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Abstract
Background: Cisplatin and carboplatin are the primary first-line therapies for the treatment of
ovarian cancer. However, resistance to these platinum-based drugs occurs in the large majority of
initially responsive tumors, resulting in fully chemoresistant, fatal disease. Although the precise
mechanism(s) underlying the development of platinum resistance in late-stage ovarian cancer
patients currently remains unknown, CpG-island (CGI) methylation, a phenomenon strongly
associated with aberrant gene silencing and ovarian tumorigenesis, may contribute to this
devastating condition.

Methods: To model the onset of drug resistance, and investigate DNA methylation and gene
expression alterations associated with platinum resistance, we treated clonally derived, drug-
sensitive A2780 epithelial ovarian cancer cells with increasing concentrations of cisplatin. After
several cycles of drug selection, the isogenic drug-sensitive and -resistant pairs were subjected to
global CGI methylation and mRNA expression microarray analyses. To identify chemoresistance-
associated, biological pathways likely impacted by DNA methylation, promoter CGI methylation
and mRNA expression profiles were integrated and subjected to pathway enrichment analysis.

Results: Promoter CGI methylation revealed a positive association (Spearman correlation of 0.99)
between the total number of hypermethylated CGIs and GI50 values (i.e., increased drug resistance)
following successive cisplatin treatment cycles. In accord with that result, chemoresistance was
reversible by DNA methylation inhibitors. Pathway enrichment analysis revealed
hypermethylation-mediated repression of cell adhesion and tight junction pathways and
hypomethylation-mediated activation of the cell growth-promoting pathways PI3K/Akt, TGF-beta,
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and cell cycle progression, which may contribute to the onset of chemoresistance in ovarian cancer
cells.

Conclusion: Selective epigenetic disruption of distinct biological pathways was observed during
development of platinum resistance in ovarian cancer. Integrated analysis of DNA methylation and
gene expression may allow for the identification of new therapeutic targets and/or biomarkers
prognostic of disease response. Finally, our results suggest that epigenetic therapies may facilitate
the prevention or reversal of transcriptional repression responsible for chemoresistance and the
restoration of sensitivity to platinum-based chemotherapeutics.

Background
Ovarian cancer is the most deadly gynecological malig-
nancy, with an overall U.S. five-year survival rate of only
46% [1]. While highly curable if diagnosed in the early
(ovary-confined) stages, over 75% of initial diagnoses are
Stage III or IV malignancies, for which the survival index
is only 30.6% [1]. While most patients initially respond to
surgical debulking and treatment with taxanes combined
with platinum-based chemotherapies [2,3], over 80% of
those responders eventually relapse with fully chemore-
sistant disease [4]. While a number of signal transduction
cascades have been hypothesized to contribute to this
devastating clinical phenomenon, the mechanism(s)
underlying the onset of chemoresistance remains poorly
understood, reviewed in [5].

Similar to most chemotherapies, the antitumor activity of
cisplatin is dependent upon DNA damage of rapidly
dividing cells, and is mediated primarily by the formation
of intra- and interstrand cisplatin-DNA adducts [6]. The
resulting accumulation of these DNA lesions is believed to
lead to steric obstruction of DNA-binding proteins neces-
sary for vital intracellular functions, including transcrip-
tion and DNA replication, with recognition of the
resulting lesions by high mobility group and mismatch
repair proteins eventually leading to p53-initiated apop-
tosis [7]. Thus, drug inactivation, decreased accumulation
of DNA-cisplatin adducts, defective DNA damage recogni-
tion, enhanced nucleotide-excision repair, and impaired
apoptotic responses are hypothesized as broad-based
mechanisms responsible for the drug-resistant phenotype
[5,8,9]. While dysregulation of genes and pathways is
often due to various rearrangements (e.g., deletions,
mutations, or translocations) to the DNA molecule itself,
epigenetic changes (e.g., DNA methylation and histone
modifications) are likely even more prominent in the
onset of chemoresistance [10-14]. Specifically, transcrip-
tional silencing of distinct DNA repair and apoptosis-
associated genes by hypermethylation of promoter "CpG
islands" (CGIs), CG-rich DNA regions typically unmeth-
ylated in normal cells [15], has now been associated with
platinum drug resistance in numerous cancers, including
ovarian [9,16-21]. Moreover, the degree of aberrant meth-
ylation (i.e., the total number of methylated genes) has

also been directly correlated with ovarian tumor progres-
sion and recurrence, and specific methylated loci have
been statistically associated with poor progression-free
survival in ovarian cancer [22-24]. However, no previous
global studies of the accumulation of DNA methylation
aberrations, during the gradual acquisition of chemore-
sistance, or their likely impact on specific biological sign-
aling pathways, have been reported in cancer.

To identify epigenetically regulated genes directly associ-
ated with ovarian cancer cisplatin resistance, and their
associated biological pathways, we established a cell cul-
ture model to emulate the time-dependent development
of drug resistance in patients suffering from this condi-
tion. In this model, a single clone of the platinum-sensi-
tive ovarian cancer cell line A2780 was exposed to
incrementally increasing doses of cisplatin, generating
A2780 sublines having varying degrees of chemoresist-
ance. By categorizing distinct aberrations in DNA methyl-
ation and gene expression associated with specific time-
points during the development of resistance, we demon-
strated statistically significant correlations between pro-
moter CpG island methylation and gene expression
changes, and also between methylation and drug resist-
ance, with consequent alterations in specific drug-
response signaling pathways. In accord with a causal role
for aberrant DNA methylation in cisplatin resistance,
treatment of the drug-resistant sublines with DNA meth-
ylation inhibitors resulted in significant promoter
demethylation and the re-establishment of chemosensi-
tivity. While other studies have profiled gene expression
[13,25,26], proteomic [27,28], and chromosomal aberra-
tions [29,30] related to ovarian cancer cisplatin resistance,
we believe this is the first report integrating chemoresist-
ance-associated alterations in DNA methylation and gene
expression to determine likely epigenetically regulated
biological pathways related to drug sensitivity. Based on
these results, we suggest that aberrant DNA methylation
may contribute to the disruption of key biological path-
ways during ovarian tumor progression to a drug-resistant
phenotype. We believe our findings justify further cellular
and molecular biologic studies for the development of
more effective approaches for the clinical use of platinum-
based chemotherapeutics.
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Methods
Cell lines, drug treatments, and cell proliferation assays
All cells were maintained in RPMI 1640 media with 2 mM
L-glutamine, 50 U/ml penicillin, 50 mg/ml streptomycin,
and 10% fetal bovine serum, at 30°C and 5% CO2. 5-aza-
2'-deoxycytidine (5-aza-dC) was purchased from Sigma
(St. Louis, MO) and zebularine [1-(β-D-ribofuranosyl)-
1,2-dihydropyrimidin-2-one] was a kind gift from Dr. Vic-
tor Marquez (Developmental Therapeutics Program,
National Cancer Institute, Frederick, MD). A2780 ovarian
cancer cells were obtained from ATCC (Manassas, VA),
restriction enzymes from New England Biolabs (Beverly,
MA), and cell culture reagents from Invitrogen (Carlsbad,
CA). Using serial dilution cell seeding, a single clone of
the cisplatin-sensitive, epithelial ovarian cancer cell line
A2780 was cultured for multiple cycles ("treatment
rounds") with incrementally increasing doses of cis-diam-
minedichloroplatinum(II) dichloride (CDDP, cisplatin)
(Sigma). 5-aza-dC or zebularine treatment was performed
after cell seeding for 48 hours prior to cisplatin treatment
[31]. MTT assays were used to determine both GI50 values
and growth curves of the cells, as we have described previ-
ously [31]. Briefly, 96-well dishes were plated with 2,000
cells per well one day before cisplatin treatment. The next
day, cells were treated with various dosages of cisplatin
(0.5 μM to 100 μM) for three hours and allowed to
recover for three days. Following drug treatments, total
viable cell numbers were determined by 4-hr treatments
with 3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyl tetrazo-
lium bromide (MTT) assay, with cell viability (as deter-
mined by MTT metabolism to formazan) determined by
measuring absorbance at 600 nm using a Bio-Tek
(Winooski, VT) microplate spectrophotometer. Dose-
response curves were then generated and 50% growth
inhibitory (GI50) dose values determined by Microsoft
Excel or Prism 4.0 (GraphPad Software, San Diego, CA),
using sigmoidal dose (variable slope) curve fitting, as we
have described previously [31,32].

Differential methylation hybridization and data processing
Genomic DNA was isolated from parental (drug-sensi-
tive) A2780, Round1, Round3, and Round5 cells using
DNeasy purification kits (Qiagen, Valencia, CA). Differen-
tial methylation hybridization (DMH) was then per-
formed as previously described [22,33,34]. Briefly,
isolated DNA was digested with the methylation-insensi-
tive restriction enzyme BfaI (C^TAG), followed by liga-
tion of linkers. Linker-ligated DNA was then digested by
the methylation sensitive enzymes HinP1I (G^CGC) and
HpaII (C^CGG), and digestion products were then ampli-
fied by linker PCR. The PCR products were further ampli-
fied using aminoallyl-dUTP incorporation to facilitate
labeling with the fluorophores Cy3 (parental A2780) or
Cy5 (A2780 following various "rounds" of cisplatin treat-
ment). The labeled DNA samples were then combined

and hybridized to a customized 60-mer oligo microarray
containing 40,000 CpG-rich fragments from 12,000
known gene promoters (Agilent, Santa Clara, CA) (see
Additional file 1 for full annotations). Following hybridi-
zation and washing, microarray images were scanned and
generated using an Axon GenePix 4200A scanner (Molec-
ular Devices, Sunnyvale, CA). The raw microarray data
was first corrected for background noise by background
subtraction and then for system and technical noise by
LOESS normalization. The relative methylation levels
(i.e., "folds-change"), for each hybridized probe, in cispl-
atin-resistant sublines, were approximated by the ratios of
the Cy5 (drug-treated cell lines) to Cy3 (parental A2780
cell line) fluorescence, and were defined as positive or
negative values according to their respective increases or
decreases compared to the parental cells. To avoid poten-
tial technical variations between probes, the methylation
levels of multiple probes for a single gene (average of four
probes per gene) were not collapsed or averaged, and
genes having multiple discordant probe intensities were
eliminated from the analysis. The DMH data have been
deposited in NCBI Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/projects/geo/) and are
accessible through GEO SuperSeries GSE15709.

Gene expression microarray analysis and data processing
For gene expression assessments, total RNA was isolated
from parental A2780 cells and Round5 cells using Qiagen
RNeasy purification kits (Valencia, CA) and further puri-
fied with RNase-free DNase following our previously
described method [32]. All microarray hybridizations
were performed at the Indiana University Center for Med-
ical Genomics (IUCMG). Five replicates were performed
for each cell line using Human U133 plus 2.0 GeneChips
(Affymetrix, Santa Clara, CA). Using Bioconductor [35],
present (P), absent (A) or marginal (M) calls were deter-
mined using an MAS5 algorithm. Fraction presence,
defined as the average present/absent (P/A) detection call
(scores were given as P = 1, M = 0.5 and A = 0) for the
experimental or control groups, was calculated for each
microarray probe, and probes with at least one group hav-
ing a fraction presence of 0.5 were selected for future use.
Welch's t-test was performed for each probe using their
log-transformed signals, with p-values less than 0.01 con-
sidered significant. To further support the statistical signif-
icance of probes having p < 0.01, the false discovery rate
(FDR) was also calculated [36,37], with probe significance
defined as an FDR of less than 5%. A moderately stringent
fold-change cutoff of ≥ 1.5 (or ≤ -1.5 for downregulation),
which allows for an acceptable balance between false dis-
covery and false negative rates [38], was applied (in addi-
tion to the p-value cutoffs) to determine genes with
significant expression alterations. The gene expression
microarray data have been deposited in NCBI Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.
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gov/projects/geo/) and are accessible through GEO Super-
Series GSE15709.

Clustering, functional pathway prediction, gene ontology 
(GO) analysis, and statistics
Hierarchical clustering of the expression profiles was done
by Cluster 3.0 [39]. Expression profiles were first pre-fil-
tered by fraction present and then input into the program.
The input data was further log transformed and normal-
ized by array median centering and gene median center-
ing. Average linkage clustering was performed by
correlation (centered) similarity metric. Clustering results
were viewed using TreeView version 1.60 [39]. The online
program Pathway-Express (Onto-Tools, Wayne State Uni-
versity, Detroit, MI) [40,41] was used to explore the most
biologically relevant pathways impacted by a list of input
genes. Specific biological pathways were defined by the
Kyoto Encyclopedia of Genes and Genomes (KEGG) data-
base (Kanehisa Laboratories, Japan) [42]. Given a list of
genes (for example, upregulated genes in Round5), Path-
way-Express selects pathways based on impact analysis
that considers not only conventional statistical analysis
but also other biological factors, such as expression levels
(i.e., fold-change) of input genes, type and position in a
given pathway, and protein-protein interactions, among
other variables. Thus, this approach is considered to be
more powerful than analyses based on statistics only. Cor-
rected p-values of less than 0.05 were used as an empirical
cutoff for retrieving altered pathways [41]. GO enrich-
ment of expression profiles was also analyzed by the
online program Functional Annotation Analysis Tools,
provided by the Database for Annotation, Visualization
and Integrated Discovery (DAVID) bioinformatics data-
base (NIAID, NIH, Bethesda, MD) [43-45]. All statistics
were done in R and Microsoft Excel, unless otherwise
stated.

Results
Establishment of a cell culture model of acquired ovarian 
cancer platinum resistance
To establish a model for the development of ovarian
tumor cisplatin resistance, we exposed clonally derived,
platinum-sensitive A2780 ovarian cancer cells [46] to
incrementally increasing doses of cisplatin, with drug sen-
sitivity assessed by MTT cell proliferation assays. The cis-
platin GI50 dose (i.e., dose necessary for 50% growth
inhibition) for the starting clone of A2780 cells was 5 μM
(Figure 1A), and these starting cells were designated as
"Round0" cells, to denote their parental relationship to
their subsequent drug-selected progeny. Parental A2780
cells were then treated with cisplatin at 70% of their GI50
dose (initially at 5 μM) for 3 hours and then allowed to
recover for two weeks. The surviving cells were then
expanded and designated as "Round1" cells, to denote
their single cisplatin-selection cycle. The same procedure

was repeated four additional times to generate "Round2"
to "Round5" cisplatin-selected A2780 cells. Following
each selection cycle, the cisplatin GI50 dose for the surviv-
ing cells was determined, and was found to increase con-
tinuously to 35 μM for Round5 cells (Figure 1A), a dose
similar to the commonly used cisplatin-resistant cell line
A2780CP [47].

Positive correlation between DNA methylation and 
cisplatin-resistance development
To examine changes in DNA methylation during the
development of drug resistance, we utilized a genome-
wide methylation microarray approach, differential meth-
ylation hybridization (DMH) [33], to compare CpG
island (CGI) methylation profiles of: 1) Round1 (one cis-
platin treatment) vs. parental A2780; 2) Round3 (three
cisplatin treatments) vs. parental A2780; and 3) Round5
(five cisplatin treatments) vs. parental A2780. The meth-
ylation status of any specific gene was estimated by its
ratio of normalized Cy5 to Cy3 fluorescent signal (i.e.,
fold-change). To select differentially methylated genes, a
moderately stringent fold-change cutoff of 1.5, allowing
for an acceptable balance between false discovery and
false negative rates [38], was used (i.e., hypermethylation
was defined as fold-change ≥ 1.5 and hypomethylation as
fold-change ≤ -1.5). Using that cutoff limit, the total num-
bers of hypermethylated genes for the Round1, Round3
and Round5 sublines were 595, 870 and 1176, respec-
tively, relative to the parental ("Round0") A2780 cells.
Spearman correlation testing further demonstrated a sig-
nificant and positive linear correlation between the total
number of hypermethylated genes and the GI50 values of
the cisplatin-resistant sublines (Figure 1B), in accord with
previous studies demonstrating increasing CGI methyla-
tion during ovarian tumor progression [23,24].

In agreement with our results showing progressively
increasing total CGI methylation during the development
of cisplatin resistance, we also observed upregulation of
the DNA methyltransferases DNMT1 and DNMT3B in the
drug-resistant Round5 subline (vs. the parental line), with
expression fold-changes of 1.63 (p = 0.0011, FDR =
0.012) and 1.80 (p = 0.0004, FDR = 0.007), respectively
(Table 1). To further examine the involvement of DNA
methylation in drug resistance, the Round5 subline was
treated with various doses of two routinely used DNA
methyltransferase inhibitors, 5-aza-2'-deoxycytidine (5-
aza-dC, decitabine) and zebularine [48]. 5-aza-dC (10
μM) treatment alone resulted in a 45% decrease in total
cell number, while 10 μM zebularine alone resulted in
10% cell death (Figures 2A, 2B). The Round5 subline was
then pretreated for 48 hr with 5-aza-dC or zebularine
prior to administration of the GI50 dose of cisplatin. As
shown in Figure 2A, 10 μM 5-aza-dC pretreatment, fol-
lowed by cisplatin exposure, resulted in a marked decrease
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in cell survival. Furthermore, cisplatin sensitivity
increased with each dosage of 5-aza-dC, as summarized in
Figure 2C, demonstrating decreasing cisplatin GI50 as a
function of 5-aza-dC dose. Similar resensitization results
were observed after treatment of the Round5 subline with
zebularine (Figures 2B, 2D), although a higher dose of
zebularine was required, due to the lower drug potency of
that agent [49,50]. Consequently, these results indicate a
role for aberrant DNA methylation in the reduced sensi-
tivity of ovarian cancer cells to cisplatin-mediated DNA
damage, and suggest that DNA methyltransferase inhibi-

tors represent one possible strategy for chemosensitiza-
tion.

Gene expression profiles reveal cisplatin-induced 
alterations in drug-resistant ovarian cancer
To identify changes in gene expression associated with cis-
platin resistance (in possible correlation with promoter
DNA methylation), microarray studies were performed on
the Round5 subline (chemoresistant) vs. the parental line
(A2780; chemosensitive). Total RNA was isolated from
Round5 and parental (Round0) cells, labeled and hybrid-
ized to Human U133 plus 2.0 Affymetrix microarrays.

De novo DNA methylation and acquired cisplatin resistance in an ovarian cancer cell modelFigure 1
De novo DNA methylation and acquired cisplatin resistance in an ovarian cancer cell model. A) Cisplatin-sensitive 
A2780 epithelial ovarian cancer cells were treated with 70% of GI50 dose of cisplatin. Surviving cells (Round1 A2780) were 
expanded and treated with the subsequent 70% GI50 dose (total of five rounds of drug treatment). The GI50 values for both 
parental and cisplatin-treated A2780 sublines were measured by MTT assay. B) DMH microarrays were performed on Round1, 
Round3 and Round5 A2780 cells, and the number of hypermethylated genes for each round was determined using various fold-
change cutoffs (1.5-fold or 1.7-fold) and plotted as a function of cisplatin GI50. The correlations were determined by Spearman 
correlation. C) mRNA expressions in parental (cisplatin-sensitive) and Round5 (cisplatin-resistant) A2780 cells were measured 
by Human U133 plus 2.0 GeneChips (Affymetrix, Santa Clara, CA). Two-dimensional hierarchical clustering of the 3127 signifi-
cantly up- or down-regulated probes done by Cluster [39] revealed distinctively different mRNA expression profiles of the two 
A2780 sublines (detailed plot provided in Additional file 2).
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Probes with fraction presence (see methods) < 0.5 were
removed. The remaining 23,723 probes were then log-
transformed and median-centered between arrays and
within genes. Unsupervised hierarchical clustering (aver-
age linkage clustering method) was then utilized to visu-
alize common expression patterns between the samples
[39], demonstrating clustering of all five replicates of the
Round5 subline gene expression microarray results, while
analogously, the five replicate microarray results of the
parental line formed a separate cluster. Figure 1C and

Additional file 2 showed the clustering results of all
(3127) significantly up- or down- regulated probes (p-
value < 0.01, FDR < 5%, fold-change ≥ 1.5 or ≤ -1.5), these
probes corresponded to a total of 1036 genes upregulated
and 1286 genes downregulated in Round5 (see Addi-
tional file 3). The functional clustering analysis, an algo-
rithm capable of clustering similar annotations across
several often-used annotation types (e.g., GO terms, path-
ways, Swiss-Prot knowledgebase keywords) or within dif-
ferent levels of annotation terms (to highlight functional

Resensitization of cisplatin-resistant Round5 A2780 cells by 5-aza-dC and zebularineFigure 2
Resensitization of cisplatin-resistant Round5 A2780 cells by 5-aza-dC and zebularine. A) Growth curves for cispla-
tin in the presence of 5-aza-dC pretreatment. In the absence of cisplatin, higher 5-aza-dC dosage achieves higher cell death. 
The same dosage of cisplatin achieves higher cell death with higher dosages of 5-aza-dC, demonstrating increased cisplatin sen-
sitivity by 5-aza-dC. B) The same resensitization experiment was performed for zebularine, using higher dosages (0–200 μM) 
[49,50]. C) The cisplatin GI50 values measured by MTT assay showed a dose-dependent decrease by 5-aza-dC. D) The cisplatin 
GI50 values measured by MTT assay showed a dose-dependent decrease by zebularine.
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Table 1: mRNA expression level changes of DNA methyltransferases (DNMTs) in Round5 vs. parental A2780 cells

Gene Welch's t-test FDR Fold-change Gene title

DNMT1* 0.0011 0.0123 1.63 DNA (cytosine-5-)-methyltransferase 1
DNMT2 0.3673 0.5360 1.17 DNA (cytosine-5-)-methyltransferase 2
DNMT3A 0.1009 0.2275 1.20 DNA (cytosine-5-)-methyltransferase 3 alpha
DNMT3B * 0.0004 0.0069 1.80 DNA (cytosine-5-)-methyltransferase 3 beta

* Genes with significant alteration in their mRNA expression
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changes), provided by DAVID (Database for Annotation,
Visualization and Integrated Discovery, developed by
NIAID/NIH) [43-45], was then used to investigate gene
ontology (GO) [51] term enrichment. Functional cluster-
ing analysis of all 1036 genes upregulated in Round5,
using a high classification stringency (Kappa similarity
term overlap ≥ 3 and threshold of 0.85; classification mul-
tiple linkage threshold of 0.5), showed 31 functional
groups to be highly enriched (geometric p-values < 0.01),
with cell cycle progression, cellular metabolic processes
and DNA damage response as the top three ranked GO
biological process terms (see Additional file 4). Con-
versely, using the same high classification stringency, all
1286 downregulated genes segregated into 16 enriched
functional groups, with cellular metabolic processing,
biological regulation, macromolecule and protein meta-
bolic processes and positive regulation of transcription as
the highest ranking GO biological pathway terms (see
Additional file 5).

Cisplatin resistance is associated with promoter CpG 
island DNA methylation of key genes in vital intracellular 
pathways
To investigate the potential functional role of promoter
methylation in the onset of cisplatin resistance, pathway
enrichment analyses were performed using Pathway-
Express [40,41], a program that processes a list of input
genes to identify KEGG pathways (Kanehisa Laboratories,
Japan) [42] likely altered by those genes based on fold-
change, pathway position, and pathway topology. As total
promoter CGI hypermethylation was significantly associ-
ated with gene silencing (Figure 1B), we first selected
genes that were coordinately hypermethylated and down-
regulated in Round5 as the Pathway-Express input list. Of
the 1176 genes hypermethylated in Round5 cells (as com-
pared to the parental A2780 cells) on the Agilent custom
promoter CGI microarray, 847 were also annotated on the

Affymetrix Human U133 plus 2.0 GeneChips. Of those
847 genes, 55 were found to be significantly downregu-
lated (denoted as "gene list 1"). A second gene list, pos-
sessing all Round5 1,286 downregulated genes (regardless
of methylation status), was then utilized as a background
for all possible downregulated pathways in the cisplatin-
resistant cells ("gene list 2"). To evaluate the over-repre-
sentation of methylation-regulated genes in specific path-
ways, and to examine relevant differences between
numbers of genes in each pathway in gene lists 1 and 2, a
one-tailed Fisher's exact test was performed to statistically
determine whether a majority of the downregulated genes
were also methylated. That analysis revealed that three
downregulated pathways, cell adhesion molecules
(CAMs), tight junction, PPAR signaling and leukocyte
transendothelial migration pathways were dominantly
regulated by hypermethylation of these 55 genes (Fisher's
exact test p-value < 0.05) (Table 2).

Similar to our examination of genes that were coordi-
nately hypermethylated and downregulated in Round5
cells, we performed the same analysis for Round 5 genes
found jointly hypomethylated and upregulated. Those
results revealed that six pathways, pancreatic cancer, pros-
tate cancer, colorectal cancer, non-small cell lung cancers,
glioma, melanoma, and chronic myeloid leukemia, were
all upregulated by hypomethylation (Fisher's exact test p-
value < 0.05) (Table 3). Hypomethylated and upregulated
genes in these pathways included PIK3R3, PDGFRA, E2F1,
and TGFBR2, all signal transduction regulators associated
with the PI3K/Akt, cell cycle progression, and TGF-beta
pathways, and shared by all the cancer-associated path-
ways mentioned above.

Discussion
Platinum compounds have served as a standard therapy
for post-surgical ovarian cancer patients for over two dec-

Table 2: Biological pathways repressed by hypermethylation

Pathways Downregulated genes
(1286)

Hypermethylated and downregulated genes
(55)

Fisher's Exact Test 
p-values§

Input genes in 
pathway

Corrected p-value Input genes in 
pathway

Genes in pathway Corrected p-value

Cell adhesion 
molecules

14 1.95E-164 4 ITFAV, CLDN11, 
NEO1, CDH2

0 0.002*

Tight junction 13 1.40E-03 3 CLDN11, PPP2R4, 
INADL

9.93E-07 0.016*

PPAR signaling 
pathway

6 1.17E-01 2 CPT1A, SLC27A6 5.20E-03 0.024*

Leukocyte 
transendothelial 
migratio'n

9 2.34E-01 1 CLDN11 2.51E-02 0.326

Pathways listed are all pathways regulated by hypermethylated and downregulated genes, determined by Pathway Express corrected p-value < 0.05.
§ Pathway enrichment p-values were calculated using a one-tail Fisher's exact test. Asterisks show p-value < 0.05
Page 7 of 13
(page number not for citation purposes)



BMC Medical Genomics 2009, 2:34 http://www.biomedcentral.com/1755-8794/2/34
ades, as well as for other malignancies, including testicu-
lar, bladder, lung, endometrial, and head and neck
cancers [52]. Acquired or de novo resistance to platinum-
based chemotherapy is commonly observed in ovarian
cancer, with numerous underlying mechanisms now pro-
posed to explain this phenomenon, including drug inacti-
vation, elevated resistance to apoptosis, decreased
recognition of DNA damage, and increased DNA repair
[8,9,53,54]. Accumulating evidence now shows that aber-
rant epigenetic alterations contribute to these chemore-
sistance-associated phenomena, perhaps even more so
than genetic aberrations [10,16]. By comparing and com-
bining genome-wide gene expression and methylation
changes observed in cisplatin-sensitive and -resistant
ovarian cancer sublines, we discovered both novel and
reported pathways and gene ontology (GO) groups likely
to mediate acquired cisplatin resistance. These included
cell cycle progression (G2/M checkpoint), response to
DNA damage, nucleotide binding, and various cellular
metabolic processes, in agreement with previous reports

[9] and our previous study [55], further supporting a role
for promoter CpG island (CGI) methylation in disrupting
gene expression during tumor progression.

One possible explanation for our observed chemoresist-
ance-associated changes in DNA methylation patterns is
aberrant activity or substrate specificity of DNA methyl-
transferase (DNMT) enzymes [56,57]. In the current
study, we observed modest but highly significant upregu-
lation of both DNMT1 and DNMT3B in the cisplatin-
resistant Round5 (i.e., treated for five drug cycles) A2780
subline (Table 1), suggesting that the altered methylation
profile in these cells may be associated with increased or
altered DNMT activity. In support of this possibility, a
number of other studies have demonstrated pharmaco-
logic or genetic downregulation of DNMT1 and DNMT3B
enhanced chemosensitivity to various platinum drugs,
including cisplatin [31,58-61]. Our current results dem-
onstrate that 5-aza-dC and another methylation inhibitor,
zebularine, dose-dependently restored chemosensitivity

Table 3: Biological pathways activated by hypomethylation

Pathways Upregulated genes
(1036)

Hypomethylated and upregulated genes
(55)

Fisher's Exact Test 
p-values§

Input genes in 
pathway

Corrected p-value Input genes in 
pathway

Genes in pathway Corrected p-value

Glioma 6 1.60E-02 3 PIK3R3, PDGFRA, 
E2F1

8.69E-05 0.003*

Melanoma 5 6.00E-02 3 PIK3R3, PDGFRA, 
E2F1

3.91E-04 0.001*

Pancreatic cancer 8 3.30E-02 3 PIK3R3, E2F1, 
TGFBR2

1.10E-03 0.006*

Prostate cancer 9 3.80E-02 3 PIK3R3, PDGFRA, 
E2F1

1.20E-03 0.009*

Colorectal cancer 6 1.84E-01 3 PIK3R3, E2F1, 
TGFBR2

1.50E-03 0.003*

Chronic myeloid 
leukemia

6 1.75E-01 3 PIK3R3, E2F1, 
TGFBR2

2.50E-03 0.003*

Non-small cell lung 
cancer

2 6.00E-01 2 PIK3R3, E2F1 2.46E-02 0.003*

Phosphatidylinositol 
signaling system

4 5.32E-07 1 PIK3R3 2.23E-12 0.196

Gap junction 5 4.12E-02 1 PDGFRA 1.06E-05 0.239
Focal adhesion 17 8.76E-03 2 PIK3R3, PDGFRA 9.13E-05 0.226
MAPK signaling 
pathway

8 5.90E-02 2 PDGFRA, TGFBR2 9.73E-05 0.063

TGF-beta signaling 
pathway

6 1.13E-01 1 TGFBR2 5.67E-04 0.280

Adherens junction 7 4.44E-02 1 TGFBR2 6.41E-03 0.318
Regulation of actin 
cytoskeleton

15 8.57E-02 3 PIK3R3, PDGFRA, 
MSN

6.73E-03 0.051

Calcium signaling 
pathway

5 2.65E-01 1 PDGFRA 1.70E-02 0.239

Leukocyte 
transendothelial 
migration

9 3.98E-02 2 PIK3R3, MSN 1.92E-02 0.078

Pathways listed are all pathways regulated by hypermethylated and downregulated genes, determined by Pathway Express corrected p-value < 0.05.
§ Pathway enrichment p-values were calculated using a one-tail Fisher's exact test. Asterisks show p-value < 0.05
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to Round5 cells (Figure 2), and previously we reported
upregulation of DNMT1 and DNMT3B in ovarian cancer
cell lines, along with a potential positive correlation
between DNMT1 overexpression and tumor aggressive-
ness [62]. Alterations in DNMT isoforms have also been
reported in ovarian cancer, with a complex relationship
between global DNA hypomethylation and regional
hypermethylation [63,64], while one study of serous
endometrioid cancer actually demonstrated DNMT
downregulation [65].

In addition to aberrant DNMT enzyme activity, drug-
induced de novo promoter methylation has been hypothe-
sized [66]. This phenomenon is believed to be due to
DNA structural distortions resulting from the formation
of cisplatin-DNA adducts, allowing subsequent access of
DNMTs and/or other auxiliary methylation machinery
components to target DNA regions [67,68]. It has also
been demonstrated that endogenous DNA damage can
alter the site selectivity of DNMT1 or recruit DNMTs to
sites of repair [69,70]. The fact that chemoresistance is
reproducibly reversible by inhibition of DNA methyl-
transferases further suggests that patients whose cancers
have methylation of multiple relevant genes might be
selected as candidates for demethylating therapy, in addi-
tion to platinum-based ovarian cancer chemotherapy, an
approach that our group (National Institutes of Health,
NIH, Study NCT00477386) and others (NIH studies
NCT00748527 and NCT00529022) are taking to the
clinic [71].

Our promoter CGI methylation profiles from A2780 sub-
lines representing early, intermediate and late-stage cispl-
atin resistance demonstrated that the total number of
hypermethylated genes linearly increased (Spearman cor-
relation 0.99) with increasing cisplatin resistance (Figure
1B). This positive correlation suggests that in concert with
altered promoter DNA methylation, distinct methylation
profiles progressively may emerge during the develop-
ment of drug resistance. Our previous studies of methyla-
tion profiling of late stage ovarian cancer patient tumors
correlated CGI methylation and disease recurrence
[22,23], further supporting an association between pro-
gressive methylation patterns and advanced disease
[24,72]. Such methylation patterns may disrupt specific
intracellular signaling pathways, and while using
genome-wide approaches to demonstrate direct regula-
tion of gene expression by aberrant promoter CGI meth-
ylation has been a challenge in the epigenomics field,
direct or indirect biological outcomes of epigenetic modi-
fications commonly associate with specific cellular behav-
ior changes.

To assess the role of promoter CGI methylation in cispla-
tin resistance, we examined biological pathways poten-

tially dysregulated by hypermethylation (Table 2),
showing likely DNA hypermethylation-downregulated
pathways such as CAMs, tight junction formation, PPAR
signaling, and leukocyte transendothelial migration path-
ways. CAMs and tight junctions, by affecting signal trans-
duction pathways, are both directly involved in the
regulation of cell proliferation, differentiation, and apop-
tosis [73,74], and loss of functional tight junctions has
been associated with tumorigenesis [75]. Specifically,
hypermethylation-associated downregulation of numer-
ous claudins, integral membrane protein constituents of
tight junctions, has been demonstrated to associate with
tumorigenesis and tumor invasion in ovarian and other
cancers, including those of the breast, bladder, and colon
[76-80]. In addition to alterations in claudin and CAM
functions, we observed hypermethylation and downregu-
lation of gene products previously hypothesized as sup-
pressors of ovarian tumor progression, including alpha-
integrins (possible regulators of cell proliferation and
adhesion), carnitine palmitoyltransferase I (CPT1A, a pro-
tein believed to play a role in histone deacetylase inhibi-
tion), and N-cadherin (CDH2), a member of the cell
adhesion proteins often lost during tumor progression
[81-84]. Consequently, using global approaches, our
analyses identified several potential links between cell
adhesion and the acquisition of chemoresistance, in the
context of regulation by epigenetic modification.

By using a similar approach for hypermethylated and
downregulated genes in the cisplatin-resistant cells, we
identified several pathways likely regulated by promoter
CGI hypomethylation, including those characteristic of
other cancers, such has pancreatic, prostate, colorectal,
non-small cell lung cancers, chronic myeloid leukemia,
glioma, and melanoma (Table 3). Interestingly, all signif-
icantly enriched pathways were found to be cancer-
related, and those broad-based cancer categories com-
monly included signal transduction pathways such as
phosphatidylinositol kinase/Akt, transforming growth
factor-beta, the E2F transcription factor family, and plate-
let-derived growth factor signaling (PDGFR). Specifically,
the PI3K/Akt pathway has been shown to contribute to
cisplatin resistance by promoting cell proliferation and
increasing drug metabolism and resistance to apoptosis
[85,86], while E2F transcription factors have been previ-
ously implicated in platinum-resistant ovarian cancer [87-
89]. Moreover, while regulation of TGFBR2 by promoter
CGI methylation has previously been reported in lym-
phoma [90], a role for promoter hypomethylation in dys-
regulation of that pathway was previously unknown.

Taken together, our pathway analyses suggest significant
upregulation of tumor-promoting cascades by hypometh-
ylation and disruption of tumor-suppressive functions by
hypermethylation. While many of these genes/pathways
Page 9 of 13
(page number not for citation purposes)



BMC Medical Genomics 2009, 2:34 http://www.biomedcentral.com/1755-8794/2/34
have been previously implicated in cisplatin drug
response/resistance [9], we also identified various cellular
mediators (CIPT1A, alpha-integrins) previously unre-
ported in the action of that widely used chemotherapeutic
agent. Finally, although others have reported proteomic
[27,28], chromosomal [29,30], gene expression
[13,25,54], or histone/DNA modification [91] profiles of
cancer cisplatin resistance, we believe this is the first
report integrating aberrations in DNA methylation with
changes in gene expression to identify likely drug sensitiv-
ity-associated biological pathways.

Conclusion
This study establishes a valuable cell culture model system
for the study of promoter CpG island DNA methylation
aberrations related to the development of platinum resist-
ance in ovarian cancer and their associated intracellular
signaling pathways. We further demonstrate the value of
rigorous bioinformatics analyses of integrating DNA
methylation and gene expression profiles to elucidate epi-
genetically regulated pathways associated with the time-
dependent acquisition of chemoresistance. Such experi-
mental and computational approaches will be highly val-
uable for identifying key mediators of chemotherapy
resistance as potential biomarkers or therapeutic targets.
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