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    Chapter 39   
 The Effect of Earliness per se ( Eps ) Genes 
on Flowering Time in Bread Wheat 

                           Meluleki     Zikhali      and     Simon     Griffi ths   

    Abstract     Photoperiod (day-length) response, vernalization (response to extended 
periods of cold) and earliness per se ( Eps ) genes regulate fl owering time in wheat. 
The vernalization and photoperiod response genes are relatively well studied. 
However, the role of  Eps  genes is yet to be fully understood but the current assump-
tion is that  Eps  genes regulate fl owering independent of vernalization and photope-
riod. While some  Eps  genes have been cloned in both  Hordeum vulgare  and  Triticum 
monococcum , none has been cloned in  Triticum aestivum  to date. The use of near 
isogenic lines (NILs) in both  T. monococcum  and  Triticum aestivum  has enabled 
 Eps  effects to be studied in more detail and candidate genes have been proposed for 
 Eps  effects in both species.  Eps  loci are reported to be involved in fi ne tuning fl ow-
ering time and are also responsible for controlling spikelet number and size hence 
could be manipulated to increase wheat yield. This mini review summarises our 
current understanding of  Eps  and how manipulation of  Eps  genes can be used in 
predictive wheat breeding.  

     The world population demands more food, greater diversity of food, a balanced and 
healthy diet, produced on no more, and preferably less land, while conserving soil, 
water, and genetic resources. The major problem is that even though wheat yields 
are increasing (Lopes et al.  2012 ), the percentage increase is below the projected 
percentage demand with about 0.6 % defi cit projected annually until 2050 (Dixon 
et al.  2009 ; Rosegrant and Agcaoili  2010 ). The challenge wheat breeders face is to 
bridge the gap between wheat demand and wheat production. It is therefore vital to 
direct wheat breeding efforts to the production of higher yielding varieties in order 
to ensure current and future food security (Reyolds et al.  2012 ). The part of the 
wheat plant that is important for direct consumption by humans is the grain and its 
production is dependent on fl owering time. Manipulating fl owering time is one 
avenue that can be exploited to increase wheat grain yield (Herndl et al.  2008 ; 
Greenup et al.  2009 ). However, in order to successfully increase grain yield, it is 
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vital to thoroughly understand the genetic and physiological factors affecting wheat 
growth and development particularly fl owering time genes (Gill et al.  2004 ). 

 There are three major classes of fl owering time genes which are photoperiod 
( Ppd ) response genes, vernalization ( Vrn ) response genes and earliness per se genes 
( Eps ). Major photoperiod response genes enable wheat plants to perceive changes 
in day length with accelerated fl owering occurring in long days while short days 
cause delayed fl owering unless there are mutations in the  PHOTOPERIOD 1  ( Ppd- 
1  ) genes (Beales et al.  2007 ; Wilhelm et al.  2009 ; Dı’az et al.  2012 ). Three main 
genes  VERNALIZATION 1 ,  2  and  3  ( VRN1 ,  VRN2  and  VRN3 ) control the vernaliza-
tion response in wheat (Yan et al.  2003 ; Trevaskis et al.  2007 ; Distelfeld et al.  2009a , 
 b ; Shimada et al.  2009 ; Distelfeld and Dubcovsky  2010 ; Dı’az et al.  2012 ). Wild 
type wheat require extended exposure to cold (known as winter wheat) before the 
transition from vegetative to reproductive growth while mutants do not require this 
exposure and are regarded as spring wheat (Fu et al.  2005 ). 

 The third class of genes controlling fl owering time is earliness per se, also 
referred to as ear emergence per se, earliness in narrow sense, intrinsic earliness, 
and at times is called basic development rate (Laurie et al.  2004 ; Cockram et al. 
 2007 ; Shitsukawa et al.  2007 ; Lewis et al.  2008 ). A number of similar defi nitions 
have been proposed for  Eps. Eps  can be defi ned as the minimum number of days to 
reproductive growth, after vernalization and photoperiod requirements are satisfi ed 
(van Beem et al.  2005 ). Similarly, Appendino et al. ( 2003 ) defi ned  Eps  as the time 
to heading after both vernalization and photoperiod requirements are satisfi ed. 
Shitsukawa et al. ( 2007 ) defi ned narrow sense earliness or earliness per se as the 
earliness of fully vernalized plants grown under long days. Lewis et al. ( 2008 ) 
described  Eps  as all other genes controlling fl owering time but not involved in either 
vernalization or photoperiod requirements. The  Eps  defi nitions suggest that these 
genes regulate fl owering independent of both vernalization or photoperiod environ-
mental cues (Bullrich et al.  2002 ). 

 The course and fi ne adjustment knobs of a light microscope can be used to visu-
alise the role of the  Eps  genes in fl owering time (Fig.  39.1 ). The  Ppd  and  Vrn  genes 
would be equivalent to the course adjustment knob and are responsible for adapta-
tion to mega environments for example spring and winter wheat as well as short day 
and long day environments (Worland et al.  1994 ,  1998 ). The  Eps  genes are equiva-
lent to the fi ne adjustment knob (Fig.  39.1 ) and are responsible for fi ne-tuning of 
wheat fl owering time (Valarik et al.  2006 ) within mega-environments (Griffi ths 
et al.  2009 ) and are responsible for wide adaptation of wheat to different environ-
ments (Lewis et al.  2008 ). Laurie et al. ( 2004 ) suggested that  Eps  factors may be 
largely responsible for the variation in fl owering time in crosses within winter or 
spring types provided they have the same alleles at the major photoperiod and ver-
nalization response loci.

   Earliness per se causes differences of a few days in fl owering time under fi eld 
conditions (Valarik et al.  2006 ; Griffi ths et al.  2009 ; Zikhali et al.  2014 ). In  Triticcum 
monococcum , it has been shown that while the  Eps  effect on chromosome 1A des-
ignated  Eps-A   m   1  causes fl owering differences of only a few days at 23  ° C, this 
 difference increased to several weeks when the plants were fully vernalized and 
grown under long days at 16 °C (Appendino and Slafer  2003 ). In a recent study, 
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Zikhali et al. ( 2014 ) it was shown that cultivar Rialto fl owers more than 12 days 
earlier than cultivar Spark in Short days but when grown for 8 weeks under short 
days and then moved to long days, the  Eps  effect on chromosome 1DL causes Spark 
to fl ower 5 days earlier. This result shows that while the overall difference in fl ower-
ing time is 5 days, the  Eps  effect in Spark also overcomes the earliness conferred on 
Rialto by the short days prior to moving into the long days. Earliness per se is often 
considered polygenic (Rousset et al.  2011 ). Determining the role played by the indi-
vidual  Eps  genes in each developmental phase may enable breeders to fi ne tune ear 
emergence in predictive wheat breeding (Griffi ths et al.  2009 ) and increase wheat 
yield in different environments (Lewis et al.  2008 ). To determine the role of an indi-
vidual  Eps  gene, on different wheat developmental phases requires knowing what 
the gene is and hence the need for accurate mapping of the gene responsible (Lewis 
et al.  2008 ). 

 Because of their relatively small effect,  Eps  genes were previously mapped only 
as QTLs in wheat (Miura et al.  1999 ). However,  Eps  genes have been defi ned more 
accurately in the recent years using near isogenic lines (NILs). One  Eps  gene that 
has been well defi ned after almost a decade of study is the  Eps - A   m   1  reported to be 
on the distal region of  T. monococcum  chromosome 1A m L (Bullrich et al.  2002 ; 
Valarik et al.  2006 ; Faricelli et al.  2010 ). The gene has been recently reported to be 
involved in determining the number of spikelets as well as the number of grains per 
spike in diploid wheat in addition to affecting heading time (Lewis et al.  2008 ). The 
genes  MOLYBDENUM TRANSPORTER 1  ( MOT1 ) and  FILAMENTATION 
TEMPERATURE SENSITIVE H  ( FtsH4 ) are the suggested candidates for the 
 Eps-Am1  (Faricelli et al.  2010 ) although work is in progress to defi nitively identify 
the gene responsible. The  Eps-3Am  locus has also been well defi ned (Mizuno et al. 
 2012 ; Gawroński et al.  2014 ). The  Eps-3Am  QTL interval in  T. monococcum  was 
fi ne mapped using high-density mapping (Gawrosnski and Schnurbusch  2012 ). A 
recent report suggested a  T. monococcum  ortholog of the  Arabidopsis thaliana LUX 
ARRHYTHMO/PHYTOCLOCK 1  ( LUX/PCL1 ) as a potential candidate of the 

Fine adjustment knob
(Eps genes)

Coarse adjustment knob
(Ppd and Vrn genes)

  Fig. 39.1    Schematic presentation, using the fi ne and coarse adjustment knob of the light micro-
scope, of the role of  Eps  genes in fl owering time. The coarse adjustment knob represents the role 
of photoperiod ( Ppd ) and vernalization ( Vrn ) genes in infl uencing mega environment adaptation 
while the  Eps  genes adapt fl owering within mega environments. Understanding  Eps  genes will 
enable their manipulation and fi ne-tuning of fl owering time which may enable precision breeding 
in wheat       
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  Eps- 3Am   which was suggested to act by distorting the circadian clock (Gawroński 
et al.  2014 ). 

 There are some striking similarities between  Eps-Am1  and  Eps-3Am.  Both 
 Eps-Am1  and  Eps - 3Am  loci were reported to determine the number of spikelets as 
well as the number of grains per spike in addition to affecting heading time (Lewis 
et al.  2008 ; Gawroński et al.  2014 ). Again both  Eps-Am1  and  Eps-3Am  have been 
reported to be thermosensitive (Bullrich et al.  2002 ; Gawroński et al.  2014 ). This 
means there is a possibility of manipulating  Eps  genes to increase yield and opti-
mise adaptation. Grain quality can also be improved by manipulating  Eps  loci given 
that Herndl et al. ( 2008 ) showed that  Eps  together with the major genes that control 
vernalization and photoperiod fl owering infl uence grain protein content. 

 However, presently there is scant information on the identity of  Eps  genes, and 
the mechanism of control that these  Eps  genes employ in hexaploid wheat. For 
instance, it is not certain whether  Eps  genes act independently of environmental 
cues (Cockram et al.  2007 ; Laurie et al.  2004 ; Bullrich et al.  2002 ), although many 
reports suggest that this is the case (Lewis et al.  2008 ; Cockram et al.  2007 ; Bullrich 
et al.  2002 ). Appendino and Slafer ( 2003 ) showed that  Eps  genes could respond to 
temperature. Laurie et al. ( 2004 ) underscored the need to study more about  Eps  
genes given that little is known about them despite their immense potential in 
improving plant breeding. This was alluded to by Cockram et al. ( 2007 ) who sug-
gested that  Eps  genes were a potential source of variation in targeted breeding given 
that they were present in both winter and spring crops. The  Hordeum vulgare EPS2  
locus on chromosome 2H (Laurie et al.  1995 ) was also reported to be orthologous 
with the wheat group 2 loci (Laurie  1997 ). The candidate gene for this locus has 
only been recently shown in barley to be a homolog of the  Antirrrhunum  gene 
 CENRORADIALIS  ( CEN ) designated  HvCEN  (Comadran et al.  2012 ). Mutations at 
this gene were shown to cause the wild type indeterminate infl orescence of 
 Antirrhunum  to terminate into a fl ower (Bradley et al.  1996 ). Analysis of the  HvCEN  
alleles led to the conclusion that  HvCEN  was important for geographic range exten-
sion as well as infl uencing the gradual separation between spring and winter barley 
(Comadran et al.  2012 ). The orthologue of this gene is yet to be identifi ed in the 
economically important hexaploid wheat. 

 Following the work done by Griffi ths et al. ( 2009 ), Zikhali et al. ( 2014 ) reported 
the validation of an  Eps  effect on 1DL in hexaploid wheat (Fig.  39.2 ). Near isogenic 
lines (NILs) of a cross between wheat varieties Spark and Rialto grown in the fi eld 
and controlled environments enabled the QTL on 1DL to be defi ned as an  Eps  effect 
(Zikhali et al.  2014 ). The NILs segregated for heading date both in short and long 
days (Fig.  39.2 ) when fully vernalized (Zikhali et al.  2014 ). Zikhali et al. ( 2014 ) 
reported that  Triticum aestivum FLOWERING LOCUS T 3  ( TaFT3 ) was not a 
 candidate for the 1DL  Eps  effect. The 1DL  Eps  locus was reported to be most likely 
an orthologue of  Eps-Am1  and the genes  MOT1  and  FtsH4  were suggested as pos-
sible candidates for 1DL. In addition to  MOT1  and  FtsH4 , the gene  T. aestivum 
EARLY FLOWERING 3  ( TaELF3 ), a circadian clock gene, was also suggested as a 
possible candidate for 1DL given that it also falls in the QTL interval of 1DL 
(Zikhali et al.  2014 ).
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   In a nutshell,  Eps  genes are gradually being understood with some QTL loci 
already cloned like the  Eps-3Am  locus in  T. monococum.  It is also becoming appar-
ent that  Eps  genes may not be independent of environmentally cues as previously 
understood. For example the  Eps-3Am  locus has been found to have a circadian 
clock effect, which suggests that this gene responds to photoperiodic changes 
(Gawroński et al.  2014 ). Again the thermo sensitivity of both the  Eps-Am1  and 
 Eps-3A  loci (Gawroński et al.  2014 ; Bullrich et al.  2002 ) further suggests that  Eps  
genes are not independent of environmental cues. A more accommodating defi ni-
tion of  Eps  would be the variation that is observed in fl owering time when both 
vernalization and photoperiod requirements are fully met without being necessarily 
independent of environmental cues. The additive effect from multiple  Eps  loci 
maybe important for wheat adaptation and fi ne-tuning fl owering time.    
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  Fig. 39.2    Zadoks growth stage 55 for leading tillers of Spark X Rialto NILs grown under con-
trolled environments. The heading days are the mean of 24 plants for the Spark (A) NIL and 30 
plants for the Rialto (B) NIL. The additive effect is about fi ve days in the three photoperiod treat-
ments. Student’s  t -test was carried out for the mean heading days and all the four NILs pairs have 
a p value <0.0001, which is highly signifi cant. The error bars are the Standard error of the mean 
(Adapted from Zikhali et al. ( 2014 ))       
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