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Abstract Lorentz symmetry breaking effects on relativis-
tic EPR (Einstein–Podolsky–Rosen) correlations are dis-
cussed. From the modified Maxwell theory coupled to grav-
ity, we establish a possible scenario of the Lorentz symmetry
violation and write an effective metric for the Minkowski
spacetime. Then we obtain the Wigner rotation angle via
the Fermi–Walker transport of spinors and consider the
WKB (Wentzel–Kramers–Brillouin) approximation in order
to study the influence of Lorentz symmetry breaking effects
on the relativistic EPR correlations.

1 Introduction

In special relativity, the Wigner rotation corresponds to the
product of two Lorentz boots in different directions which
gives rise to a boost preceded or followed by a rotation [1,2].
Besides, the Wigner rotation is characterized by leaving the
4-momentum of the particle unchanged and making a preces-
sion of the spins in the rest frame of the particles. One effect
associated with the Wigner rotation is the Thomas precession
[3,4]. Another effect associated with the Wigner rotation is
the precession of spins of the relativistic Einstein–Podolsky–
Rosen (EPR) correlation [5] with respect to the initial config-
uration of spins due to the action of Lorentz transformations.
This precession of spins yields an apparent deterioration of
the initial correlations between the spins and decreases the
degree of violation of the Bell inequality. In Refs. [6–10], it
is shown that there exists a decrease in the degree of the Bell
inequality, yielded by the relativistic motion of the particle
in the Minkowski spacetime. On the other hand, in curved
spacetime, the decrease in the degree of the Bell inequal-
ity is yielded by the relativistic motion of the particles, the
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gravitational field, and the position of the observers [11–15].
Other interesting studies of quantum entanglement in curved
spacetime have been made in Refs. [16–21].

A geometric approach was proposed by Borzeszkowski
and Mensky [22] in order to study the relativistic EPR cor-
relations in the presence of a gravitational field by applying
the parallel transport along the world lines of the particles.
However, Terashima and Ueda [12] showed that by taking
into account the accelerated motion of the particle and the
gravitational field, thus, the parallel transport cannot yield the
perfect direction of the relativistic EPR correlations. From
this perspective, a geometric approach based on the Fermi–
Walker transport has been proposed in Ref. [14] in order to
obtain the Wigner rotation angle and the precession of the
spins of a relativistic EPR correlation.

In this paper, we discuss the Lorentz symmetry breaking
effects on relativistic EPR correlations. We start by introduc-
ing the description of fermions in curved spacetime in the
presence of Lorentz symmetry breaking effects. The inter-
est in studying the violation of the Lorentz symmetry, for
instance, comes from the origin of the electron electric dipole
moment, which is not explained by the Standard Model of
particle physics. At present days, just experimental upper
bounds have been established [23]. From this perspective,
the necessity of investigating the physics beyond the Standard
Model has arisen. A possible way of dealing with a scenario
beyond the Standard Model is the extension of the mechanism
for spontaneous symmetry breaking through vector or tensor
fields, which implies that the Lorentz symmetry is violated.
The seminal work made by Kostelecký and Samuel [24] in
string theory, where it is shown that the Lorentz symmetry
is violated through a spontaneous symmetry breaking mech-
anism triggered by the appearance of nonvanishing vacuum
expectation values of nontrivial Lorentz tensors, is consid-
ered to be the starting point for building several models that
deal with the violation of the Lorentz symmetry. Such models
are considered to be effective theories whose analysis of the
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phenomenological aspect at low energies may provide infor-
mation and impose restrictions on the fundamental theory
which they stem from. In particular, a geometrical approach
to investigating the effects of the violation of the Lorentz
symmetry on photons was proposed in Refs. [25,26], where
the Lagrangian of the modified Maxwell theory coupled to
gravity is written in terms of an effective metric tensor. There-
fore, our first objective in this work is to extend the geomet-
rical approach proposed in Refs. [25,26] to a fermionic field
by modifying the Minkowski spacetime. Then, by establish-
ing a possible scenario of the Lorentz symmetry violation,
we wish to investigate the effects of the Lorentz violation
on a gedanken experiment with relativistic entangled parti-
cles. From a classical mechanical point of view, we obtain
the Wigner rotation angle via the Fermi–Walker transport of
spinors. Further, from a quantum mechanical point of view,
we consider the WKB approximation [27,28] and study the
influence of Lorentz symmetry breaking effects on the rela-
tivistic EPR correlations.

The structure of this paper is as follows: In Sect. 2, we
present a brief introduction to the modified Maxwell theory
coupled to gravity that allows us to obtain an effective metric
for a curved spacetime under Lorentz symmetry breaking
effects; in Sect. 3, we introduce the Fermi–Walker transport
of spinors and establish a fixed timelike 4-vector in which
we determine the scenario of the Lorentz symmetry. Then we
calculate the Wigner rotation angle; in Sect. 4, we discuss the
effects of the Lorentz-violation symmetry on the relativistic
EPR correlations and on the Bell inequality; in Sect. 5, we
present ours conclusions.

2 Geometrical approach

Due to the lack of a more fundamental theory that, for
instance, could explain the upper bounds established in
experiments for the electron electric dipole moment [23,29],
the necessity of investigating the physics beyond the Standard
Model has arisen in recent years. A possible way of dealing
with a scenario beyond the Standard Model was proposed
by Kostelecký and Samuel [24] in string theory, where there
exists an extension of the mechanism for the spontaneous
symmetry breaking via vector or tensor fields which implies
that the Lorentz symmetry is violated. These models that deal
with the physics beyond the Standard Model are considered
as effective theories and are called the Standard Model Exten-
sion (SME) [30]. In this framework, the effective Lagrangian
corresponds to the usual Lagrangian of the Standard Model
in which is added to the Standard Model operators a Lorentz-
violation tensor background. The effective Lagrangian is
written as an invariant under the Lorentz transformation of
coordinates in order to guarantee the observer independence
of physics. However, the physically relevant transformations

are those that affect only the dynamical fields of the theory.
These changes are called particle transformations, whereas
the coordinate transformations (including the background
tensor) are called the observer transformations. In Refs. [31–
33], one can find a deep analysis of these concepts. Concern-
ing the experimental searches for the CPT/Lorentz-violation
signals, the generality of the SME has provided the basis
for many investigations. In the flat spacetime limit, empiri-
cal studies include muons [34–36], mesons [37–54], baryons
[55–68], photons [69–82], electrons [83–95], neutrinos [96–
106], and the Higgs sector [107]. The gravity sector has also
been explored in Refs. [108,109]. In Ref. [110], one can find
the current limits on the coefficients of the Lorentz sym-
metry violation. In recent years, Lorentz symmetry breaking
effects have been investigated in the hydrogen atom [111], on
the Rashba coupling [112,113], in a quantum ring [114], in
Weyl semi-metals [115], in tensor backgrounds [116,117],
in the quantum Hall effect [118], and geometric quantum
phases [119–121].

After the seminal work by Kostelecký and Mewes [70,
122], a great deal of works [25,26,30,31,70,108,109,116,
122–125] have discussed the extension of the Standard Model
in the even sector of SME by the following term: S =
− 1

4

∫
d4x Kabcd Fab Fcd . In particular, the tensor Kabcd

does not violate the CPT-symmetry. It is well known that
the violation of the CPT-symmetry implies that the Lorentz
invariance is violated [126], however, the reverse is not nec-
essarily true. The action S = − 1

4

∫
d4x Kabcd Fab Fcd

breaks the Lorentz symmetry in the sense that the ten-
sor Kabcd has a non-null vacuum expectation value. It is
worth mentioning that the properties of the tensor Kabcd

are the same as the Riemann tensor, but it has an addi-
tional double-traceless condition. From Refs. [25,26,72], the
tensor Kabcd in terms of a traceless and symmetric matrix
κ̃ab is Kabcd = 1

2 (ηac κ̃bd − ηad κ̃bc + ηbd κ̃ac − ηbcκ̃ad).
In addition, we can define a normalized parameter 4-vector
ξa that satisfies the conditions: ξaξ

a = 1 for the timelike
case and ξaξ

a = −1 for the spacelike case; thus, we can

decompose the tensor κ̃ab as κ̃ab = κ
(
ξaξb − ηab ξ cξc

4

)
,

where κ = 4
3 κ̃ab ξa ξb. By following Refs. [26,72], we con-

sider the parameter κ to be a spacetime independent param-
eter, where 0 ≤ κ < 2. Recently, two interesting works
[25,26] have shown that the Lagrange density to the non-
birefringent modified Maxwell theory coupled to gravity can
be written in terms of an effective metric tensor ḡμν (x)
as LmodM = −√

g
(
1 − 1

2 κ ξα ξα
) 1

4 Fμν (x) Fρσ (x) ḡμρ

(x) ḡνσ (x), where this effective metric tensor is given by
[25,26]

ḡμρ (x) = gμρ (x) − ε ξμ ξρ, (1)

where the parameter ε is defined as ε = κ
1+ κ

2
and ḡμν ḡνα =

δ
μ
α . However, the rules of lowering or raising of indices are
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defined by the original background metric gμν (x) and its
inverse gμν (x).

In recent years, a geometrical approach to study Lorentz
symmetry breaking effects has been proposed based on the
Kaluza–Klein theory, by considering the Lorentz-violating
tensor fields with expectation values along the extra direc-
tions [81,82,127]. Based on this perspective, our proposal
is to extend the geometric approximation that gives rise to
the effective metric tensor (1) to a fermionic field by mod-
ifying the Minkowski spacetime. In Refs. [25,26,128–130]
is discussed that the generalized second law of thermody-
namics would be violated by the modified Maxwell theory
and fermions in the presence of a black hole. However, if the
Minkowski spacetime is modified by the effects of a Lorentz
symmetry breaking background, therefore there is nothing,
from the viewpoint of first principles, that prohibits fields
and particles described by the Standard Model to feel the
anisotropies described by the effective metric tensor (1). Our
proposal is to analyze the spontaneous violation of Lorentz
symmetry as an effective theory that can suggest how to
move in the direction of a fundamental theory. Therefore, we
do not analyze limit situations where singularities appear,
such as the event horizon, because in fact we are not sure
that these are real situations in a more fundamental theory.
Observe that the way of building the effective metric in Eq.
(1) results from the decomposition of the tensor Kabcd sug-
gested in Refs. [25,26], therefore our proposal is to extend
the geometric approximation that gives rise to the effective
metric tensor in Eq. (1) to a fermionic field by modifying the
Minkowski spacetime. By comparing with Refs. [72,131],
the background defined by the effective metric in Eq. (1) can
yield an analog effect of the tensor cμν in the Dirac equation.
Both approaches suggest that the violation of the Lorentz
symmetry can be viewed in the Dirac equation through the
geometry of the spacetime, but they differ from each other in
the way of coupling the terms associated with the violation
of the Lorentz symmetry.

Thereby, the Dirac equation can be written in terms of the
effective metric tensor ḡμρ (x). Nevertheless, we do not work
with the Dirac equation directly, we deal with the wave func-
tion through the WKB approximation [27] and assume that
it is a solution to the Dirac equation in the spacetime back-
ground described by the effective metric tensor (1). There-
fore, by assuming that this extension is possible, the aim
of this work is to investigate the Lorentz symmetry break-
ing effects on relativistic EPR correlations in the Minkowski
spacetime. By establishing a possible scenario of the Lorentz
symmetry violation, we obtain the Wigner rotation angle via
the Fermi–Walker transport of spinors and also consider the
WKB approximation [27,28] in order to enable us to discuss
the influence of Lorentz symmetry breaking effects on the
relativistic EPR correlations.

3 Fermi–Walker transport of spinors and Wigner
rotation

In this section, we deal with spinors in curvilinear coordi-
nates, then an appropriate way of working is to use the mathe-
matical approach of spinors in curved spacetime since spinors
are defined locally and where spinors transform according to
the infinitesimal Lorentz transformations [132]. Therefore,
we need to build a local reference frame for the observers
through a noncoordinate basis defined as θ̂a = eaμ (x) dxμ,
where the components eaμ (x) are called tetrads and satisfy
the relation: gμν (x) = eaμ (x) ebν (x) ηab [132–134], where
ηab = diag(+ − −−) is the Minkowski tensor. Besides, the
tetrads have an inverse defined as dxμ = eμ

a (x) θ̂a , and the
relations eaμ (x) eμ

b (x) = δab and eμ
a (x) eaν (x) = δ

μ
ν are sat-

isfied. It is interesting to note that if a spinor is transported
from a point x of the spacetime to another point x ′ under the
action of external forces, but without torque, the law of trans-
port is given by the Fermi–Walker transport [4,135,136]. For
spinors, the Fermi–Walker transport is given by

D

dτ
eaμ (x) = − 1

c2

[
aμ (x) U ν (x) −Uμ (x) aν (x)

]
eaν (x),

(2)

where D
dτ

is the covariant derivative, U ν (x) = dxν

dτ
is the

4-velocity, aν (x) = Uμ (x) ∇μ U ν (x) is the 4-acceleration
(∇μ are the components of the covariant derivative) and τ is
the proper time of a particle. The Fermi–Walker transport was
introduced in the quantum mechanical context by Anandan
[28] through the WKB approximation [27], where the wave
packet can be Fermi–Walker transported from an initial point
x to a final point x ′ if a particle is moving in an accelerated
path, but no torque exists. In the present work, we propose to
modify the operator that determines this evolution of the wave
packet in order to work with the spinorial algebra. Hence,
the modified operator that gives rise to the Fermi–Walker
transport of a spinor is given by [14,15]

̂ = P̂ exp

(
i

4

∫
�μ a b (x) �ab dxμ

)

, (3)

where P̂ denotes the path ordering operator, �ab =
i
2

[
γ a, γ b

]
is the (spinorial) generator of the Lorentz

transformations, γ a are the Dirac matrices defined in the
Minkowski spacetime [132,137]. Theγ μ matrices are related
to the γ a matrices via γ μ = eμ

a (x) γ a [132]. Besides, the
object �μ a b (x) given in Eq. (3) is defined as � a

μ b (x) =
ω a

μ b (x) + τ a
μ b (x) and it is called a connection 1-form

or the spin connection [12,134]. This connection 1-form
can be obtained by solving the Maurer–Cartan structure
equations in the absence of torsion d θ̂a + ωa

b ∧ θ̂b =
0 [134]. Besides, the term τ a

μ b (x) was introduced by
Anandan [28] and it arises from the action of external

123



410 Page 4 of 7 Eur. Phys. J. C (2015) 75 :410

forces on the wave function. It is defined as τ a
μ b (x) =

aν (x)
c2

[
eaν (x) ebμ (x) − eaμ (x) ebν (x)

]
and it can give rise

to quantum effects such as the arising of geometric quantum
phases associated with the Thomas precession [28].

In what follows, let us write the Minkowski spacetime in
cylindrical coordinates, ds2 = c2 dt2 − dρ2 − ρ2dϕ2 − dz2,
in order to study quantum effects associated with Lorentz
symmetry breaking effects in the geometrical picture given
by the effective metric tensor (1). Let us proceed with the
choice of the local reference frame for the observers as being
θ̂a = c dt , θ̂1 = dρ, θ̂2 = ρ dϕ, and θ̂3 = dz, and let
us consider the normalized parameter 4-vector ξa to be a
timelike 4-vector given by

ξa = (1, 0, 0, 0) . (4)

In this case, we see that the condition ξμ (x) ξμ (x) =
const established in Refs. [25,26,123] is satisfied, and the
effective metric becomes

d̄s
2 = (1 − ε) c2 dt2 − dρ2 − ρ2 dϕ2 − dz2. (5)

The local reference frame of the observers related to the effec-
tive metric given in Eq. (5) can be defined as

�̂0 = c
√

1 − ε dt; �̂1 = dρ; �̂2 = ρ dϕ; �̂3 = dz.

(6)

By solving the Cartan structure equations in the absence
of torsion, d�̂a + ωa

b ∧ �̂b = 0 [134], we obtain the
non-null components of the connection 1-form: ω 2

ϕ 1 (x) =
−ω 1

ϕ 2 (x) = 1.
Henceforth, let us consider a circular motion with ρ =

const and z = 0; thus, we can deal with the system in (2 + 1)

dimensions. The components of the 4-velocity are given by

Ut (x) = c√
1 − ε

cosh ξ, Uϕ (x) =
√

1 − ε

ηρ
c sinh ξ,

(7)

where tanh ξ = v
c , v = ηρ

(1−ε)
dϕ
dt , and the proper time

of the particle is τ = η ρ√
1−ε

�
c sinh ξ

. Moreover, the only

non-null component of the 4-acceleration is aρ (x) =
c2 √

1−ε
ρ

sinh2 ξ . Hence, the components of the connection
1-form τ a

μ b (x) are (with respect to (2 + 1) dimensions):

τ 0
t 1 (x) = τ 1

t 0 (x) = c (1−ε)
ρ

sinh2 ξ and τ 1
ϕ 2 (x) =

−τ 2
ϕ 1 (x) = −η

√
1 − ε sinh2 ξ , and the non-null compo-

nents of � a
μ b (x) are

� 0
t 1 (x) = −� 1

t 0 (x) = c (1 − ε)

ρ
sinh2 ξ ;

� 1
ϕ 2 (x) = −� 2

ϕ 1 (x) = −η
(

1 + √
1 − ε sinh2 ξ

)
. (8)

Returning to the operator (3) that gives rise to the Fermi–
Walker transport of a spinor, we see that the Dirac matrices
γ a are given in (2 + 1) dimensions [138,139]: γ 0 = σ 3,
γ 1 = iσ 1, and γ 2 = iσ 2; the matrices σ k are the Pauli
matrices and satisfy the relation

(
σ i σ j + σ j σ i

) = 2 δi j .
Therefore, the operator (3) is written as

̂ = exp

(

i
�

2

)

=
∞∑

n=0

1

n!
(

�

2

)n

= cos
β

2
+ i

�

β
sin

β

2
,

(9)

where � and �2 are matrices defined in the form

� =
(

η2 −η1

η1 −η2

)

; �2 = β2

(
1 0

0 1

)

. (10)

The parameters written in the matrices above are η1 =
� sinh ξ cosh ξ and η2 = �

[
1 + √

1 − ε sinh2 ξ
]
, and the

parameter β established in Eqs. (9) and (10) is

β = ±�

√[
1 + √

1 − ε sinh2 ξ
]2 − sinh2 ξ cosh2 ξ . (11)

The angle β given in Eq. (11) is the angle of the Wigner
rotation in the Minkowski spacetime under the influence of
Lorentz symmetry breaking effects obtained via the Fermi–
Walker transport of a spinor. In the present case, we have
established a particular background of the violation of the
Lorentz symmetry defined by a fixed timelike 4-vector (4).
Note that the Wigner rotation angle depends on the parameter
ξ related to the accelerated motion of the particles, the posi-
tion of the observers and the Lorentz symmetry violation
background. In particular, the effects of the Lorentz sym-
metry violation background on the Wigner rotation can be
viewed through the presence of the parameter ε in Eq. (11).
On the other hand, by taking ε = 0 in Eq. (11), the effects
of the Lorentz symmetry violation vanish and we recover the
Wigner rotation angle in the Minkowski spacetime which is
defined by the accelerated motion of the particles, the posi-
tion of the observers [12].

4 Relativistic EPR correlations and Bell’s inequality

Now, let us deal with the Fermi–Walker transport of spinors
in (2 + 1) dimensions in the context of the quantum the-
ory. Since classical paths cannot be established in a quan-
tum system, we perform the WKB approximation in order to
introduce a geometric approach yielded by the Fermi–Walker
transport operator given in Eq. (9). We study relativistic EPR
correlations in a general relativity background. Let us begin
by writing the relativistic EPR quantum states in a general
relativity background as given in Ref. [12]:
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∣
∣ψ±〉 = 1√

2

[∣∣pa+ (x) , ↑; x
〉 ∣∣pa− (x) , ↓; x

〉

± ∣
∣pa+ (x) , ↓; x

〉 ∣
∣pa− (x) , ↑; x

〉] ;
∣
∣φ±〉 = 1√

2

[∣
∣pa+ (x) , ↑; x

〉 ∣
∣pa− (x) , ↑; x

〉

± ∣
∣pa+ (x) , ↓; x

〉 ∣∣pa− (x) , ↓; x
〉]

, (12)

where pa (x) is defined in the local reference frame of
the observers, x denotes the position of the observers, and
σ =↑, ↓ denotes the spins of the particles. Hence, by defini-
tion, each state above transforms under local Lorentz trans-
formations in the spin-1/2 representation at each local refer-
ence frame of the observers.

By considering an EPR source and two observers on the
plane defined by ρ = const and z = 0, where their positions
are given by the azimuthal angles ϕ = 0 and ϕ = ±�,
respectively, hence, before the emission of the EPR pair of
particles from the source in opposite directions in the circular
motion, the initial states of the particle are described by

∣
∣ψ−〉 = 1√

2

{∣
∣pa+ (0) ,↑; ϕ = 0

〉 ∣
∣pa− (0) ,↓; ϕ = 0

〉

− ∣
∣pa+ (0) ,↓; ϕ = 0

〉 ∣∣pa− (0) ,↑; ϕ = 0
〉}

, (13)

where the 4-momentum of each particle in the local reference
frame is given by pa± (0) = m c (cosh ξ, 0, 0, ± sinh ξ),
and the spins are parallel to the 1-axis of the local reference
frame as in Ref. [12].

After the emission of the relativistic EPR pair of particles,
we consider the WKB approximation in order to describe the
Fermi–Walker transport of the quantum state (13) from the
initial point ϕ = 0 to the final points ϕ = ±� where the
observers are placed. Note that the operator (9) acts on each
spin state of the particle, therefore we label ̂± = cos β

2 ±
i �

β
sin β

2 ; thus, the operator ̂+ = cos β
2 + i �

β
sin β

2 acts on
the spin states of the particle with momentum pa+, while the
operator ̂− = cos β

2 −i �
β

sin β
2 acts on the spin states of the

particle with momentum pa−. Let us consider the observers
to be in the rest frame of the particles given in Eq. (6), then,
after applying the Fermi–Walker transport on the quantum
state (13), we obtain the following quantum state in the points
ϕ = ±� where the observers are placed:

|ζ 〉 = cos β
∣
∣ψ−〉 − i cosh ξ sin β

∣
∣ψ+〉

+ i sinh ξ sin β
∣
∣φ+〉

. (14)

Observe that the Fermi–Walker transport operator (9) acts
on the spinors, that is, on the spin states, thus, the quan-
tum state of the correlated particles obtained in Eq. (14) is
analogous to the quantum states obtained in Ref. [13] via
infinitesimal Lorentz transformations (applied at each point
of the spacetime from ϕ = 0 to ϕ = ±�) in the sense that the
spins of the relativistic correlated particles in the initial EPR
correlation undergo a precession that depends on the angle β,

while the 4-momentum of the particles remains unchanged
in the local reference frame of the observers [28]. However,
we can see that the final state of the relativistic correlated par-
ticles is given by the superposition of the states

∣
∣ψ−〉

,
∣
∣ψ+〉

and
∣
∣φ+〉

and depends on the angle of the Wigner rotation β

and the parameter ξ , which differs from the state obtained
in Ref. [13]. Moreover, no spurious effects from arbitrary
rotations of the local axes exist, since the Fermi–Walker ref-
erence frame is built in such a way that the local axes do not
rotate.

As pointed out in Refs. [12,13], the states of the relativistic
correlated particles after undergoing a Wigner rotation sug-
gests that the initial spin anticorrelations given in Eq. (13)
are broken if the observers measure the spin in the direction
of the 1-axis. Actually, the quantum state (14) shows that the
direction of the spin measurements in which the observers
can make at the points ϕ = ±� must be rotated about the
3-axis of the local reference frame of observers through the
angles ∓β, respectively. This means that, by knowing the
relativistic effects that stem from the acceleration of the par-
ticles and the background of the Lorentz symmetry violation,
we can recover the initial spin anticorrelations given in Eq.
(13) by rotating the spin axis of the measurement through the
angles ∓β about the 3-axis of the local reference frame of
the observers at ϕ = ±�.

Let us analyze the violation of the Bell inequality in
this system. The particles are moving in a circular motion
on the plane defined by ρ = const and z = 0. Suppose
that the first observer is placed in ϕ = +� and measures
the component of the spin through the observables â and
â′, while the second observer is placed in ϕ = −� and
measures the component of the spin through the observ-
ables b̂ and b̂′. These operators are defined as â = σ 1+σ 3√

2
,

â′ = σ 3−σ 1√
2

, b̂ = σ 3, and b̂′ = σ 1. By following Ref. [140],
the maximum violation of the Bell inequality can be given by∣
∣
∣
〈
â b̂

〉
+

〈
â′ b̂

〉
+

〈
â b̂′

〉
−

〈
â′ b̂′

〉∣
∣
∣ ≤ 2

√
2. Thereby, by tak-

ing the quantum state given in Eq. (14), we obtain

∣
∣
∣
〈
â b̂

〉
+

〈
â′ b̂

〉
+

〈
â b̂′〉 −

〈
â′ b̂′〉

∣
∣
∣

= 2
√

2
∣
∣
∣cosh2 ξ sin2 β − 1

∣
∣
∣ . (15)

We can see in Eq. (15) that the violation of the Bell inequal-
ity depends on the angle of the Wigner rotation β given in
Eq. (11) and the parameter ξ . Observe that the violation of
the Bell inequality obtained from the quantum state of the
correlated particles (14), given by the Fermi–Walker trans-
port of spinors, is different from that obtained in Ref. [13].
This dependence on the angle β and the parameter ξ means
that the degree of violation of the Bell inequality decreases
by making the spin measurements on the 1-axis of the local
reference frame of the observers at ϕ = ±�. This result
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stems from the relativistic effects of the Lorentz symmetry
violation background and the accelerated motion of the cor-
related particles in the plane defined by z = 0 and ρ = const.
However, by rotating the spin axes of measurements through
the angles ∓β about the 3-axis of the local reference frame
of the observers at ϕ = ±�, we can recover both the initial
spin anticorrelations and the maximum violation of the Bell
inequality.

5 Conclusions

From the description of fermions in a curved spacetime
in the presence of Lorentz symmetry breaking effects, we
have established a possible scenario of the Lorentz symme-
try violation in the Minkowski spacetime and obtained the
Wigner rotation angle by using the Fermi–Walker transport
of spinors. We have seen that the angle of the Wigner rotation
is determined by the accelerated motion of the particle, the
position of the observers and the Lorentz symmetry violation
background. We have also discussed a possible application of
this study in relativistic EPR correlations by using the WKB
approximation, where a precession of the spins of the corre-
lated particles and the decrease in the degree of the violation
of the Bell inequality are observed by making the spin mea-
surements on the 1-axis in local frame of the observers. How-
ever, we have seen that by knowing the relativistic effects, we
can recover the initial spin anticorrelations and the maximum
violation of the Bell inequality by correcting the direction of
the spin axis in terms of the Wigner rotation angle. Although
experiments with relativistic spin-1/2 particles are very hard
to perform, the present study suggests that experiments with
relativistic EPR correlations could be a possible way of test-
ing the violation of the Lorentz symmetry in the Minkowski
spacetime as well as in a scenario of general relativity.

Acknowledgments The authors would like to thank CNPq (Conselho
Nacional de Desenvolvimento Científico e Tecnológico—Brazil) for
financial support.

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. E.P. Wigner, Ann. Math. 40, 149 (1939)
2. S. Weinberg, The Quantum Theroy of Fields (Cambridge Univer-

sity Press, Cambridge, 1996)
3. L.H. Thomas, Nature 117, 514 (1926)
4. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman,

San Francisco, 1973)

5. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)
6. M. Czachor, Phys. Rev. A 55, 72 (1997)
7. H. Terashima, M. Ueda, Int. J. Quantum Inf. 1, 93 (2003)
8. H. Terashima, M. Ueda, Quantum Inf. Comput. 3, 224 (2003)
9. D. Lee, E. Chang-Young, New J. Phys. 6, 67 (2004)

10. D. Ahn, H.J. Lee, Y.H. Moon, S.W. Hwang, Phys. Rev. A 67,
012103 (2003)

11. H. Terashima, M. Ueda, J. Phys. A: Math. Gen. 38, 2029 (2005)
12. H. Terashima, M. Ueda, Phys. Rev. A 69, 032113 (2004)
13. K. Bakke, A.M. de M. Carvalho, C. Furtado, J. Phys. A: Math.

Theor. 41, 065301 (2008)
14. K. Bakke, A.M. de M. Carvalho, C. Furtado, Int. J. Quantum Inf.

8, 1277 (2010)
15. K. Bakke, C. Furtado, A.M. de M. Carvalho, Int. J. Quantum Inf.

13, 1550020 (2015)
16. B. Nasr Esfahani, S. Dehdashti, Int. J. Theor. Phys. 46, 1495

(2007)
17. J. Wang, Q. Pan, J. Jing, Ann. Phys. (NY) 325, 1190 (2010)
18. B. Nasr Esfahani, J. Phys. A: Math. Theor. 43, 455305 (2010)
19. F. Ahmadi, M. Mehrafarin, J. Phys. A: Math. Theor. 45, 485302

(2012)
20. F. Ahmadi, M. Mehrafarin, Quantum Inf. Process 13, 639 (2014)
21. P.M. Alsing, I. Fuentes, Class. Quantum Grav. 29, 224001 (2012)
22. H. von Borzeszkowski, M.B. Mensky, Phys. Lett. A 269, 197

(2000)
23. W. Bernreuther, M. Suzuki, Rev. Mod. Phys. 63, 313 (1991)
24. V.A. Kostelecký, S. Samuel, Phys. Rev. Lett. 63, 224 (1989)
25. G. Betschart, E. Kant, F.R. Klinkhamer, Nucl. Phys. B 815, 198

(2009)
26. E. Kant, F.R. Klinkhamer, M. Schreck, Phys. Lett. B 682, 316

(2009)
27. D.J. Griffiths, Introduction to Quantum Mechanics, 2nd edn.

(Prentice Hall, Englewood Cliffs, 2004)
28. J. Anandan, Phys. Lett. A 195, 284 (1994)
29. J. Baron et al., Science 343, 269 (2014)
30. D. Colladay, V.A. Kostelecký, Phys. Rev. D 55, 6760 (1997)
31. D. Colladay, V.A. Kostelecký, Phys. Rev. D 58, 116002 (1998)
32. A.P. Baeta Scarpelli, H. Belich, J.L. Boldo, L.P. Colatto, J.A.

Helayël-Neto, A.L.M.A. Nogueira, Nucl. Phys. Proc. Suppl. 127,
105 (2004)

33. H. Belich, T. Costa-Soares, M.A. Santos, M.T.D. Orlando, Rev.
Bras. Ensino Fís. 29, 1 (2007)

34. V.W. Hughes et al., Phys. Rev. Lett. 87, 111804 (2001)
35. R. Bluhm, V.A. Kostelecký, C.D. Lane, Phys. Rev. Lett. 84, 1098

(2000)
36. E.O. Iltan, JHEP 0306, 016 (2003)
37. KTeV Collaboration, H. Nguyen. arXiv:hep-ex/0112046
38. Y.B. Hsiung et al., Nucl. Phys. Proc. Suppl. 86, 312 (2000)
39. FOCUS Collaboration, J.M. Link et al., Phys. Lett. B556, 7 (2003)
40. O.P.A.L. Collaboration, R. Ackerstaff et al., Z. Phys. C 76, 401

(1997)
41. DELPHI Collaboration, M. Feindt et al., DELPHI, CONF 80,

97–98 (1997) (preprint)
42. BELLE Collaboration, K. Abe et al., Phys. Rev. Lett. 86, 3228

(2001)
43. BaBar Collaboration, B. Aubert et al. arXiv:hep-ex/0303043
44. BaBar Collaboration, B. Aubert et al. arXiv:hep-ex/0607103
45. V.A. Kostelecký, R. Potting, Phys. Rev. D 51, 3923 (1995)
46. D. Colladay, V.A. Kostelecký, Phys. Lett. B 344, 259 (1995)
47. D. Colladay, V.A. Kostelecký, Phys. Rev. D 52, 6224 (1995)
48. V.A. Kostelecký, R.J. Van Kooten, Phys. Rev. D 54, 5585 (1996)
49. O. Bertolami et al., Phys. Lett. B 395, 178 (1997)
50. N. Isgur et al., Phys. Lett. B 515, 333 (2001)
51. V.A. Kostelecký, Phys. Rev. Lett. 80, 1818 (1998)
52. V.A. Kostelecký, Phys. Rev. D 61, 016002 (1999)
53. V.A. Kostelecký, Phys. Rev. D 64, 076001 (2001)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/hep-ex/0112046
http://arxiv.org/abs/hep-ex/0303043
http://arxiv.org/abs/hep-ex/0607103


Eur. Phys. J. C (2015) 75 :410 Page 7 of 7 410

54. V.A. Kostelecký, R.J. Van Kooten, Phys. Rev. D 82, 101702(R)
(2010)

55. D. Bear, R.E. Stoner, R.L. Walsworth, V.A. Kostelecký, C.D.
Lane, Phys. Rev. Lett. 85, 5038 (2000)

56. M.A. Humphrey, D.F. Phillips, R.L. Walsworth, Phys. Rev. A 62,
063405 (2000)

57. D.F. Phillips, M.A. Humphrey, E.M. Mattison, R.E. Stoner, R.F.C.
Vessot, R.L. Walsworth, Phys. Rev. D 63, 111101 (2001)

58. M.A. Humphrey et al., Phys. Rev. A 68, 063807 (2003)
59. V.A. Kostelecký, C.D. Lane, Phys. Rev. D 60, 116010 (1999)
60. V.A. Kostelecký, C.D. Lane, J. Math. Phys. 40, 6245 (1999)
61. R. Bluhm, V.A. Kostelecký, C.D. Lane, N. Russell, Phys. Rev.

Lett. 88, 090801 (2002)
62. F. Canè et al., Phys. Rev. Lett. 93, 230801 (2004)
63. P. Wolf, F. Chapelet, S. Bize, A. Clairon, Phys. Rev. Lett. 96,

060801 (2006)
64. J.M. Brown, S.J. Smullin, T.W. Kornack, M.V. Romalis, Phys.

Rev. Lett. 105, 151604 (2010)
65. M. Smiciklas, J.M. Brown, L.W. Cheuk, S.J. Smullin, M.V. Roma-

lis, Phys. Rev. Lett. 107, 171604 (2011)
66. F. Allmendinger et al., Phys. Rev. Lett. 112, 110801 (2014)
67. B.M. Roberts, Y.V. Stadnik, V.A. Dzuba, V.V. Flambaum, N.

Leefer, D. Budker, Phys. Rev. D 90, 096005 (2014)
68. B.M. Roberts, Y.V. Stadnik, V.A. Dzuba, V.V. Flambaum, N.

Leefer, D. Budker, Phys. Rev. Lett. 113, 081601 (2014)
69. S.M. Carroll, G.B. Field, R. Jackiw, Phys. Rev. D 41, 1231 (1990)
70. V.A. Kostelecký, M. Mewes, Phys. Rev. Lett. 87, 251304 (2001)
71. J.A. Lipa, J.A. Nissen, S. Wang, D.A. Stricker, D. Avaloff, Phys.

Rev. Lett. 90, 060403 (2003)
72. Q.G. Bailey, V.A. Kostelecký, Phys. Rev. D 70, 076006 (2004)
73. R. Lehnert, R. Potting, Phys. Rev. Lett. 93, 110402 (2004)
74. R. Lehnert, R. Potting, Phys. Rev. D 70, 125010 (2004)
75. B. Feng, M. Li, J.-Q. Xia, X. Chen, X. Zhang, Phys. Rev. Lett.

96, 221302 (2006)
76. V.A. Kostelecký, M. Mewes, Phys. Rev. Lett. 97, 140401 (2006)
77. B. Altschul, Phys. Rev. Lett. 98, 041603 (2007)
78. V.A. Kostelecký, M. Mewes, Astrophys. J. Lett. 689, L1 (2008)
79. V.A. Kostelecký, M. Mewes, Phys. Rev. D 80, 015020 (2009)
80. V.A. Kostelecký, M. Mewes, Phys. Rev. Lett. 110, 201601 (2013)
81. M. Gomes, J.R. Nascimento, A.Y. Petrov, A.J. da Silva. Phys. Rev.

D 81, 045018 (2010)
82. A.P. Baeta Scarpelli, T. Mariz, J.R. Nascimento, A.Y. Petrov, Eur.

Phys. J. C 73, 2526 (2013)
83. H. Dehmelt, R. Mittleman, R.S. Van Dyck Jr, P. Schwinberg, Phys.

Rev. Lett. 83, 4694 (1999)
84. R.K. Mittleman, I.I. Ioannou, H.G. Dehmelt, N. Russell, Phys.

Rev. Lett. 83, 2116 (1999)
85. G. Gabrielse et al., Phys. Rev. Lett. 82, 3198 (1999)
86. R. Bluhm, V.A. Kostelecký, N. Russell, Phys. Rev. Lett. 82, 2254

(1999)
87. R. Bluhm, V.A. Kostelecký, N. Russell, Phys. Rev. Lett. 79, 1432

(1997)
88. R. Bluhm, V.A. Kostelecký, N. Russell, Phys. Rev. D 57, 3932

(1998)
89. C.D. Lane, Phys. Rev. D 72, 016005 (2005)
90. L.-S. Hou, W.-T. Ni, Y.-C.M. Li, Phys. Rev. Lett. 90, 201101

(2003)
91. R. Bluhm, V.A. Kostelecký, Phys. Rev. Lett. 84, 1381 (2000)
92. B.R. Heckel et al., Phys. Rev. Lett. 97, 021603 (2006)
93. H. Müller, S. Herrmann, A. Saenz, A. Peters, C. Lämmerzahl,

Phys. Rev. D 68, 116006 (2003)
94. R. Lehnert, J. Math. Phys. 45, 3399 (2004)
95. B. Altschul, Phys. Rev. Lett. 96, 201101 (2006)
96. V. Barger, S. Pakvasa, T.J. Weiler, K. Whisnant, Phys. Rev. Lett.

85, 5055 (2000)
97. J.N. Bahcall et al., Phys. Lett. B 534, 114 (2002)

98. V.A. Kostelecký, M. Mewes, Phys. Rev. D 70, 031902 (2004)
99. V.A. Kostelecký, M. Mewes, Phys. Rev. D 70, 076002 (2004)

100. T. Katori, V.A. Kostelecký, R. Tayloe, Phys. Rev. D 74, 105009
(2006)

101. V.A. Kostelecký, M. Mewes, Phys. Rev. D 69, 016005 (2004)
102. J.S. Díaz, V.A. Kostelecký, M. Mewes, Phys. Rev. D 80, 076007

(2009)
103. V.A. Kostelecký, M. Mewes, Phys. Rev. D 85, 096005 (2012)
104. J.S. Díaz, V.A. Kostelecký, Phys. Rev. D 85, 016013 (2012)
105. J.S. Díaz, V.A. Kostelecký, R. Lehnert, Phys. Rev. D 88,

071902(R) (2013)
106. J.S. Díaz, V.A. Kostelecký, M. Mewes, Phys. Rev. D 89, 043005

(2014)
107. D.L. Anderson, M. Sher, I. Turan, Phys. Rev. D 70, 016001 (2004)
108. Q.G. Bailey, V.A. Kostelecký, Phys. Rev. D 74, 045001 (2006)
109. V.A. Kostelecký, J.D. Tasson, Phys. Rev. Lett. 102, 010402 (2009)
110. V.A. Kostelecký, N. Russell, Rev. Mod. Phys. 83, 11 (2011)
111. M.M. Ferreira Jr, F.M.O. Moucherek, Nucl. Phys. A 790, 635c

(2007)
112. M.A. Ajaib, Int. J. Mod. Phys. A 27, 1250139 (2012)
113. K. Bakke, H. Belich, Ann. Phys. (Berlin) 526, 187 (2013)
114. K. Bakke, H. Belich, Eur. Phys. J. Plus 129, 147 (2014)
115. A.G. Grushin, Phys. Rev. D 86, 045001 (2012)
116. H. Belich, F.J.L. Leal, H.L.C. Louzada, M.T.D. Orlando, Phys.

Rev. D 86, 125037 (2012)
117. R. Casana, M.M. Ferreira Jr, E. Passos, F.E.P. dos Santos, E.O.

Silva, Phys. Rev. D 87, 047701 (2013)
118. L.R. Ribeiro, E. Passos, C. Furtado, J. Phys. G: Nucl. Part. Phys.

39, 105004 (2012)
119. H. Belich, T. Costa-Soares, M.M. Ferreira Jr, J.A. Helayël-Neto,

Eur. Phys. J. C 41, 421 (2005)
120. H. Belich, T. Costa-Soares, M.M. Ferreira Jr, J.A. Helayël-Neto,

M.T.D. Orlando, Phys. Lett. B 639, 675 (2006)
121. K. Bakke, H. Belich, E.O. Silva, Ann. Phys. (Berlin) 523, 910

(2011)
122. V.A. Kostelecký, M. Mewes, Phys. Rev. D 66, 056005 (2002)
123. V.A. Kostelecký, Phys. Rev. D 69, 105009 (2004)
124. R. Casana et al., Phys. Rev. D 82, 125006 (2010)
125. H. Belich, K. Bakke, Phys. Rev. D 90, 025026 (2014)
126. O.W. Greenberg, Phys. Rev. Lett. 89, 231602 (2002)
127. S.M. Carroll, H. Tam, Phys. Rev. D 78, 044047 (2008)
128. S.L. Dubovsky, S.M. Sibiryakov, Phys. Lett. B 638, 509 (2006)
129. C. Eling, B.Z. Foster, T. Jacobson, A.C. Wall, Phys. Rev. D 75,

101502(R) (2007)
130. T. Jacobson, A.C. Wall, Found. Phys. 40, 1076 (2010)
131. V.A. Kostelecký, J.D. Tasson, Phys. Rev. D 83, 016013 (2011)
132. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space

(Cambridge University Press, Cambridge, 1982)
133. S. Weinberg, Gravitation and Cosmology: Principles and Appli-

cations of the General Theory of Relativity (IE-Wiley, New York,
1972)

134. M. Nakahara, Geometry, Topology and Physics (Institute of
Physics Publishing Bristol, Bristol, 1998)

135. J.L. Synge, Relativity—The general Theory (North-Holland,
Amsterdan, 1960)

136. H. Stephani, Relativity—An Introduction to Special and General
Relativity (Cambridge University Press, Cambridge, 2004)

137. W. Greiner, Relativistic Quantum Mechanics: Wave Equations,
3rd edn. (Springer, Berlin, 2000)

138. A. Neagu, A.M.J. Schakel, Phys. Rev. D 48, 1785 (1993)
139. V.R. Khalilov, Theor. Math. Phys. 119, 481 (1999)
140. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum

Information (Cambridge University Press, Cambridge, 2000)

123


	Lorentz symmetry breaking effects on relativistic EPR correlations
	Abstract 
	1 Introduction
	2 Geometrical approach
	3 Fermi–Walker transport of spinors and Wigner rotation
	4 Relativistic EPR correlations and Bell's inequality
	5 Conclusions
	Acknowledgments
	References




