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Abstract

Backgroud: ERKS5 is a member of the mitogen activated protein kinase family activated by certain
mitogenic or stressful stimuli in cells, but whose physiological role is largely unclear.

Results: To help determine the function of ERK5 we have used gene targeting to inactivate this
gene in mice. Here we report that ERK5 knockout mice die at approximately EI0.5. In situ
hybridisation for ERKS, and its upstream activator MKK5, showed strong expression in the head
and trunk of the embryo at this stage of development. Between E9.5 and EI0.5, multiple
developmental problems are seen in the ERK5-/- embryos, including an increase in apoptosis in the
cephalic mesenchyme tissue, abnormalities in the hind gut, as well as problems in vascular
remodelling, cardiac development and placental defects.

Conclusion: Erk5 is essential for early embryonic development, and is required for normal
development of the vascular system and cell survival.

Background

Mitogen activated protein kinase (MAPK) cascades play
important roles in many cellular processes including cell
proliferation, differentiation, survival and apoptosis. They
are also important for many physiological functions in
several systems, including in developmental, immune
and neuronal systems. At least 12 isoforms of MAPKs exist
in mammalian cells, and these can be divided into 4 main
groups, the 'classical' MAPKs (ERK1 and ERK2), JNKs
(also referred to as SAPK1), p38s (also referred to as
SAPK2, SAPK3 and SAPK4) and atypical MAPKs such as
ERK3, ERK5 and ERKS8. With the exception of ERK3,
MAPKs are activated by dual phosphorylation on a Thr-

Xaa-Tyr motif by a dual specificity MAPK kinase (MKK).
MKKs are in turn activated by a MAPK kinase kinase
(MKKK), which are activated in response to appropriate
extracellular signals.

ERKS5 is an atypical MAPK that can be activated in vivo by
avariety of stimuli, including some mitogens such as EGF,
and some cellular stress such as oxidative and osmotic
shock [1-3]. These stimuli activate a cascade in which the
MAPK kinase kinases MEKK3 or MEKK2 activate MKK5,
which in turn activates ERK5 [4,5]. Interest in the ERK5
pathway has been fuelled by reports that the activation of
ERK5 by MKK5 can be blocked in vivo by the kinase
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inhibitors PD184352, PD 98059 and U0126. These inhib-
itors were developed as inhibitors of the classical MAPK
cascade, and have been used extensively to study this cas-
cade in vivo. The discovery that they can also block ERK5
activation, although at higher concentrations than are
required to block the activation of ERK1 and ERK2, raised
the possibility that ERK5 and ERK1/ERK2 may have some
overlapping functions in vivo [6,7].

The physiological roles of ERK5 are still largely unclear.
Overexpression of a constitutively active MKK5 in mice
results in cardiac hypertrophy and death of the mice by 8
weeks of age [8]. This is suggestive of a role of ERK5 in the
heart, possibly related to cardiac development. ERK5 has
also been implicated in the development of smooth mus-
cle, as ERK5 antisense oligonucleotides [9] or dominant
negative ERK5 constructs [10] have been reported to block
the differentiation of smooth muscle cells in cell culture
models. At present little is known about the substrates for
ERKS5 in vivo, however it has been suggested to phospho-
rylate connexin 43 [11] and the transcription factor
MEF2C [12-14]. Mouse knockouts of MEF2C are embry-
onic lethal, and MEF2C-/- embryos die due to a failure of
the developing heart to undergo normal looping at E8.5-
9 [15]. Knockout MEKK3 also results in embryonic
lethality at E11, MEKK3-/- embryos show problems with
myocardium formation, angiogenesis and placental for-
mation [16]. While this could be consistent with a role for
ERKS5 in linking MEKK3 signalling to MEF2C during car-
diac development, it should be noted that MEKK3 can
activate other MAPK isoforms, particularly p38a (also
referred to as SAPK2A) [17-20]. Knockout of p38a has
been reported by several groups, and p38a-/- embryos
have also been reported to show problems in cardiac
development, angiogenesis and placental formation at
E10-11 [21-23].

In order to further examine the role of ERK5 we carried
out expression and gene targeting studies in mice. ERK5
knockout was found to be lethal during embryogenesis at
E10.5 to E11, and here we report a detailed analysis of
these embryos. While this work was in progress, both
Regan et al [25] and Sohn et [26] also reported ERK5
knockouts, and the effects of these different ERK5 knock-
outs are considered in the discussion.

Results

Generation of ERK5 knockout mice

Sequencing of the mouse ERK5 gene showed that it com-
prised of 7 exons spanning 5.4 kb of genomic sequence.
Of these, exons 2 to 7 encoded the sequence of ERKS5,
while the 5' untranslated region was located in exons 1
and 2, and the 3' untranslated region in exon 7. Based on
this sequence a targeting vector was designed to delete
exons 4 and 5 of ERK5 in ES cells (Fig 1). Correct incorpo-
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ration of this vector was confirmed by Southern screening
of ES cells (Fig 1A and 1B). Germline transmission was
obtained from two independent targeted ERK5 ES clones,
and the ERK5+/- mice were of similar size and morphol-
ogy to wild type littermates. Breeding of ERK5+/- mice
gave the expected numbers of wild type and ERK5+/-
mice, however no ERK5-/- mice were obtained, indicating
that the ERK5 knockout is lethal during embryogenesis.
To determine the point of lethality, embryos were geno-
typed by a PCR based method (Fig 1A and 1C) from timed
matings. The expected Mendelian numbers of
homozygous knockout mice were found at E9.5 and 10.5
(table 1) and at this point knockout embryos were still
alive, as judged by a beating heart. In contrast, at E11.5 all
homozygous ERKS5 knockout embryos found had died
and were undergoing reabsorption. Similar results were
obtained from crosses of the ERK5 mutation onto either
Balb/C or C57/Bl6 backgrounds, and from two independ-
ent ES cell clones. The deletion made in the ERK5 gene
removes the sequence encoding for amino acids 133 to
712, and introduced a neomycin resistance cassette,
including a polyadenylation sequence into the ERK5 gene.
While exons 1 to 3 remain in the targeted gene, insertion
of the neomycin cassette would be expected to interfere
with normal transcription and splicing after exon 3.
Should exon 3 be able to splice onto exon 6 in the targeted
gene, this would result in a frame shift mutation. To con-
firm that the knockout blocked the production of ERK5
protein, extracts from E9.5 embryos were analysed by
immunoblotting using a polyclonal antibody raised
against the whole ERK5 protein. ERK5 was detected in
wild type embryos and in ERK5+/- embryos, however the
levels of ERK5 protein were reduced in ERK5+/- embryos
compared to wild type embryos. As expected no protein
was seen for ERK5 in the ERK5-/- embryos. No evidence
for the production of truncated forms of ERK5 in the
ERK5-/- embryos could be seen in the immunoblots (data
not shown). Expression of MKK5 and other MAPK kinases
(ERK1, ERK2 and p38) were unaffected by the knockout
of ERK5 (Fig 1d).

At E9.5 the appearance of homozygous ERK5 knockout
embryos was similar to that of the wild type. However,
between E9.5 and E10.25 some differences between the
knockout embryos and wild type embryos started to
become apparent (Fig 2). By E10.25 knockout embryos
were clearly growth retarded compared to littermate con-
trols, and clear morphological differences could be seen.
All ERK5 knockout embryos had problems in placental
and blood vessel development, and in addition to this,
two distinct morphologies could be seen in knockout
embryos by E10.25. The first morphology, referred to as
'class I', was characterised by severe retardation of growth,
especially in the head and lower trunk region. In contrast,
'class II' embryos were less growth retarded than class I
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Figure |

Generation of ERK5 knockout mice. A) ERK5 knockout mice were made using a targeting vector to delete exons 4 and 5
of the murine ERKS5 gene through the addition of a neomycin selection cassette. A thymidine kinase cassette acts as a negative
selection marker during ES cell selection. B) ES cell DNA was digested with both Hind Ill and Mfe |, and a Southern blot per-
formed using a probe 3' to the targeting vector. The position of the wild type 9.5 kb fragment and targeted 3.3 kb fragment are
indicated. C) DNA was isolated from E9.5 embryos and digested with Hind lll and Mfe I. Southern blots were then probed with
the 3' probe as described in (B)D) Soluble protein from homogenates of E9.5 embryos was run on 4—14% acrylamide gels.
Immunoblotting was then carried out using antibodies which recognised ERK5, MKKS5, ERK1/2 or p38.
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Table I: Ratios of ERK5 adults and embryos
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++ % +/- % -l- %
E9.5 30 24 66 53 28 23
EIO 41 25 92 55 34 20
EI0.5 29 25 59 51 28* 24
EINLS 17 34 20 40 127 24
adult 134 36 236 64 0 0

* Of the E10.5 knockout embryos, 12 were class | and 16 were class |l ** -/- embryos found at El |.5 were dead

embryos, however development of the head and lower
trunk was abnormal. Development of the first and second
branchial arches was reduced, and the embryos developed
an abnormal head shape. In addition, development of the
cephalic mesenchyme appeared abnormal (Fig 2C).
Changes seen in the ERK5 knockout are discussed in more
detail below.

Expression of ERK5 and MKKS5 during embryogenesis

Analysis of the expression of ERK5, and its upstream
kinase MKKS5, by whole mount in situ hybridisation using
antisense RNA probes showed that the expression of these
kinases was dynamically regulated during embryonic
development (Fig 3A,3B,3C,3D,3E). At E8.5 ERK5 expres-
sion was low and occurred mainly in the cephalic neural
fold and primitive gut. At E9.5 ERK5 expression was seen
in the first and second branchial arch, cephalic region,
somites and lateral ridge along the body wall. By E10.5
and 11.5 ERKS5 expression was also seen in the developing
limb buds. As would be expected for the upstream activa-
tor of ERK5, the expression pattern of MKK5 was found to
be similar to that of ERK5 from E8.5 to E12.5. Interest-
ingly, ERK5 was found not to be highly expressed in the
developing heart as judged from whole mount immuno-
satining. To examine this further, sections of ERK5 whole
mount in situ hybridisations were taken. At E 9.75 and
E10.5 strong ERK5 expression was seen in the branchial
arch, cephalic mesenchyme and neuropethelial regions
(Fig 4A to 4C), as well as in the limbs, hind gut, septum
transversum, dorsal root ganglion, somites and tail. Only
weak expression of ERK5 was seen in the heart in sections
at E9.5 and E9.75, however a slightly stronger expression
of ERKS5 could be seen in the atrial chamber of the heart at
E10.5 (Fig 4). Strong expression of ERK5 was however
apparent in the sinus venous below the heart. Expression
of ERK5 was also examined at E10.5 in the placenta by
whole mount in situ hybridisation and sectioning. ERK5
expression was found to be highest in the chorionic plate
and labyrinthine layers. As protein expression does not
always exactly mirror mRNA expression, E9.5 and E10.5
embryos were also dissected and ERK5 expression exam-
ined by western blotting (Fig 5A). This showed that ERK5

expression was high in the head and lower trunk of the
embryo, intermediate in the heart region and low in the
placenta. In adult mice, high levels of ERK5 and MKK5
were found in brain, thymus and spleen, with lower levels
present in lung, stomach, adrenal gland, adipose tissue,
pancreas and heart (Fig 5B).

ERKS is required for normal angiogenesis and placental
development

One of the most apparent problems in the ERK5 knockout
embryos was a defect in the formation of blood vessels in
the yolk sac. At E9.5 blood islands could be seen in the
membranes of both WT and knockout embryos. However,
by E10.25 the ERK5 knockout embryos failed to develop
the highly branched network of blood vessels seen in the
WT or heterozygous embryos (Fig 6). We therefore also
examined blood vessel formation in the knockout
embryos. At E9.75 CD31 staining of endothelial cells
showed little difference between wild type and ERK5-/-
embryos, and a clearly defined network of large blood
vessels could be seen in both genotypes. In the wild type
embryos these blood vessels continued to develop, giving
rise to large blood vessels which branched down into net-
works of smaller vessels. This network of vesicles was
especially apparent in the head regions of the embryo. In
contrast much less branching of the blood vessels was
apparent in the head region of ERK5-/- embryos. It should
however be noted that the formation of other head struc-
tures, as well as blood vessels, was also retarded by E10.25
in the ERK5-/- embryos (Fig 7).

As knockouts of proteins upstream of ERK5 have been
reported to cause problems in cardiac development, the
development of the heart was also examined. ERK5-/-
embryos underwent normal looping of the heart and were
able to establish the basic heart pattern. At E9.75 however,
the myocardium wall of ERK5-/- was thinner than in WT
embryos, and some bleeding was seen in a proportion of
ERK5-/- embryos (Fig 8).

The cardiac defects and changes in vascular remodelling

seen in the ERK5-/- embryos suggested that ERK5 may
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A E9.5

ERKS-/-

B E9.75

WT ERKS-/- class 1 ERKS-/- class 11

C E10.25

ERKS5-/- class | ERKS5-/- class 11

Figure 2

Phenotypes of ERKS -/- mutant embryos. Embryos were isolated from timed matings of ERK5+/- mice and genotyped by
PCR analysis of the isolated yolk sac. At E9.5 (A) little difference could be observed between wild type and ERK5-/- littermates.
At E9.75 (B) differences could be seen between the WT and ERK5-/- embryos in the head regions, particularly in the cephalic
mesenchyme of class || embryos (red arrowhead). At E10.25 (C) ERK5-/- embryos were growth retarded compared to wild
type embryos. ERK5-/- embryos showed an abnormal head shape, compared to wild type embryos (green arrow) and in class ||
ERKS5-/- embryos also showed severe abnormalities in the cephalic mesenchyme and Istand 24 branchial arches (yellow
arrows). Development of the hind limb buds (star) and lower trunk was also retarded in the ERK5-/- embryos.
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Control

Figure 3

Expression of ERK5 and MKKS5 during embryonic development. Whole mount in situ hybridisation was carried out on
wild-type embryos as described in the methods using antisense RNA probes against ERK5 or MKKS5 or with no RNA probe.
Expression of ERK5 and MKK5 was analysed at E8.5 was seen in the cephalic neural fold and primitive gut. At E9.5 expression
was also seen in the branchial arch, cephalic region and somites and lateral ridge of the body wall. From E10.5, EI 1.5 to E12.5
expression of ERK5 and MKKS5 increases with high expression seen in the branchial arch, head and limb buds.
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A. E9.5

B. E9.75

C. E10.5

D. E10.5

Figure 4

Analysis of ERK5 expression in embryo sections. Whole mount in situ hybridisation was carried out on wild-type
embryos (A-C) or placentas (D) as described in the methods using antisense RNA probes against ERKS5 at E9.5, E9.75 and
E10.5. After staining embryos were sectioned on a vibrotone. Strong ERK5 expression was seen in the cephalic mesenchyme
(star) branchial arch and neuroepithelium. Weak expression was seen in the heart at E9.5, however this increases by E10.25
(diamond). Strong ERK5 expression was seen in the sinus venous below the heart (arrow). In the placenta (D) strongest
expression was seen in the chorionic plate and labyrinthine layers.
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Figure 5

Immunoblotting of ERK5 and MKKS5. Wild type embryos (E9.5 and 10.5) were dissected and head, heart, gut and placenta
were isolated. The placenta was then subdivided into upper (mainly embryonic) and lower (mainly maternal) regions. Whole
wild type and ERK5-/- embryos were also isolated at E9.5. Tissues were also isolated from adult wild type mice. Samples were
homogenised, insoluble material removed by centrifugation, and the concentration of soluble protein in the extract determined
by a Bradford assay. Soluble protein (30 pg) were run on 4—14% acrylamide gels. Immunoblotting was then carried out using

antibodies which recognise ERK5 or MKKS5 for both embryonic (A) and adult (B) samples. Levels of ERK1/2, p38 and actin
were also determined in the adult tissue samples (B).
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A E9.75

WT ERKS-/-

B E10.25

WwWT ERKS-/-

ERKS-/-

Figure 6

Morphology of wild type and ERKS5 -/- mutant yolk sacs. Embryos were isolated from timed matings of ERK5+/- mice
and photographed. Embryos were then genotyped by PCR analysis of the isolated yolk sac. At E9.75 (A) wild type and ERK5-/-
mutant yolk contain blood islands (arrow). By E10.25 (B), the blood vessels found in wild type yolk sacs formed distinct large
vessels which branched down into smaller vessels (arrow). In contrast, the surfaces of the ERK5-/- yolk sacs became pale, and
did not show the branched blood vessels. At El 1.5 (C), ERK5-/- yolk sacs appeared intermittent with diffuse patches of red
blood cells (arrow). The ERK5-/- embryos showed were pale and apparently devoid of blood circulation without a beating
heart.
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E9.75

E10.25

ERKS-/-

Figure 7

CD31 whole-mount immunohistochemistry of embryos at E9.75 and E10.25. Embryos were isolated from timed
mating and stained using an CD3 1 antibody as described in the Methods. At E9.75 (A) networks of large blood vessels were
seen in the head regions of both wild type and ERK5-/- embryos (red arrow), and intersomitic vessels (blue arrow) were also
apparent in both genotypes. By E10.25 however the blood vessels in the head region of wild type embryos had started to
undergo angiogenesis to give rise to branched networks of smaller vessels. This was not seen in the ERK5-/- embryos (com-
pare red arrows in B). Similarly more branching was seen in the intersomitic vessels in the wild type than ERK5-/- embryos at
E10.25 (blue arrows). Results are representative of three independent experiments.
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Figure 8

Histological sections of the heart at E9.75. E9.75 wild type and ERK5-/- embryos were isolated from timed matings and
TS paraffin sections were taken and stained with haematoxylin and eosin as described in the methods. Normal patterning of the
heart was observed in the ERK5-/- embryos, with both atrial (At) and ventrical (V) chambers. The thickness of the atrial wall
(arrow) in ERK5-/- embryos was thinner that in wild type hearts (A). The average thickness of the atrium wall was quantified
from 4 wild type and 4 ERK5-/- embryos (B). ERK5-/- embryos had a significant decrease in atrial wall thickness (P < 0.01)
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E9.75

Figure 9

Histological sections of placenta at E9.75 and E10.25. Placentas were isolated from E9.75 and E10.25 wild type and
ERK5-/- mice. Transverse paraffin sections were taken of the placentas and stained with haematoxylin and eosin as described.
At E9.75, low (A) and high magnification (B) pictures of the TS sections are showed little difference between wild type and
ERK5-/- embryos. At E9.75 both maternal (white arrowhead) and embryonic (green arrow) blood vessels, could be seen in
both wild type and ERK5-/- placentas. At E10.25 low (C) and high magnification (D) showed that chorionic plate (CP), labyrinth
(L) and spongiotrophoblast (S) layers are were present in both wild type and ERK5-/- embryos. At E10.25 intermixing of
maternal and embryonic blood vessels (arrows) was seen, however in the ERK5-/- placentas many fewer maternal blood ves-
sels were apparent in the labyrinthine layers. Scale bars are 0. mm and results are representative of three independent
experiments.
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WT Erk5 -/-

Figure 10

4311 in situ and caspase 3 staining of E10.25 placentas. A) Wax sections of E10.25 wild type and ERK5-/- placentas
were analysed by in situ hybridisation with an antisense RNA probe against 431 |. The spongiotrophoblast layer is indicated by
an arrow. B)Wild type and ERK5-/- placentas were isolated from E10.25 embryos, paraffin sections taken and then stained with
an antibody which recognised cleaved caspase 3. Higher numbers of cleaved caspase 3 postitive cells were seen in ERK5-/-
embryos compared to wild type controls. In the ERK5-/- placentas, apoptosis was seen in endothelial cells (red arrow), tro-
phoblast cells (green arrow) and some embryonic blood cells (yellow arrow) within the labryinth. No apoptosis of giant cells
was seen.
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also play a role in placental development, so we therefore
studied the morphology of ERK5-/- placentas at E9.75 and
E10.25. Haematoxylin and eosin staining of paraffin sec-
tions from E9.75 placentas (Fig 9A and 9B) showed little
difference between wild type and ERK5-/- embryos. Chor-
ioallantoic fusion was able to occur in the absence of
ERKS5, and the placenta of ERK5-/- mice formed chorionic
plate, labyrinth and spongiotophoblast layers. At this
stage, the laryrinth of the ERK5-/- placenta resembled that
of the wild type placentas, with both embryonic and
maternal blood vessels present. However at E10.25 (Fig
9C and 9D) the labyrinth layer in ERK5-/- placentas was
thinner than in wild type and there was less intermixing
between embryonic and maternal blood vessels in the lab-
yrinthine region. Development of trophoblast giant cells
did not appear to be affected by ERK5 knockout, and
staining with the spongiotrophoblast layer maker 4311
[24] suggested that this layer developed normally (Fig
10A). Staining of placental sections at E10.25 with an
antibody against the cleaved form of caspase 3 showed
that at E10.25 more apoptosis was occuring in the laby-
rinth of ERK5-/- embryos compared to wild type embryos
(Fig 10B). Apoptosis was seen in endothelial cells, diploid
trophoblast cells and some embryonic blood cells. No
cleaved caspase 3 staining was observed in E9.75 placen-
tas from either wild type or ERK5-/- placentas.

ERKS is required for normal development of the head and
lower trunk regions

By E10.25 all ERK5-/- embryos, and particularly class 11
embryos, showed problems with the development of the
head and lower trunk regions of the embryo. Superficially,
between E9.5 and E10, these differences were much less
apparent, however more detailed analysis of serial sec-
tions of E9.75 embryos revealed problems in these
regions in ERK5-/- embryos (Figs 9,10). The timing of this
is significant, because at this developmental stage rela-
tively little difference was seen between the vasculature
and placentas of ERK5-/- and wild type embryos (Figs
6,7,8,9,10). In the head region E9.75 sections,
development of the lumen was retarded in ERK5-/-
embryos compared to littermates. The cephalic mesen-
chyme tissue was less dense with larger spaces in between
the cells in ERK5-/- embryos than in wild type embryos.
There was also less contact between the cephalic mesen-
chyme and neuroepithelial tissue in the ERK5-/- embryos
(Fig 11A and 11B). This phenotype was seen in all ERK5-
/- embryos examined by sectioning at E9.75 when com-
pared to wild type littermates (n = 5 for LS sections and n
=5 for TS sections), and was seen in all of the serial sec-
tions for each ERK5-/- embryo. This defect may in part
explain the abnormal head shape of the embryos (com-
pare whole embryo pictures in Fig 2B). Problems with the
cephalic mesenchyme tissue were even more apparent in
class II embryos at E10.25 (Fig 2C), and an apparent
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absence of cephalic mesenchyme could be seen clearly in
the whole embryo. To confirm this, E10.25 ERKS5-/-
embryos were also sectioned and the cephalic mesen-
chyme compared to that of wild type littermates (Fig 11C
and compare to Fig 2C). In wild type embryos the cephalic
mesenchyme was present, however in ERK5-/- embryos
the cephalic mesenchyme was almost completely absent.
In addition, the thickness of the neuroepithelial layer sur-
rounding the area were the cephalic mesenchyme should
have been was much thinner in the ERK5-/- embryos
when compared to wild type controls. Analysis of TS sec-
tions of E9.75 ERK5-/- embryos showed that cephalic
mesenchyme did contain major blood vessels, similar to
those in wild type embryos (Fig 11D and 11E). The blood
vessels in the ERK5-/- embryos were however frequently
ruptured giving rise to bleeding into the mesenchyme tis-
sue. The sites of bleeding occurred where the surrounding
mesenchyme tissue was absent, suggesting that the reason
for the rupturing of the vessels may have been due to the
lack of support provided to the blood vessels. These
results suggested that while the cephalic mesenchyme was
able to form in early ERK5-/- embryos (pre E9.75), it was
unable to proliferate and survive through the develop-
mental stages from E9.75 to E10.25. We therefore used
whole mount TUNEL analysis of these embryos to exam-
ine levels of apoptosis. While little apoptosis was seen in
the head region of wild type embryos in E9.75 embryos,
high levels of apoptosis were observed in the head of
ERK5-/- embryos (Fig 12).

In the lower trunk, the development of the region below
the heart appeared abnormal in ERK5-/- embryos. In sev-
eral embryos, the development of the septum transverum
region was retarded in most ERK5-/- embryos (data not
shown). Detailed analysis of transverse sections showed
that while development of the foregut appeared normal,
development of the mid and hind gut was not. In ERK5-/
- embryos at E9.75 there appeared sites of overprolifera-
tion of cells in some areas of the hind to mid gut wall (Fig
13).

Discussion

In this report, we show that knockout of ERK5 results in
embryonic lethality at around E10.25 and show that
ERK5-/- embryos have problems with placental
development, changes in angiogenesis and problems with
the development of the head, (especially the cephalic
mesenchyme and neuroepithelium), and lower trunk of
the embryo. While this work was in progress, two other
groups reported ERK5 knockouts. Regan et al reported
that the ERKS5 knockout was lethal between E9.5 to E11.5
[25], while Sohn et al reported lethality between E10.5
and E11.5 [26]. Similar effects on placental development
and angiogenesis were found in both reports, and this
phenotype is consistent with the effects described here.
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Figure 11

Analysis of cephalic mesenchyme. Wild type and ERK5-/- embryos were isolated from timed matings and LS or TS paraffin
sections were taken and stained with haematoxylin and eosin as described in the methods. Analysis of LS sections at low (A)
and high (B) magnification showed that there was less contact between the neuroepithelium and cephalic mesenchyme (black
arrows) in ERK5-/- embryos, and that the cephalic mesenchyme was less dense with larger spaces between the cells in the
ERK5-/- embryos (green arrows). Sections shown are representative of 5 wild type and 5 ERK5-/- embryos. LS sections were
prepared from E10.25 embryos and stained with haematoxylin and eosin (C). The cephalic mesenchyme was almost completely
absent in ERK5-/- embryos and the neuroepithelium was thinner. In ERK5-/- embryos at E9.75 the TS sections (D and E)
through the cephalic mesenchyme again showed less mesenchymal tissue in the ERK5-/- embryos, however major blood ves-
sels (arrows) were seen in both wild type and ERK5-/- embryos. In contrast to wild type embryos, where little bleeding was
seen in the cephalic mesenchyme, in ERK5-/- embryos bleeding into the cephalic mesenchyme was frequently seen, especially
where the mesenchymal tissue was absent (arrows in ERK5-/- embryos in D and E).
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WT

Figure 12
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ERKS-/-

Analysis of apoptosis in the head of ERK5-/- embryos. The level of apoptosis in E9.75 embryos were analyses by whole
mount TUNEL staining. These showed that there was greatly increased apoptosis in the ERK5-/- embryos compared to wild

type littermate controls. (A) Fluorescent images of the head region of whole mount TUNEL stained embryos. (B) Light micro-
scope pictures of the same regions at the same magnification. The cephalic mesenchyme is indicated by an arrowhead. Results

are representative of 3 experiments.

While both Sohn et al and Regan et al reported that ERK5-
/- embryos were growth retarded by E10, neither study
reported characterisation of the head and trunk regions of
these embryos. It is therefore not possible to say if the
defects we report in the cephalic mesenchyme and gut
were present in these knockouts. Differences in the target-
ing strageties between both Sohn et al and Regan et al, and
that used here may explain why some differences were
seen in the phenotypes observed, as it is not possible to
rule out the possibility that truncated fragments of the

ERK5 protein were expressed in any one of those knock-
outs, which may give rise to a dominant negative effect.
Interestingly however the most severe phenotype reported
was that of Regan et al, and in this study the targeting used
here deleted the smallest region of the ERK5 gene of all the
knockouts. It should also be stressed that other differ-
ences, such as the strain and source of mice and ES cells
used, may also explain differences between the pheno-
types of the three knockouts.

Page 16 of 21

(page number not for citation purposes)



BMC Developmental Biology 2003, 3 http://www.biomedcentral.com/1471-213X/3/11

ERKS5-/-

Figure 13

Analysis of hind gut at E9.75. E9.75 wild type and ERK5-/- embryos were isolated from timed matings and TS paraffin sec-
tions were taken and stained with haematoxylin and eosin as described in the methods (A). TS sections through the guts of
ERK5-/- mice showed several areas were there appeared to be hyperproliferation of the gut endothelium (arrow). This was
not observed in wild type embryos. Similar results were seen in 3 wild type and 3 ERK5-/- embryos.
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Interestingly we found two distinct morphologies of
ERK5-/- embryos at E10.25, however the reason for this
was not clear. Class I embryos were characterised by severe
growth retardation compared to wild type embryos, while
class II embryos were larger but had severe abnormalities
in the development of the head and lower trunk. One pos-
sible explanation may relate to the degree of severity of
the placental phenotype. Placental defects are a common
cause of lethality at this developmental stage in knockout
mice [27,28]. If the severity of these placental defects
varied between individual ERK5-/- embryos due to other
genetic or environmental factors, then as a result, the
problems in placental development may be sufficient to
kill some embryos (class I) before E10.25, but other
embryos (class II) survive longer, allowing other
phenotypes to become more pronounced. A similar effect
has also been observed in a knockout of p38a, in which
some embryos died at E11.5, presumably due to placental
defects, while some embryos survived past this stage [22].
We found that the basic structures of the placenta, includ-
ing the chorionic plate, labyrinthine trophoblast,
labyrinth and spongiotrophoblast layers were able to
form in the absence of ERK5. Histological sections did not
show significant differences between ERK5-/- and wild
type placenta at E9.75 (Fig 9). By E10.25 however the
thickness of the labyrinth was reduced in ERK5-/- placen-
tas, and there was less intermixing of the embryonic and
maternal blood vessels in the placental labyrinth. This
correlated with increased apoptosis in this region in
ERK5-/- placentas (Fig 10). This is suggestive of a role for
ERKS5 in development of the labyrinth and chorioallantoic
branching. As the labyrinth is the major site of exchange
between the embryonic and maternal blood, the problem
seen in the ERK5-/- placentas is likely to be sufficient to
cause embryonic lethality. ERK5 is not the only MAP
kinase signalling protein whose knockout affects laby-
rinth development. Knockout of MEKK3, an upstream
activator of ERK5 and p38 [23], resulted in embryonic
lethality due in part to a failure of the labyrinth develop-
ment. Also knockouts of p38 and MEK1 [29] result in
problems with the labyrinth, as do knockouts of several
receptors known to activate MAPK signalling including
LifR [30], EgfR [31], PdgfR [32,33], Met [34], and the
GDP/GTP exchange factor Sos1 [35].

Consistent with the findings of Regan et al and Sohn et al,
we also found that ERK5 knockout resulted in problems
in angiogenesis in the embryo. Analysis of ERK5 expres-
sion by in situ hybridisation however showed that expres-
sion of ERK5 was not restricted to the developing blood
vessels, but was instead expressed more widely in the
embryos. Both Sohn et al and Regan et al report that
expression of various signalling molecules important in
angiogenesis were normal in the ERK5 knockout. The rea-
son for the reduction in angiogenesis in the knockout

http://www.biomedcentral.com/1471-213X/3/11

mice is unclear, but may be related to general growth
retardation seen in ERK5-/- embryos compared to wild
type litermates at E10.25.

Knockout of ERK5 also affected cardiac development.
Using both whole mount in situ hybridisation and immu-
noblotting of dissected embryos, we show that expression
of ERK5, and its upstream activator MKK5, is expressed in
the heart at E9.5 to E10.25, although their expression level
was low compared to other regions of the embryo (Figs
2,3,4,5). Consistent with this, Sohn et al also reported
that ERK5 expression was highest in the heart and trunk of
the embryo at E9 to E9.5. Using only RNA in situ hybrid-
isation Regan at al however reported the opposite, with
high levels of ERK5 expression localised to the developing
heart and little expression in the rest of the embryo. The
reasons for this difference between the report of Regan et
al, and both our findings and those of Sohn et al is
unclear. We found development of the embryonic heart
was retarded compared to wild type embryos. Similar to
the report of Sohn et al, we observe that basic patterning
of the heart can occur in the absence of ERK5. Once
formed however, the heart does not develop past it's basic
patterning. In particular the thickness of the atrial wall at
E9.75 was reduced in ERK5 knockout embryos (Fig 8).
Interestingly, the knockout of ERK5 had much less severe
effects on heart development compared to the knockout
of its potential substrate MEF2C, in which embryos die at
E8.5-9 due to failure to undergo normal looping. This sug-
gests that either MEF2C has functions which are inde-
pendent of its phosphorylation by ERK5 in vivo at this
developmental stage, or that other kinases such as p38 can
also phosphorylate the same sites on MEF2C as ERKS5 in
vivo. In this respect it is interesting to note that knockout
of p38 resulted in similar problems in cardiac develop-
ment to the ERK5 knockout. In contrast to this report, and
that of Sohn et al, Regan et al reported that the heart did
not undergo normal looping at E9.5. The reason for this
discrepancy is not clear, but may be due to differences in
targeting or the genetic strains of mice used. The knockout
of ERK5 has been previously observed to have a similar
phenotype to knockouts of receptor tyrosine kinase Tie-2
[46] and its ligand Ang-1 [47], which may suggest that
ERK5 could function downstream of these receptors in the
heart. There is however no direct evidence to demonstrate
this link and further work would be needed to establish if
this were true. In isolated cell lines ERK5 has been
reported to be activated by the neuregulin receptors erbB2
and erbB3 [48], raising the possibility that erk5 may medi-
ate some to the effects of neuregulins in the heart. A fur-
ther possible reason for the cardiac phenotype is that
ERK5 has been reported to inhibit the activity of the VEGF
promoter [26], so that increased VEGF levels in the ERK5-
/- embryos may affect cardiac development. A third possi-
bility is that the cardiac defects observed in ERKS5-/-
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embryos may not be directly due to the lack of ERK5 in the
heart, and that these phenotypes may be caused wholly or
in part by stress induced by the placental defects in the
knockouts. It has been shown in other knockout models
that cardiac phenotypes can be secondary to other prob-
lems in the embryo (for examples see [21,36]). Further
work, including the use of placental rescue or cardiac spe-
cific ERK5 knockouts, will be required to fully resolve
these issues.

We also observed defects in the development of the
cephalic mesenchyme and gut in the ERK5-/- embryos. In
ERK5-/- embryos problems were seen in the cephalic
mesenchyme from E9.75 onwards. At E9.75 the cephalic
mesenchyme appeared less dense with larger spaces
between the cells and less contact between the cephalic
mesenchyme and the neuroepithelium. However as the
embryos developed, this gradually worsened and by
E10.25 the cephalic mesenchyme was essentially absent
(Fig 11). Several factors suggest that the defects seen in the
cephalic mesenchyme are primary phenotypes directly
caused by the loss of ERK5 protein in this region. First, in
stiu hybridisation showed that ERK5 was expressed in the
cephalic mesenchyme from E9.75 (Fig 5). Secondly, these
problems could be seen in E9.75 ERK5-/- embryos, while
at this stage blood vessel and placental development
appeared relatively normal in the knockouts (Fig
6,7,8,9,10), suggesting that the cephalic mesenchyme and
gut defects were not secondary to a lack of angiogenesis.
Consistent with this, blood vessels were present in the
cephalic mesenchyme of E9.75 ERK5-/- embryos, suggest-
ing that the problems with this tissue were not due to a
lack of blood supply. The defect in the cephalic mesen-
chyme appeared to be due to increased apoptosis causing
the tissue to be lost, rather than a problem with its initial
development. Consistent with the normal initial develop-
ment of this region, expression patterns of sonic hedgehog
and Six3 (L. Yan, unpublished data) at E9.5 were unaf-
fected by the knockout of ERK5. The increase in apoptosis
in the ERK5-/- embryos suggests that ERK5 may be
involved in regulating cell survival or poliferation. Con-
sistent with this, overexpression of ERKS5, or its upstream
activator MKKS5, has been shown to promote proliferation
in some cell types in response to some mitogenic stimuli
[1,37-39].

In summary these results are consistent with a role for
ERK5 in angiogenesis and placental development, and
show new functions for ERK5 in the survival of the
cephalic mesenchyme and regulation of survival and
apoptosis. Further work however will be required in order
to determine the molecular details of these ERK5
functions.
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Methods

Materials

Antibodies against ERK1/2, p38/SAPK2 and cleaved cas-
pase 3 were from Cell Signalling. The MKK5 antibody was
from Stressgen and the CD31 antibody from Pharmhigen.
The ERK5 antibody has been described previously [7].

Generation of ERK5 knockouts

A genomic clone for ERK5 was obtained by screening a
129Sv] mouse BAC genomic library using a mouse ERK5
EST. Regions of the BAC corresponding to the ERK5 were
subcloned by either restriction digestion or random frag-
mentation and sequenced. A targeting vector was
designed based on this sequence to delete exons 4 to 5 of
the ERK5 gene. The vector consisted of a first arm of
homology (generated by cloning of a Sal I / Eco RI frag-
ment ligated to a PCR product generated using the primers
GAATTCAGATCTGTGTAAGG and AAGCTITCTGAAAAT-
GGGAAG) then a neomycin resistance cassette, followed
by a second arm of homology (generated by using the
primers CATATGAGAAGAGGAAAGCCTGGGA and GCG-
GCCGCAGCAGGGATCAATATGT) and a thymidine
kinase cassette (Fig 1). The targeting vector was linearised
using Not I before transfection into mouse ES cells.

Mouse embryonic stem cells were grown and transfected
as described previously ([40]), using embryonic fibrob-
lasts from MTK-neo mice as a feeder layer. Colonies resist-
ant to both G418 and ganciclovir were expanded and
screened for correct incorporation of the ERK5 targeting
vector. A probe external to the targeting vector was gener-
ated by PCR using the primers CAAGTAGGGGACCAAGT-
CAAC and GGCCCAATGGAAAGGCTTCTAT. This probe
was used to screen DNA double digested with Hind III
and Mfe I from ES cell colonies. Positive cell lines were
injected into blastocysts from a C57Bl/6 x BALB/c cross,
which were then reimplanted into recipient female mice
[41]. Chimeric male offspring were then bred to BALB/c or
C57Bl/6 mice as indicated and transmission identified by
a combination of coat colour and genotyping by Southern
and PCR analysis.

Routine gentoyping of the ERK5 mice was carried out by
PCR on tail biopsies. PCR was carried out using the
primers ~ AACTAACCAACCCACCITCCAAGAC  and
CACTAGTACTCCTACTGGCCCCGTA to identify wild
type and AACTAACCAACCCACCITCCAAGAC and
ACCACCAAGCGAAACATCGCATCG to identify targeted
alleles.

Isolation of embryos

Male and female mice of known genotype were placed
together and time of fertilisation determined by
observation of copulation plugs, and noon of that day
defined as E0.5. Embryos were dissected from pregnant
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females at the times indicated, and the yolk sacs separated
and used to genotype the embryos by PCR.

Whole mount in situ hybridisation, immunohistochemistry
and TUNEL staining

Embryos were harvested and fixed in 4% paraformalde-
hyde. In situ hybridisation was carried out as described
previously [42]. Probes for ERK5 (corresponding to the
last 207 amino acid and first 165 bp of the 3' utr) and
MKKS5 (corresponding to the last 71 amino acid and first
295 bp of the 3' utr) were generated by PCR using the
primers ACTAGTACTCCTACTGGC and GCTCAGGT-
GGCTGCITAAG or ACTAGTAGGATTCGCCGGTCCTTC
and ATCAGTGCTGCTGATAGGGCCTGAC respectively.
PCR products were cloned into pBluescript to give anti-
sense sequence when transcribed from the T7 promoter.

Whole mount immunohistochemical analysis of embryos
using a CD31 antibody as described [43]. Whole mount
terminal deoxynucleotidyl transferase-mediated UTP end
labelling (TUNEL) was carried out using the in situ cell
death detection kit from Roche.

Sectioning

Embryos placenta were fixed in formaldehyde, then dehy-
drated in ethanol, cleared in chloroform and then
embedded in paraffin as described [44]. Sections were cut
and stained using haematoxylin and eosin.

The atrial wall thickness was determined using a modified
Cavalieri method [45]. Both the inner and outer areas of
the atrial chamber were measured and the average wall
thickness was defined as the difference between the aver-
age radius of the inner and outer areas of the atrial cham-
ber. Between 6 and 9 sections were analysed per embryo,
and 4 wild type and 4 ERK5-/- embryos were analysed.

Immunoblotting

Tissue was homogenised in 50 mM Tris-HCI pH 7.5, 1
mM EGTA, 1 mM EDTA, 1 mM sodium orthovanadate, 50
mM sodium fluoride, 1 mM sodium pyrophosphate, 0.27
M sucrose, 1% (v/v) Triton X-100, 0.1% (v/v) 2-mercap-
toethanol and complete proteinase inhibitor cocktail
(Roche). Insoluble material was removed by centrifuga-
tion at 13000 g for 5 min at 4°C. Soluble lysate (30 pug)
was then run on 4-12% polyacrylamide gels (Novex, Inv-
itrogen) and transferred onto nitrocellulose membranes.
Primary antibodies against ERK1/2, p38 and MKK5 were
used as described by the supplier, and the ERK5 antibody
was used at 0.8 pug/ml. Secondary antibodies conjugated
to horseradish peroxidase were from Pierce, and detection
was performed using ECL (Amsersham).
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