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Abstract

Different kinds of quaternion signal detection problems in continuous-time by using a widely linear processing are
dealt with. The suggested solutions are based on an extension of the Karhunen-Loève expansion to the quaternion
domain which provides uncorrelated scalar real-valued random coefficients. This expansion presents the notable
advantage of transforming the original four-dimensional eigen problem to a one-dimensional problem. Firstly, we
address the problem of detecting a quaternion deterministic signal in quaternion Gaussian noise and a version of
Pitcher’s Theorem is given. Also the particular case of a general quaternion Wiener noise is studied and an extension
of the Cameron-Martin formula is presented. Finally, the problem of detecting a quaternion random signal in
quaternion white Gaussian noise is tackled. In such a case, it is shown that the detector depends on the quaternion
widely linear estimator of the signal.
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1 Introduction
Quaternion signals are of great relevance to applications
in the area of statistical signal processing in which the
received signal is composed of a certain number of ran-
dom components since they account naturally for their
correlated nature [1,2]. These are useful, for example, in
studying communication, electromagnetics, seismology,
acoustics, etc., problems frequently encountered in this
area [3]. One of these problems where the application
of the mathematical theory of quaternions has recently
attracted significant attention is vector-sensor signals [4].
A vector-sensor array model uses an array of sensors
whose output is a vector corresponding to the different
magnitudes of the problem analyzed, i.e., it is a device that
measures a complete physical vector quantity [5,6].
As is the case with complex-valued random signals, the

suitable statistical processing for quaternions requires the
augmented statistics to be considered, i.e., requires the
operation on the quaternion and its involutions over the
three pure unit quaternions in an orthogonal basis. This
approach, called quaternion widely linear (QWL) process-
ing, can lead to better performances than the traditional
quaternion linear processing for multiple problems [1].
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On the other hand, one classical approach to address-
ing the signal detection problem is via an appropriate
series representation [7-10]. Series expansions enable us
to bridge the gap between the continuous-time observa-
tion set and the discrete-time one in a straightforward
manner. In fact, they provide a countable set of random
coefficients with the same information content up to sets
of measure zero as the observation process. If such ran-
dom coefficients are uncorrelated, then they become an
excellent tool to derive optimal detection structures. The
Karhunen-Loève (KL) expansion is the most widely used
because of its optimality properties in information com-
pression [11]. This series representation has been recently
extended to the quaternion domain by using augmented
statistics [12]. The technique to derive the QKL expan-
sion is based on the definition of a real-valued univariate
stochastic signal whose second-order statistics match that
of quaternion. This strategy avoids addressing a four-
dimensional vectorial problem which notably simplifies
the obtaining of the representation. Another advantage
of such a series expansion is that the random coefficients
take the form of scalar real-valued random variables.
This article handles the problem of detecting a quater-

nion signal corrupted by additive noise by means of the
QKL expansion and following a WL processing. More
specifically, two classes of quaternion signal detection
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problems are tackled. First, we study the detection of
a quaternion deterministic signal in quaternion Gaus-
sian noise. The main result is a version of the Pitcher’s
Theorem adapted to the quaternion domain. The particu-
lar case in which the noise is a general quaternion Wiener
process is also analyzed and, as a consequence, a version of
the well-known Cameron-Martin formula to the quater-
nion field is presented. Finally, we address the detection
of quaternion random signals in quaternion white Gaus-
sian noise (QWGN). In this case, we demonstrate that the
log-likelihood ratio depends on the QWL estimator of the
signal provided in [12].
The quaternion detection problem has been studied

in the discrete-time setting previously. For example, the
problem of detecting a polarized signal corrupted by
unpolarized noise, in the Gaussian case, in terms of dif-
ferent types of properness was formulated in [13]. In [14]
an efficient color-impulse detector for switching vector
median filters based on the quaternion representation of
color difference is presented. Our approach is different in
that we formulate the problem in continuous-time and use
the QKL expansion to extract the random coefficients.
The article is organized as follows. In the follow-

ing section, we summarize some basic concepts about
quaternion and outline the QKL expansion. In Section
3, we are concerned with the detection of a completely
known quaternion signal in quaternion Gaussian noise.
We obtain the expression of the general log-likelihood
ratio and then, some particular cases are studied. The
detection of quaternion random signals in QWGN is
addressed in Section 4. The results obtained are first
stated and then proved rigorously in an Appendix 1.
Finally, a section of Conclusions ends this article.

2 Preliminaries
We use boldfaced uppercase letters to denote matrices,
boldfaced lowercase letters for column vector, and light-
faced lowercase letters for scalar quantities. Superscripts
(·)∗, (·)T, and (·)H represent quaternion (or complex)
conjugate, transpose, and Hermitian (i.e., transpose and
quaternion conjugate), respectively. All the random vari-
ables considered are assumed with zero-mean. Consider a
quaternion q = q1 + q2i + q3j + q4k, where q1, q2, q3, q4
are real random variables and i, j, k are the imaginary
units. The conjugate of a quaternion is defined as q∗ =
q1 − q2i − q3j − q4k and the norm of a quaternion is
‖q‖ = √

qq∗ = √
q∗q =

√
q21 + q22 + q23 + q24. Denote

qη = −ηqη, η = i, j, k, the three perpendicular quaternion
involutions, i.e.,

qi = q1 + q2i − q3j − q4k
qj = q1 − q2i + q3j − q4k

qk = q1 − q2i − q3j + q4k

We define an augmented quaternion vector as q =
[ q, qi, qj, qk]T. The second-order properties of q are fully
specified by its augmented covariance matrix, E[ qqH] [1].
We now consider quaternions in a continuous-time set-

ting. Given a quaternion random signal q(t) = q1(t) +
q2(t)i+q3(t)j+q4(t)k, with t ∈[ 0,T], a complete descrip-
tion of the second-order characteristics of q(t) in the
quaternion domain is attained by the augmented quater-
nion vector, q(t), or, equivalently, by the augmented cor-
relation function, Rq(t, s) = E[ q(t)qH(s)]. Also, if qn(t),
n = 1, . . . , 4, are mean-square continuous signals, then an
extension of the KL expansion to the quaternion field can
be suggested [12]. This series representation presents two
remarkable properties: the deterministic coefficients have
the same structure as the augmented vector q(t) and the
scalar random coefficients are real-valued and uncorre-
lated. Specifically, consider the real-valued random signal

x(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q1(t), t ∈[ 0,T]
q2(−t), t ∈[−T , 0)
q3(−t − T), t ∈[−2T ,−T)

q4(−t − 2T), t ∈[−3T ,−2T)

and let λn and an(t) be the eigenvalues and eigenfunc-
tions of its correlation function, respectively. Then, the
augmented quaternion vector and its correlation function
admit the following series representations [12]

q(t) =
∞∑
n=1

ϕ(t)εn (1)

Rq(t, s) =
∞∑
n=1

βnϕn(t)ϕH
n(s) (2)

where ϕn(t) =[ϕn(t),ϕi
n(t),ϕ

j
n(t),ϕk

n(t)]T with

ϕn(t) = 1
2
(an(t)+an(−t)i+an(−t−T)j+an(−t−2T)k)

and εn = ∫ T
0 ϕH

n(t)q(t)dt are real random variables such
that E[ εnεm]= βnδnm, with βn = 4λn.
A potential application of the QKL expansion is found

in the problem of estimating the quaternion signal q(t)
in additive QWGN [12]. The solution provided is opti-
mal in the minimum mean-squared error sense and is
derived following a QWL processing. For that, consider
the observation quaternion process of the form

z(t) =
t∫

0

q(s)ds + w0(t), t ∈[ 0,T]
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being w0(t) a quaternion Q-propera Wiener process with
parameter r0 and uncorrelated with q(s). Thus, the QWL
estimator of q(t), q̂QWL(t), is given by

q̂QWL(t) =
T∫
0

h1(t, s)dz(s) +
T∫
0

h2(t, s)dzi(s)

+
T∫
0

h3(t, s)dzj(s)+
T∫
0

h4(t, s)dzk(s), t ∈[ 0,T]

(3)

with

h1(t, s) =
∞∑
n=1

βn
βn + r0

ϕn(t)ϕ∗
n(s),

h2(t, s) =
∞∑
n=1

βn
βn + r0

ϕn(t)ϕi∗
n (s)

h3(t, s) =
∞∑
n=1

βn
βn + r0

ϕn(t)ϕ
j∗
n (s),

h4(t, s) =
∞∑
n=1

βn
βn + r0

ϕn(t)ϕk∗
n (s)

3 Detection of quaternion deterministic signals in
quaternion Gaussian noise

Our first objective is to study the problem of detection

H0 : z(t) = v(t), t ∈[ 0,T]
H1 : z(t) = x(t) + v(t), t ∈[ 0,T] (4)

with x(t) a quaternion continuous completely known sig-
nal and v(t) a quaternion mean-square continuous Gaus-
sian noise. Denote P0 and P1 the probability measures
corresponding to H0 and H1, respectively. According to
Grenander’s Theorem one way of computing likelihood
ratios for continuous-time observation models is first to
reduce the observation signal to an equivalent observation
sequence, and then looking for the limit of the likelihood
ratio for the truncated sequence. An alternative, some-
what more practical, representation of the likelihood ratio
for problem (4) is provided by Pitcher’s Theorem. This
result suggests a simpler and more efficient implementa-
tion of the corresponding signal detection system. In the
particular case of Gaussian white noise the representa-
tion of the optimum detection statistic obtained is known
as the Cameron-Martin formula. In the next result, we

give an extension of Pitcher’s Theorem to the quaternion
domain.

Theorem 3.1. Suppose that there exists a quaternion
function g(t) with components of bounded variation such
that

x(t) =
T∫
0

Rv(t, s)dg(s), t ∈[ 0,T] (5)

then the detection problem (4) is not singular (P0 ≡ P1)
and the log-likelihood ratio test is given by

log
dP1
dP0

(z) =
T∫
0

z∗(t)dg(t) +
T∫
0

zi∗(t)dgi(t)

+
T∫
0

zj∗(t)dg j(t) +
T∫
0

zk∗(t)dgk(t) − �1

(6)

with

�1 = 1
2

T∫
0

⎡
⎣ T∫

0

Rv(t, s)dg(s)

⎤
⎦
H

dg(t) (7)

Remark 1. From (5) and (7) we have the following alter-
native representation for �1

�1 = 1
2

⎡
⎣ T∫

0

x∗(t)dg(t) +
T∫
0

xi∗(t)dgi(t)

+
T∫
0

xj∗(t)dg j(t) +
T∫
0

xk∗(t)dgk(t)

⎤
⎦

Remark 2. If the quaternion function g(t) is differen-
tiable with respect to p(t) = dg(t)/dt, then equation (5)
becomes

x(t) =
T∫
0

Rv(t, s)p(s)ds, t ∈[ 0,T]

and the first term of (6),

T∫
0

z∗(t)p(t)dt +
T∫
0

zi∗(t)pi(t)dt +
T∫
0

zj∗(t)pj(t)dt

+
T∫
0

zk∗(t)pk(t)dt
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3.1 Particular case: the general quaternionWiener
process

Following the classical strategy, the detection problem of a
deterministic signal x(t) in additive QWGN is formulated
of the form [9]

H0 : z(t) = w0(t), t ∈[ 0,T]
H1 : z(t) =

∫ t

0
x(s)ds + w0(t), t ∈[ 0,T]

with x(t) a known continuous quaternion signal and w0(t)
is the quaternion Q-proper Wiener process with parame-
ter r0 defined in the previous section.
The four-dimensional structure of a quaternion allows

us to give a more general definition of a quaternion
Wiener process in a similar way to [15]. Next, we intro-
duce this new process and afterwards, we tackle the
detection problem for this type of process.

Definition 3.1. The general quaternion Wiener process
is defined as a quaternion {w(t), t ∈[ 0,T] } such that its
augmented correlation function Rw(t, s) is of the form

Rw(t, s) =
t∫

0

A(τ )dτ , 0 ≤ t ≤ s ≤ T (8)

where A(t) = C(t)CH(t), with the quaternion matrix C(t)
having the particular form

C(t) =

⎛
⎜⎜⎜⎜⎝

b(t) c(t) d(t) e(t)
bi(t) ci(t) di(t) ei(t)
bj(t) cj(t) dj(t) ej(t)

bk(t) ck(t) dk(t) ek(t)

⎞
⎟⎟⎟⎟⎠

and being b(t), c(t), d(t), and e(t) quaternion continuous
functions.

Remark 3. If C(t) = √r0I4×4, then we get the quater-
nion Q-proper Wiener process w0(t).

Using this new concept, we consider the detection prob-
lem with the hypotheses of the form

H0 : z(t) = w(t), t ∈[ 0,T]
H1 : z(t) =

∫ t

0
x(s)ds + w(t), t ∈[ 0,T]

with x(t) a known continuous quaternion signal and w(t)
the general quaternion Wiener process. Denoting y(t) =∫ t
0 x(s)ds and considering its augmented vector y(t) then,
the generalized Pitcher’s equation (5) for this case is

y(t) =
T∫
0

Rw(t, s)dg(s), t ∈[ 0,T] (9)

In the following result we solve equation (9) and give an
explicit expression for g(s).

Corollary 3.2. Suppose that the quaternion matrix A(t)
given in (8) has inverse for t ∈[ 0,T] then

g(t) =
{
g(T) − A−1(t)x(t), 0 ≤ t < T
g(T), t = T

(10)

where g(T) = [
g, gi, g j, gk

]T with g arbitrary.

Remark 4. In the particular case that we have the
quaternion Q-proper Wiener process w0(t) with param-
eter r0, then we obtain the extension of the well-known
Cameron-Martin formula to the quaternion domain,
which is given by

log
dP1
dP0

(z) = 1
r0

⎡
⎣ T∫

0

x∗(t)dz(t) +
T∫
0

xi∗(t)dzi(t)

+
T∫
0

xj∗(t)dzj(t) +
T∫
0

xk∗(t)dzk(t)

⎤
⎦

− 2
r0

T∫
0

‖x(t)‖2dt

3.2 Simulation example
In order to illustrate the performance of the proposed
detector we consider the model (4) with the quaternion
signal x(t) of the form

x(t) = 6t−1−6t2i−(1−6t+6t2)j−(1−6t+6t2)k, t ∈[ 0, 1]
and the quaternion noise v(t) = v1(t) + v2(t)i +
v3(t)j + v4(t)k the one given in the example of [12], i.e.,
{vn(t), t ∈[ 0, 1] }, n = 1, . . . , 4, are Gaussian processes
with v3(t) = v1(t) + v2(t) + w1(t) and v4(t) = v3(t) +
w2(t), w1(t) and w2(t) real-valued independent Gaussian
processes and also independent of v1(t) and v2(t). More-
over, E[ v1(t)v1(s)]= f (t)f (s), E[ v2(t)v2(s)]= g(t)g(s),
E[ v1(t)v2(s)]= f (t)g(s), E[w1(t)w1(s)]= d(t)d(s) and
E[w2(t)w2(s)]= h(t)h(s) with f (t) = 1 − 6t, g(t) = 6t2,
d(t) = 2t − 1 and h(t) = 20t3 − 30t2 + 12t − 1.
In Figure 1, we show the detection probability versus

the false-alarm probability by using the Neyman-Pearson
criterion.

4 Detection of quaternion random signals in
QWGN

So far we have considered quaternion deterministic sig-
nals. However, there are other situations in which the
quaternion signals have a stochastic nature. In this frame-
work, we study the detection problem of a quaternion
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Figure 1 Detection probability versus the false-alarm probability.

random signal in additive QWGN, i.e, we consider the
hypotheses pair

H0 : z(t) = w0(t), t ∈[ 0,T]
H1 : z(t) =

∫ t

0
x(s)ds + w0(t), t ∈[ 0,T] (11)

with x(t) a mean-square continuous quaternion random
signal and w0(t) the quaternionQ-proper Wiener process
with parameter r0. Suppose also that x(t) is independent
of w0(t).

Theorem 4.1. P0 ≡ P1 and the log-likelihood ratio is

log
dP1
dP0

(z) = 1
2r0

⎡
⎣ T∫

0

x̂∗
QWL(t)dz(t) +

T∫
0

x̂i∗QWL(t)dz
i(t)

+
T∫
0

x̂j∗QWL(t)dz
j(t) +

T∫
0

x̂k∗QWL(t)dz
k(t)

⎤
⎦

− 1
2

∞∑
n=1

log
(
1 + βn

r0

)

(12)

where x̂QWL(t) is the QWL estimator of x(t) given in (3)
and βn and ϕn(t) are the eigenvalues and eigenfunctions of
Rx(t, s), respectively.

5 Conclusions
Different quaternion detectors obtained from augmented
statistics have been presented. Although we have avoided
dealing with a four-dimensional eigen problem by intro-
ducing the signal x(t), we have to solve a unidimensional
eigen problem which can be very involved in practice.
In those cases where a closed-form solution of the eigen
problem is not available, a numerical method of solution
can be used, as for example, the Rayleigh-Ritz method
[16]. This numerical procedure allows us to solve operator
equations approximately and thus, to obtain suboptimum
detectors for the Gaussian detection problems addressed
which converge to the optimum ones. To this end, we can
use an approximate QKL expansion for quaternion signals
based on the approximate eigenvalues and eigenfunc-
tions obtained from the application of the Rayleigh-Ritz
method.
Finally, we would like to give an outlook to the possi-

ble extensions of the results provided in this work. For
instance, in the problem of detecting a random signal
in white Gaussian noise it is well-known the estimator-
correlator representation of the log-likelihood ratio, which
depends on the causal estimator of the signal. Our
future goal will be the extension of this closed form for
the detector to the quaternion domain. On the other
hand, the application of the methodology proposed in
the field of Reproducing Kernel Hilbert Spaces could
allows us to find an interesting solution for the dis-
crimination problem between two quaternion random
signals.
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Appendix 1
Proof of Theorem 3.1
From (1) and (2), v(t) and Rv(t, s) admit the series repre-
sentations

v(t) =
∞∑
n=1

ϕn(t)εn (13)

Rv(t, s) =
∞∑
n=1

βnϕn(t)ϕH
n(s) (14)

where εn = ∫ T
0 ϕH

n(t)v(t)dt. Thus, taking (5) and (14) into
account, we get

x(t) =
∞∑
n=1

βnϕn(t)

⎡
⎣ T∫

0

ϕH
n(s)dg(s)

⎤
⎦ =

∞∑
n=1

ϕn(t)χn

(15)

with χn = βn
∫ T
0 ϕH

n(s)dg(s). Then, to study the
continuous-time problem (4) we can consider the equiva-
lent discrete problemb

H0 : ςn = εn, n = 1, 2, . . .
H1 : ςn = χn + εn, n = 1, 2, . . .

(16)

On the other hand, since Rv(t, s) is a continuous func-
tion we have that 2�1 < ∞. Likewise, from (14)

2�1 =
T∫
0

⎡
⎣ T∫

0

Rv(t, s)dg(s)

⎤
⎦
H

dg(t) =
∞∑
n=1

χ2
n

βn
(17)

Hence, applying Grenander’s Theorem [9] to (16) we
obtain that P0 ≡ P1 and

log
dP1
dP0

(z) =
∞∑
n=1

χnςn
βn

− 1
2

∞∑
n=1

χ2
n

βn
(18)

Now, from (13) and (15) we have that z(t) =∑∞
n=1 ϕn(t)ςn and thus,

T∫
0

zH(t)dg(t) =
∞∑
n=1

ςn

T∫
0

ϕH
n(t)dg(t) =

∞∑
n=1

χnςn
βn

(19)

Finally, from (18), (19), and (17) we demonstrate (6).

Proof of Corollary 3.2
Consider the Hermitian matrix M(t) = ∫ t

0 A(τ )dτ then,
taking (8) into account, it follows that (9) is equivalent to

t∫
0

x(s)ds =
t∫

0

M(s)dg(s) + M(t)
T∫
t

dg(s)

=
t∫

0

M(s)dg(s) + M(t)(g(T) − g(t)) (20)

Thus, integrating by parts (20), we get

t∫
0

xH(s)ds = gH(t)M(t) −
t∫

0

gH(s)dM(s) + (gH(T)

− gH(t))M(t)

= −
t∫

0

gH(s)dM(s) + gH(T)M(t) (21)

Now, since M(t) = ∫ t
0 A(s)ds we have that (21) is equal

to

t∫
0

xH(s)ds = −
t∫

0

gH(s)A(s)ds + gH(T)

t∫
0

A(s)ds

=
t∫

0

(gH(T) − gH(s))A(s)ds

Then the solution of (9) is given by (10).

Proof of Theorem 4.1
Consider the random variables εn = ∫ T

0 ϕH
n(t)x(t)dt

and wn = ∫ T
0 ϕH

n(t)dw0(t). Then E[ εnεm]= βnδnm,
E[wnwm]= r0δnm and E[ εnwm]= 0, for all n andm.
The problem (11) is equivalent to the following problem

H0 : ςn = wn, n = 1, 2, . . .
H1 : ςn = εn + wn, n = 1, 2, . . .

Unlike (16), εn and wn are now both random variables.
Thus, under H0, ςn ∼ N(0, r0) and under H1, ςn ∼
N(0,βn + r0). From these conditions, it is shown [9] that
P0 ≡ P1 and

log
dP1
dP0

(z) = 1
2r0

∞∑
n=1

βn
βn + r0

ς2
n−1

2

∞∑
n=1

log
(
1 + βn

r0

)

(22)
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On the other hand, the random variables ςn take the
form ςn = ∫ T

0 ϕH
n(t)dz(t). This fact is immediate under

H0 and, underH1, we have

ςn =
T∫
0

ϕH
n(t)d

t∫
0

x(s)ds +
T∫
0

ϕH
n(t)dw0(t)

=
T∫
0

ϕH
n(t)x(t)dt +

T∫
0

ϕH
n(t)dw0(t) = εn + wn

Thus, the first term of (22) can be expressed in the
following way

1
2r0

∞∑
n=1

βn
βn + r0

ς2
n = 1

2r0

T∫
0

⎡
⎣ T∫

0

∞∑
n=1

βn
βn + r0

ϕn(t)ϕH
n(s)dz(s)

⎤
⎦
H

× dz(t) (23)

Finally, from (22), (23), and (3) we get (12).

Endnotes
aThat is, the augmented correlation function of w0(t)
is Rw0(t, s) = r0 min(t, s)I4×4, where I4×4 is the four-
dimensional identity matrix [17]. b Due to the random
coefficients εn having the same information up to sets of
measure zero as that of v(t).

Abbreviations
QWL: Quaternion widely linear; KL: Karhunen-Loève; QKL: Quaternion
Karhunen-Loève; QWGN: Quaternion white Gaussian noise; WL: Widely linear.
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17. J Vı́a, D Ramı́rez, I Santamaŕıa, Properness and widely linear processing of
quaternion random vectors, IEEE Trans. Inf. Theory. 56(7), 3502–3515
(2010)

doi:10.1186/1687-6180-2012-234
Cite this article as: Navarro-Moreno et al.: Detection of continuous-time
quaternion signals in additive noise. EURASIP Journal on Advances in Signal
Processing 2012 2012:234.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords

	Introduction
	Preliminaries
	Detection of quaternion deterministic signals in quaternion Gaussian noise
	Particular case: the general quaternion Wiener process
	Simulation example

	Detection of quaternion random signals in QWGN
	Conclusions
	Appendix 1
	Proof of Theorem 3.1
	Proof of Corollary 3.2
	Proof of Theorem 4.1

	Endnotes
	Abbreviations
	Competing interests
	References

