNS conversion

The input data (16-bit signed) is converted to 2DLNS via
a high/low serial implementation [18] with the second-base
exponents limited from−14 to 14. The limit is adjusted from
−16 to 15 (R = 5) so that overflow never occurs when the in-
put data is multiplied with the coefficients (R = 2). By limit-
ing the exponents in this way, the representation is used to its
fullest. Of 32 768 possible representations, the high/low con-
verter generates 18 348 error-free (56% with ε < 0.5) repre-
sentations. The remaining 14 420 representations have errors
from 0.5 to 37 in which the frequency decreases almost loga-
rithmically (see Figure 3).
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Figure 4: Filterbank structure.

Serial architecture

Since the filterbank is intended for audio (sampling fre-
quency of 16 kHz) and low-power operation, a serial imple-
mentation is favorable to minimize both power and area. As-
suming that two of the 600 coefficients are processed each cy-
cle, an operating clock of 16 000Hz·600/2 = 4 800 000Hz or
4.8MHz is required. The controller is therefore used to move
data from the controller into a RAMwhere 75 values aremul-
tiplied with 75 coefficients and accumulated (see Figure 4).
Serial-to/from-parallel converters are used to reduce the I/O
pad count since the design would otherwise be I/O bound
(i.e., the silicon area inside the pad ring is much larger than
required by the processing circuitry).

Full details of the original design can be found in [19].
The design core is 1mm × 1mm and 1.67mm × 1.67mm
including I/O pads (see Figure 5).

4. IMPROVED 2DLNS FILTERBANK DESIGN

Our original filterbank design was intended to show that the
MDLNS could be used for this particular application and
possibly save power in the process. Although the design was
essentially a collection of existing MDLNS building blocks,
the power results were encouraging enough for us to work
on the new design presented in this paper.

Filterbank scalability

The controller for the original system is fixed to process the
eight 75-tap filters, and is not easily scalable to process more
coefficients or filters. For example, adjusting the filter to han-
dle 89-tap filters or 10 bands would require significant coding
and retesting. The improved filterbank controller is capable
of processing any even number of filter bands and any odd
number of coefficients. The architecture uses “smart” coun-
ters which generate dynamic references reducing the overall
driving logic. The address path to the SRAM is fully utilized
eliminating conditional counters and maximizing memory
efficiency. These filterbank parameters are applied before
synthesis to generate a static controller. A dynamic controller
is quite achievable when run-time loading of the parameters
and filterbank coefficients is desirable (assuming the mem-
ory capacities are large enough).

Dual-port-to-single-port SRAM

The original filterbank controller uses a third-party black-
box 256 × 32 dual-port RAM of which only 75 × 26 ele-
ments are used. The dual-port RAM component in the origi-
nal design was used simply because it was smaller in area and
used less power than any other single-port RAM component
available to our design group. Unfortunately the controller
performs both read and write operations on the same cy-
cle which makes the design unusable for a single-port RAM.
Since dual-port RAMs are generally twice the area of single-
port RAMs, and consequently consume more power, the im-
proved filterbank uses synchronized input data storage and
processing in the same cycle to allow the use of a single-
port RAM. With the appropriately sized single-port SRAM
we obtain significant reductions in silicon area and power
consumption.

SRAM operation

The original filterbank controller operates the RAM on the
opposite of the system clock to guarantee that the inputs are
stable (see Figure 6).

This is not necessary in our new design since the SRAM
contains its own built in latches (edge triggered D flip-flops)
which have zero hold time. Coding for a component which
has its own input latches is possible in the Verilog hardware
description language, we use by mirroring the synchronous
and asynchronous logic (see Figure 7).

Operating the SRAM at the opposite clock of the system
is not favorable since it will cause more logic transitions at
both the beginning of, and halfway through, the cycle which
consume more power (see Figure 8).

Operating the SRAM at the same clock as the system will
remove invalid stable states between clock phases thus reduc-
ing the power (see Figure 9).

Maintenance clock cycles

The original filterbank required 13 additional cycles to
perform maintenance operations (reset counters, memory
pointers, etc.). These extra cycles contribute to increased
power consumption, additional logic cells, and scalability
issues (i.e., more coefficients and bands require more cy-
cles). The new filterbank controller schedules arithmetic
operations, multiplexes data paths, and pipelines informa-
tion to eliminate any maintenance cycles. The system can
now operate at the optimum 4.8MHz clock rate, process-
ing an input every 300 cycles or at a 16 kHz sampling fre-
quency.

Channel accumulator delay

The four-channel dual 2DLNS processor in the original de-
sign first generates the signed-binary representation of the
data multiplied by the coefficient (as in the DBNS/2DLNS
inner-product CU used for an earlier hybrid chip [14]) for
each channel and then adds them together. For the high-
pass filter, the sum of these channels may, depending on
the symmetry, have to be negated once before accumulation.
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Figure 5: Screen copy and micrograph of the 2DLNS filterbank.
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Figure 6: Two-phase clock controlling memory latches.
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Figure 7: One-phase clock controlling memory latches.

These two negating operations add extra delay, logic, and
power requirements. In total, 5 two’s complement generators
and 5 adder components are used to merge all the channels.
The worst-case delay from multiplication to final accumula-
tion is 5 arithmetic operations.

New one sign-bit architecture
The data path of the dual 2DLNS processor (shown in
Figure 2) is affected significantly by the signs of the operands.
The required sign correction operation comes at a cost of
additional logic and power. Since our particular filterbank

System
clock

Power
usage

Logic
transition

Invalid stable
state

Logic
transition

Valid stable
state

Figure 8: Two-phase clock power consumption.

System
clock

Power
usage

Logic
transition

Valid stable state

Figure 9: Single-phase clock power consumption.

architecture requires additional processing to be performed
after the dual 2DLNS processor, it is possible to use the com-
mon single sign-bit binary representation for the intermedi-
ate results. We have therefore developed a new 2DLNS sign
system to reduce the processing path of the 2DLNS inner-
product CU while producing a single sign-bit binary repre-
sentation.

Our original 2DLNS notation uses two bits to represent
the sign for each digit (−1, 0, and 1). There are only three
of four states used, one of which (zero) only represents a
single value. Using two sign bits results in having nearly 50
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Figure 10: Dual one-bit sign 2DLNS processor.

percent of the representation space unused. To improve this
ratio, only a single sign bit is needed to represent the most
used cases (−1 and 1). We now represent zero by setting
the nonbase two indices to their most negative values (i.e.,
b = −2R−1). This allows us to reduce the circuitry of the
system while maintaining the independent processing of the
indices and this modification is easily integrated into the ex-
isting two-bit sign architecture. This special case for zero still
leaves us with unused representation space, but not nearly as
much as with the two-bit sign system.

By using the one sign-bit architecture for our filterbank,
the word lengths for the 2DLNS representation of the coeffi-
cients and data are reduced by 2 bits. The 2DLNS processor
is improved since it no longer needs to handle the negative
or special zero case; only the absolute output is required. The
coefficient and data signs are simply XORed to produce the
output sign which is used along with the absolute output to
determine the final sum (see Figure 10).

Four-channel accumulator

The four-channel and output accumulation process is sim-
plified with a single sign bit by using only 5 adder/subtractor
components and simple logic to coordinate the proper series
of operations (see Figure 11). The delay is reduced to 3
arithmetic operations and the logic is also reduced since an
adder/subtractor component is smaller than a separate adder
and 2’s complement generator.

Data and coefficient representations

Using the single sign bit simplifies the implementation
of the filterbank, however, it limits the 2DLNS filterbank

Absolute channels

ach1 ach2 ach3 ach4

+/− +/−

+/−

Delay/
reset +/−

Delay/
reset +/−

High filter

output yh(n)
Low filter

output yl(n)

Sign
bits

as3
as4

as1
as2

as1
as3

as1
Coefnum [0]
Even sym

as1

Figure 11: One-bit sign four-channel accumulator.

coefficients since one of the second-base exponent states is
used to represent zero. With R = 2 the range of the coeffi-
cient nonbinary exponent is now from−1 to 1 which reduces
the filterbank responses to a 0.0213 dB passband ripple and
a 55.9 dB stopband attenuation. To better meet the specifica-
tions, we can either use more coefficients or increase R. With
R = 3 the range on the nonbinary exponent is from −3 to
3 which improves the filterbank responses to 0.0134 dB for
the passband ripple and 59.1 dB for the stopband attenua-
tion. Although increasing R for the coefficients improves the
filterbank response, the data representation nonbinary base
index is reduced from 29 (−14 to 14) to 25 (−12 to 12) states.
This will reduce the number of unique representations for
the filter input data, and we can therefore expect a larger er-
ror than that shown in the original design (Figure 3). The
single sign bit reduces hardware in this case, but increases
representational error.

Optimal input datamapping

An alternative approach was taken where we optimized the
nonbinary base for the input data (exponent range from−12
to 12) rather than the filter coefficients. The coefficients were
then mapped using that base (D = 0.92024380912663017)
with R = 3 obtaining better filterbank responses (0.0137 dB
passband ripple and 58.2 dB stopband attenuation) than
those of the original 2DLNS filter design and similar to those
using an optimal coefficient base and R = 3. Using this
approach, the input data mapping is improved with 19 513
error-free representations of the total 32 768 (59.5%) (about
3.5% more than the original design). More importantly, the
maximum error of any of the input data representations is
below 6 (see Figure 12). By optimizing the representation for
a single sign bit, the accuracy of the input data is consid-
erably improved without changing the filterbank response
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Figure 12: Histogram of error in data optimized high/low 2DLNS
input mapping.

−150

−100

−50

0

M
ag
n
it
u
de

(d
B
)

0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency (Hz)

Figure 13: Improved MDLNS filterbank frequency response.

significantly. The single sign-bit 2DLNS processor will also
reduce interconnect and area/logic as well as power con-
sumption.

5. RESULTS AND COMPARISONS

The improved MDLNS filterbank simulated frequency re-
sponse is shown in Figure 13 and the simulated output of an
8 kHz chirp signal is shown in Figure 14.

The original MDLNS filterbank was designed using Ver-
ilog, synthesised with Synopsys Design Compiler (using
worst-case models), placed with Cadence AreaPDP, routed
with Cadence Silicon Ensemble, and fabricated in a 1.6V
TSMC 0.18 µm CMOS process. At the time of writing this
paper, we have not yet fabricated the new design. We can,
however, estimate the core size to be 555 µm × 555 µm (a
little more than the quarter of the size of the original) by as-
suming the same cell placement ratio as the original filter-
bank. We also assume the power measurements are fairly ac-
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Figure 14: MDLNS filterbank output of an 8 kHz chirp signal.

curate since the original filterbank simulated measurements
were close to the test results using the same process parame-
ters. The design statistics and percentage savings between the
original and improved filterbanks can be found in Table 2,
with considerable reductions in area, number of logic cells,
interconnects, and power consumption.

For comparison purposes, we look at two recently pub-
lished designs. A 16-bank linearly spaced filter, with a 40 dB
stopband attenuation, using an FFT approach [20] has a
power consumption of 1mW at 1.8V in a 0.18 µm CMOS
process. If we scale this 16-bank design to an 8-bank de-
sign, we could conservatively estimate the power to be about
half or 500 µW. A 7-bank logarithmically spaced filter with
a 50 dB stopband attenuation, using an IFIR approach [16],
has a power consumption of 471 µWat 1.55V in a low-power
0.7 µm CMOS process. Our design appears competitive at
316 µW, but it is important to point out that the design pre-
sented here only uses a generic 0.18 µm “black-box” standard
cell library. Due to proprietary restrictions, we are not al-
lowed to modify or improve the performance of any of these
cells. We are currently unable to obtain access to low-power
standard cell libraries, since they are not generally distributed
to universities.

We would also like to note that our power estimates
are based on the worst-case performance of the filterbank
(i.e., a maximum amplitude, chirp input). Our best-case
measurements estimate the filterbank will require less than
180 µW when idle (i.e., a low amplitude, low-frequency in-
put).

As a final note, we have recently developed a process
for adding/subtracting MDLNS digits entirely within the
MDLNS (no conversion to/from binary is required) [8]. We
are optimistic that this approach will lower the power con-
sumption even more than shown in the design presented
here. This may also open the possibility of using MDLNS for
further signal processing (i.e., compression) since the signal
channels will remain in the MDLNS representation after fre-
quency separation.
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Table 2: Area, cell, net, and power comparison between original and improved filterbank (excludes SRAM).

Design
Total cell area

( µm2)
Logic cells Interconnects

Estimated power at
1.6V @ 4.8MHz (µW)

Original 184 965 7005 5759 708

Improved 53 716 3742 4877 316

Savings 71.0% 46.6% 15.3% 55.4%

6. CONCLUSIONS

In this paper, we have discussed an improved 2DLNS filter-
bank architecture for applications in a CIC hearing-aid sys-
tems. For this application, the size, power, linear phase, and
flat overall magnitude response are important constraints for
the filterbank design. We have discovered that the 2DLNS of-
fers significant advantages over the standard binary system,
mainly through overhead reduction achieved by not using
multipliers. The 2DLNS filterbank has linear phase with a
perfectly flat overall magnitude response; a considerable im-
provement over IFIR filterbank designs. By applying newly
developedMDLNS architectures and circuit optimizations to
an existing design, the power and performance of the filter-
bank are shown to be quite competitive with IFIR and DFT
binary implementations based on recently published designs.
We have also commented on some very recent work that may
allow even more reductions in power consumption.
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