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Abstract

Spectrum sensing is one of the most essential components of cognitive radio since it detects whether the spectrum
is available or not. However, spectrum sensing accuracy is often degraded due to path loss, interference, and
shadowing. Cooperative spectrum sensing (CSS) is one of the proposed solutions to overcome these challenges. It is a
key function for dynamic spectrum access that can increase largely the reliability in cognitive radio networks. In fact,
several users cooperate to detect the availability of a wireless channel by exploiting spatial diversity. However,
cooperative sensing is also facing some series of security threats. In this paper, we focus on two major problems. The
first problem is the localization preservation of the secondary users. In fact, malicious users can exploit spatial diversity
to localize a secondary user by linking his location-dependent sensing report to his physical position. The existing
solutions present a high level of complexity which decreases the performance of the systems. The second problem is
the data injection attack, in which malicious CR users may affect the decisions taken by the cognitive users by
providing false information, introducing spectrum sensing data falsification (SSDF). In fact, they can submit false
sensing reports containing power measurements much larger (or smaller) than the true value to inflate (or deflate) the
final average, in which case the fusion center may falsely determine that the channel is busy (or vacant) which
increases the false alarm and miss detection probabilities. In this paper, we propose a novel scheme to overcome
these problems: iterative per cluster malicious detection (IPCMD). It utilizes applied cryptographic techniques to allow
the fusion center (FC) to securely obtain the aggregated result from various secondary users without learning each
individual report. IPCMD combines the aggregated sensing reports with their reputation scores during data fusion.
The proposed scheme is based on a new algorithm for key generation which can significantly reduce the key
management complexity and consequently increase the system performance. Therefore, it can enable secure
cooperative spectrum sensing and improve the secondary user location privacy.
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1 Introduction
Due to the increasing demand on advanced broadband
wireless technologies and services added to the wide
spread of new operators, the static frequencies and inflex-
ible spectrum management policies became obsolete and
resulted in a spectrum scarcity problem. In fact, it has
been confirmed by multiple spectrummeasurement cam-
paigns that this scarcity is only virtual and is caused by
the underutilization of the bandwidth [1, 2]. Thus, more
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effective spectrum management techniques emerged to
effectively exploit the precious radio resources. CR is con-
sidered as an intelligent wireless communication system
which can exploit these underutilized spectral resources
by reusing unused spectrum in an opportunistic manner
[3, 4].
Cognitive radio systems involve primary users (PU), the

owners of licensed spectrum, and secondary users (SU)
who sense the radio environment and intelligently oper-
ate the unused spectrum under license and renounce if
the primary users are active. Secondary users identify the
received signal strength, interference, and the number of
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users residing in the spectrum and observe the heteroge-
neous spectrum that varies in time and space due to the
activities of primary user [5]. The availability of heteroge-
neous spectrum depends on the availability of spectrum
holes that fluctuate over time and location. The challenge
is the identification and detection of primary user signals
in harsh and noisy surrounding environment [6–8].
Thus, spectrum sensing is considered as a key function

for dynamic spectrum access which is designed to max-
imize spectrum efficiency and capacity within congested
wireless transmission environments and it is a critical
function to avoid interference with primary users [9, 10].
However, detection performance in practice is often com-
promised with multipath fading, shadowing, and receiver
uncertainty issues. To overcome the impact of these
issues, cooperative spectrum sensing is proposed as an
effectivemethod to improve the detection performance by
exploiting spatial diversity [3, 8, 11, 12].While cooperative
gain such as improved detection performance and relaxed
sensitivity requirement can be obtained, cooperative sens-
ing is facing some series of security threats [13, 14]. In
this paper, we consider two types of threat, location pri-
vacy leaking [15] and data injection attack in cooperative
sensing. The existing works show that similar to geolo-
cating the individuals via Wi-Fi or Bluetooth signals, the
correlation of CR sensing reports and their physical loca-
tion can be exploited by malicious attackers to geolocate a
user and thus compromise the user’s location privacy [16].
A potential approach to prevent location privacy leaking
is privacy-preserving sensing report aggregation (PPSRA)
protocol [15]. In fact, all the users have to negotiate their
keys together at the same time to be able to keep the shar-
ing fusion center (FC) secret among all participants; the
aggregator cannot obtain the aggregation result unless he
can collect all of the participants’ reports. However, this
solution presents one major drawback: key management
complexity especially with a large number of participants.
In [17], the authors propose a low-overhead symmetric

cryptographic mechanism that reduces the effects of the
malicious users on energy efficiency. However, the sym-
metric key encryption has a major problem. In fact, users
must first establish and share a secret key. Then, the key
must be exchanged in a secure way. This process is usually
inconvenient and requires significant overhead. In [18],
the authors present a new scheme that can calculate a
trust value for each secondary user based on a comparison
between its sensing report and the reports of its neigh-
borhood. However, the trust value may give wrong results
in some realizations of the channels if the neighborhood
detected wrong sensing report. In [19], an attacker iden-
tification algorithm was proposed. It can detect attackers
in cluster-based cognitive radio networks. In [20], the
authors propose a principal-agent-based joint spectrum
sensing and access framework to thwart the malicious

behaviors of intelligent malicious users in cognitive radio
networks. In [21], the authors proposed a weighted deci-
sion fusion scheme that uses past information. However,
these solutions do not take into consideration that the
principal agent and the FC can be run by an untrusted
service provider.
In [22], the authors present a solution for data injection

attack. It uses a few trusted anchor detectors to evalu-
ate the instantaneous trustworthiness of mobile detectors
in combination with their reputation scores. However, it
requires more resources to work (trusted anchor, GPS).
Thus, it was possible for them to illegitimately track the
individuals from the sensing report.
In this paper, we propose two novel schemes—iterative

per cluster malicious detection (IPCMD) and iterative
per cluster malicious detection-accelerated (IPCMD-A)—
which can realize secure cooperative spectrum sensing
and improve the secondary user’s location privacy in the
presence of malicious users. These schemes can detect
the presence of malicious users without requiring extra
resources, and it enables the sensing devices to submit
their encrypted sensing data to FC while FC could obtain
the sum of all sensing reports without learning each indi-
vidual values. IPCMD includes a novel self-organized key
management scheme, which can support the secondary
user dynamic join/leave in cooperative sensing, and it can
reduce largely the key management complexity compared
to PPSRA.
The contributions of this work are summarized as

follows:

1. We propose a novel algorithm for key management
based on the relationship between secondary users.
This algorithm can work well in a dynamic CR
network with untrusted FC. Furthermore, it is
resilient against different attacks.

2. We design a novel secure soft combination scheme
based on the prioritized sequential probability ratio
test, in which the different users are prioritized and
regrouped together based on their reputation scores.

3. We confirm the high efficacy and efficiency of our
schemes by simulation studies.

The rest of the paper is organized as follows. Section 2
introduces the system and adversary models. Section 3
presents our proposed solution. Section 4 reports the per-
formance evaluation based on detailed simulation studies.
Finally, conclusions are drawn in Section 5.

2 System and adversary models
2.1 Systemmodel
The adopted system model consists on a centralized cog-
nitive radio (CR) network [16]: a fusion center (FC) and
multiple secondary users in a range of 1 to 2 km dis-
tributed over n regions (Fig. 1). The set of SUs is denoted



Zina et al. EURASIP Journal onWireless Communications and Networking  (2016) 2016:85 Page 3 of 11

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

3000

x(m)

y
 (

m
)

SUs of Region 1
SUs of Region 2
SUs of Region 3
SUs of Region 4
SUs of Region 5
SUs of Region 6
SUs of Region 7
SUs of Region 8
SUs of Region 9
SUs of Region 10
SUs of Region 11
SUs of Region 12
SUs of Region 13
Primary Users

Fig. 1 System architecture

by Us = {U1,U2, . . . ,Un} . The considered primary users
are mainly TV broadcasts [22], where the transmission
power is nearly invariant. We propose to realize secure
cooperative spectrum sensing in the presence of malicious
mobile detectors. The used spectrum sensing technique is
energy detection.

2.2 Spectrum sensing models and signal propagation
We consider the signal propagation model in [23] under
which the received primary signal strength at a SU Ui can
be expressed as

Pi = P0
(
d0
di

)α

eXieYi (1)

where d0 is the reference distance, di is the distance from
a secondary user Ui to the primary user, P0 is the received
primary signal strength at d0, α is the path loss exponent
with value between 2 and 5, exp(Xi) and exp(Yi) repre-
sent, respectively, the effect of shadowing and multi-path
fading, and Xi is normally distributed with μ = 0 and
variance σ 2: N(0, σ 2).
We assume that the channel bandwidth is much larger

than the coherent bandwidth, so the effect of multi-path
fading is negligible, i.e., Yi = 0 for all Ui [22, 24, 25].
In addition, we assume that Xj and Xi are independent
for all Ui �= Uj, i.e., each user experiences i.i.d. Gaussian
shadowing and fading, which holds when the dis-
tance between Ui and Uj exceeds decorrelation distance
[22, 26]. Also, that the nodes are equipped with energy
detection which is the most widely used detection tech-
nique for its simplicity and efficiency. In fact, during
the sensing phase, each node collects m received signal

strength RSS samples. The sensing report from user Ui is
denoted as xi = (xi,1, . . . , xi,m). The statistic test of the
energy detector is the average RSS (including the noise
power) ri = 1

m
∑m

k=1 xi,k .
According to [23] and [27], ri can be approximated as a

Gaussian random variable using the central limit theorem
(CLT) as

ri=
{N (

N0, 2N2
0/M

)
H0:Primary user is absent

N
(
N0+P̄i,2(P̄i+N0

)2
/M)H1:Primary user is present.

(2)

where P̄i = E(Pi) is the average received power at user Ui
and N0 is the noise power.

2.3 Adversary model
We assume that the adversary has full control over multi-
ple malicious users who may launch the following attacks:

1. Privacy threats in collaborative spectrum sensing [15]
Consider an attacker aiming to track the location of
secondary users which are involved in cognitive radio
networks. This attacker could be a compromised
cognitive radio user, an external adversary, or even
the untrusted FC. In particular, the single report
location privacy (SRLP) attack is considered [15].

2. Data injection attack [17, 18, 28]
We take into consideration a second type of attack
where the malicious users send falsified sensing
reports to fool the FC. In fact, a malicious user may:

• Sends high RSS values during the absence of the
primary signal, which increases the probability
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of false alarm and prevents CR users from using
the channel.

• Sends low RSS values during the presence of the
primary signal which increases the probability of
miss detection and causes increased
interference to the primary user.

Malicious users might be the majority in a region; how-
ever, we assume that there are enough secondary users
submitting correct sensing reports. Otherwise, it is diffi-
cult to realize PU detection with desired false alarm and
miss detection probabilities.

3 Location privacy preservation and data
injection attack resistance

3.1 Overview
The privacy-preserving aggregation (PPA) scheme [15]
allows the identification of the presence or absence of
the primary user signal using the sensing reports from
different secondary users while preserving their location
privacy based on secret key sharing techniques. In fact,
the FC shares secret keys among a group of participants
so that the FC is able to compute the sum of the partici-
pants’ keys but not their exact values. Hence, this enables
the FC to receive the aggregated sensing reports without
learning each individual sensing report value. However,
the original PPA scheme is not appropriate for a dynamic
CR network because it is limited to the static environ-
ment. Hence, the authors in [15] proposed the privacy-
preserving sensing report aggregation (PPSRA) protocol
to be adaptive and appropriate to the dynamic CR net-
works where the users may temporarily join/leave. In spite
of solving the location privacy issue, PPSRA is not resis-
tant to data injection attack where the malicious users
may send falsified reports to the FC. Therefore, in this
paper, we enhance the PPA and PPSRA by using special
key sharing techniques and special malicious identifica-
tion protocols which enable IPCMD to work well in a
dynamic CR network in the presence of malicious users
using data injection attack. In this section, we present the
two proposed techniques—IPCMD and IPCMD-A—that
allow

• Exploiting the sensing reports of different CR users to
obscure the correlation between the report and user
location which permits secure spectrum sensing in
IPCMD.

• Using prioritized sequential probability ratio test [29],
and fine-grained reputation management [30], to
enable robust data fusion.

3.2 Iterative per cluster malicious detection
3.2.1 Key generation
We denote by SK = {sk0, sk1, sk2, . . . , skn} the secret keys
corresponding the secondary users Us = {U1,U2, . . . ,Un}

in CR networks and letU0 be the FC. LetG denote a cyclic
group with generator g of prime order p for which deci-
sional Diffie-Hellman is hard and H : Z −→ G denotes
a hash function modeled as a random oracle. To identify
the malicious user, we propose in IPCMD to use a spe-
cial secret key generation technique. In fact, at each time
slot, the n secondary users are divided into nG groups.
For example, it is shown in Fig. 2 how 12 SUs are divided
randomly into 4 groups of 3 users.
At this step, we differentiate between two different

phases:

• Learning phase: During the first Ntraining time slots,
the groups are selected randomly to increase the
probability of making the malicious users participate
in the generation of different aggregated reports
which allow the system to faster distinguish the
attackers.

• Improvement phase: After identifying the malicious
users during the first Ntraining time slots, the FC
selects the groups in a matter to allow better
exploitation of the trusted users. In fact, the users are
sorted based on their reputation scores (see
Section 3.4) and divided into nG groups so that the
best users are grouped together.

Consequently, the keys are generated independently in
each group so that the FC can recuperate only the aggre-
gated sensing report of each group and not the exact
reports to preserve the location privacy.
For each group gk from the nG defined groups, every two

nodes ui, uj generate randomly their pairwise secret keys
ski,j and skj,i, such that ski,j + skj,i = 0. The final secret key
for a node ui can be written as

ski =
∑
Uj∈gk

ski,j (3)

Based on Eq. 3, the sum of the secret keys for each group
is equal to 0:

∑
Ui∈gk

ski =
∑

UiUj∈gk
ski,j + skj,i = 0 (4)

3.2.2 Encryption
Each secondary user ui ∈ U senses the spectrum at the
time slot t and then encrypts his sensing report ri with his
secret key as follows:

ci = H(t)ski gri (5)

SU1 SU2 SU3 SU4 SU5 SU6 SU7 SU8 SU9 SU10 SU11 SU12

G1 G4 G2 G1 G3 G4 G3 G2 G1 G3 G4 G2

Fig. 2 Group partition in IPCMD
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where g is the generator of G and gri = gri mod p
and H(t)ski = H(t)ski mod p present two modular
exponentiation.

3.2.3 Decryption
After receiving the sensing reports from all CR users, the
FC obtains the final aggregated sensing report for each
group gk by first computing

Rgk =
∏
ui∈gk

ci

= g
∑

riH(t)
∑

Ski (6)

The keys are generated so that in each group,
∑

Ski = 0;
hence, H(t)

∑
Ski = 1. Consequently, the expression of Rgk

becomes

Rgk = g
∑

ri (7)

Therefore, to obtain the aggregated sensing report for
time slot t, the FC needs to compute the discrete log of
(Rgk base g) and then obtain

∑
ri which will be used for

both the decision (existence or absence of primary user)
and in the reputation score determination.

3.3 Prioritized sequential probability ratio test
After receiving the sensing reports from all the users and
after sorting the groups based on their reputation scores
(see Section 3.4), the FC applies the sequential probability
ratio test (SPRT) technique [31]. In fact, the probability
ratio V is generated for each group gk as follows:

V =
∑
Ui∈gk

ln
(P(ri|H1)

P(ri|H0)

)wi
(8)

where P(r|Hk) presents the probability density function of
a random variable r under Hk (k = 0 or 1) and wi ∈[ 0, 1]
is the normalized reputation score of user i used as the
weight here, which will be explained in Section 3.4.
By using this ratio test, the FC decides whether the pri-

mary user is transmitting or not based on the following
criterion:

• Accept H1 and terminate if V ≥ A;
• Accept H0 and terminate if V ≤ B;
• Select another group gk if A < V < B.

Where A and B are the thresholds derived respectively
from the desired miss detection probability η and false
alarm probability φ [22].
According to [23], A and B can be written as follows:

A = ln
(
1 − η

φ

)
(9)

and

B = ln
(

η

1 − φ

)
(10)

At each iteration, the FC chooses an aggregated sens-
ing report corresponding to the group gk with the highest
reputation score (see Section 3.4), updates V accord-
ing to Eq. 12, and checks if a final decision can be
reached. In addition, in case where a decision cannot be
reached after aggregating all the sensing reports, the FC
considers that the primary user is transmitting to avoid
interference.
We note that the reputation score generation is most

important in the learning phase to distinguish the mali-
cious users. Hence, to reduce the complexity of the algo-
rithm, the reputation score update might be stopped
during the improvement phase.

3.4 Fine-grained reputation management
In IPCMD, the reputation scores are used by the FC to dif-
ferentiate malicious users from normal ones. In fact, the
FC records the past sensing performance of each user and
it predicts his future performance based on his past long-
term behavior. The reputation score generation is built
based on [13, 14] which is firmly rooted in the classical
Bayesian inference theory used to evaluate one or more
unknown quantities from the results of a sequence of
multinomial trials. Based on the work in [22], we propose
the following algorithm to iteratively assign a reputation
score to each user.
First, the algorithm is initialized by defining the different

possible intervals Ij of the probability ratio test as follows:

• Let w = 2(q + 1) for some integer q ≥ 1.
• The range [−∞,∞] is divided into 2q + 2 intervals,

denoted by (I1, . . . , I2q+2), where A and B
(B ≤ 0 ≤ A) are the decision thresholds for the
desired miss detection and false alarm probabilities,
which correspond to H1 and H0.
The j th interval is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−∞,B) If j = 1(
((kq+2−j−1)B)

(kq−1) , ((k
q+1−j−1)B)
(kq−1)

)
If 2 ≤ j ≤ q + 1(

((kj−q−2−1)A)
(kq−1) , ((k

j−q−1−1)A)
(kq−1)

)
If q + 2 ≤ j ≤ 2q + 1

(A,∞) If j = 2q + 2
(11)

where k > 1 is a system parameter. We denote by
∣∣Ij∣∣

the length of the j th interval.
∣∣Ij∣∣ can be written as

∣∣Ij∣∣ =
{
k

∣∣Ij+1
∣∣ If 2 ≤ j ≤ q

k
∣∣Ij−1

∣∣ If q + 2 ≤ j ≤ 2q (12)

Then, at each time slot, to assign a reputation score
for each user, the following algorithm is used.
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• After each sensing task, the performance of each
group is mapped into one of the w levels based on the
determination of ci = lnP(ri|H1) − lnP(ri|H0), [28],
which presents the potential contribution of the
cluster i (level It).

• The performance level of group i is assigned a
parameter li as follows:

li =
{
t If H1
w + 1 − t If H0

(13)

if a group i has a positive (or negative) contribution
to the final decision, its sensing performance will be
mapped into one of the higher (lower) q + 1 levels.

• For each SUj ∈ clusteri, we have lj = li
• We maintain a reputation profile for every SUj,

denoted by cj,s which counts how many times user j
got the reputation s.

• If we desire a performance level no less than
l ∈[ 1,� ], we compute the reputation expectation for
each user j as follows:

wj =
l∑

s=1
cj,ss (14)

Our scheme obviously has a good resilience to false
sensing reports. In particular, a sensing report from a less
reputable user will be given a smaller weight. Hence, it is
less likely to affect the final decision. Moreover, a sens-
ing report with low weight will be counted only if a final
decision cannot be reached after combining all the other
sensing reports with weight. As long as there are suffi-
cient trusted users in a group, a robust decision can still be
reached even if there are too many malicious users (seen
in Figs. 5 and 6).

3.5 Iterative per cluster malicious detection-accelerated
3.5.1 Key generation
For IPMCD, the bigger the number of groups nG is, the
faster the malicious users can be distinguished and the
shorter the learning phase is. In order to reduce the learn-
ing phase duration which contains the biggest part of
the algorithm complexity, we propose a modified IPMCD
which we call IPMCD-A to generate the keys so that
the decryption can be done for multiple random groups
in only one time slot. Similar to IPCMD, key matrix
SK(n ∗ n) is generated where n is the total number of
users. Each user Ui generates the row i in the matrix
and sends to user j the needed elementary key ski,j. We
describe the key exchange technique using the following
Algorithm 1.

Algorithm 1MGSKI algorithm
1: procedure falg(n,m)
2: for each user Uj do
3: for each user Ui do
4: if i < m then
5: ski,j ← random key
6: else
7: if i mod [2] ≡ 0 then
8: ski,j ← − ∑i−1

p=i−m+1(skp,j) (The key
is generated such the the sum of the keys in the group
{Ui−m+1,Ui−m+2, . . . ,Ui} of sizem is equal to zero).

9: else
10: if i − m − 1 > 0 then
11: ski,j ← − ∑i−2

p=i−m(skp,j) (The
key is generated such the the sum of the keys in the
group {Ui−m+2,Ui−m+2, . . . ,Ui−2,Ui} of sizem+ 1 is
equal to zero).

12: else
13: ski,j ← random key
14: end if
15: end if
16: end if
17: end for
18: end for
19: ski ← ∑

j(ski,j) the secret keys are gathered from
all the users.

20: end procedure

After gathering the secret keys from all the users, the
final key for user ski = ∑n

j=1 ski,j. Hence, the sum of ski
can be null in approximately n groups (n/2 groups of m
users and n/2 groups of m + 1 users) which increases the
chances of distinguishing the malicious user faster since
they have greater probabilities to participate in the gener-
ation of the aggregated sensing report in different groups.
For example, it is shown in Fig. 3 how 12 users can be
partitioned into 5 groups of 3 users and 4 groups of 4
users. Indeed, the bigger the number of users, the more
the number of groups that can be approximated by n.
This algorithmwill be executed in each time slot. Hence,

compared to IPMCD where each user Ui can appear only

SU1 SU2 SU3 SU4 SU5 SU6 SU7 SU8 SU9 SU10 SU11 SU12
G1 G1 G1

G2 G2 G2 G2
G3 G3 G3

G4 G4 G4 G4
G5 G5 G5

G6 G6 G6 G6
G7 G7 G7

G8 G8 G8 G8
G9 G9 G9

Fig. 3 Group partition in IPCMD-A
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in one group per iteration, in IPMCD-A.Ui can be in mul-
tiple groups at the same time (≈ 3 times in Fig. 3) which
improves the speed of malicious user detection, reduces
the learning phase duration, and consequently reduces the
complexity of IPMCD.

3.5.2 Encryption and decryption
The same encryption and decryption techniques are used
in IPMCD-A compared with IPMCD except that the
encrypted sensing report of user Ui is no longer used for
the decryption of only one aggregated report but for many
ones.

3.5.3 Reputation scoremanagement
By updating the reputation score management algorithm
of IPMCD, each user in IPMCD-A may update its rep-
utation score multiple times at the same time slot since
it participated in the generation of multiple aggregated
reports. Hence, less time is needed in the learning phase
of IPMCD-A compared to IPMCD.

4 Performance evaluation
In this section, we evaluate the effectiveness and efficiency
of the proposed schemes IPCMD and IPCMD-A.

4.1 simulation setup
As in [32], we consider an IEEE 802.22 WRAN environ-
ment with a single DTV transmitter with 6-MHz band-
width and 150.3-km transmission range. We simulate a
rectangle cell of 2.5 × 2.5 km2. The distance between the
center of the cell to the primary user is 145 m. We set the
minimum distance between any two detectors to be 200m
to decorrelate their shadow fading Xi [33]. We assume
each node is equipped with energy detectors. Note that we
used in Fig. 1 only indicative positions for the PUs. In fact,
if the primary users are drawn in their real positions (with
the correct scale), the figure will not be clear since all the
region is 2.5× 2.5 km and the primary user distance from
its center is 145 km. In addition, we call a malicious user i
has an attack strength T(dB) if it reports a ri + T where ri
is the true average of the RSSI values (the malicious user
aims to increase the probability of false alarm by sending
high RSS ri + T values during the absence of the primary
signal) [32]. We assume that there are 195 users in total,
among whichM are malicious.
Table 1 lists the default parameters used in our simu-

lation unless stated otherwise. The simulation is done in
MATLAB, and each point is the average of 10,000 runs,
each with a random seed.

4.2 Simulation results
Figure 4 shows the miss detection probabilities of PPSRA,
IPCMD, and IPCMD-A as a function of the number
of malicious users. We can see that the miss detection

Table 1 Default simulation setting

Parameter Value Description

d0 1 m Reference distance

N0 27 dBm The noise power

P0 88 dBm The received power at d0

m 6000 Number of samples

α 3.7 Path loss exponent

φ 0.01 Desired miss detection probability

η 0.1 Desired false alarm probability

� 22 Total number of performance levels

k 1.4 Ratio between adjacent performance intervals

l 12 Minimum desired performance level

probability of PPSRA system increases with number of
malicious users which proves that the PPSRA is non-
resistant to the data injection attack in terms of miss
detection probability. In addition, it can be seen that the
miss detection probability of IPCMD is close to 0 and
does not exceed 0.1 when the number of malicious users is
below 100 out of 195 users (51.21 % of the users are mali-
cious users). We notice that PPSRA outperforms IPCMD
in terms of miss detection probability when the number
of malicious users reaches 150 out of 195 (76.91 % of the
users are malicious users). In fact, for a large number of
malicious users, there is high probability to make a wrong
decision from the beginning. Hence, the malicious users
will be given bigger reputation scores which will increase
the miss detection probability compared with PPSRA sys-
tem. The miss detection of IPCMD-A is less sensitive to
the number of malicious users. In fact, it remains equal to
0 even when the number of malicious users corresponds
to 110 from 195 users (56 % of the users are malicious
users). In fact, IPCMD-A uses a bigger number of groups
in each iteration to distinguish the malicious users which
explains why IPCMD-A outperforms IPMCD in terms of
miss detection probability.
Figure 5 shows the false alarm probability of PPSRA,

IPCMD, and IPMCD-A as a function of the number of
malicious users. It can be seen that also in terms of false
alarm probability, PPSRA loses its performance when the
number of malicious users increases. In addition, the false
alarm probability of IPCMD is equal to 0 even for 75 mali-
cious users out of 195 (38 % of the users are malicious
users) and it reaches 0.1 for 110 malicious users (56 %
of the users are malicious users). Compared to the miss
detection probability presented in Fig. 4, the false alarm
probability is more sensitive to the number of attackers
since in case where the FC cannot be sure if the primary
user is using the spectrum or not, it assumes that there is a
transmission to prevent possible interferences which may
increase the false alarm probability in case of uncertainty.
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Figure 6 shows the effect of the attack strength on the
false alarm probability of PPSRA, IPCMD, and IPMCD-
A. The attack strength is varied between 0 and 2 ×
10−6 (from 0 to approximately the average power of the
received signal if the primary user is really transmit-
ting) and the number of malicious users is fixed to 50
users. We can remark that if the attack strength is big-
ger than 2 × 10−6 (20 % of the average received power
from the primary user if it is really transmitting), false
alarm probability for PPSRA starts increasing to reach
0.55 when the attack strength is 0.4 × 10−6. However,

the false alarm probability for IPCMD remains close to
0 when the attack strength is below 1.2 × 10−6 (60 % of
the average received power from the primary user if it
is really transmitting). On the other hand, it can be seen
that IPMCD-A is much resistant and starts getting errors
only when the attack strength is equal to 1.8× 10−6 (90 %
of the average received power from the primary user if
it is really transmitting). Hence, IPCMD-A outperforms
both IPCMD and PPSRA in terms of false alarm proba-
bility even when the malicious users send very high RSS
values.
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Fig. 5 False alarm probability vs. number of malicious users
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Fig. 6 False alarm probability vs. attack strength

In Fig. 7, since the objective of IPMCD and IPMCD-A is
to distinguish the malicious users from the non-malicious
ones, we define a new metric which is the reputation
sorting error probability. In fact, for all the possible pairs
of users malicious and non-malicious, we calculate the
probability of giving the malicious users bigger reputa-
tion than the normal user. This defined error probability
of estimated weight is plotted as a function of the num-
ber of iterations where after each 10 iterations, we change
the number of malicious users (30, 60, and 90 out of
195). First, that we can remark that during the first 10
iterations (10 malicious users), IPMCD was not able to
distinguish the malicious users (PW = 0.5) since they
have no sufficient number of groups nor iterations (0.5

for IPMCD and 0.36 for IPMCD-A). We remark also that
whatever is the number of malicious users, the difference
between IPMCD and IPMCD-A can be seen starting from
the first iteration and increases in time. In fact, during
the learning phase, the groups are selected randomly to
increase the probability of making themalicious users par-
ticipate in the generation of different aggregated reports
which allows the system to distinguish the attackers faster.
So, the bigger the number of groups is, the faster the
malicious users can be distinguished and the shorter the
learning phase is.
Figure 8 presents the reputation score of secondary

users after 1 to 100 iterations of the learning phase for
IPMCD. It can be seen that the proposed algorithm
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Fig. 7 Error probability of estimated weight vs. number of iterations
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Fig. 8 Reputation score evolution in time

successfully distinguishes the malicious users from the
normal SUs by giving them low reputation scores.

4.3 IPCMD Vs IPCMD-A
Figure 6 proves that IPCMD-A is more resistant than
IPCMD in data injection attack. The false alarm probabil-
ity remains less than 0 even when the attack strength is
equal to 1.8 × 10−6 while this is not the case for IPCMD.
Concerning the localization preservation of secondary
users, we can take the example presented in Figs. 2 and 3.
We have 12 users divided as 4 groups for IPCMD and 9
groups for IPCMD-A. If the sensing reports keep approx-
imately the same values, after 3 iterations, an attacker can
find the extra values of the sensing report for each users
in IPCMD, while for IPCMD-A, an attacker needs only to
two iterations to find the sensing reports of each users.
In these conditions, we can say that both systems show

good results and we have to choose our priority: if we
are looking for localization preservation, we have to select
IPCMD; and if we are looking for data injection preserva-
tion, we have to choose IPCMD-A.

5 Conclusions
In this paper, two novel schemes IPMCD and IPMCDA
have been proposed to realize a secure cooperative spec-
trum sensing. The proposed schemes improve the sec-
ondary user’s location privacy in the presence of malicious
users. These techniques include a novel algorithm for
key management which can work well in a dynamic CR
network even with untrusted FC. They include also a
novel secure soft combination scheme where the differ-
ent users are prioritized and regrouped together based

on their reputation scores. Simulation results showed that
both schemes can detect the presence of malicious users
while preserving the SU’s location. It has been proven also
that IPCMD is more efficient in the location preserva-
tion and less resistant in data injection attack compared to
IPCMD-A.
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