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1 Introduction

There has been recent progress in understanding the phase diagram of higher-dimensional
asymptotically flat vacuum black holes. The purpose of this work is to extend some of the
techniques used to the case of asymptotically anti-de Sitter (AdS) black holes.

Let us first review the asymptotically flat case. While the four-dimensional Kerr black
hole is unique and (expected to be) stable, the higher-dimensional picture is much richer [1].
In d = 5, the discovery of the black ring by Emparan and Reall [2] showed that it can have
the same conserved charges as the Myers-Perry (MP) black hole [3]. This non-uniqueness
discovery triggered the research in higher dimensional black holes and a variety of explicit
rotating solutions have been recently found: black Saturns [4], concentric rings [5, 6], or-
thogonal rings [7, 8], and generalisations thereof. Consider solutions rotating on a single
plane which are in thermal equilibrium (i.e. in the case that there are disconnected com-
ponents of the event horizon, these have the same temperature and angular velocity). One
interesting fact is that in the zero temperature limit the new solutions and the MP black
hole coincide in the same nakedly singular solution [9–11]. In d > 5, this limit does not
exist, and the MP black hole has an unbounded angular momentum for a given mass. In
a certain sense, the singular limit is ‘resolved’. However, does the MP black hole still con-
nect to the new solutions? In d > 5, the black ring and the other solutions have not been
constructed exactly, but are expected to exist. In fact, approximate methods for solving
the Einstein equations in the ultraspinning limit (large angular momentum with respect to
the mass scale) indicate that they do exist [12–15].

The answer seems to be that the MP black hole connects to the other solutions through
yet more families of black holes. These families bifurcate from the MP branch at the (sta-
tionary) onset of the so called ‘ultraspinning instabilities’. The first step in understanding
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this connection was given by Emparan and Myers [16], who argued that the singly-spinning
(i.e. rotating on a single plane) MP black hole should be unstable if rotating sufficiently
rapidly. The reasoning is that if the angular momentum per unit mass is large enough, MP
black holes start behaving like black branes, since their horizons become disk-like along
the rotation plane in this ultraspinning limit. But it has been shown by Gregory and
Laflamme [17] that black branes are unstable and therefore one concludes that MP black
holes should be unstable for a sufficiently large (but finite) angular momentum per unit
mass. Emparan and Myers further pointed out that at the onset of such an instability,
there should exist a stationary perturbation that preserves the rotational symmetries of
the background. This perturbation would then signal the existence of a new family of black
holes with spherical horizon topology. This is analogous to what happens in the black brane
case: the threshold mode of the Gregory-Laflamme instability is the perturbative signal
for a family of non-uniform branes [18, 19]. Ref. [12] conjectured that the new families
bifurcating from the MP branch, when continued along the phase diagram, would connect
continuously to the black ring branch, the black Saturn branch, and so on. Therefore,
the connection of non-uniqueness with instabilities provides a partial understanding of the
proliferation of higher dimensional black hole phases.

Recently, these conjectures were put on a firmer footing when it was shown numerically
that the singly-spinning MP black hole does indeed possess such threshold modes [20, 21].
Furthermore, these perturbations exhibit an underlying harmonic structure and induce
deformations on the shape of the horizon which are consistent with the proposal that
the new families will connect to the black ring, to the black Saturn, etc. Ref. [20] also
conjectured that these classical instabilities can only occur when the black hole possesses
at least two distinct local thermodynamic instabilities, as we shall review later. This is a
necessary but not sufficient condition. The reason is that local thermodynamic instabilities
are associated to the lowest harmonics, and thus with the asymptotic charges, the mass and
the angular momentum. Higher harmonics, which cannot change the asymptotic charges
and are associated to the bifurcation to new families, should only become unstable for
rotations higher than the thermodynamic modes. This conjecture allows for any number
of independent angular momenta, and has already been verified in the instability of d > 5
cohomogeneity-1 MP solutions (equal independent spins in odd d) [22]. This sector of
MP black holes has a regular extremal limit and the angular momentum is bounded from
above, yet the conjecture of ref. [20] indicates that an instability is possible. Indeed linear
perturbations growing exponentially with time were found, which is an important check
since the previous work could only determine the stationary threshold modes.

In this paper, we will extend the results in refs. [20, 21] to the asymptotically AdS
case. The properties of asymptotically AdS spacetimes have been greatly explored due
to the AdS/CFT correspondence, which equates quantum gravity (string theory) in an
asymptotically AdS spacetime to a conformal field theory (CFT) living on the boundary
of that spacetime [23, 24]. In particular, the phase diagram of black holes in AdS is in
direct correspondence to the phases of the dual CFT at finite temperature. Therefore,
even if many higher-dimensional black hole solutions present classical instabilities, or do
not dominate thermodinamically the gravitational partition function, they still provide a
valuable insight into the CFT phases.

– 2 –



J
H
E
P
1
2
(
2
0
1
0
)
0
6
7

(  M  /  l d - 3   f i x e d  )

J  /  l d - 2

I I
I I I

I

0
0

S  /  l d - 2

M  /  l d - 3

Figure 1. Phase diagram of singly-spinning MP-AdS black holes in d ≥ 6. We plot the entropy
S vs. the angular momentum J , at a fixed value of the mass M , in units of the AdS curvature
radius `. The figure illustrates the conjecture of ref. [25]. At sufficiently large spin the MP-AdS
solution becomes unstable for axisymmetric perturbations (dashed line), and at the threshold of
the instability a new branch of black holes with a central pinch appear (I). As the spin grows, new
branches of black holes with further axisymmetric pinches (II, III, . . . ) appear. We determine
numerically the points where the new branches appear, but it is not yet known in which directions
they run.

Black rings and black Saturns in AdS have been constructed in certain approxima-
tions [25],1 and the conjectures of ref. [12] regarding the connections between singly-
spinning black hole families were extended to the asymptotically AdS case also in ref. [25].
Notice that singly-spinning MP-AdS black holes [27] (and indeed any asymptotically AdS
stationary black hole [28]) present a BPS-type upper bound on their angular momentum,
|J | < M` (with M being the mass and ` the cosmological length), while there is no such
bound in the asymptotically flat case. However, the instabilities/bifurcations are still ex-
pected as we increase the rotation up to that bound [25] (see figure 1).

In this paper we will numerically determine the dependence of the stationary threshold
modes on the cosmological constant. The procedure is an extension to d ≥ 6 of the d = 4
Kerr-AdS analysis [29], where no classical instability was found; the latter was itself an
extension of the Schwarzschild-AdS case [30].

We confirm the conjecture of ref. [20], which gives a necessary but not sufficient condi-
tion for the onset of the ultraspinning instability. In this paper we generalise the previous
formulation so that it can be applied to the asymptotically AdS case. We find that all
bifurcations occur when the MP-AdS black hole is unstable under superradiance [31–33],
which implies that the new families of black holes will inherit this instability.

Before proceeding, let us mention that asymptotically flat singly-spinning MP black
holes also suffer from an instability that breaks their axisymmetry [34, 35]. This occurs
even in d = 5, and for d ≥ 6 it sets in for lower rotations than the ultraspinning instability
that we study here. However, the threshold mode is not associated to new stationary
black holes. It would be interesting to find whether this non-axisymmetric instability also

1See ref. [26] for the extension of the more systematic blackfold approach of refs. [13–15] to asymptotically

AdS black holes.
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extends to asymptotically AdS black holes and to understand how it relates to the AdS
superradiant instability.

This paper is organised as follows. In section 2, we review the properties of singly-
spinning MP-AdS black holes and discuss the ultraspinning instability. In section 3, we
detail the linear perturbations problem that is solved numerically. We conclude in section 4,
with the discussion of the results.

2 Myers-Perry-AdS black holes

In this section, we will start by reviewing the properties of singly-spinning MP-AdS black
holes. Although for such solution the angular momentum (at fixed mass) has an upper
bound, we provide a thermodynamic argument, discussed in subsection 2.2, according to
which these black holes may be afflicted by the ultraspinning instability. This motivates
the numerical work, described in later sections, of searching for the onset of the instability.
We conclude this section by noting that all the AdS black holes potentially afflicted from
the ultraspinning instability are also afflicted by the AdS superradiant instability.

2.1 Solution

The four-dimensional Kerr-AdS black hole was found by Carter [36], and its extension to
higher dimensions, when rotation on a single plane is considered, was obtained by Hawking,
Hunter and Taylor [27].2 The metric is given by

ds2 =− ∆r

Σ

(
dt− a sin2 θ

Ξ
dφ

)2

+
sin2 θ∆θ

Σ

[
r2 + a2

Ξ
dφ− a dt

]2

+
Σ
∆r

dr2 +
Σ
∆θ

dθ2

+ r2 cos2 θ dΩ2
(d−4) ,

where dΩ2
(d−4) is the line element of a unit-radius (d− 4)-sphere and

∆r = (r2 +a2)
(

1 +
r2

`2

)
− r

d−3
m

rd−5
, ∆θ = r2 +a2 cos2 θ , Σ = r2 +a2 cos2 θ , Ξ = 1− a

2

`2
.

(2.1)
This solution of the Einstein equations with negative cosmological constant, Rµν = −(d−
1)`−2 gµν , is parameterised by three length scales, namely the AdS curvature radius `, the
mass-radius rm and the rotation parameter a. The Komar mass M and angular momentum
J of the black hole are given in terms of these parameters by [37]

M =
Ad−2r

d−3
m

8πGΞ2

(
1 +

d− 4
2

Ξ
)
, J =

Ad−2

8πG
rd−3
m

Ξ2
a , (2.2)

where Ad−2 = 2π(d−1)/2/Γ[(d− 1)/2] is the volume of a unit-radius (d− 2)-sphere, and G

denotes Newton’s constant which we set to one (G = 1). The solution satisfies the BPS-like
bound [28]

|J | < M` ⇔ |a| < ` . (2.3)
2Since the Hawking-Hunter-Taylor solution usually refers to the five-dimensional black hole with two

independent spins, also found in [27], we will refer to the black hole represented by (2.1) simply as (singly-

spinning) Myers-Perry-AdS black hole.
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The metric (2.1) does not describe a black hole if this bound is saturated. In the limit |a| →
` either the charges (mass and angular momentum) and the horizon equator circumference
of the black hole diverge, or the horizon vanishes and the solution is nakedly singular.

The event horizon lies at the largest real root r = r+ of ∆r(r) = 0. The horizon
angular velocity measured with respect to a non-rotating frame at infinity is [37, 38]

ΩH =
a

r2
+ + a2

(
1 +

r2
+

`2

)
, (2.4)

while the temperature and entropy of the black hole are [37]

TH =
1

4π r+(a2 + r2
+)

(
r2

+

[
d− 3 + (d− 1)

r2
+

`2

]
+ a2

[
d− 5 + (d− 3)

r2
+

`2

])
,

S =
Ad−2

4
(r2

+ + a2)rd−4
+

Ξ
. (2.5)

In d = 4, the temperature vanishes for |a| = r+

√
(3r2

+ + `2)(`2 − r2
+)−1. However,

as a consequence of the constraint (2.3), we have an extremal regular (i.e. with finite size
horizon area) black hole if and only if r+/` < 3−1/2. In d = 5, like in the asymptotically flat
space limit ` → ∞, the temperature goes to zero at the singular limit |a| → rm, whereas
the bound on the rotation parameter for a finite r+ is (2.3). For d ≥ 6, the temperature can
never vanish and thus there is no extremal solution. The parameter space is bounded only
by (2.3). This is in sharp contrast with the asymptotically flat case, in which MP black
holes rotating on a single plane in d ≥ 6 have no upper bound on their angular momentum.

2.2 Thermodynamic zero-modes and the ultraspinning regime

The condition of local thermodynamic stability for a black hole with charges M,Ji and
entropy S is the positivity of the Hessian

− Sαβ ≡ −
∂2S(xγ)
∂xα∂xβ

, xα = (M,Ji) . (2.6)

We write the condition in its most general form, i.e. taking into account the several an-
gular momenta allowed in higher dimensions, i = 1, . . . , b(d− 1)/2c (where b . c stands for
the smallest integer part). In this section, we will review the arguments of refs. [20, 22]
which relate the eigenvalues of this thermodynamic Hessian to the occurrence of classical
instabilities, namely the ultraspinning instability.

There are two general properties of this Hessian for AdS black holes: (i) For all (non-
extremal) asymptotically flat vacuum black holes, in any d, the Hessian has at least one
negative eigenvalue [22]; so, by continuity, black holes whose size is much smaller than
the AdS curvature radius should be thermodynamically unstable. (ii) Large black holes in
AdS, however, are expected to be thermodynamically stable, and thus the Hessian should
be positive definite.

Let us take the d = 4 Kerr-AdS case, where we have a 2× 2 thermodynamic Hessian.
One of the eigenvalues is positive in the entire parameter space. However, the second
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Figure 2. Parameter space of singly-spinning Myers-Perry−AdS black holes in d = 6: dimen-
sionless rotation parameter a/rm as a function of the dimensionless mass-radius parameter rm/`.
Regular black holes exist only for a < `. The thermodynamic l = 0 and l = 1 zero-mode curves,
described by (2.7) and (2.8), are plotted. The thermodynamic l = 1 zero-mode curve defines also
the ultraspinning surface, above which (region C) the black holes might be ultraspinning unstable
(later section 4 and figure 4 confirm this is indeed the case). The superradiant curve ΩH` = 1
is also plotted. Above this curve all black holes are superradiant unstable. For d > 6 the plot is
qualitatively very similar.

eigenvalue can be negative, null or positive depending on the parameters. The null point is
where the specific heat at constant angular velocity diverges, changing sign. We shall say
that, at the surface in parameter space where the Hessian becomes degenerate, we have
a thermodynamic zero-mode, corresponding to the eigenvector with zero eigenvalue. The
situation is analogous in the singly-spinning d = 5 case (say J2 = 0), with two eigenvalues
being always positive, and one changing sign. In the d ≥ 6 singly-spinning case (say Ji = 0
for i > 1) things are more interesting. Two of the eigenvalues of the thermodynamic
Hessian change sign, and all the others remain positive throughout the parameter space.
So there will be two thermodynamic zero-modes, marking the onsets of two distinct local
thermodynamic instabilities.

Let us consider the parameterisation (r+, a), which uniquely specifies a singly-spinning
MP-AdS black hole, for a given AdS curvature radius `. Recall that |a| < ` is the bound
on the parameter space, as represented in figure 2 for d = 6 (it is qualitatively similar in
d > 6). Now, for large r+/`, the black hole is thermodynamically stable. As we decrease
r+, one of the eigenvalues changes sign first, which corresponds to the transition between
regions A and B in figure 2. Let us label the associated zero-mode as the l = 0 zero-mode,
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for reasons that will become apparent later. Its parameter space locus is:3

Thermodynamic l=0 zero-mode (d≥4): r2
+ =

d− 3
2(d− 1)

(
a2 + `2 +

√
a4 − γd a2`2 + `4

)
,

(2.7)
where γd ≡ 2

(
d2 − 6d+ 1

)
/(d− 3)2.

The l = 0 zero-mode is present for any d ≥ 4. However, for d ≥ 6 there is an additional
zero-mode, corresponding to the second eigenvalue that becomes negative as we lower r+

for fixed a. This corresponds to the transition between regions B and C in figure 2. Let
us label the associated zero-mode with l = 1. Its parameter space locus is:

Thermodynamic l=1 zero-mode (d≥6): r2
+ =

d− 3
2(d− 1)

(
a2 + `2 −

√
a4 − γd a2`2 + `4

)
.

(2.8)
What happens as we decrease r+ further for fixed a? As discussed in the Introduction,

singly-spinning MP black holes were conjectured to be unstable if rotating too rapidly,
i.e. |a| � r+, since they start behaving like black branes [16]. In the asymptotically AdS
case, there should also be an analogous unstable regime [25]. Now, there can be two
types of instabilities. One for which the perturbations break the rotational symmetry of
the background, i.e. the ∂φ Killing vector of (2.1); see [34, 35] for the analysis of these
perturbations in the asymptotically flat case. And one for which the spatial isometries of
the background are preserved. Instabilities of the latter type admit stationary threshold
modes, which may correspond to bifurcations to new black hole phases [12, 16]. Ref. [16]
suggested that an order of magnitude estimate for the critical rotation at the bifurcation
point could be given by what we described above as the l = 1 zero mode. In fact, this
point marks the transition to the black brane-like behaviour and it only occurs for d ≥ 6.
The subsequent understanding of the problem allowed for a more precise formulation of
the conjecture, which can also be extended beyond the singly-spinning case.

Indeed, the ultraspinning conjecture of ref. [20] proposes that instabilities whose onset
is a stationary and axisymmetric mode, i.e. a mode which gives a bifurcation to a new
stationary black hole family, can only occur after the l = 0 and l = 1 zero-modes, i.e. in
region C of figure 2 in the present case. This is a necessary but not sufficient condition.
The reasoning is that the onset of these instabilities corresponds to the l ≥ 2 zero-modes,
as we shall review below.

Ref. [40], in the static case, and refs. [22, 41], in the general case, showed that a zero-
mode (or a negative mode, the eigenvector of a negative eigenvalue) of the thermodynamic
Hessian (2.6) is also a stationary and axisymmetric zero-mode (negative mode) of the black
hole Euclidean action. Since we are dealing with stationary and axisymmetric modes, this
result extends to the Lorentzian action. In the case of a zero-mode, it corresponds to a
classical perturbation of the black hole which preserves its temperature and angular ve-
locities, but changes its asymptotic charges (mass and angular momenta). The change

3Notice that the Hawking-Page transition [39] occurs for r+/` larger than (2.7). This implies that hot

AdS space is preferred (in the grand-canonical ensemble) over these black holes if r+ < `, in any d. Global

thermodynamic stability is stricter than local thermodynamic stability.
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in the asymptotic charges can simply be inferred from the eigenvector (δM, δJi) of the
Hessian (2.6) associated with the null eigenvalue. In the case of a negative mode, it corre-
sponds to both: (i) an off-shell perturbation of the black hole which makes the (Euclidean)
gravitational partition function pathological, the expected signal of a local thermodynamic
instability; and (ii) an on-shell stationary perturbation of a black brane, where the neg-
ative eigenvalue corresponds to (minus) the ‘mass-squared’ coming from the dimensional
reduction along the brane directions. This connection is the basis of the Gubser-Mitra
conjecture [42, 43].

The first example of the relation between negative modes of the action and thermo-
dynamic stability was the determination of the negative mode of the Schwarzschild black
hole [44]. The existence of such mode is a direct consequence of the fact the Schwarzschild
black hole has negative specific heat. Indeed, the extension to the Schwarzschild-AdS
case [30] showed that the relevant mode changes sign exactly where the specific heat changes
sign, as expected. This result was extended to the Kerr-AdS case [29], where the numerical
techniques used in [20–22, 45], and also in this paper, were applied first to a black hole
stability problem.

Now we can justify the labels l = 0 and l = 1 used before, following [20]. They are
based on the harmonic structure of the metric perturbations corresponding to the zero-
modes. The l = 0 zero-mode has no nodes, i.e. the metric perturbation does not vanish
anywhere on the horizon, whereas the l = 1 zero-mode has one node, as plotted in [20]
for the singly-spinning MP case. Now, the l = 0 and l = 1 zero-modes are associated
with the asymptotic charges of the spacetime.4 This is consistent with the fact that they
are determined from the thermodynamic Hessian (2.6), the changes in the charges being
proportional to the eigenvector (δM, δJi). Notice that, being signalled by the Hessian of
S(M,Ji), i.e. by the equation of state of the background black hole family, the l = 0 and
l = 1 zero-modes can only change the black hole into another black hole of the same family,
e.g. another MP black hole.5

What is found by solving the problem of axisymmetric perturbations is that instabilities
appear with new stationary zero-modes, not predicted by the thermodynamic Hessian.
We refer to them as non-thermodynamic zero-modes. Their harmonic structure — the
number of nodes, found to be l ≥ 2 — is consistent with the deformations of the event
horizon proposed in refs. [12, 25]; see figure 1. These higher harmonics cannot change the
asymptotic charges, as exemplified explicitly in [22]. The perturbed black holes will have
the same mass and angular momenta as the unperturbed solutions, and also, as imposed by

4Ref. [22] analysed MP black holes with equal spins in odd d, which have the convenient property of

being cohomogeneity-1. In that case, the number l labels a precise harmonic of the CPN base space, and

it can be shown that the l = 0 harmonic is associated to the mass only (indeed δJi = 0 in the Hessian

eigenvector), while the l = 1 harmonic is associated to the angular momenta only (indeed δM = 0 in the

Hessian eigenvector). In the singly-spinning black hole both the l = 0 and l = 1 ‘harmonics’ change the

mass and the angular momentum.
5In the present paper, these zero-modes give another singly-spinning MP-AdS black hole. However, in

the cohomogeneity-1 MP(-AdS) case [22], the l = 1 zero-mode breaks the symmetries between the spins, as

predicted by the eigenvector (δM, δJi) having distinct δJi. The zero-mode therefore takes the black hole

out of the equal spins sector, but still in the general MP(-AdS) family.
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the boundary conditions, the same temperature and angular velocities. Therefore, either
they correspond to trivial gauge modes or to bifurcations to new black hole solutions.
We have shown in specific cases [21, 22] that no regular gauge modes are allowed. We
conclude that the l ≥ 2 zero-modes mark a black hole bifurcation, and also the onset of
a classical ultraspinning instability, one per each mode. That these linear modes do grow
exponentially with time was verified in [22].

The ultraspinning conjecture of ref. [20] predicts that zero-modes with l ≥ 2 can only
occur for rotations higher than that of the l = 1 zero-mode. In the case of singly-spinning
MP-AdS black holes, this corresponds to the region C of figure 2. This is based on the
examples known, and on the intuition that higher harmonics should be more stable than
lower harmonics. In general, when several distinct angular momenta are present, several
different zero-modes with l = 1 may exist, as exemplified in [22]. So the ultraspinning
surface (in our case, the surface between B and C) is defined as the surface in parameter
space which encloses the region where the thermodynamic Hessian (2.6) has less than two
negative eigenvalues (in our case, regions A and B).

Since this thermodynamic criterion is a necessary but not sufficient condition, to con-
firm the presence of these instabilities we still have to solve the linear perturbations prob-
lem, and look for the l ≥ 2 non-thermodynamic zero-modes. This study is done in section 3.

2.3 Superradiant instability

Before studying the ultraspinning instability of the singly-spinning MP-AdS black hole,
we recall that this is not the only instability present in the system. Indeed, it competes
with the well-known superradiant instability that afflicts rotating AdS black holes when-
ever ΩH` > 1 [31–33]. The superradiant instability is associated to perturbations that
break the symmetry generated by ∂φ, i.e. it requires perturbations whose angular momen-
tum quantum number m along the φ-direction is non-vanishing. The mechanism of the
instability is simple. A gravitational wave co-rotating with the background black hole
can extract rotational energy from the black hole if its frequency ω satisfies the relation
ω < mΩH , where ΩH is the angular velocity of the black hole. This phenomenon is known
as superradiance. On the other hand, the AdS gravitational potential effectively acts as
an asymptotically reflecting box. The multiple superradiant amplifications and reflections
drive the system unstable if and only if ΩH` > 1.

Since there is a competition between the two instabilities, it is relevant to ask whether
the ultraspinning instability occurs when ΩH` ≤ 1. We find a negative answer. Indeed, in
figure 2 we represent the superradiant surface, ΩH` = 1, by a dashed line. It lays entirely
in region B. Black holes above this surface have ΩH` > 1, which includes all the black
holes in region C that might also be afflicted by the ultraspinning instability. Therefore,
all the AdS black holes that suffer from the ultraspinning instability that we identify in
the next section are also likely to be unstable under superradiance.
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3 Perturbations of MP-AdS black holes

In this section, we will detail the linear perturbation problem, which consists in studying
the spectrum of the Lichnerowicz operator on the black hole background. We will list
the equations to be solved and the boundary conditions, and we will briefly discuss their
numerical implementation.

3.1 The Lichnerowicz eigenvalue problem

To find the onset of the ultraspinning instability we have to solve the linearised Einstein
equations with a negative cosmological constant. We search for stationary modes that
depend on the radial and polar coordinates, r and θ, but preserve the R×U(1)× SO(d−
3) symmetries of the background MP-AdS black hole (2.1). The general ansatz for the
perturbed metric hµν satisfying these conditions is:6

ds2 =− ∆r(r)
Σ(r, θ)

eδν0
[
dt− a sin2 θ

Ξ
eδω dφ

]2

+
sin2 θ∆θ(θ)

Σ(r, θ)
eδν1

[
r2 + a2

Ξ
dφ− a e−δω dt

]2

+
Σ(r, θ)
∆r(r)

eδµ0 [dr − δχ sin θ dθ]2 +
Σ(r, θ)
∆θ(θ)

eδµ1 dθ2 + r2 cos2 θ eδΦ dΩ2
(d−4) ,

(3.1)
where {δν0, δν1, δµ0, δµ1, δω, δχ, δΦ} are small quantities that describe our perturbations,
and are functions of (r, θ) only. We will solve numerically the coupled partial differential
equations (PDEs) that govern these perturbations. We choose to work in the traceless-
transverse (TT) gauge,

hµµ = 0 and ∇µhµν = 0 . (3.2)

The linearised Einstein-AdS equations are:

(∆̃Lh)µν ≡ −∇ρ∇ρhµν − 2R ρ σ
µ ν hρσ = 0 , (3.3)

where the operator ∆̃L relates to the standard Lichnerowicz operator ∆L as

(∆̃Lh)µν = (∆Lh)µν + 2(d− 1)`−2hµν . (3.4)

Following the strategy used to study the ultraspinning instability in asymptotically flat
black holes in [20–22], we will actually consider a more general eigenvalue problem,

(∆̃Lh)µν = λhµν . (3.5)

More concretely, we will be looking for negative modes (λ < 0) of the operator ∆̃L.
This eigenvalue problem arises in two instances. One is the computation of quadratic

quantum corrections to the gravitational partition function in the saddle point approxima-
tion [44] (see [29] for the application to the Kerr-AdS black hole). The quantum corrections

6Stationarity and axisymmetry lead to a metric perturbation independent of t and φ, respectively. The

transverse Sd−4 line element is left unperturbed, apart from its (r, θ)-dependent scale factor, because we

wish to preserve the SO(d−3) isometry. On the other hand, the components tr, tθ, φr, φθ can be discarded:

the corresponding TT gauge conditions and the linearised equations of motion can be solved by separation

of variables in r and θ, and regularity implies that those components vanish.
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present a pathology whenever there is a negative mode. As we have mentioned, each nega-
tive eigenvalue of the thermodynamic Hessian (2.6) gives a negative mode, which we refer
to as being thermodynamic.

In the asymptotically flat case, (3.5) also governs the gravitational perturbations of
the form ei

√
−λzhµν of the rotating black string that is constructed by adding a flat extra

dimension z to the MP geometry. The AdS analogue are the warped AdS black strings
constructed in ref. [46]. These solutions are the generalisations of the standard warped AdS
black string, whose stability was studied in [47], in the case where the transverse black hole
is also asymptotically AdS.7

Our strategy (following refs. [20, 29]) to study the classical perturbations (λ = 0) of the
black hole is to look for a solution of (3.5), i.e. a negative mode of the black hole, and then
vary the rotation parameter a of the black hole until the negative mode becomes a zero-
mode, i.e. until λ→ 0. This strategy is motivated by the availability of powerful numerical
methods for solving eigenvalue equations of the form (3.5). This strategy is motivated by
the availability of powerful numerical methods for solving eigenvalue equations of the form
(3.5). In particular, after an adequate discretisation scheme using spectral methods [48],
(3.5) reduces to an algebraic eigenvalue problem which we then solve using the inbuilt
routine Eingenvalues of Mathematica.

3.2 Boundary conditions

To solve the Lichnerowicz eigenvalue system of equations (3.5) we have to impose boundary
conditions on the metric perturbations (3.1). More concretely, we have to specify bound-
ary conditions at the horizon, r = r+, at the asymptotic infinity, r → ∞, at the rotation
axis θ = 0, and at the equator θ = π/2. The strategy to find the appropriate boundary
conditions was already discussed in great detail in section 4 of ref. [21], where the ultraspin-
ning instability in asymptotically flat MP black holes was studied. The discussion there
translates straightforwardly to the present situation, and hence we shall be brief.

We impose regularity of the metric perturbations on the event horizon by demanding
regularity of the Euclideanised perturbed geometry. The idea is to peform the standard
Euclidean continuation of the black hole metric, and find the conditions required to have
regularity at the bolt (Euclideanised horizon). For the background black hole, this de-
mands that we identify (τ, φ) ∼ (τ, φ + 2π) ∼ (τ + β, φ − i ΩHβ), where τ = i t is the
Euclidean time, β = 1/TH is the inverse of the black hole temperature (2.5), and ΩH is its
angular velocity (2.4). The boundary conditions for the metric perturbations hµν can now
be determined by demanding that hµνdxµdxν is a regular symmetric 2-tensor on the back-
ground manifold. This requires the following boundary conditions at the horizon, located
at ρ ≡ [4(r − r+)/∆′r(r+)]1/2 = 0,

δχ, δω = O(ρ2) , δν0 − δµ0 = O(ρ2) , ∂ρδµ1, ∂ρδν1, ∂ρδΦ = O(ρ) . (3.6)

Note that we have not just imposed regularity of the perturbed metric. If hµνdxµdxν

is a regular 2-tensor, then perturbations obeying (3.6) preserve the angular velocity and
7These should not be confused with the uniform black string solutions of ref. [57], whose stability problem

is not given by eq. (3.5).
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temperature of the background black hole. This is a fundamental property to make the
connection between the classical ultraspinning instability and black hole thermodynamics
that was discussed in section 2 [22].

To find the boundary conditions that the metric perturbations must satisfy at the
axis of rotation (θ = 0), where ∂φ vanishes, we proceed in the same way and require
that hµνdxµdxν is a regular symmetric 2-tensor, i.e. the components hµν are regular when
expressed in coordinates where the background metric components are regular. Regularity
as θ → 0 demands:

δν1 − δµ1 = O(θ2) , ∂θδχ, ∂θδω, ∂θδµ0, ∂θδν0, ∂θδΦ = O(θ) . (3.7)

Analogously, at the equator, θ = π/2, we impose the boundary conditions:

δχ = O(x) , δΦ− δµ1 = O(x2) , ∂xδω, ∂xδµ0, ∂xδν0, ∂xδν1 = O(x) , (3.8)

as x = cos θ → 0.
We have explicitly checked that the boundary conditions (3.6), (3.7) and (3.8) are

consistent both with the Lichnerowicz eigenvalue equations (3.5) and the TT gauge con-
ditions (3.2). Indeed, the first term in the series expansion of the eigenvalue equations
vanishes after we impose (3.6), (3.7) and (3.8). On the other hand, we can use the TT
gauge conditions to express, e.g. {δν0, δν1, δΦ} as functions of {δµ0, δµ1, δω, δχ} and their
first derivatives. Again, the first term of a series expansion of these TT gauge conditions
is consistent with (3.6), (3.7) and (3.8).

At spatial infinity, r → ∞, our second order equations of motion allow for two radial
dependences of the metric perturbation. We require that the boundary conditions preserve
the asymptotics of the background spacetime, in the sense that not only (in our Boyer-
Lindquist coordinates)

hµν
∣∣
r→∞ ∼

1
rα
→ 0 , (3.9)

for some constant α > 0 that depends on the particular metric component and the number
of spacetime dimensions d, but also in the sense that the perturbations are normalisable.
The negative modes are “gravitons with a positive mass”, and normalisability requires that
we pick the fastest decaying mode (cf. the non-rotating case [30]). This happens to be the
mode that our numerical code can identify straightforwardly.

3.3 Imposing the TT gauge conditions and the boundary conditions

We wish to solve the Lichnerowicz eigenvalue problem (3.5) for the seven metric pertur-
bations described in (3.1), namely {δµ0, δµ1, δχ, δω, δν0, δν1, δΦ}, subject to the TT gauge
conditions (3.2). The latter eliminate three functions. We choose to solve the gauge condi-
tions (3.2) for {δν0, δν1, δΦ} in terms of {δµ0, δµ1, δχ, δω} and their first derivatives. Plug-
ging this information in the full set of the perturbation equations (3.5), we find that only
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four equations remain of second order in {δµ0, δµ1, δχ, δω}. Explicitly, these equations are:

(4̃Lh)rr = λhrr ,

(4̃Lh)rθ = λhrθ ,

(4̃Lh)θθ = λhθθ ,

a (4̃Lh)tt +
Ξ
(
r2 + a2 + a2 sin2 θ

)
(r2 + a2) sin2 θ

(4̃Lh)tφ +
aΞ2

(r2 + a2) sin2 θ
(4̃Lh)φφ

= λ

[
a htt +

Ξ
(
r2 + a2 + a2 sin2 θ

)
(r2 + a2) sin2 θ

htφ +
aΞ2

(r2 + a2) sin2 θ
hφφ

]
,

(3.10)

and they describe the final set of equations that we have to solve. A non-trivial consistency
check of our procedure is to verify that the final equations (3.10) imply that the remaining
equations in (3.5) are automatically satisfied (the latter equations are of third order in the
independent perturbation functions once the TT gauge conditions have been imposed). We
have explicitly verified that this is the case.

We will solve numerically the final eigenvalue problem (3.10) using spectral methods
(see e.g. [48]). To do so, we find it convenient to introduce new radial and polar coordinates,

y =
r

r+
− 1 , x = cos θ , (3.11)

such that 0 ≤ y ≤ ∞ and 0 ≤ x ≤ 1. The implementation of the method is simpler if all
functions obey Dirichlet boundary conditions on all the boundaries. Therefore, we redefine
our independent functions according to:

q1(y, x) =
(
r

r+
− 1
)
x(1− x) δµ0(y, x) , q2(y, x) = r−1

m (1− x) δχ(y, x) ,

q3(y, x) =
(
r

r+
− 1
)
x(1− x) δµ1(y, x) , q4(y, x) = x δω(y, x) ,

(3.12)

so that the qi’s vanish at the boundaries. This guarantees that the boundary condi-
tions (3.6), (3.7), (3.8) and (3.9) are correctly imposed.

In the limit `→∞, our equations and results reduce to those of the asymptotically flat
case studied in [20, 21]. In this case, we explicitly proved that the ultraspinning zero-modes
that we find cannot be pure gauge modes. That is, there is no pure gauge perturbation,
obeying the boundary conditions we impose, which could potentially generate the regular
metric perturbations that we consider. By continuity, we expect this property to hold true
when the cosmological constant is switched on.

4 Results and discussion

The problem of finding the onset of the axisymmetric ultraspinning instability in the singly-
spinning MP-AdS black hole reduces, at this point, to solving the equations (3.10) for the
metric perturbations (3.12) in the TT gauge and that obey Dirichlet boundary conditions.
The outcome of this analysis are the dimensionless negative modes, λ r2

m, of the modified
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Figure 3. Dimensionless negative modes λr2m of the singly-spinning MP-AdS black hole in d = 6
as a function of the dimensionless rotation parameter a/rm for fixed rm/`. In the left plot, we
represent the spectrum for rm/` = 1.0, while the right plot describes the spectrum for rm/` = 0.5.
The latter has several (supposedly infinite) branches of zero-modes (for which λ = 0) and the
corresponding negative eigenvalues are labeled by the integer l. For this particular black hole
family with rm/` = 0.5, the values of a/rm at which the first few branches intersect the λ = 0 axis
are: a/rm

∣∣
l=1
' 1.10, a/rm

∣∣
l=2
' 1.49, a/rm

∣∣
l=3
' 1.69, a/rm

∣∣
l=4
' 1.81, and a/rm

∣∣
l=5
' 1.88.

As opposed to the thermodynamic l = 0, 1 zero-modes (curve on left plot, first two curves on right
plot), the zero-modes with l ≥ 2 describe the onset of ultraspinning instabilities of the black hole.

Lichnerowicz operator ∆̃L. These are obtained for each pair of parameters that specify
the black hole for a fixed AdS radius `, namely the dimensionless mass radius, rm/`, and
the dimensionless rotation parameter, a/rm. We will later describe the results in terms
of the dimensionless asymptotic charges M/`d−3 and J/`d−2, which are more physical
quantities. However, rm and a, which appear in the metric (2.1), are more convenient for
the numerical analysis.

Examples of the spectrum of negative modes in d = 6, as a function of the dimensionless
rotation parameter, for two particular values of rm/`, are presented in figure 3. We expect
that for higher d the spectrum is qualitatively similar to d = 6 (we explicitly confirmed
this for d = 7).

The first property to notice is encoded in the curve on the left plot and on its counter-
part on the right plot, which is the first curve counting from the left. This curve describes
what we called the thermodynamic l = 0 negative mode in subsection 2.2. As discussed
there, it was proven in ref. [22] that this negative mode is always present if the black hole is
asymptotically flat. However, the AdS curvature radius introduces a new scale in the sys-
tem that changes this property. For black holes with small rm/` (namely for rm/` . 0.906
in d = 6) this negative mode is present for any value of a/rm, see e.g. rm/` = 0.5 in the
right plot of figure 3, while for black holes with large rm/` (namely for rm/` & 1.587 in
d = 6) the thermodynamic l = 0 eigenvalue is positive, independently of the rotation.
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When we fix rm/` to be in between these two regimes, the thermodynamic l = 0 eigenvalue
is positive for small a/rm and becomes negative for large a/rm, see e.g. the rm/` = 1.0 case
in the left plot of figure 3. The phase transition, where the thermodynamic l = 0 eigen-
value is a zero-mode, occurs precisely at the critical rotation identified in (2.7), namely at
a/rm

∣∣
l=0
' 0.337 (for rm/` = 1.0 and in d = 6). This is what we expect from the ther-

modynamics discussion of subsection 2.2: in regions B,C of figure 2 the thermodynamic
l = 0 eigenvalue is negative while in region A it is positive. The agreement between the
numerical and thermodynamic results is an important check of the numerical code.

The next interesting property of the spectrum of negative modes is encoded in the
second curve counting from the left on the right plot of figure 3. According to figure 2,
black holes with rm/` . 0.864 in d = 6 have a negative (positive) thermodynamic l = 1
eigenvalue if the rotation parameter is such that the black hole is in region C (region B),
with the l = 1 zero-mode curve defined by (2.8). The black hole family displayed on
the right plot of figure 3 obeys these conditions, since rm/` = 0.5. Indeed, for rotations
below (above) the critical rotation a/rm

∣∣
l=1
' 1.10, the thermodynamic l = 1 eigenvalue

is positive (negative) as predicted by (2.8).

The l = 0 and l = 1 negative eigenvalue curves are the only ones whose existence
can be predicted by the analytical thermodynamic analysis of subsection 2.2. As discussed
there, refs. [22, 29, 40] proved that a zero-mode of the thermodynamic Hessian (2.6) is also a
zero-mode of the (modified) Lichnerowicz operator (3.5), but the latter can have additional
zero-modes, unrelated to that Hessian. The thermodynamic instabilities associated with
the l = 0, 1 negative modes do not correspond to classical gravitational instabilities of the
black hole. In particular, the thermodynamic l = 0, 1 zero-modes do not describe the onset
of a classical instability. Instead, they describe gravitational perturbations that change
the mass and the angular momentum of the black hole, within the MP-AdS family, but
preserve the temperature and the angular velocity, due to the boundary conditions.

The thermodynamic l = 1 zero-mode curve defines the ultraspinning surface of the
system. It was conjectured in ref. [20] that only black holes which are outside this sur-
face (i.e. in region C of figure 2) might develop new zero/negative modes that have no
thermodynamic interpretation, and that describe classical ultraspinning instabilities which
are axisymmetric. The right plot of figure 3 confirms that the spectrum of MP-AdS black
holes indeed has (a supposedly infinite sequence of) new branches of non-thermodynamic
zeros-modes, for rotations strictly higher than the critical rotation a/rm

∣∣
l=1

associated with
the l = 1 zero-mode. These families exhibit an underlying harmonic structure (although
the equations that we solve do not seem to separate into radial and angular equations).
We use this property to suggestively label the several new branches by successive integers
l = 2, 3, 4, . . . . This is an appropriate notation since the integer l coincides with the number
of nodes that the metric perturbations have on the horizon y = 0.8 The values of a/rm at
which the first few branches intersect λ = 0 for the particular family of black holes with
rm/` = 0.5 in d = 6 are summarised in the caption of figure 3. The spectrum of black hole

8For the particular case where `→∞, this statement is illustrated in figure 3 of [21], where we plot the

functions δχ(x, y) and δω(x, y) for l = 1 and l = 2. The figures are qualitatively similar for finite `.
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families with rm/` . 0.906 is qualitatively similar to this particular case.
In figure 4, we plot the number of negative modes detected numerically, for a grid

of points in the parameter plane (rm/`, a/rm) in d = 6 (left plot) and in d = 7 (right
plot). This figure completes the information displayed in figure 2 (in particular, for d = 6,
the black curves are the same plotted in figure 2). Not only it includes the numerical
and analytical results for the thermodynamic l = 0, 1 modes but, in addition, it adds the
numerical results relative to the l ≥ 2 modes that have no thermodynamic interpretation.
In region A (see figure 2), we find no negative modes. In region B, the system has only the
l = 0 negative mode (blue dotted region in figure 4). In region C, the l = 1 negative mode
is also present, but additional negative modes appear for higher rotations. In figure 4,
these are signaled by the red, purple, green, yellow and pink dotted areas. In the red
area, only the l = 0, 1 modes are negative, and there is no classical instability. However,
for higher rotation, in the purple area and above it, the l = 2 harmonic becomes another
negative mode of the modified Lichnerowicz operator (3.5). The transition from the red
into the purple area defines the non-thermodynamic l = 2 zero-mode curve. This surface
signals the onset of the ultraspinning instability in the parameter space. The boundary
of the purple and green areas identifies the non-thermodynamic l = 3 zero-mode curve:
above it the l = 3 harmonic is also excited, i.e. it becomes a negative mode. Similarly, the
green/yellow (yellow/pink) transition marks the non-thermodynamic l = 4 (l = 5) zero-
mode curve above which the l = 4 (l = 5) harmonic is also a negative mode. Not shown
in this figure, there should be an infinite sequence of new excited harmonics. These would
become visible if we considered higher values of a/rm in region C.

In figure 5, we proceed to a thorough analysis of the singly-spinning MP-AdS parameter
space. We represent the data in figure 4 for d = 6 in terms of the dimensionless asymptotic
conserved charges, M`d−3 and J`d−2, instead of using rm and a to specify the black hole.

We do this for the sake of clarity, because the charges are more physical, and also
because the map (rm, a)→ (M,J) in eqs. (2.2) is singular as |a| → `, so that the parameter
space looks very different. The physical parameter range is strictly below the curve |J | =
M`. To compare this figure with figure 4-left, notice that: (i) the asymptotically flat limit,
which was the rm/` = 0 line in figure 4-left, is the point (0, 0) in figure 5; (ii) the line
a = `, for finite rm/`, in figure 4-left is now the asymptotic corner given by the limit
R → ∞ of (R,R) in figure 5, so that the various coloured regions do not all meet in the
parameter space as suggested in figure 4-left; and (iii) the limit a/rm →∞, within a < `,
in figure 4-left is the curve J = M` that puts a bound on the parameter space in figure 5.
Notice that, for relatively small fixed values of the mass (in AdS units), say M/`d−3 = 1,
there is always an l = 0 negative mode, as in the asymptotically flat limit. On the other
hand, there is a l = 0 zero-mode for larger masses, say M/`d−3 = 2. For any fixed value of
the mass, we find that a sufficiently high rotation leads to the ultraspinning instabilities,
in correspondence with figure 1.

Our study is limited to stationary perturbations. Therefore, we have not proven that
our l ≥ 2 negative modes do indeed correspond to a region in parameter space where some
black hole perturbations grow exponentially with time. Including time-dependence is not
conceptually difficult but it is only computationally harder. Additional metric components
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Figure 4. Number of negative modes of the singly-spinning MP-AdS black hole in d = 6 (left) and
d = 7 (right). The plots describe the dimensionless rotation parameter a/rm as a function of the
dimensionless mass-radius rm/`. As we move from the bottom to the top, the new colored/dotted
areas represent regions where a new negative mode of the (modified) Lichnerowicz operator gets
excited: blue (one negative mode), red (2 n.m.), purple (3 n.m.), green (4 n.m.), yellow (5 n.m.),
pink (6 n.m.), . . . The interpretation of the several curves plotted is described in figure 2. (Note
that the faults in these figures, e.g. where we expected to find blue dots, correspond to parameter
space points where our numerical code failed. They do not correspond to black holes with no
negative modes.)

would have to be perturbed (e.g. htr, . . . ) in (3.1), and we would have to solve numerically
a system of many more PDEs. This problem is however of fundamental interest since
its solution would provide a definite proof of the ultraspinning instability in MP-AdS
black holes, together with information on the instability timescale. Having said this, we
nevertheless claim that we have found the stationary zero-modes that signal the onset
of the ultraspinning instability. Our confidence comes from the fact that the analogous
stability problem, including time-dependence, was studied in [22] for asymptotically flat
cohomogeneity-1 MP black holes (equal angular momenta, odd d). There, the analogues
of the l = 1, 2, 3, 4, . . . zero-modes are also present, and the corresponding perturbation
sectors decouple. The time-dependent analysis confirmed the absence of a classical black
hole instability in the l = 1 sector of perturbations, and the existence of an ultraspinning
instability in the l ≥ 2 sectors. We take this result as good evidence in support of a similar
interpretation in the singly-spinning MP-AdS case.

The ultraspinning l ≥ 2 zero-modes do not admit a thermodynamic interpretation, as
we have stressed. They should correspond not only to the onset of classical instabilities, but
also to the bifurcation to new stationary AdS black hole families with ‘pinched’ horizons,
which have the same isometries as the MP-AdS black holes. This is the conjecture of ref. [25]
(following [12, 16] in the asymptotically flat case), represented in figure 1. In particular,
the l = 2 zero-mode should connect to a family of AdS black holes which are ‘pinched’ on
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Figure 5. Number of negative modes of the singly-spinning MP-AdS black hole in d = 6. This
figure has the data of figure 4-left, now plotting the dimensionless angular momentum J/`d−2 as a
function of the dimensionless mass M/`d−3. Regular MP-AdS black holes exist for |J | < M`. We
represent the location of the l = 0 and the l = 1 zero-modes, for reference.

the poles. The location of the l = 2 zero-mode is represented as point I in figure 1. At some
point along the phase diagram of this new family, a horizon topology phase transition should
connect it to the AdS black ring with the same isometries, which has been constructed
perturbatively in the limit of large dimensionless angular momentum [25]. Similarly, the
l = 3 (l = 4) zero-mode, identified as point II (III) in figure 1, should connect to a new
family that interpolates between the MP-AdS family and the AdS black Saturn (concentric
rings), constructed perturbatively in [25]. Our results support the conjecture of ref. [25]
not only because we find the bifurcation points, but also because the shape of the numerical
perturbations, with its harmonic structure labelled by l, is consistent with the appropriate
‘pinches’ of the horizon (footnote 8).

As discussed in subsection 2.3, all the ultraspinning unstable MP-AdS black holes in
the purple, green, yellow, pink, . . . dotted areas of figure 4 have ΩH` > 1, and thus all of
them are also afflicted by the superradiant instability [31–33]. The instability is expected
to be inherited by the ‘pinched’ black hole families, at least close to the bifurcation point.

An interesting open problem is what is the interpretation of the ultraspinning instabil-
ity and of the associated new AdS pinched black hole phases in the holographic dual field
theory. Steps in this direction have already been taken in the context of the Scherk-Schwarz
compactified AdS. In this case, in the hydrodynamic limit of the holographic theory one
finds: i) pinched plasma balls [49, 50] that should be in correspondence with the gravita-
tional ultraspinning system, ii) deformed plasma tubes [51–54] that should be dual to the
Gregory-Laflamme instability of Scherk-Schwarz-AdS black strings and iii) rotating plasma
ball instabilities [55, 56] that should describe the gravitational bar-mode instability [34, 35]
mentioned in the Introduction.
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