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Abstract
Background: High resolution mass spectrometry has been employed to rapidly and accurately type and subtype 
influenza viruses. The detection of signature peptides with unique theoretical masses enables the unequivocal 
assignment of the type and subtype of a given strain. This analysis has, to date, required the manual inspection of mass 
spectra of whole virus and antigen digests.

Results: A computer algorithm, FluTyper, has been designed and implemented to achieve the automated analysis of 
MALDI mass spectra recorded for proteolytic digests of the whole influenza virus and antigens. FluTyper incorporates 
the use of established signature peptides and newly developed naïve Bayes classifiers for four common influenza 
antigens, hemagglutinin, neuraminidase, nucleoprotein, and matrix protein 1, to type and subtype the influenza virus 
based on their detection within proteolytic peptide mass maps. Theoretical and experimental testing of the classifiers 
demonstrates their applicability at protein coverage rates normally achievable in mass mapping experiments. The 
application of FluTyper to whole virus and antigen digests of a range of different strains of the influenza virus is 
demonstrated.

Conclusions: FluTyper algorithm facilitates the rapid and automated typing and subtyping of the influenza virus from 
mass spectral data. The newly developed naïve Bayes classifiers increase the confidence of influenza virus subtyping, 
especially where signature peptides are not detected. FluTyper is expected to popularize the use of mass spectrometry 
to characterize influenza viruses.

Background
Influenza is a leading cause of death throughout the 
developed world and contributes to between 250,000 and 
500,000 deaths every year worldwide [1]. On three occa-
sions last century, global pandemics resulted in millions 
of deaths while recent pandemic threats have been posed 
by strains of avian [2] and swine origin [3]. Much higher 
rates of infection exist in the general population that, 
while not life threatening, inflicts illness and suffering. 
The virus also imposes a significant social and economic 
burden through productive losses in the workplace [4].
The genetic analysis of the influenza virus is derived from 
RT-PCR sequencing of amplified gene segments for the 
major antigens of the virus [5]. Most work is focused on 

the hemagglutinin gene because of its primary role in 
antigenic drift [6]. This is aided by the Influenza Virus 
Resource, a sequence database developed by the National 
Center for Biotechnology Information (NCBI) [7] that 
provides access to genetic sequence data that facilitates 
multiple sequence alignments, phylogenetic analysis and 
the generation of clusters [8,9]. It is typical in a retrospec-
tive analysis, for a strain from the most dominant genetic 
cluster within one influenza season to be recommended 
by the WHO for the vaccine in the following season.
Antigenic change is measured primarily employing the 
hemagglutination inhibition (HI) assay [10], where anti 
sera raised from infection of a host with one strain are 
cross reacted with other uncharacterized and reference 
strains in parallel. New computational approaches have 
been developed to analyze HI data [11] that increases the 
reliability with which antigenic differences can be 
assessed and this has been aided by mass spectrometric 
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approaches [12] that enable epitopic domains to be local-
ized [13-17]. Antigenic maps allow for the visualization of 
antigenic relationships among many strains in order to 
follow the short and long evolution of the virus [18]. 
These maps can aid the comparison of antigenic data 
derived from different laboratories and enable such data 
to be more reliably interpreted. Epidemiological model-
ing to predict whether new emerging strains are likely to 
cause widespread epidemics in future seasons is also 
under development [19,20]. The inclusion of antigenic 
drift and cross-immunity data can improve the reliability 
of these models.
We have recently developed the most direct and rapid 
method yet to survey influenza from the perspective of 
the viral protein antigens [21-24]. Antigens recovered 
from the virus or present in whole virus or vaccine prepa-
rations are digested with site-specific proteases and the 
peptide products are analyzed by high resolution mass 
spectrometry [25]. The mass accuracy attained in these 
analyzes enables the unambiguous identification of con-
served signature peptides that are specific to a given type 
or subtype of the influenza virus. The signature peptides 
are unique in mass when compared to the in silico digest 
of all influenza proteins across all strains and hosts and 
those proteins known to contaminate virus preparations.
To date, the analysis of high resolution mass spectra of 
influenza proteolytic preparations has required manual 
interpretation through the identification of signature 
peptide masses that indicate the type or the subtype of an 
influenza virus. Currently, manual interpretation can be 
performed when signature peptides dominate a mass 
spectrum but it is not possible to establish the degree of 
confidence in typing and subtyping strains. Further, spec-
tral analysis often involves the detection of multiple sig-
nature peptides, some of low abundance, or in some cases 
establishing the type and subtype without signature pep-
tides (Po > 90-95). Existing algorithms such as the Mascot 
Peptide Mass Fingerprinting algorithm [26] can be used 
to identify proteins within a mass spectrum, however, 
such algorithms do not provide any level of confidence 
for the type and subtype of the virus from which the pro-
teins are identified. This is particularly a problem when 
signature peptides are not detected in a given mass spec-
trum. To extend our previous work and automate the 
analysis of high resolution mass spectra of influenza pro-
teolytic preparations, the FluTyper algorithm has been 
developed. FluTyper implements methods to deisotope, 
filter and detect peaks from mass spectra. Peaks are then 
matched against established signature peptides from 
common antigens [21-24]. In addition, naïve Bayes classi-
fiers have been developed to provide statistical confi-
dence for type and subtype assignments where few or no 
signature peptides are available. Here the basis of the Flu-
Typer algorithm is described and its application for the 

automated analysis of MALDI mass spectra derived from 
antigen and whole virus digests is demonstrated.

Results and Discussion
Algorithm overview
FluTyper has been designed to utilize naïve Bayes classifi-
ers for the typing and subtyping of proteolytic influenza 
mass spectra. FluTyper is divided into two main parts, 
first, the algorithm generates naïve Bayes classifiers and 
determines unique signature peptides, and second, the 
algorithm pre-processes query mass spectra and deter-
mines the virus type and subtype based using the classifi-
ers and signature peptides (Figure 1). Naïve Bayes 
classifiers are generated for four common influenza anti-
gens hemagglutinin (HA), neuraminidase (NA), nucleo-
protein (NP), and matrix protein 1 (M1). Subsequently, 
the FluTyper algorithm uses all classifiers, in combina-
tion, for the computation of the type and subtype proba-
bilities and the identification of proteolytic signature 
peptides from each mass spectrum analyzed.

Pre-processing of high resolution mass spectra
Mass spectra of tryptic influenza peptides are pre-pro-
cessed prior to typing and subtyping using the naïve 
Bayes classifier. First, a user defined threshold is used to 
remove peaks that are considered to be noise (typically 
set at a signal-to-noise ratio of 2). Second, all isotope 
clusters are identified and the spectrum is deisotoped. 
The deisotoping method used is adapted from the 
THRASH algorithm [27]. The method involves iterating 
through each peak in the threshold mass spectrum start-
ing from the lowest m/z value. As the algorithm proceeds, 
each peak is compared to previous peaks to determine if 
it belongs to an existing isotopic cluster. If a peak belongs 
to an existing isotopic cluster, the peak is removed and its 
intensity is added to the existing monoisotopic peak. To 
evaluate the composition of isotopic clusters, the model 
amino acid averagine (C4.9384H7.7583N1.3577O1.4773S0.0417) 
[28] is used to define both the predicted distance between 
isotopic peaks and the intensity distribution of ions with 
an isotopic cluster. A major advantage of mass spectral 
data acquired by MALDI is that tryptic peptide ions gen-
erated are almost exclusively singly charged (i.e. [M+H+] 
ions). This eliminates the need to deconvolute (by mass) 
the mass spectrum.

Naïve Bayes classifiers for the typing and subtyping of the 
influenza virus
Non-redundant HA, NA, NP and M1 sequence sets for 
human strains of influenza virus type A and B, and sub-
types H1N1 excluding pandemic sequences (H1N1) 2009 
sequences, pandemic (H1N1) 2009 sequences (P2009), 
H3N2 and H5N1 were retrieved from the NCBI Influenza 
Virus Sequence Database [7]. Each set of sequences is 
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then aligned using ClustalW [29] to enable the relative 
frequency of occurrence Po(M, T) of each unique theo-
retical monoisotopic tryptic peptide ion [M+H]+, M, for a 
given type or subtype, T, to be determined. Tryptic pep-
tide fragments were generated to allow for up to 2 missed 
cleavages, with fixed carbamidomethyl cysteine and 
optional modifications of methionine, glutamic acid and 
cysteine residues in the form of oxidized methionine, 
pyroglutamate and acrylamide adducts with cysteine.
A naive Bayes classifier is a simple probabilistic classifier 
based on the application of Bayes' theorem. Using the 

classifier, the type or subtype of an influenza virus can be 
determined as follows:

where p(T|M1...Mn ) is the probability for a type or sub-
type T based on theoretical tryptic peptide ion monoiso-
topic masses, M1...Mn. All parameters (p(Mi|T), p(T) and 
p(M1...Mn)) in the model are estimated directly from pro-
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Figure 1 Schematic overview of the FluTyper algorithm.
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tein sequence alignments. The independent probability 
for each mass to be present for a given type or subtype, 
p(Mi|T), is given by its relative frequency of occurrence 
Po(M, T). The assumption is made that the presence of 
peptide ion masses derived from a particular protein is 
independent to that of any other mass (i.e. that the pres-
ence of one tryptic peptide is independent of the pres-
ence of another). Where a particular mass Mi is present in 
one type or subtype, but not another, the Laplace's rule of 
succession is applied, where 1 is added to the number of 
observed events to avoid zero probabilities. This assump-
tion is useful to account for noise peaks that may be pres-
ent in mass spectral data. The prior probability, p(T), 
reflects the probability of occurrence of a given type or 
subtype, T, and is estimated based on the relative number 
of sequences in the NCBI database for T. However, this 
value may be adjusted as necessary to match the observed 
occurrence of different influenza types and subtypes in a 
particular season. Finally, the independent probability of 
observing peaks M1...Mn, p(M1...Mn) can be computed as 
the sum of the probability of observing peaks M1...Mn 
across all types or subtypes:

where Ta, Tb, Tx, etc are all the possible type or subtypes 
being analyzed. A naïve Bayes classifier is built for each of 
the HA, NA, M1 and NP antigens used to type and sub-
type the virus.
To assess the peak matching false discovery rate, decoy 
naïve Bayes classifier models are generated using ran-
domly permutated sequences from the same set of influ-
enza proteins.

Uniqueness of peptide ion masses in naïve Bayes classifiers
Since the naïve Bayes classifier is trained based on theo-
retical protein sequences from specific influenza proteins 
alone, validation that the tryptic peptide masses are 
unique to influenza is necessary. This is performed as 
described previously [21]. Briefly, each theoretical 
monoisotopic mass, M, from each type and subtype pres-
ent in the naïve Bayes classifier, is compared against the 
theoretical monoisotopic tryptic ion masses [M+H+] 
from a custom database containing all non-redundant 
influenza protein sequences, and those of possible con-
taminants, including human keratin, bovine/porcine 
trypsin and several chicken proteins that have been found 
to commonly contaminate egg-propagated virus prepara-
tions or are introduced during the sample preparation. 
The included egg-derived chicken protein contaminants 
are based on our own observation and their identity was 
confirmed by MALDI tandem mass spectrometry 
(unpublished observations - spectra available upon 

request). Other unknown contaminants are always possi-
ble, but due to the use of high-resolution mass spectrom-
etry with mass accuracies routinely better than 1 ppm 
achieved, the misassignment of contaminants will be 
largely avoided. Masses are generated for predicted tryp-
tic peptide ions allowing for up to 2 missed cleavages and 
the same post-translational modifications as described in 
the previous section. The difference in M and the closest 
theoretical mass, UM (in parts per million (ppm)), of a 
tryptic peptide derived from a contaminant or influenza 
antigen with at least 10 entries in the custom database is 
defined as the uniqueness.

Peak matching, signature peptide identification and 
computation of type and subtype probabilities using naïve 
Bayes classifiers
In a mass spectrum, typically only a portion of theoretical 
tryptic peptides is observed experimentally. This may be 
due to a range of factors ranging from incomplete prote-
olytic cleavage to the presence of unanticipated post-
translational modifications. It is necessary to first define a 
set of theoretical tryptic peptide masses that are actually 
observed within a specified mass error tolerance. The list 
of theoretical masses used for matching are determined 
based on the specified protein (HA, NA, NP, M1 or all). 
Where the mass of an observed peak is within the mass 
error tolerance of two or more peaks, the closest theoret-
ical mass is selected. For a matching peak to be selected 
for further analysis, the mass must be sufficient unique as 
defined by:

where ΔM is the mass error (in ppm) between the 
observed mass and theoretical tryptic peptide mass, and 
UM is the uniqueness as described in the previous section. 
A scaling of UM by a factor of 0.5 is necessary to ensure 
that there cannot be another tryptic contaminant peptide 
mass present that is closer to the observed mass than that 
of the theoretical mass.
The concept of using signature peptides to type and sub-
type the influenza virus has been previously described 
[21]. A signature peptide is defined as a theoretical tryp-
tic peptide that is exclusively present in one type or sub-
type, but not in any of the others. In the FluTyper 
algorithm, a signature peptide is defined as any theoreti-
cal tryptic peptide, M, where Po(M, T) > 0.7 for one type 
or subtype and Po(M, T) = 0 for all other types or sub-
types for a given influenza protein. Since few signature 
peptides may be indicative of a particular subtype of the 
virus, indicator peptides are also used by the algorithm. 
An indicator peptide is defined similarly to a signature 
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peptide with the exception that it may occur in the 
sequence of antigens from other viral subtypes with 
Po(M, T) < 0.1.
For the computation of type and subtype probabilities, 
the naïve Bayes classifier (1) is applied using the set of 
matching peaks. For typing, this provides a probability 
that a set of masses is from influenza A (p(FluA| 
M1...Mn)) or influenza B (p(FluB|M1...Mn)). If 
p(FluA|M1...Mn) > 0.7 or there is more than one influenza 
A signature peptide identified, the algorithm will proceed 
to perform subtyping where p(H1N1|M1...Mn), 
p(H3N2|M1...Mn), p(H5N1|M1...Mn) and 
p(P2009|M1...Mn) are all computed.

Implementation
Since it is only necessary to generate a naïve Bayes classi-
fier when new sequences have been added to the custom 
database, the implementation of the FluTyper algorithm 
is divided in two applications, consisting of the naïve 
Bayes classifier and signature peptide generator, and the 
mass spectrum analysis program (Figure 1). The classifier 
and signature peptide generator accepts ClustalW 
aligned sequences as input to compute the frequency of 
occurrence of theoretical tryptic peptides and determines 
the uniqueness of their mass. The output is a table con-
taining all data necessary for naïve Bayes classification 
and signature peptide determination. The second compo-
nent of FluTyper accepts a mass spectrum in ASCII for-
mat and the classification tables as input. FluTyper 
outputs the type and subtype prediction based on signa-
ture peptides and naïve Bayes probabilities. The number 
of matches to peptides from decoy sequences is also 
shown to provide an estimate of the false positive peak 
matching rate. A summary of all peaks identified can also 
be downloaded in tab-delimited format. FluTyper is 
implemented using GNU C++. A web interface has been 
developed for the second component of FluTyper and can 
be accessed at http://www.cancerresearch.unsw.edu.au/
CRCWeb.nsf/page/flutyper (see Figure S1 for a screen-
shot of the interface and Table S1 for a description of the 
parameters).

Theoretical evaluation of naïve Bayes classifier
The performance of the naïve Bayes classifiers were eval-
uated as a function of the protein coverage. For each pro-
tein (i.e. HA, NA, NP or M1), 500 random subsets of 
theoretical tryptic peptides representing 0-100% coverage 
of the protein were generated for each protein sequence 
used to train the classifier. The set of theoretical tryptic 
peptides masses represents a simulated mass spectrum. 
Leave-one-out cross-validation was performed, meaning 
that a new classifier was used each time, leaving out the 
protein sequence being tested. For the purpose of this 

evaluation, a subset of masses were determined to be 
typed or subtyped if p(T| M1...Mn) > 0.7 for any T.
Figure 2A &2B shows the percentage of simulated mass 
spectra conclusively classified as a function of protein 
coverage for typing and subtyping respectively. For typ-
ing, over 90% classification rate was achieved with greater 
than 25% protein coverage in all cases. For subtyping, 
over 90% classification rate was achieved with greater 
than 30% protein coverage for HA, NA and NP. However, 
M1 was less reliable, with a classification rate limited to 
around 80% with a protein coverage of greater than 40%. 
The low classification rate for M1 is due to a combination 
of factors. First, the M1 protein has around 50% less 
amino acids compared to NP, NA and HA and therefore 
also has fewer tryptic peptide masses that can be used by 
the naïve Bayes classifier. Second, the M1 protein is more 
conserved between different influenza subtypes com-
pared to NP, NA and HA, thus the classifier may not be 
able distinguish the subtype even with full protein cover-
age.
In the case of typing (Figure 1C), the false positive rate 
(FPR) is less than 1% in all cases and 0% at protein cover-
age of greater than 25%. For subtyping (Figure 1D), the 
FPR was less than 1% for protein coverage of 20% or 
greater for HA and less than 5% with increased sequence 
coverage for NA. HA performed more favorably than NA 
since the neuraminidase of H1N1 and H5N1 are similar, 
while the hemaggluttin antigen across H1N1, H3N2 and 
H5N1 are all significantly different. On the other hand, 
the NA classifier was able to distinguish HxN1 and H3N2 
subtypes with 0% FPR (data not shown).
For NP, the FPR is 10% at low protein coverage and 
decreases to 5% with increased coverage. For M1, the FPR 
is just under 10% independent of the protein coverage. 
The high apparent FPR for NP and M1 for subtyping can 
be expected since the subtype of a virus is characterized 
by the isoform of its HA and NA proteins. For instance, 
the reassortment of a virus can lead to the introduction of 
a NP protein from one subtype to another (e.g. H1N1 to 
H3N2) without changing the subtype of the actual virus. 
For example, the translated NP protein sequence derived 
from the NCBI entry gi148466309 is designated as a 
H3N2 subtype, but the actual sequence is in fact more 
similar to other H1N1 NP sequences.
The theoretical testing results demonstrate that the use of 
naïve Bayes classifiers are appropriate at protein coverage 
levels expected from experimental mass spectra where 
20-30% or greater protein coverage is common. Crucially, 
the false positive rate is less than 1% for typing and is still 
below 10% for subtyping using M1 and NP proteins. It is 
evident from testing that for confident assignment of the 
virus subtype, the use of HA or NA tryptic peptides 
would be most desirable.

http://www.cancerresearch.unsw.edu.au/CRCWeb.nsf/page/flutyper
http://www.cancerresearch.unsw.edu.au/CRCWeb.nsf/page/flutyper
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Testing with experimental influenza mass spectra
To demonstrate FluTyper using experimental data, mass 
spectra were acquired from tryptic digests prepared from 
whole virus preparations and gel-separated influenza 
antigens. Mass spectra were generated for common 
human influenza virus strains including influenza type B 
strain B/Victoria/504/2000, type A (H1N1) strain A/Solo-
mon Islands/03/06 and type A (H3N2) strain A/Brisbane/
10/2007 (Additional file 1). The type and subtype of these 
three strains are in common with those viruses that are in 
circulation in humans today. All samples were analyzed 
using default FluTyper settings - with relative peak inten-
sity cutoff at 0.001%, peak matching tolerance of 3 ppm, 
frequency of occurrence (Po) cutoff of 0.6, one missed 
cleavage and optional modification of methionine oxida-
tion.

The high resolution mass spectrum of a whole virus 
digest of influenza type B strain B/Victoria/504/2000 is 
shown in Figure 3A. The 15 signature peptides for influ-
enza type B identified enable the virus type to be confi-
dently assigned (Table 1). In addition to the signatures, 3 
indicator peptides - those that are present with a fre-
quency of occurrence, Po < 0.1 in all other types, are also 
identified. The identified signature and indicator peptides 
are distributed amongst NP, M1, NA and HA, showing 
that good sequence coverage of all major antigens can be 
achieved through whole virus digestion.
To demonstrate the subtyping ability of FluTyper, a whole 
virus digest of type A (H3N2) influenza strain A/Bris-
bane/10/2007 is used (Figure 3B). In total, there are 18 
peaks with Po of > 0.6 and the peaks are matched within 

Figure 2 Performance of naïve Bayes classifier relative to protein coverage in terms of generating conclusive results for typing (A) and sub-
typing (B) of the influenza virus and in terms of false positive rates for typing (C) and subtyping (D). In all subfigures, the black, red, green and 
blue lines represent NP, M1, HA and NA respectively.
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Figure 3 High resolution mass spectrum of (A) whole virus digest of influenza type B strain B/Victoria/504/2000, (B) whole virus tryptic di-
gest of influenza type A (H3N2) strain A/Brisbane/10/2007, and (C) in-gel tryptic digest of the nucleoprotein from type A (H1N1) strain A/
Solomon Islands/03/06.
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Table 1: Identified peptides from a mass spectrum (Figure 3A) of a whole virus digest of type B influenza strain B/Victoria/504/2000

Po

Sequence [M+H]+ Start-End Δppm Uniqueness(in ppm) FluA FluB Protein Type signature

GGFVHQR 800.41620 354-360 -0.2449 -1.6716 0.0000 0.9962 NA *

SHFANLK 816.43626 69-75 0.2094 12.1210 0.0000 0.7320 HA *

QLPNLLR 853.52541 136-142 -0.3046 -55.8003 0.0000 0.9268 HA *

GLILAERK 899.56728 95-102 -0.9505 4.4710 0.0001 0.8696 M1

TIYFSPIR 996.55129 163-170 -0.1806 3.3917 0.0001 0.9504 NP

AGLNDDMER 1020.44149 97-105 0.3116 32.3536 0.0000 1.0000 NP *

LQFWAPMTR 1149.58736 439-447 -0.5106 2.1677 0.0000 1.0000 NP *

QTIPNFFFGR 1226.63167 540-549 0.1753 4.7871 0.0000 0.9504 NP *

SMVVVRPSVASK 1259.71402 320-331 -0.3271 -11.0477 0.0000 0.9587 NP *

LNVETDTAEIR 1260.64302 309-319 0.4815 -1.9918 0.0000 0.9660 NA *

NLIQNAHAVER 1264.67566 106-116 -0.2001 -0.8042 0.0000 0.9256 NP *

SKPYYTGEHAK 1280.62696 336-346 -0.4123 2.6393 0.0000 0.9892 HA *

LGEFYNQMMVK 1359.64355 86-96 -1.3173 8.2625 0.0000 0.9917 NP *

VLSALTGTEFKPR 1418.80019 399-411 0.4130 -6.9756 0.0000 0.9752 NP *

LAEELQSNIGVLR 1441.80092 201-213 -1.2249 7.7910 0.0000 0.9149 M1 *

EFDLDSALEWIK 1465.72094 36-47 -0.2681 -2.7440 0.0000 0.9574 M1 *

REMQMVSAMNTAK 1496.70182 175-187 -0.3554 2.1066 0.0001 0.9149 M1

NPGIADIEDLTLLAR 1610.87481 305-319 -1.1441 6.9732 0.0000 0.9917 NP *

Naïve Bayes probabilities: P(FluB) = 1.000
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Table 2: Identified peptides from a mass spectrum (Figure 3B) of a whole virus digest of type A (H3N2) influenza strain A/Brisbane/10/2007

Po

Sequence [M+H]+ Start-End Δppm Uniqueness (in ppm) H1N1 H3N2 H5N1 P2009 Protein Type signature Subtype sig/ind

HENR 555.26338 175-178 0.0432 52.5444 1.0000 0.9944 1.0000 1.0000 M1 *

NFWR 622.30961 211-214 0.2025 15.9037 1.0000 0.9975 0.9885 1.0000 NP *

RIWR 630.38344 124-127 0.7773 -2.1209 0.8377 0.9687 0.0235 0.0000 NP

LLSFIR 748.47159 349-354 -2.2232 -15.0079 0.0319 0.9171 0.0000 0.0000 NP *

SGYWAIR 852.43626 389-395 0.4282 -5.2567 0.0000 0.7024 0.0000 0.0000 NP *

QMVQAMR 863.42261 211-217 0.9335 3.6413 0.9474 0.9396 0.9730 0.0000 M1 *

EITFHGAK 902.47304 106-113 1.7441 3.7342 0.9794 0.9670 0.6944 0.9841 M1

MVLSAFDER 1067.51901 72-80 1.1213 -6.9338 1.0000 0.9974 1.0000 0.9877 NP *

TRPILSPLTK 1125.69902 48-57 -0.6476 19.9583 1.0000 0.9727 1.0000 1.0000 M1 *

GINDRNFWR 1177.58612 206-214 0.2675 -1.1430 0.8883 0.8744 0.0345 0.9726 NP

MVLSAFDERR 1223.62012 72-81 -0.9578 5.3252 0.9628 0.9844 0.0000 0.9877 NP

GIGTM*VMELIR 1235.64864 191-201 -0.5722 -2.7281 0.0106 0.8241 0.0116 0.0000 NP

MMEGAKPEEVSFR 1510.70286 453-465 0.2529 2.2314 0.0053 0.8317 0.0000 0.0058 NP

GWAFDDGNDVWMGR 1625.68015 357-370 -2.3418 79.7986 0.0000 0.9116 0.0000 0.0000 NA(N2) * *

GILGFVFTLTVPSER 1635.91047 58-72 -0.6046 -1.6425 0.9588 0.9670 0.8947 0.9831 M1 *

NPGNAEIEDLIFLAR 1671.87006 253-267 0.8739 -6.7188 0.2606 0.7281 0.9892 0.9589 NP *

MMEGAKPEEVSFRGR 1723.82544 453-467 0.7002 -1.9602 0.0053 0.6533 0.0000 0.0000 NP

ESRNPGNAEIEDLIFLAR 2044.04579 250-267 1.0631 -3.5273 0.2128 0.7482 0.0538 0.9315 NP

Naïve Bayes probabilities: P(FluA) = 1.000, P(H3N2) = 1.000; M* indicates methionine sulfoxide
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the 3 ppm threshold (Table 2). 8 of the 18 peaks identified 
are signature peptides for type A influenza.
Generally, type signature peptides are highly conserved 
with Po > 0.95 across all subtypes and provide little value 
for distinguishing subtypes (this is with the exception of 
the NA peptide (1625.68015 m/z) which is only present in 
HxN2 sub-types). Nevertheless, of the remaining 10 pep-
tides, FluTyper identified two as H3N2 subtype signa-
tures (852.43626 m/z and 1625.68015 m/z) and one as an 
indicator (748.47159 m/z). The identification of the sig-
nature and indicator peptides alone enables the subtype 
to be confidently assigned to H3N2. Furthermore, by 
applying the naïve Bayes classifier using the Po values of 
all the peaks for all subtypes a p(H3N2|peaks) value of 1 is 
obtained, providing additional confidence of the result 
(see Additional files 2, 3, 4 and 5).
Finally, to demonstrate the use of the naïve Bayes classi-
fier where no signature peptides are available for subtyp-
ing, a mass spectrum of in-gel digested nucleoprotein 
from type A (H1N1) strain A/Solomon Islands/03/06 was 
analyzed (Figure 3C). In total, 11 peptides are identified 
by FluTyper (Table 3). While 5 type A influenza signa-
tures peptides are identified, no subtype indicator or sig-
nature peptides were found. In this case, the naïve Bayes 
classifier provides the only means for subtype determina-
tion. Using the Po values shown in Table 3, the classifier 
generates probabilities of 0.9998, 0.0002, 0 and 0 for 
H1N1, H3N2, H5N1 and P2009 respectively, indicating 
that the peptides identified are almost certain to have 
come from the H1N1 subtype.
To validate the naïve Bayes classification, the protein 
sequence coverage is shown in Table 4. In the case of the 
whole virus digests, a coverage range of between 10.5% 
and 42%, and 10.3% and 27.9% was achieved in mass 
spectra for the type A (H3N2) and type B virus, respec-
tively. The combined FPR as estimated from Figure 2B 
and 2D based on the product of each of the individual 
antigen FPR is < 0.1% for type A (H3N2) and type B, 
respectively. For type A (H1N1), as expected, only nucle-
oprotein was identified for the in-gel digestion of this 
antigen with a sequence coverage of 24.8%. Based on the-
oretical testing from Figure 2D, there is an approximately 
8% chance that the spectrum could be misidentified. As 
discussed earlier, the high false positive rate is due to the 
fact that the subtype of an influenza virus is defined 
based on hemagglutinin and neuraminidase, hence the 
possibility of reassortment cannot be excluded. Never-
theless, the nano-scale preparation and mass spectrome-
try analysis of whole virus digests described here provides 
highly reliable subtyping results for influenza using Flu-
Typer.

Conclusions
The FluTyper algorithm has been developed for auto-
mated typing and subtyping of influenza virus using high 
resolution mass spectral data. FluTyper incorporates the 
use of influenza antigen signature peptides previously 
identified in this laboratory. Furthermore, to increase the 
confidence of subtyping, naïve Bayes classifiers have been 
developed for four common influenza antigens, hemag-
glutinin, neuraminidase, nucleoprotein, and matrix pro-
tein 1. Theoretical testing of the classifiers demonstrates 
their applicability at protein coverage rates expected in 
mass mapping experiments. Using laboratory grown 
virus samples analyzed by high resolution mass spec-
trometry, it is shown that FluTyper can rapidly and reli-
ably type and subtype strains of the influenza viruses that 
are in common circulation in humans. Through the use 
of other signature peptides and classifiers, it is antici-
pated that the FluTyper algorithm could be applied to the 
typing/classification of other viruses and bacteria.

Methods
Influenza virus strains
All utilized human strains of type A and type B influenza 
viruses, A/Solomon Islands/03/06(H1N1), A/Brisbane/
10/07(H3N2), and B/Victoria/504/2000, were purchased 
from Advanced ImmunoChemicals Inc. (Long Beach, 
California, USA). The inactivated viruses, prepared from 
allantoic fluid of embryonated eggs, were used without 
further purification.

Protein preparation and digestion
A suspension corresponding to 35 ?g of influenza virus 
type B and type A (H1N1), was evaporated to near dry-
ness, resuspended in digestion buffer without trypsin (50 
mM NH4HCO3, 10% ACN, 2 mM DTT) and incubated at 
37°C for 3 h. Modified trypsin (1.0 mg•mL-1; Roche Diag-
nostics GmbH, Mannheim, Germany) was added to a 
final concentration of about 30 ng•?L-1 and the digestion 
carried out at 37°C over night.
Where gel recovered, viral protein was first separated 
from 20 ?g of the virus by SDS-PAGE (12.5%), excised and 
destained (25 mM NH4HCO3 in 50% acetonitrile). The 
reduction and alkylation of cysteine residues with DTT 
(10 mM DTT, 50 mM NH4HCO3; 30 min, 56°C) and 
iodoacetamide (55 mM iodoacetamide, 50 mM 
NH4HCO3; 20 min at room temperature in the dark) was 
followed by tryptic digestion as previously described [21]. 
Cleaved peptides were extracted by repeated sonication 
in 60% acetonitrile containing 0.1% trifluoroacetic acid. 
Extracted peptides were dried completely in a vacuum 
concentrator and dissolved in 25 mM NH4HCO3.
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Table 3: Identified peptides from a mass spectrum (Figure 3C) of nucleoprotein derived from type A (H1N1) influenza strain A/Solomon Islands/03/06

Po

Sequence [M+H]+ Start-End Δppm Uniqueness (in ppm) H1N1 H3N2 H5N1 P2009 Protein Type signature Subtype sig/ind

NFWR 622.30961 205-208 0.0578 15.9037 1.0000 0.9975 0.9885 1.0000 NP *

MIGGIGR 703.39196 32-38 0.0668 9.2751 0.7249 0.0078 0.0000 0.9877 NP

YWAIR 708.38276 385-389 -0.0663 -16.7649 1.0000 0.2902 1.0000 1.0000 NP *

SRYWAIR 951.51590 383-389 1.4419 10.4002 0.8095 0.1878 0.8495 0.0411 NP

SGGNTNQQR 961.44460 392-400 0.6313 3.6976 0.8783 0.9724 0.5161 0.0137 NP *

MVLSAFDER 1067.51901 66-74 -0.9958 -6.9338 1.0000 0.9974 1.0000 0.9877 NP *

M*VLSAFDER 1083.51392 66-74 -2.1209 -12.6763 1.0000 0.9974 1.0000 0.9877 NP

MVLSAFDERR 1223.62012 66-75 2.0251 5.3252 0.9628 0.9844 0.0000 0.9877 NP

FYIQMCTELK 1332.63265 45-54 0.6754 32.3082 0.9865 0.9948 0.9560 1.0000 NP *

SYEQM*ETDGER 1360.53214 9-19 1.6854 8.0895 0.9096 0.3526 0.0000 0.0260 NP

M*CSLM*QGSTLPR 1412.63307 163-174 2.5130 -7.6276 1.0000 0.9974 0.9765 1.0000 NP

Naïve Bayes probabilities: P(FluA) = 1.000, P(H1N1) = 0.9998; M* indicates methionine sulfoxide

Table 4: Total protein coverage of the different antigens identified from the mass spectrum of each of samples tested

Protein coverage

Sample HA NA NP M1

Influenza B (Victoria) 12.0% 10.3% 27.9% 18.5%

H3N2 (Brisbane) 19.3% 10.5% 42.0% 33.3%

H1N1 (Solomon Island) n/a n/a 24.8% n/a
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Nano-scale digestion of whole virus
2.5 ?L of a suspension containing 500 ng•?L-1 of the influ-
enza virus type A (H3N2) was irradiated in a microwave 
(Samsung MX245) at 900 W power for 2 × 20 s. 7.5 ?L of a 
2.6 mM DTT solution was added to reduce Cysteine resi-
dues. The sample was sonicated in a sonicator bath and 
incubated at 60°C in an Eppendorf thermomixer for 30 
min. The suspension was evaporated to dryness in a vac-
uum concentrator and viral protein was reconstituted in 
4 ?L digestion buffer (31.3 mM NH4HCO3, 12.5% ace-
tonitrile, 4.3 mM octyl-?-D-glucopyranoside) by vortex-
ing and sonication. 1.0 ?L modified trypsin (65 ng•?L-1; 
Roche Diagnostics, Mannheim, Germany) was added and 
the digestion carried out overnight at 37°C. The digestion 
mixture was concentrated to dryness and the tryptic 
cleavage products were dissolved directly in matrix solu-
tion (1.5 mg•mL-1 ?-cyano-4-hydroxycinnaminic acid, 6.3 
mM NH4HCO3, 45% acetonitrile, 0.075% TFA) to create a 
peptide concentration of ~250 ng•?L-1.

MALDI FT-ICR mass spectrometry
MALDI FT-ICR mass spectra were recorded on a 7T 
Bruker APEX-Qe instrument (Bruker Daltonics, Billerica, 
MA, USA) in the positive ion mode as previously 
described [21-24]. Briefly, mass spectra were acquired for 
1 M data points using a broadband excitation. Mass spec-
tra were calibrated externally using a mixture of peptides 
comprising Angiotensin I, adrenocorticotropic hormone 
(ACTH) fragments containing residues 1-17, 7-38 and 
18-39, and a synthetic hemagglutinin antigen derived 
peptide. Mass spectra were processed using the Data 
Analysis v3.4 software (Bruker Daltonics, Billerica, MA, 
USA) and recalibrated internally utilizing identified pep-
tide ions in each spectrum derived from the viral pro-
teins. Mass lists were exported as tab-delimited files. 
Mass accuracies of between 0.1 to 1 ppm are routinely 
achieved for all ions detected with mass resolutions 
(FWHM) exceeding 100,000.

Availability and Requirements
Project name: FluTyper
Project home page:
http://www.cancerresearch.unsw.edu.au/CRCWeb.nsf/
page/flutyper
Operating system: Windows, Linux
Programming language: C++
License: Free for non-commercial use. Source code avail-
able upon request.
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