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Abstract: We present a new “universal property” of entropy, that is the “entropy sum”

relation of black holes in four dimensional (anti-)de-Sitter asymptotical background. They

depend only on the cosmological constant with the necessary effect of the un-physical

“virtual” horizon included in the spacetime where only the cosmological constant, mass of

black hole, rotation parameter and Maxwell field exist. When there is more extra matter

field in the spacetime, one will find the “entropy sum” is also dependent of the strength

of these extra matter field. For both cases, we conclude that the “entropy sum” does not

depend on the conserved charges M , Q and J , while it does depend on the property of

background spacetime. We will mainly test the “entropy sum” relation in static, stationary

black hole and some black hole with extra matter source (scalar hair and higher curvature)

in the asymptotical (anti-)de-sitter spacetime background. Besides, we point out a newly

found counter example of the mass independence of the ”entropy product” relation in

the spacetime with extra scalar hair case, while the “entropy sum” relation still holds.

These result are indeed suggestive to some underlying microscopic mechanism. Moreover,

the cosmological constant and extra matter field dependence of the “entropy sum” of all

horizon seems to reveal that “entropy sum” is more general as it is only related to the

background field. For the case of asymptotical flat spacetime without any matter source,

we give a note for the Kerr black hole case in appendix. One will find only mass dependence

of “entropy sum” appears. It makes us believe that, considering the dependence of “entropy

sum”, the mass background field may be regarded as the next order of cosmological constant

background field and extra matter field. However, fully explaining the relationship between

the “entropy sum” relation and background properties still requires further exploration.
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1 Introduction

Understanding the origin of black hole entropy at the microscopic level has been a major

challenge in quantum theories of gravity in the past years. More recent interests have

been focused on the ”area product” or ”entropy product” of the black holes which possess

more than one horizon [1–16]. It seems clear that this additional thermodynamic relation

of entropy appears to be ”universal” and may provide further insight into the quantum

physics of black holes. Various black holes include Einstein-Maxwell gravity and in Super-

gravity models are tested [1–7, 14]. The product of entropy is once expected to be more

universal and in fact independent of the mass of the black hole [1–12]. However, It fails

in some cases [13–16]. For example, in discussing the Schwarzschild-de Sitter black hole

and Reissner-Nordstrom-anti-de Sitter black hole in 3 + 1 dimensions, it has been shown

that the product of event horizon area and cosmological horizon area is not mass indepen-

dent, even if including the effect of the third un-physical “virtual” horizon the result does

not improve [14]. This mass-dependence of the product of physical horizon areas is soon

discussed more clearly in the higher curvature gravity models [16].

Now people expect more general additional thermodynamic relation. It is the primary

work of this paper. In our present research, we find another “universal property” of entropy,

the “entropy sum” relation of black holes in four dimensional (anti-)de-Sitter asymptotical

background. They depend only on the cosmological constant with including the neces-

sary effect of the un-physical “virtual” horizon in the spacetime where only cosmological
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constant, mass of black hole, rotation and Maxwell field exist. When there is more extra

matter field in the spacetime, one will find the “entropy sum” is also dependent of the

strength of these extra matter field. For both cases, we conclude that the new “universal

property”, that is, the“entropy sum” relation does not depend on the conserved charges M

(mass), Q (charge from Maxwell field) and J (from rotation case), while it does depend on

the property of background spacetime. To express it more accurately, it does depend on

those constants, which characterize the strength of the background fields. We will mainly

test the “entropy sum” relation in static, stationary black hole and some black hole with

other extra matter source (scalar hair and higher curvature terms) in asymptotical (anti-

)de-sitter spacetime background. Besides, we point out a newly discovered failed example

of the mass independence of the “entropy product” relation in the discussion about the

spacetime with scalar hair, while the “entropy sum” relation still holds. These result are

indeed suggestive of some underlying microscopically. Anyway, the cosmological constant

and extra matter field dependence of the “entropy sum” relation of all horizon seems to

reveal that “entropy sum” is more general and is only related to the background field. One

may be curious about the “entropy sum” in asymptotical flat spacetime without any matter

source. We will give a note of Kerr black hole case in appendix B, in which one will find

only mass dependence of “entropy sum” appears. It makes us believe that, considering the

dependence relation of the “entropy sum” , the mass background field may be regarded as

the next order of cosmological constant background field and extra matter field, while the

Maxwell field and “rotation field” always play no role. Explaining the relationship between

the“entropy sum” and background spacetime properties still are open problems and left to

be a future work.

The surprising discovery of the cosmic late stage accelerating expansion has inspired

intensive research on the universe background cosmological constant problem, including

its functioning in astrophysics. The present paper is organized as follows: in next section,

we test the“entropy sum” in (A)dS black hole without other extra matter field, including

the Schwarzschild-de-Sitter solution, Reissner-Nordstrom-de-Sitter solution and the Kerr-

(anti-)de-Sitter solution; section 3 is devoted to the discussion of “entropy sum” of the black

holes with extra scalar hair and the charged rotating and static black holes in Einstein-Weyl

theory. We derive the “entropy sum” and the dependence of background field constant for

each of these black hole solutions. In the end of the paper, we make some conclusion

and discussion.

2 “Entropy sum” of (A)dS black hole with charge and rotation

In this section, we test the “Entropy sum” of (A)dS black hole without other extra matter

field, including Schwarzschild-de-Sitter, Reissner-Nordstrom-de-Sitter Solution and Kerr-

(anti-)de-Sitter solution in four dimensions. Here are only cosmological constant, mass of

black hole, rotation and Maxwell field in the spacetime. When there is no other extra matter

fields in the (A)dS spacetime, one will find the “entropy sum” of black holes depend only

on the cosmological constant with the necessary effect of the un-physical “virtual” horizon

included. The Maxwell field and “rotation field” always play no role.
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2.1 Warm-up: Schwarzschild-de-Sitter and Reissner-Nordstrom-de-Sitter so-

lution

To give a warm-up, we begin the discussion with the simple static and uncharged example,

four dimensional Schwarzschild-de-Sitter solution which is behaviours as

ds2 = −∆(r)dt2 +
dr2

∆(r)
+ r2

(

dθ2 + sin2 dϕ2
)

, (2.1)

where M is the mass of the black hole and Λ is the cosmological constant, and the horizon

function is

∆(r) = 1− 2M

r
− Λr2

3
(2.2)

We will substitute Λ = 1

L2 for convenience in this subsection. As we are aim to the “entropy

sum” of black hole horizons, we first list the three roots of ∆(r) [14]

r1 = 2L sin

(

1

3
arcsin

(

3M

L

))

r2 = 2L sin

(

1

3
arcsin

(

3M

L

)

+
2π

3

)

r3 = 2L sin

(

1

3
arcsin

(

3M

L

)

− 2π

3

)

where, r1 represents an event horizon and r2 is a cosmological horizon. Both are physical

horizons. The third one r3, however, is not a physical, said to be a “virtual” horizon. It is

easy to find the product of event horizon area and cosmological horizon area is not mass

independent, even including the effect of the third un-physical “virtual” horizon does not

improve the result [14].

On the other hand, there is an exact result that

3
∑

i=1

r2i = 6L2, (2.3)

which immediately deriving the “area sum” of all horizons as

3
∑

i=1

Ai = 24πL2 =
24π

Λ
. (2.4)

We note that the sum of the areas is a constant directly related to the spacetime background

i.e. cosmological constant. In fact, for Schwarzschild-de-Sitter black hole, the entropy of

each horizon (include the “virtual” one) is Si = Ai/4 = πr2. So we conclude

3
∑

i=1

Si =
6π

Λ
, (2.5)

the “entropy sum” of all four horizons is only cosmological constant dependence and also

mass independence.
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However, there is no conserved charges in the Schwarzschild-de-Sitter spacetime. To be

more convictive, we present the Reissner-Nordstrom-de-Sitter solution as a second warm-

up. The Reissner-Nordstrom-de-Sitter solution is

ds2 = −∆(r)dt2 +
dr2

∆(r)
+ r2

(

dθ2 + sin2 θdϕ2
)

, (2.6)

where

∆(r) = 1− 2M

r
+

Q2

r2
− Λr2

3
. (2.7)

In principle the quartic can be solved explicitly, but here it is not necessary to list the

roots. This argument is shown in detail in [14] that there are four physical roots: each of

them stand for the event horizon, Cauchy horizon, cosmological horizon and an un-physical

virtual horizon respectively. The mass independence of “entropy product” of all horizons

still hold [14].

For our interest, the “area sum” of all four horizons is

4
∑

i=1

r2i = (r1 + r2 + r3 + r4)
2 − 2

∑

i<j

rirj = 6L2

4
∑

i=1

Ai = 24πL2 (2.8)

Again,

4
∑

i=1

Si =
6π

Λ
, (2.9)

the “entropy sum” of all four horizons is only cosmological constant dependence and also

does not depend on the conserve charges: mass M and charge Q. Namely, Mass and the

Maxwell field do no effect on the “entropy sum”.

2.2 Kerr-(anti-)-de-Sitter black holes

We continue our discussion with cosmological constant, mass and angular momentum of

black hole exist in the spacetime, i.e. the familiar Kerr-(anti-)de-Sitter black hole [17–19]

ds2 = −∆

ρ2

(

dt − asin2θdϕ

Ξ

)2

+
ρ2dr2

∆
+

ρ2dθ2

∆θ

+
∆θsin

2θ

ρ2

(

adt−
(

a2 + r2
)

dϕ

Ξ

)2

,

where

ρ2 = a2 + r2cos2θ ∆ =
(

a2 + r2
)

(

1∓ r2

l2

)

− 2mr

∆θ = 1± a2cos2θ

l2
Ξ = 1± a2

l2
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and the cosmological constant Λ = ± 3

l2
. Here, the upper and lower of sign stand for the

dS and AdS solution respectively. The four roots of ∆ is shown in [17]. They satisfy the

following equality

4
∑

i=1

r2i = 2l2 − 2a2, for dS spacetime; (2.10)

4
∑

i=1

r2i = −2l2 − 2a2, for AdS spacetime; (2.11)

It is well known that the area for each horizon is

A(ri) =
4π(r2i + a2)

1± a2

l2

(2.12)

Thus we obtain the “area sum” of all four horizons

4
∑

i=1

A(ri) = ±8πl2 =
24π

Λ
(2.13)

with the “entropy sum”
4
∑

i=1

S(ri) =
6π

Λ
. (2.14)

Then we demonstrate that, in four dimensional (A)dS spacetime, the cosmological constant

dependence of “entropy sum” of all horizons is a universal property. The “entropy sum”

is the constant, which is proportional to cosmological radius and inversely proportional to

cosmological constant, no matter charge and rotation exist in the spacetime. That is to

say, mass, the Maxwell field and “rotation field” do no effect on the “entropy sum”.

3 “Entropy sum” of (A)dS black hole with other extra matter field

This section is devoted to the discussion about the “Entropy sum” of four dimensional

(A)dS black hole with other extra matter field. The extra matter field of example we

present here is the scalar field and with higher curvature terms. When there is scalar field

in the spacetime, one will find that the “entropy sum” is dependent of the cosmological

constant and the constant signifying the strength of self-interacting potential for the scalar

field in both the conformally coupling frame and the minimally coupling frame. When we

consider the charged rotating and static black holes in Einstein-Weyl theory, the “entropy

sum” is shown a only dependence of the constant characterizing the strength of higher

curvature terms, even the cosmological constant dependence is vanishing. For both cases,

we conclude that the new “universal property”, “entropy sum” does not depend on the

conserved charges M (mass), Q (from Maxwell field) and J (from rotation). One can

believe that, “entropy sum” of all horizons (including the “virtual” horizon) does depend

on those constants, which characterize the strength of the background fields.

– 5 –



J
H
E
P
0
1
(
2
0
1
4
)
0
3
1

3.1 Scalar hairy black holes

We consider the Einstein-Maxwell system in four dimensions with a cosmological constant

Λ and a real conformally coupled self-interacting scalar field, described by the action

L =

∫

d4x
√
−g

(

R− 2Λ

16π
− 1

2
gµν∂µφ∂νφ− 1

12
Rφ2 − αφ4

)

− 1

16π

∫

d4x
√
−gFµνFµν ,

(3.1)

where the parameter α is arbitrary self-interaction constant, which signify the coupling

strength between gravity and the scalar field. The first well-known solution for this action

is the “MTZ” black hole [20]. Here we will focus on the charged “MTZ” black hole solution

with the metric

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2 (3.2)

where dΩ2 is the line element of the 2-dimensional surface Σ

dΩ2 =















dθ2 + sin2 θdϕ2, sphere S2;

dθ2 + θ2dϕ2, flat R2;

dθ2 + sinh2 θdϕ2, hyperbolic H2.

(3.3)

The metric function is

f(r) = −Λr2

3
+ γ

(

1 +
µ

r

)2

(3.4)

with the electromagnetic potential is given by

A = −q

r
dt (3.5)

The parameter γ denotes the normalized curvature constant of the 2-dimensional sub-

manifold Σ. γ can take +1,0 and −1, corresponding to sphere S2, flat R2 and hyperbolic

manifold H2. We will only consider γ = ±1, as the flat case corresponds to no black hole

but naked singularity. The integration constants µ and q are not independent since they

must satisfy

q2 = γGµ2

(

1 +
2πΛG

9α

)

(3.6)

We will set G = 1 in what follows. On the other hand, µ and q are relate to the conserved

charges: mass M and electric charge Q:

M = −γ
σ

4π
µ Q =

σ

4π
q (3.7)

Where σ is the ”unit” area of the 2-dimensional surface Σ

σ =

{

4π, γ = 1;

4π(g − 1), g ≥ 2, g is the genus, γ = −1.
(3.8)
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However, eq. (3.6) shows that M and Q are not independent in this spacetime. Thus,

one can expect that the “entropy product” of all horizons is dependent on the conserved

charges Q, which means a mass dependence as well. This a new failed example of the mass

independence of ”entropy product” relation.

There are two parameters Λ = ± 3

l2
and γ = ±1 in the solution (3.4). They will

corresponds to four solutions of the action. To give a brief check of the ”entropy sum”

relation, we will only present the discussions of two of these four solutions here. We focus

on the dS black hole with sphere horizon (Λ = 3

l2
and γ = 1) [21] and the AdS black hole

with hyperbolic horizon Λ = − 3

l2
and γ = −1 [22]. However, one may note the other two

case correspond to no black hole but solutions with naked singularity. Then the metric

function f(r) (3.4) takes the form

f(r) = ∓r2

l2
±
(

1∓ M

r

)2

(3.9)

where the upper and lower of sign stand for the dS and AdS solution respectively. There

are four roots for this metric function [21, 23]

r1 =
l

2

(

1 +

√

1∓ 4M

l

)

r2 =
l

2

(

1−
√

1∓ 4M

l

)

r3 =
l

2

(

−1 +

√

1± 4M

l

)

r4 =
l

2

(

−1−
√

1± 4M

l

)

Both black holes have possessed cosmological, event and inner horizons, given by the radial

coordinate as r1, r2, r3 respectively, and the r4 is corresponding to a “virtual” horizon.

One need note that, in fact we are considering the black holes with some special black hole

mass M , in order to have multi-real roots, as we are interested in the ”entropy product”

of multi-horizons black hole.

The entropy corresponds to each horizon is

S(ri) = πr2i

(

1− φ(ri)
2

6

)

. (3.10)

where the scalar field behaviours as [22]

φ(r) =

√

− Λ

6α

(

M

r ∓M

)

=

√

∓ 1

2αl2

(

M

r ∓M

)

(3.11)

Note α and Λ have opposite signs. After some direct calculation, we can find ”entropy

sum” of all four horizons

4
∑

i=1

S(ri) = 2πl2 ± π

6α
= ±6π

Λ
± π

6α
(3.12)

To give the conclusion, when there is extra scalar field in the spacetime, one will find the

“entropy sum” is dependent of the cosmological constant and the constant signifying the

– 7 –
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coupling strength between gravity and the scalar field in the conformally coupling frame.

It is also interesting to consider it in the minimally coupling frame. The result is shown

in appendix A. We find the“entropy sum” is also dependent of the cosmological constant

and the constant characterizing the strength of self-interacting potential of the scalar field.

What we emphasize is the “virtual” horizon cannot be dropped, otherwise we cannot get

the “entropy sum” result, which has background field constant dependence and conserved

charge independence (Here is M -independence and Q-independence). In this sense, we say

the “entropy sum” is “universal” in this theory. On the other hand, comparing this case

with that of kerr-(A)dS black hole (see eq. (2.14)), it seems like that the topology of the

sub-manifold Σ can modify the “entropy sum” in someway.

3.2 Charged rotating and static black holes in Einstein-Weyl theory

The dyonic black hole solution in D = 4 charged Einstein-Weyl theory has the La-

grangian [4, 24].

L =
√
−g

(

1

2
αCµνρσCµνρσ +

1

3
αFµνFµν

)

=
√
−g

(

αRµνRµν −
1

3
αR2 +

1

3
αF 2

)

+ αLGB. (3.13)

where LGB denotes the Gauss-Bonnet Lagrangian. And the charged rotating AdS black

hole solution can be written as [4, 24]

ds24 = ρ2
(

dr2

∆r
+

dθ2

∆θ

)

+
∆θ sin

2 θ

ρ2

(

adt− (r2 + a2)
dφ

Ξ

)2

− ∆r

ρ2

(

dt− a sin2 θ
dφ

Ξ

)2

,

(3.14)

where

ρ2 = r2 + a2 cos2 θ ∆θ = 1− g2a2 cos2 θ

Ξ = 1− g2a2 ∆r = (r2 + a2)(1 + g2r2)− 2mr +
(p2 + q2)r3

6m

where Λ = −3g2 is the cosmological constant. In what follows we have set magnetic charge

p = 0 so that there is only an electric charge q. Solve the equation ∆r = 0, one can obtain

four horizons. The entropy on these horizons are Wald entropy which do not satisfy the

area theorem, derived in [24] and have the form [4, 24].

S(ri) =
2πα

Ξ

(

1 + g2r2i +
q2 ri
6m

− cΞ

)

, (3.15)

where the constant c is numerical and corresponds to adding a constant multiple of the

Gauss-Bonnet invariant to the action [4]. Directly we calculate the sum of horizons entropy

4
∑

i=1

S(ri) = 4πα(1− 2c) (3.16)
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This result does not relate to the conserved quantities: total energy E, charge Q and

angular momentum J [4, 24].

E =
2αg2

Ξ2

(

m+
a2q2

12m

)

Q =
αq

3Ξ

J =
2aαg2

Ξ2

(

m+
q2

12mg2

)

Thus, the “entropy sum” is shown a only dependence of the constant α, even the cosmo-

logical constant dependence is vanishing.

Next we consider a special case, the charged static dS black hole solution i.e. J = 0,

which the four horizons reduce to three [4]. Here Λ = 3g2 is the cosmological constant.

The metric of static black hole is (a detail analysis of general solution is given in [25])

ds2 = −f dt2 +
dr2

f
+ r2dΩ2

2

A = −q

r
dt (3.17)

f = −Λr2

3
+ c1r + c0 +

d

r
(3.18)

3c1d+ 1 + q2 = c20.

For the static black hole, the entropy for each horizon is [4]

S(ri) = −2πα(3d+ (c0 + 2)ri)

3ri
. (3.19)

We calculate the “entropy sum” to be

3
∑

i=1

S(ri) = −4πα. (3.20)

There are no conserved quantities E,Q in the “entropy sum” (3.16) and (3.20). So we

could say that the “entropy sum” is shown a only dependence of the constant α, which

characterizes the strength of higher curvature terms, even the cosmological constant de-

pendence is vanishing.

4 Conclusion and discussion

In this paper, we find another “universal property” of entropy, the“entropy sum” relation of

black holes in four dimensional (anti-)de-Sitter asymptotical background. We mainly test

“entropy sum” relation in static, stationary black hole and some black holes with other extra

matter source (scalar hair and higher curvature terms) in the asymptotical (anti-)de-sitter

spacetime background. They depend only on the cosmological constant with the necessary

effect of the un-physical “virtual” horizon included and in the spacetime only cosmological
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constant, mass of the black hole, rotation parameter and the Maxwell field exist. When

there is more extra matter field in the spacetime, one will find the “entropy sum” is also

dependent of the strength of these extra matter field. For both cases, we conclude that

the new “universal property”, that is, the“entropy sum” does not depend on the conserved

charges: M (mass), Q (from Maxwell field) and J (from rotation), while it does depend

on the property of background spacetime. To say it more accurately, it does depend on

those constants, which characterize the strength of the background fields. When there is

extra degree of freedom, that is the scalar field in the spacetime, it is dependent on the

cosmological constant and the constant signifying the strength of self-interacting potential

of the scalar field in both the conformally coupling frame and in the minimally coupling

frame as shown in appendix A. Besides, in the Einstein-Maxwell-scalar-AdS spacetime,

it seems like that the topology of the sub-manifold Σ can modify the “entropy sum” in

someway; we also point out the mass independence of the ”entropy product” relation

failed in this case. When we consider the charged rotating and static black holes in the

Einstein-Weyl theory, the “entropy sum” is shown to be only dependence on the constant

characterizing the strength of higher curvature terms, even if the cosmological constant

dependence is vanishing. What we emphasize is the “virtual” horizon cannot be dropped,

otherwise we cannot get the “entropy sum” relation with the background field constant

dependence. In this sense, we say the “entropy sum” is “universal” in the theory presented

in this paper. One shall note that the “entropy sum” is negative in some black hole case,

which maybe result from the effect of the entropy of the work out “virtual” horizon.

To give a whole look of the “entropy sum”, we finally consider it in the Kerr black hole

case as shown in appendix B. We find only mass dependence of “entropy sum” appears.

It makes us believe that, considering the dependence properties of “entropy sum” relation,

the mass background field may be regarded as the next order of cosmological constant

background field and extra matter field, while the Maxwell field and “rotation field” al-

ways play no role. Explaining the relationship between the“entropy sum” and background

properties still are open problems, which is left to be a future work.
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A The “entropy sum” in the minimally coupling frame of Einstein-

Maxwell-scalar-AdS spacetime

We consider the “entropy sum” in the minimally coupling frame of Einstein-Maxwell-scalar-

AdS spacetime. One can obtain the solution directly by taking a conformal transformation

of that in the conformally coupling frame [22, 26, 27]. Here we take the AdS black hole

with hyperbolic horizon Λ = − 3

l2
and γ = −1 [22] in section 3.1 as an example. The
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corresponding conformal transformation is

Ω2 = 1− 1

6
φ2 = 1− 1

12αl2

(

M

r +M

)2

. (A.1)

Then we introduce a new scalar field Φ

tanh

(

√

1

6
Φ

)

=

√

1

6
φ (A.2)

with Φ(r) behaviour as

Φ(r) =
√
6 arctanh

(

√

1

12αl2
M

r +M

)

(A.3)

One can obtain the theory in the minimally coupling frame with the action

L =

∫

d4x
√

−ĝ

(

R̂

16π
− 1

2
ĝµν∂µΦ∂νΦ− V (Φ)

)

− 1

16π

∫

d4x
√

−ĝFµνFµν , (A.4)

where the new self-interaction potential V (Φ) takes the form

V (Φ) =
Λ

8π

(

cosh4
√

1

6
Φ +

8π

Λ
36α sinh4

√

1

6
Φ

)

(A.5)

The transformed, minimal coupled version line element is

dŝ2 = Ω2

[

−
(

r2

l2
−
(

1 +
M

r

)2
)

dt2 +
dr2

r2

l2
−
(

1 + M
r

)2
+ r2dσ2

]

(A.6)

We still need to introduce a new radial coordinate R2 = r2Ω2 to get the familiar coordinate

frame, which one will obtain the usual Benkenstain-Hawking area entropy

S(Ri) =
A(Ri)

4
=

σR2

i

4
(A.7)

Then some calculation lead to

4
∑

i=1

Si =
4
∑

i=1

S(Ri) =
4
∑

i=1

σr2i
4

Ω2

=

4
∑

i=1

πr2i

(

1− φ(ri)
2

6

)

= −6π

Λ
− π

6α

which is the same as shown in section 3.1. Obviously the same rules of “entropy sum”

still holds. When in the minimally coupling frame, “entropy sum” is also dependent of

the cosmological constant and the constant characterizing the strength of self-interacting

potential of the scalar field.
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B The“entropy sum” of Kerr black hole

To give a whole look of the “entropy sum”, we consider it in asymptotical flat spacetime

without any matter source, taking Kerr black hole [28] as an example. All horizons of Kerr

black hole are

r1 = M +
√

M2 − a2

r2 = M −
√

M2 − a2

and area of each horizon are

A(ri) = 4π(r2i + a2)

entropy respectively

S(ri) =
A(ri)

4
(B.1)

then “entropy sum” is
2
∑

i=1

S(ri) = 4πM2 (B.2)

apparently it is mass dependent. It seems that, considering the dependence of “entropy

sum” , the mass background field maybe is the next order of cosmological constant back-

ground field and extra matter field, while the Maxwell field and “rotation field” always

play no role.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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