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Abstract: We show that a couplet, a pair of closely spaced photon lines, in the X-ray

spectrum is a distinctive feature of lepton flavored dark matter models for which the mass

spectrum is dictated by Minimal Flavor Violation. In such a scenario, mass splittings be-

tween different dark matter flavors are determined by Standard Model Yukawa couplings

and can naturally be small, allowing all three flavors to be long-lived and contribute to the

observed abundance. Then, in the presence of a tiny source of flavor violation, heavier dark

matter flavors can decay via a dipole transition on cosmological timescales, giving rise to

three photon lines. Two of these lines are closely spaced, and constitute the couplet. Pro-

vided the flavor violation is sufficiently small, the ratios of the line energies are determined

in terms of the charged lepton masses, and constitute a prediction of this framework. For

dark matter masses of order the weak scale, the couplet lies in the keV-MeV region, with a

much weaker line in the eV-keV region. This scenario constitutes a potential explanation

for the recent claim of the observation of a 3.5 keV line. The next generation of X-ray

telescopes may have the necessary resolution to resolve the double line structure of such a

couplet.
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1 Introduction

Increasingly precise cosmological measurements indicate that about 80% of the matter

density of the universe is composed of particles that are non-baryonic, and neutral under

both color and electromagnetic interactions. However, the precise nature of this dark

matter (DM) remains a mystery. One theoretically appealing possibility is that DM is

composed of Weakly Interacting Massive Particles (WIMPs), particles with mass of order

the weak scale that have interactions of weak scale strength with the standard model

(SM) fields. This scenario is compelling because, provided the WIMPs were in thermal

equilibrium with the SM at early times, just enough of them survive today as thermal

relics to account for the observed DM density.

While the WIMP framework requires that DM have interactions of weak scale strength

with the SM fields, efforts to produce it at high energy colliders have, so far, proven fruitless.

Likewise, efforts to directly detect DM in the laboratory through its scattering off nucleons,

in spite of the increased sensitivity of current experiments, have also been unsuccessful.

There are some tentative hints from indirect detection of DM annihilation to SM today,

but there is no conclusive signal. In the wake of these null results, DM scenarios that retain

the cosmological success of the WIMP framework while satisfying the current experimental

bounds have become increasingly compelling.

The matter fields of the SM (Q, U c, Dc, L and Ec) are known to come in three copies,

or flavors. Different flavors carry the same charges under the SM gauge groups, but have

different couplings to the Higgs, and so differ in their masses. One interesting possibility,

which has been receiving increased attention, is that DM, like the SM matter fields, also

comes in three flavors [1–11] or has flavor-specific couplings to the SM [12–15]. Specific
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DM candidates of this type include sneutrino DM in supersymmetric extensions of the

SM [16], and Kaluza-Klein neutrino DM in theories with a universal extra dimension.

In [2], the simplest theories of flavored DM (FDM) were classified, and labelled as

lepton flavored, quark flavored or internal flavored, based on the form of the interactions of

the DM candidate with the SM fields. Models in which the DM has tree level interactions

with the SM leptons but not with the quarks — as in lepton FDM — can naturally

account for the observed abundance of DM while remaining consistent with all experimental

bounds [17–19]. The reason is that strong production at a hadron collider or scattering off

a nucleus rely on DM-quark interactions, which are loop suppressed in this scenario. In

addition, because the average number of photons generated in DM annihilation to hadrons

is much larger than in the case of DM annihilation to leptons, the limits from indirect DM

searches using gamma rays are also weaker. Some other indirect signals of DM annihilation,

such as the positron flux, are enhanced for lepton FDM, but regions of parameter space

for which the DM is a thermal relic remain viable.

In general the couplings of lepton FDM violate the flavor symmetries of the SM. In

order to avoid conflict with the very stringent bounds on flavor violating processes such

as µ → eγ, while giving rise to an annihilation cross section of weak scale strength, the

couplings of DM to the SM leptons must be aligned with the SM Yukawa interactions. In

theories where the flavor structure is consistent with Minimal Flavor Violation (MFV), so

that the only sources of flavor violation are associated with the SM Yukawa couplings, this

condition is automatically satisfied. Then each DM flavor is associated with a corresponding

lepton flavor. It is this class of theories that we shall focus on.

In realizations of FDM that respect MFV, the mass splitting between a pair of different

DM flavors is dictated by the corresponding SM Yukawa couplings. In simple models, this

splitting is proportional to the difference in the squares of the Yukawa couplings, so that

for Dirac fermions we obtain,

mχ,i −mχ,j ' η (y2i − y2j ) . (1.1)

In this expression the index i = 1, 2, 3 runs over the three lepton flavors e, µ, τ . While mχ,i

represents the mass of the ith DM flavor, and yi represents the Yukawa coupling of the ith

lepton flavor. The constant η has the dimensions of mass and depends on the dynamics

which UV completes flavor at some high scale Λ. If threshold effects at this scale generate

mass splittings at tree level, η can naturally be of order mχ, where mχ is the average DM

mass. In this case the largest splitting, that between the e and τ flavors, is expected to

be in the MeV-GeV range for weak scale DM. If tree-level contributions at the threshold

are absent, the leading effects are then loop suppressed. The largest splitting is then much

smaller, in the keV-MeV range.

Since the Yukawa couplings are small, the splittings between the different DM flavors

are suppressed relative to the mass of each flavor. If the splittings are smaller than the

electron mass, the dominant flavor-conserving decay mode,

χi → χj + νi + ν̄j , (1.2)

– 2 –



J
H
E
P
0
8
(
2
0
1
5
)
0
7
2

is slow on cosmological timescales, so that the lifetimes of the heavier flavors are much

longer than the age of the universe. Then all three flavors are expected to contribute to

the observed DM abundance.

Now, suppose a tiny additional source of explicit flavor breaking is present in the

theory, so that the flavor violating decays,

χi → χj + γ , (1.3)

can occur on cosmological timescales and dominate over the flavor-conserving decay. The

monochromatic photons produced in such decays then constitute a striking signal of DM.

Provided this new source of flavor violation is too small to contribute significantly to the

splittings between the different DM flavors, the frequencies of the resulting gamma ray

lines depend on the SM Yukawa couplings as in eq. (1.1). The constant of proportionality

in eq. (1.1) cancels out when ratios of frequencies are considered. For example, if the τ

flavor of DM is the heaviest and χe the lightest, we have,

ω (χτ → χµ)

ω (χτ → χe)
=
m2
τ −m2

µ

m2
τ −m2

e

≈ 1−
m2
µ

m2
τ

, (1.4)

and,

ω (χµ → χe)

ω (χτ → χe)
=
m2
µ −m2

e

m2
τ −m2

e

≈
m2
µ

m2
τ

= 3.5× 10−3 . (1.5)

We see that this scenario predicts a pair of very closely spaced lines in the keV-MeV region

corresponding to the χτ → χe and χτ → χµ transitions (the “couplet”), as well as an

isolated line in the eV-keV region. Remarkably, we see that in this limit of negligible flavor

violation, the ratios of these lines frequencies are a prediction of this scenario.

The fact that decaying DM particles will, in general, be in motion, leads to some

broadening of these lines. The size of this effect scales with the velocity of DM. For typical

astrophysical sources, the DM velocity v ranges from (1–3)×10−3, and a line of frequency ω

is smeared by order vω. Comparing to eq. (1.5), we see that whether the double line feature

gets washed out by this effect depends on the astrophysical source. While this splitting is

not currently measurable, it is within the design resolution of upcoming experiments such

as ASTRO-H [20, 21].

In the next section we review the MFV framework for models of lepton flavored DM.

In section 3 we choose a simple benchmark to illustrate the phenomenology of this scenario,

focusing on constraints from various DM experiments and potential signals. We conclude

in section 4.

2 The framework

In this section we study the restrictions that MFV places on the parameters of theories of

lepton FDM. The SM has an approximate U(3)5 flavor symmetry that acts on the three

generations of fermions Q, U c, Dc, L and Ec. This symmetry is explicitly broken by the

SM Yukawa couplings. In extensions of the SM that respect MFV, any new parameter
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that violates the SM flavor symmetries must be aligned with the SM Yukawa couplings.

Specifically, the Yukawa couplings of the SM are promoted to spurions that transform

under the U(3)5 flavor symmetry. Any new interactions are then required to be invariant

under this spurious symmetry.

In the lepton sector of the SM there is an approximate U(3)L×U(3)E flavor symmetry

that acts on the left-handed SU(2) doublets LA and SU(2) singlets Eci . We denote U(3)L
indices by capital Latin letters and U(3)E indices by lowercase Latin letters. This symmetry

is violated by the SM Yukawa interactions,

LY = Y i
A LAH†Eci + h.c. (2.1)

We can, however, make the Yukawa interactions formally invariant under the flavor sym-

metry by promoting the matrix Y i
A to be a spurion that transforms as (3, 3̄) under

SU(3)L × SU(3)E subgroup of U(3)L × U(3)E , and has appropriate charges under the

U(1) factors.

Theories of FDM posit a U(3)χ flavor symmetry that acts on the DM field χα. We

use lowercase Greek indices to denote the DM flavor. We focus on the case where the DM

field is a fermion that transforms as a singlet under the SM gauge interactions, and has

renormalizable couplings to the to the SU(2) singlet leptons Eci through a scalar mediator

φ. The mediator does not transform under the SM and DM flavor groups. The relevant

interaction takes the form

Lλ = λ i
α χ

αEciφ+ h.c. (2.2)

This interaction explicitly violates the U(3)E×U(3)χ symmetry. In general, it will give rise

to lepton flavor violating processes at one loop. However, when MFV is imposed, the form

of this interaction is restricted, with the result that flavor violating processes are forbidden.

We impose MFV by identifying the DM flavor symmetry U(3)χ with the U(3)E flavor

symmetry that acts on the SU(2) singlet leptons in the SM,1 and requiring that the new

interaction be invariant under the spurious U(3)5 symmetry. This leads to a restriction on

the form of λ j
α ≡ λ j

i . To leading order in Y i
A we then have,

λ j
i = λ̂δ ji + λ̃Y †Ai Y j

A . (2.3)

MFV also governs the form of the DM mass matrix. If χ is a Dirac fermion we can write

the mass term in the Lagrangian as

LM = m β
α χβχ

α ≡ m j
i χjχ

i . (2.4)

MFV restricts the mass matrix to be of the form

m j
i = m̂δ ji + m̃Y †Ai Y j

A . (2.5)

Then, in a basis where the lepton mass matrix is diagonal, we see that the splittings

between the different DM mass eigenstates are governed by the SM Yukawa couplings in

1One could also identify U(3)χ with the U(3)L symmetry that acts on the SU(2) doublet leptons (see [2]),

but the main results do not depend on this choice.
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accordance with eq. (1.1). Our interest is in the scenario where the parameter m̃, which

controls the mass splittings, is about a loop factor smaller than the parameter m, which

sets the scale of the DM mass. Then, for DM masses of order the weak scale, the splittings

can be less than an MeV, allowing all three DM flavors to be stable on cosmological time

scales.

3 A benchmark model

In this section we construct a simplified benchmark model which exhibits the features

described above and consider its phenomenology in detail. We choose the DM candidate

χ to be a Dirac fermion which transforms as a fundamental under the SM flavor group

SU(3)E . The only additional terms in the Lagrangian beyond the SM are given by eq. (2.2)

and (2.4). We assume that the structure of the coupling and mass terms is restricted by

MFV, and follows eq. (2.3) and (2.5). For this benchmark we will further restrict to the

special case where the DM mass terms and couplings generated at the high flavor scale

Λ are universal, so that m̃ and λ̃ are zero at this scale.2 The mass differences between

the different DM flavors are then radiatively generated at one loop. The largest splittings

will lie in the keV-MeV range for WIMP DM, allowing all three flavors to contribute to

the observed abundance. The mass and interaction terms for the DM in four-component

notation at scale Λ are then given by,

L = mχχiχ
i +

[
λ

2
χ̄i(1 + γ5)eiφ† + h.c.

]
. (3.1)

Here ei is the four-component spinor corresponding to the charged leptons of the SM. The

only free parameters in this model are the masses of the DM and the mediator, and a

coupling λ. As we shall see, the mass splittings generated in this case are finite at one

loop. Later we will introduce a tiny source of flavor violation.

In what follows we determine the splittings between the different DM flavors, and show

that all three flavors are stable on cosmological time scales. We then determine the range of

parameters consistent with the observed relic abundance of DM. This model is constrained

by a number of experiments. Constraints from g−2 of the muon and monophoton searches

tend to be subdominant to direct detection constraints [19, 22]. LHC constraints on the

production of the mediator φ and indirect detection constraints from DM annihilations

into positrons and photons can also be relevant. We study these bounds in turn. Finally,

we introduce a small source of flavor violation, obtain expressions for the lifetimes of the

heavier flavors, and show that this naturally leads to the couplet feature.

3.1 Mass splittings

The breaking of the lepton flavor symmetry U(3) → U(1)3 by the SM lepton Yukawa

couplings is communicated to the DM sector through the FDM interaction, eq. (2.2). Even

2Note that allowing non-vanishing m̃ and λ̃ at the scale Λ would not qualitatively affect our results,

provided that the parameter m̃ is small enough that the mass splittings between the different DM flavors

are less than an MeV. In particular, the predictions for the ratios of the mass splittings, eqs. (1.4) and (1.5),

do not depend on this assumption.
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χi

ℓi

φ

χi

λλ

Figure 1. One-loop correction to the two-point function of χ.

though they are assumed to be degenerate at tree level, mass splittings between the three

χ flavors will be induced at loop level. In particular, let us consider the 2-point function for

the three flavors of χ (see figure 1). The one-loop contributions are identical in the limit of

massless leptons, but at order O(m2
` ) they begin to differ, giving rise to differences in the

wavefunction renormalizations for the χi. Due to the chiral nature of the FDM coupling, it

is easy to see that there is no direct mass renormalization. Once the fields χi are brought

back to canonical normalization, however, a mass splitting is induced between them,

mχ,i −mχ,j ≡ ∆mij =
mχλ

2

32π2

∫ 1

0
dxx log

(
xm2

φ + (1− x)m2
`,i − x(1− x)m2

χ

xm2
φ + (1− x)m2

`,j − x(1− x)m2
χ

)
. (3.2)

To leading order in the Yukawa couplings this yields,

∆mij

mχ
'
λ2(y2i − y2j )

64π2
v2

m2
φ

F (m2
χ/m

2
φ), (3.3)

where as before, yi denote the Yukawa couplings of lepton i, and v = 246 GeV is the Higgs

vacuum expectation value. The loop function F (x) is given by,

F (x) = −x+ log(1− x)

x2
' 1

2
+
x

3
+O(x2) . (3.4)

We see that χτ is split significantly further from χe and χµ than these two states are split

from each other. For an overall mass scale mχ in the GeV regime and mφ ∼ O(100) GeV,

mχ,τ −mχ,µ ' mχ,τ −mχ,e ≡ ∆m ∼ keV, (3.5)

mχ,µ −mχ,e ≡ δm ∼ eV . (3.6)

It is interesting to note that the one-loop splitting calculated above is a finite effect, sup-

pressed by v2/m2
φ for large φ masses. Note that the sign of ∆m is not arbitrary, and as

a consequence χτ is the heaviest DM flavor. At two loops there arises a logarithmically

divergent contribution to the mass splitting, where the log divergence is cut off at the UV

flavor scale, Λ. This two-loop effect can become important for very large mφ and Λ. We

estimate that it is subleading to the finite one-loop calculation for the range of mφ we are

interested in, provided the new physics scale Λ is less than 100 TeV.
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χi

ℓ̄j

Wℓi

φ

νi

ν̄j

χj

χi

ℓi

φ

χj

γ

δλλ

Figure 2. a) Flavor preserving decay χi → χjνiν̄j . b) A Feynman diagram contributing to the

flavor violating decay χi → χjγ.

Once the χ masses are split by these loop corrections, only the lightest χ is truly stable.

This is true even in the exact MFV limit where the U(1)3 flavor symmetry is preserved. For

this benchmark, the splittings are smaller than the mass of the electron. Then, the leading

contribution for flavor-preserving χ decays arises at one loop and is illustrated in the left

panel of figure 2. Note that this contribution is very suppressed due to the following three

factors.

• With a χ mass splitting of order keV, the kinematically available phase space is

extremely small. This results in a significant suppression for the 1→ 3 process.

• The loop amplitude is suppressed by the momentum-exchange scale, or more con-

cretely by (∆m/mφ).

• The lepton propagators in the loop couple to φ on one end and to W± on the other.

However, the former couples to right-chirality leptons while the latter couples to left-

chirality leptons. Therefore both lepton propagators need a mass insertion to obtain

a nonzero amplitude, so the decay rate is further suppressed by m2
`i
m2
`j

.

As a consequence of these effects, heavier flavors are long-lived on cosmological time scales.

3.2 Relic abundance

The DM annihilation rate in each channel (χiχj → `i`j) is given by,

〈σv〉 =
λ4m2

χ

32π(m2
χ +m2

φ)2
. (3.7)

Since the DM candidate is a Dirac fermion, there is no p-wave or chirality suppression,

and thus the annihilation cross section today is the same as in the early universe to a good

approximation.

Since all flavor combinations of DM co-annihilate with one another with the same cross

section, the cross section that gives rise to the correct relic abundance today is the same

as for a single species of Dirac fermion DM, given by

〈σv〉 = 2× (2.2× 10−26 cm3/s). (3.8)

The factor of two relative to the canonical quoted value (for Majorana DM) arises due to

the Dirac nature of the DM particle. The region of parameter space leading to the correct

relic density is shown in figure 3 as a red band.
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Figure 3. For mediator masses mφ = 100, 200 and 400 GeV, we plot the position of the X-ray signal

(in keV, gray dashed contours) as well as a number of constraints. Direct detection constraints from

LUX are shown as the blue-shaded region, while the indirect detection constraints from positrons

and photons are shown as the purple and green-shaded regions, respectively. The red band shows

the region where correct relic abundance is obtained.
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Note that the above calculation applies only if we assume that the interaction with

leptons alone is responsible for the DM thermal relic abundance. Any coupling to additional

non-SM states will alter these numbers. This constraint can also be relaxed if the DM relic

density is set by an asymmetry, which can arise rather naturally in these models [9].

3.3 Direct detection

As discussed in detail in [2], lepton flavored DM can scatter off nuclei via a one-loop photon

exchange. These constraints can be severe in the region where the DM is a thermal relic.

The dominant contribution to the WIMP-nucleon cross section is flavor diagonal and for

each flavor of FDM it is given by,

σn =
µ2nZ

2

A2π

∑
`

(
λ2e2

64π2m2
φ

[
1 +

2

3
log

Λ2
`

m2
φ

])2

. (3.9)

Here µn is the reduced mass of the DM-nucleon system and Λ` represents the infrared cutoff

in the loop calculation for the effective DM-photon coupling. This cutoff is m`, the mass of

the corresponding lepton, unless m` is smaller than the momentum exchange in the process,

of the order of 10 MeV. We therefore use Λτ = mτ and Λµ = mµ, but set Λe = 10 MeV. In

extracting constraints from the null results of direct detection experiments such as LUX,

we use the total rate, summed over all three FDM flavors. The region of parameter space

excluded by LUX is shown in figure 3 as the blue-shaded region.

3.4 Indirect detection

In the limit mχ � mφ, (∆m)2 and 〈σv〉 both scale approximately as m2
χλ

4/m4
φ, and

therefore choosing a fixed mass splitting or requiring thermal relic abundance leads to

potentially observable signals for indirect detection searches in photons and positrons (with

the caveats mentioned at the end of the previous paragraph). The constraints from both

indirect detection channels are more stringent for lower mass DM, since the signal rate scales

as the square of the χ number density, which itself scales as m−1χ , while the background

flux as a function of energy does not change as rapidly. Therefore, for a given ∆m or 〈σv〉,
these constraints can be weakened by increasing the DM mass and either decreasing the

coupling or increasing mφ.

For the positron constraint from the AMS-02 experiment [23], the signal has contribu-

tions both from the prompt positrons produced when one of the annihilating particles is χe,

and also from secondary positrons from the decays of µ+ and τ+ that are produced when

one of the annihilating particles is χµ or χτ . The spectrum of the secondary positrons is

shifted towards lower energies compared to the prompt positrons (not to mention that the

branching ratio of τ → e+X is rather low), and therefore the bound from AMS-02 comes

mostly from the prompt positrons. The bound is shown in figure 3 as the purple-shaded

region. Note that the positron constraint is significantly weaker than the constraint from

direct detection across the parameter space, and therefore the inclusion or non-inclusion

of secondary positrons in determining the bound turns out to be academic. Owing to the

relative factor of two between Dirac and Majorana DM (eq. (3.8)), the latter being relevant

– 9 –
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for SUSY for which the AMS bounds are calculated, the bound on the FDM annihilation

cross section leading from prompt positrons (any one of the three χ` flavors annihilating

with χe) is related to the total annihilation cross section (all nine annihilation channels) as

〈σv〉 ≤ 6〈σv〉bound,e+ , (3.10)

where 〈σv〉bound,e+ is the experimental bound quoted in [23] for a Majorana DM annihilat-

ing to e+e− with 100% branching fraction.

Similar to the case of positron constraints being most sensitive to prompt positrons in

the final state, indirect detection in photons is most sensitive to τ ’s in the final state, since

more photons are produced from τ ’s than from e’s or µ’s. One can therefore formulate

the bound from indirect detection in the photon final state [24] in terms of the effective

annihilation cross section leading to the production of τ ’s,

〈σv〉 ≤ 6〈σv〉bound,γ , (3.11)

where 〈σv〉bound,γ is the experimental bound quote in [24] for a Majorana DM annihilating

to τ+τ− with 100% branching ratio. The constraint from indirect detection in photons is

shown in figure 3 as the green-shaded region.

DM annihilating to leptons can potentially have significant constraints from the

CMB [25, 26]. However, the annihilation into muons and taus has a low efficiency to inject

energy into the CMB [27], and the constraints are subdominant to the other constraints

considered above.

3.5 The couplet

Since the rates of flavor-preserving χ decays are so extremely small, even a very small

flavor-violating contribution can easily be the dominant channel for the decays of the

heavier χ. Such decays could, for example, arise from the flavor violating dipole operator,

χ̄iσµνχjF
µν , which generates the process χi → χj + γ. The monochromatic X-ray photons

from these transitions would then constitute a striking signal of this scenario, and exhibit

the couplet feature. The dipole operator is, however, non-renormalizable. We can obtain

the same effect at the renormalizable level by adding to the Lagrangian a tiny flavor

violating contribution to the DM-visible matter interaction term,

LFV =
1

2
δλij χ̄i(1 + γ5)ejφ

† + h.c. (3.12)

This radiatively generates the flavor violating dipole transition χi → χj + γ as illustrated

in the right panel of figure 2. Note that unlike the flavor-preserving decays, these are

two-body decays, and there are no suppressions due to lepton masses. The rate for these

flavor-violating decays can be calculated in a straightforward manner. If we assume that

all off-diagonal couplings in δλij are of the same size δλ� λ, then to leading order

Γij ≡ Γχi→χjγ =
e2λ2δλ2

1024π5
(∆mij)

3m2
χ

m4
φ

, (3.13)
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where we have neglected higher order terms proportional to lepton masses. We see that

Γij ∝ (∆mij)
3. Then, in the absence of any hierarchy in the δλ, it follows that the rates

for the χτ → χµ and χτ → χe transitions are comparable. However, transitions between

χµ and χe will be many orders of magnitude slower than this, and are not expected to be

be observable.

The parameters δλ allow the heaviest flavor to decay on cosmological timescales. The

current sensitivity for dark matter decay lifetimes from X-ray observations in the keV-MeV

range is roughly at the level of τ ∼ 1027–1028 sec [28, 29]. Having restricted the parameters

λ,mχ and mφ to satisfy the relic abundance condition eq. (3.7), this can be translated into

a bound on the flavor vioating coupling δλ, expressed in terms of the splitting ∆m between

χτ and the two lighter flavors,

δλ

λ
. 10−7

(
keV

∆m

)2√ mχ

100 GeV
. (3.14)

It follows that, in the allowed range, δλ is much too small to affect the relic abundance

calculation, or any of the bounds on this scenario considered in the previous sections. It

remains to verify that the contribution of the δλ to the DM mass splittings is subdominant

to the previously calculated splittings associated with the SM Yukawa couplings, eq. (3.3).

The off-diagonal entries in the coupling matrix responsible for the flavor-violating decay

only affect the mass eigenvalues at quadratic order in δλ. Consequently, once the bound

eq. (3.14) is imposed, this effect is much smaller than the splitting associated with the

SM Yukawa couplings calculated in eq. (3.3). However, in the absence of a symmetry

that restricts the form of δλ, we expect that the diagonal elements of this matrix will be

parametrically of the same size as the off-diagonal flavor-violating entries. These diagonal

terms will, in general, not be flavor universal, and will contribute to the mass eigenvalues

at linear order in δλ. Therefore, it is important to understand whether this effect can

dominate over the splitting calculated in eq. (3.3). At one loop there is a logarithmically

enhanced contribution from δλ that is cutoff at the UV flavor scale Λ,

δmχ

mχ
=
λδλ

8π2

∫ 1

0
dx xlog


(
xm2

φ − x(1− x)m2
χ

)
Λ2

 . (3.15)

For δλ satisfying the bound, eq. (3.14), this effect is always much smaller than the splitting

between χτ and the other flavors, showing that the existence of the couplet is a robust

prediction of this framework. However, for δλ/λ & 10−8, corresponding to ∆m . 10 keV,

this splitting can become comparable to or larger than the splitting between χe and χµ
from eq. (3.3). Hence the prediction for the splitting between the lines in the couplet,

eq. (1.5), is only valid if the mass difference between χτ and the other flavors is larger than

about 10 keV.

3.6 The 3.5 keV line

An X-ray line signal has been observed at 3.5 keV [30, 31]. We note that there is currently

no consensus about the interpretation of this observation as arising from a DM signal [32–

43]. Nevertheless, a large number of DM models have been proposed to explain this signal.

– 11 –
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Figure 4. Constraints on the mass of DM, mχ and the mediator, mφ when the X-ray line is

at 3.5 keV. The contours show the value of coupling λ, and the red band shows the region where

correct relic abundance is obtained. The blue and purple-shaded regions show the exclusion from

LUX and from AMS respectively.

The ideas that have been proposed include sterile neutrinos [44–69], axions [70–85], su-

persymmetry [86–92] and a number of other mechanisms [93–124]. We now show that

the 3.5 keV line, if confirmed, can be easily accommodated within the framework of the

minimal model. We show in figure 3 the region of parameter space that provides the right

relic abundance for DM, consistent with a 3.5 keV line. Fixing the splitting to be 3.5 keV,

we show the direct detection and the AMS positron constraint in figure 4 along with the

region of parameter space consistent with the requirement of correct relic abundance.

Our scenario further predicts that closer inspection of this line will reveal two closely

spaced lines corresponding to the χτ → χµ and χτ → χe transitions. This couplet consti-

tutes a characteristic indirect detection signal of lepton FDM scenarios. However, because

the frequencies of these lines is less than 10 keV, in general the prediction for their split-

ting, eq. (1.5), is not expected to apply. To understand this in greater detail, note that the

lifetime for a decaying DM candidate to be consistent with the observed signal is given by

(see for instance [99]),

τDM ' (1028 sec)
7 keV

mχ
. (3.16)

Then, for mχ = 150 GeV, one obtains τDM ≈ 1020 s. For mφ = 500 GeV and λ ' 1, this

would require δλ ' 10−8. Then the contribution to the splittings from the flavor diagonal

elements of the matrix δλ, given by eq. (3.15), can comparable to or larger than the small

mass splitting between the two light DM flavors that arises from the SM Yukawa couplings,

eq. (3.3). Therefore, eq. (1.5) is not expected to apply. However, the contribution from δλ

is still much smaller than the large 3.5 keV splitting between χτ and the other two flavors.

Consequently, the characteristic couplet feature survives.

– 12 –
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4 Conclusions

We have studied models of lepton FDM within the MFV framework. In this scenario, mass

splittings between different DM flavors can naturally be small enough that tree level decays

of heavy flavors are kinematically forbidden. Then all three flavors of DM can be long-lived

on cosmological time scales (the lightest flavor being exactly stable). The ratios of the mass

splittings between the three possible pairings among the DM flavors are predicted.

When even a very small source of flavor violation is present in the dark sector, a

new decay channel becomes available for the decay of heavier DM flavors through a dipole

transition. While the lifetime associated with this decay may be orders of magnitude longer

than the age of the universe, it can still be the dominant decay channel and gives rise to a

very distinct final state. These decays result in two very closely separated photon lines, the

couplet. For weak scale DM, the overall energy of the couplet is naturally in the keV-MeV

range, with the splitting of the two lines in the eV-keV range.

We have focused on the detailed phenomenology of a specific model of lepton flavored

DM. In this model, the mass splittings are radiatively generated by finite one loop effects

arising from the breaking of the lepton flavor symmetry by Yukawa couplings. The sign of

the contribution is fixed, with the result that χτ is the heaviest and χe the lightest state.

This scenario is a potential explanation for the claimed observation of a 3.5 keV line in

the X-ray spectrum, and there exist regions in parameter space of the model where such

an explanation is entirely consistent with the observed DM relic density as well as with

experimental constraints set by a number of direct and indirect detection experiments.

While a DM explanation of this line is in dispute, the characteristic double-line structure

predicted by the couplet can be directly tested experimentally. In particular, the next

generation experiments might be able to resolve any such feature in the X-ray spectrum.
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