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Decrease in thyroid adenoma associated (THADA)
expression is a marker of dedifferentiation of
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Abstract

Background: Thyroid adenoma associated (THADA) has been identified as the target gene affected by chromosome
2p21 translocations in thyroid adenomas, but the role of THADA in the thyroid is still elusive. The aim of this study
was to quantify THADA gene expression in normal tissues and in thyroid hyper- and neoplasias, using real-time
PCR.

Methods: For the analysis THADA and 18S rRNA gene expression assays were performed on 34 normal tissue
samples, including thyroid, salivary gland, heart, endometrium, myometrium, lung, blood, and adipose tissue as
well as on 85 thyroid hyper- and neoplasias, including three adenomas with a 2p21 translocation. In addition, NIS
(sodium-iodide symporter) gene expression was measured on 34 of the pathological thyroid samples.

Results: Results illustrated that THADA expression in normal thyroid tissue was significantly higher (p < 0.0001,
exact Wilcoxon test) than in the other tissues. Significant differences were also found between non-malignant
pathological thyroid samples (goiters and adenomas) and malignant tumors (p < 0.001, Wilcoxon test, t
approximation), anaplastic carcinomas (ATCs) and all other samples and also between ATCs and all other malignant
tumors (p < 0.05, Wilcoxon test, t approximation). Furthermore, in thyroid tumors THADA mRNA expression was
found to be inversely correlated with HMGA2 mRNA. HMGA2 expression was recently identified as a marker
revealing malignant transformation of thyroid follicular tumors. A correlation between THADA and NIS has also
been found in thyroid normal tissue and malignant tumors.

Conclusions: The results suggest THADA being a marker of dedifferentiation of thyroid tissue.

Background
Benign thyroid tumors and hyperplasias of follicular
epithelial origin belong to the cytogenetically best ana-
lyzed human epithelial tumors.
Cytogenetic aberrations have been detected in

approximately 20% of these lesions [1]. Translocations
of chromosomal band 2p21 are the second most fre-
quent structural chromosomal rearrangement, repre-
senting a particular cytogenetic subgroup [2]. The target
gene has been identified and referred to as thyroid ade-
noma associated (THADA) [3].

The full length cDNA of THADA consists of 6,134 bp
distributed over 38 exons [GenBank: NM_022065].
There are two splice-variants, one lacking exons 27 and
28 [3], and the other without exons 16 and 17. The
THADA protein has three isoforms corresponding to
the three different transcript variants with 1953 [Gen-
Bank: NP_071348], 1879, and 1832 amino acids, respec-
tively. In adenomas with 2p21 translocations Rippe et al.
found different types of fusion variants of THADA [3].
In each case, THADA was truncated after exon 28 and
ectopic sequences fused to it were not correlated to any
known gene. Thus, it has been speculated that the trun-
cation rather than the fusion to ectopic coding
sequences is the critical event for the development of
the tumor [3].
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Studies by Drieschner et al. [4] revealed that the
mRNA, the protein size, and the genomic organization
is conserved among Homo sapiens, Canis familiaris,
Chlorocebus aethiops, Gallus gallus, and Mus musculus.
THADA proteins from the analyzed organisms showed
significant assignments to the superfamily ARM repeat
(SSF48371; Hidden Markov Models Superfamily data-
base), indicating the presence of a protein-protein-inter-
action-domain of that type.
The exact function of THADA still remains unclear.

Hypothetically, it belongs to the death receptor-interact-
ing proteins and is assumed to bind to death receptor
DR5 (Puduvalli VK and Ridgway L, GenBank accession
reference note), involving it in the TRAIL-induced apop-
tosis. The truncated THADA derived from the rear-
ranged allele might compete with the gene product of
the normal allele thereby disturbing normal apoptosis of
follicular cells, and subsequently altering the steady state
between proliferation and cellular death leading to ade-
nomatous growth in benign thyroid tumors with 2p21
translocations [3]. Nevertheless, there is a need for
further studies elucidating the role of THADA in nor-
mal thyroid development and in tumorigenesis.
Recently, a THADA variant has also been linked to

type 2 diabetes (T2D) [5], but this association has not
been confirmed by the majority of further studies [6-20].
During a meta-analysis of three genome-wide associa-
tion studies with individuals of European descent Zeg-
gini et al. found evidence for an association of a SNP
(rs7578597) in exon 24 of THADA and the susceptibility
for T2D [5]. Further indication for a correlation between
THADA and T2D was presented in several other publi-
cations [11,14,16,17,19], one reported an altered expres-
sion of THADA in pancreatic islets, using data from the
Diabetes Genome Anatomy Project (DGAP) database
[11]. In other investigations no correlation was detected
[6-8,10,12,13,15,18,20], except for one publication [9],
which reported an association between THADA SNP
rs7578597 and a 2-h insulin level during an oral glucose
tolerance test but no significant association between the
THADA SNP and T2D risk, rendering the association
disputable.
The aim of this study was to analyze THADA expres-

sion in thyroid tissue in comparison to other tissues and
to thyroid hyper- and neoplasias to elucidate the possi-
ble correlation of THADA mRNA with thyroid differen-
tiation and neoplastic growth.

Methods
Tissue specimen and RNA isolation
RNA from snap-frozen tissues was isolated using the
RNeasy Mini Kit and RNeasy Lipid Tissue Mini Kit for
the adipose tissue samples, respectively (QIAGEN, Hil-
den, Germany).

For the formalin-fixed paraffin-embedded (FFPE) tis-
sues of thyroid tumors, histopathologic diagnoses were
performed according to the World Health Organization
Classification of Tumours [21] (table 1). As to RNA iso-
lation, FFPE blocks were cut into six sections of 5 μm
for each sample using a microtome. Total RNA isola-
tions were performed using the Roche High Pure RNA
Paraffin Kit (Roche, Mannheim, Germany) for the
THADA expression investigation and the RNeasy FFPE
Kit (QIAGEN, Hilden, Germany) for the NIS expression
analysis. Three samples were cytogenetically character-
ized by 2p21 translocations. In all three cases, two of
which published previously [22,23], the breakpoints
were narrowed down to the THADA locus. One of the
anaplastic thyroid samples served as the source of a
newly established cell line. Cytogenetical analysis
revealed a highly complex karyotype with a range of 80
to 117 chromosomes (100.8 on average). Several marker
chromosomes, telomeric associations, and double min-
utes were detected.

cDNA-synthesis and real-time PCR expression analysis
RNAs were reverse-transcribed into cDNA by M-MLV
Reverse Transcriptase (Invitrogen, Karlsruhe, Germany).
Real-time PCR was performed using the Applied Biosys-
tems 7300 sequence detection system according to Taq-
Man Gene Expression Assay Protocol (Applied
Biosystems, Darmstadt, Germany) in 96-well microtiter
plates with a total volume of 20 μl. In case of TaqMan
gene expression assay of THADA (assay number
Hs00152982, Applied Biosystems, Foster City, USA), tar-
geting exons 31-32, and of NIS (assay number
Hs00166567_m1), each reaction consisted of 2 μl of
cDNA reverse transcribed from 25 ng of total RNA, 10
μl of TaqMan Universal PCR Master Mix (Applied Bio-
systems), 1 μl of TaqMan assay and 7 μl of ddH2O. For
the 18S rRNA assay, using 18S forward and 18S rev_1
primers [24], each reaction consisted of 2 μl of cDNA
(1:10 diluted, with regard to higher expression of 18S
rRNA) reverse transcribed from 25 ng of total RNA, 10
μl of TaqMan Universal PCR Master Mix, 600 nM of
forward and reverse primers, 200 nM of 18S probe [24]
and 5.4 μl of ddH2O.
Thermal cycling conditions were 2 min at 50°C fol-

lowed by 10 min at 95°C, 50 cycles at 95°C for 15 s and
60°C for 1 min. A non-template control of amplification
and two previous negative controls of cDNA synthesis
(one without RNA and one missing Reverse Transcrip-
tase) were included in each plate. Software Sequence
Detection Software 1.2.3 (Applied Biosystems) was pro-
grammed with the reaction condition. All testing reac-
tions were performed in triplicate.
Serial dilutions were made using cDNA derived from

25, 5, 1, 0.2, and 0.04 ng of total RNA from FFPE tissue
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of one thyroid adenoma for THADA and 18S rRNA, and
from fresh frozen tissue of one normal thyroid sample
for NIS. In each dilution, THADA, NIS, and 18S rRNA
gene expression assays were performed using absolute
quantification. Afterwards, the standard curves for both
assays were plotted with the log ng of input cDNA for
each dilution on the x-axis, and the matched CT value
on the y-axis. Furthermore, in order to evaluate the dif-
ferences of amplification efficiencies, the difference of
two curve slopes was calculated. If the absolute differ-
ence of the slopes is less than 0.1, the amplification effi-
ciencies of two assays are considered to be equal and
the comparative CT method is valid (User Bulletin No.
2, ABI PRISM 7700 Sequence Detection System,
Applied Biosystems). 18S rRNA was used as endogenous
control as suggested previously [25-28]. The 18S rRNA

assay showed an amplification efficiency of 92.6% (slope
= -3.514, R2 = 0.995). The THADA assay had an amplifi-
cation efficiency of 92.0% (slope = -3.531) and an R2-
value of 0.96. For NIS, the amplification efficiency was
93.4% (slope = -3.4917), the coefficient of determination
amounted to 0.997). As recommended for FFPE samples
[24,29-31] the fragment sizes amplified by all three
assays were small, ranging between 60 and 78 bp, a vali-
dation of these values was performed via gelelectrophor-
esis of the PCR-products (data not shown). When
applying the comparative CT method, one histological
normal thyroid tissue was used as calibrator sample.
Afterwards, data were compared with results from con-
ventional histology.
For statistical analysis, the Wilcoxon signed rank test

was used to compare average values (two-sided, exact

Table 1 Histology of the malignant thyroid lesions.

case no. age (years) sex histology tumor diameter (cm) TNM classification and grading

1 57 f PTC 0.9 pT1

2 31 m PTC 2.5 pT2 pN0

3 30 f PTC 2.5 pT2 NX

4 85 m PTC 4.0 pT3a

5 31 m PTC 2.0 pT3 pN1

6 54 f PTC 0.6 pT1 pNX pMX

7 49 f PTC 1.2 pT2

8 38 f PTC 0.6 pT1

9 50 f PTC 2.2 pT2

10 21 f PTC 1.0 pT1 pNX pMX

11 38 m PTC 0.8 pT1; G1

12 34 f PTC 2.3 pT2 pN1 pMX

13 66 f PTC 2.0 pT3; G2

14 25 f PTC 2.3 pT2 pN0

15 42 m PTC 0.7 pT1 N0 MX

16 42 f PTC 1.4 pT2a; G2

17 72 f PTC 1.0 pT1

18 84 f PTC 6.0 pT3 pNX

19 27 m PTC 2.5 pT2

20 35 f FTC 2.1 pT2 pN0 MX

21 66 f FTC 2.0 pT1

22 67 m FTC 5.5 pT3 pNX pM1

23 61 m FTC 8.0 pT4

24 53 f FTC pT4 pN1

25 61 m MTC 3.5 pT2 pN0

26 61 m MTC 1.7 pT2

27 52 m MTC 3.3 pT2

28 55 f MTC 2.2 pT2

29 76 f ATC 1.7 pT4b

30 76 f ATC 3.8 pT4b

31 86 f ATC 9.0 pT4 pN1b pM1

32 65 f ATC 2.0 pT4 N0; G4

All listed samples were used for the THADA expression investigation, for the NIS expression analysis samples 2, 3, 7, 13 and 24-28 were omitted. (PTC: papillary
thyroid carcinoma; FTC: follicular thyroid carcinoma; MTC: medullary thyroid carcinoma; ATC: anaplastic thyroid carcinoma)
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version for at most 40 cases involved, otherwise using
the t approximation); relationships were quantified by
linear regression and Spearman’s rank correlation coeffi-
cient. Sensitivity, specificity and decision limits were cal-
culated from non-parametric density estimations.
Therefore, sensitivity and specificity may differ from raw
empirical values and decision limits need not coincide
with measured values. A p-value of less than 0.05 was
considered significant.

Ethics Statement
The use of human thyroid samples for this study was
approved by the local medical ethics committee (Ethik-
kommission bei der Ärztekammer Bremen) and followed
the guidelines of the declaration of Helsinki. Only samples
that were initially taken for diagnostic purposes were sec-
ondarily used for the present study. During pathological

examination, a sample of the tissue was snap-frozen. The
procedure was approved by the local ethics committee.
Because the samples were deidentified and were consid-
ered as samples normally discarded, the committee felt
that there was no specific patient consent necessary.
As for the normal tissue samples, these were anon-

ymously collected for earlier studies, each following the
guidelines of the declaration of Helsinki.

Results
THADA expression in normal tissues
Thirty-four snap-frozen samples from eight different tis-
sues were tested for the level of THADA expression.
The mean level per tissue type ranged from 1 (blood)

to 6.14 (thyroid), and the lowest single value for a
thyroid sample (4.04) was above the highest one (3.39,
myometrium) from any of the other tissues (Figure 1).
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Figure 1 THADA expression in normal tissues (snap-frozen samples). Boxplots for the relative quantifications of THADA gene expression in
normal tissues; tissue type at x-axis. (*): p < 0.0001 compared to all other tissues jointly (exact Wilcoxon signed rank test). Boxes contain the
inner 50% of all values and a bar at the position of the median, whiskers extend to the extrema of values or to 1.5 * box height, whichever is
smaller. The plus sign shows the arithmetic mean. (n: number of samples).

Kloth et al. BMC Clinical Pathology 2011, 11:13
http://www.biomedcentral.com/1472-6890/11/13

Page 4 of 9



Accordingly, statistical analysis using Wilcoxon’s exact
signed rank showed significant differences between
normal thyroid tissues and the group of all other tis-
sues (p < 0.0001). Using the THADA expression to dis-
criminate between thyroid and non-thyroid tissue, a
sensitivity of 82.5%, a specificity of 97.4% and an effi-
ciency of 95.2% with a decision limit value of 4.23
were achieved.

THADA expression in thyroid tumors
Ninety-three formalin-fixed-paraffin-embedded thyroid
samples, including eight normal tissues (from four
patients), 18 goiters, 35 benign, and 32 malignant tumors
were measured. For single tumor samples the expression
ranged between 0.065 (anaplastic carcinoma) and 2.986
(follicular adenoma) in relation to normal tissue, i.e. a

ratio of 1 : 45.94. Samples with a 2p21 translocation
showed a level of expression of 1.123, 1.624, and 0.662
fold, respectively. The mean values for the different
tumor entities ranged from 0.423 (anaplastic carcinoma)
to 1.156 (adenoma) (Figure 2 and table 2).
Significant differences of THADA expression were

noted between benign and malignant thyroid lesions.
Wilcoxon’s signed rank test showed a highly significant
difference comparing the joint group of goiters and
benign tumors with malignant tumors (p = 0.0009).
Using the exact Wilcoxon test, no significant differ-

ences were detected comparing the level of THADA
expression between normal tissue and benign lesions (p
= 0.2802) and papillary carcinomas (p = 0.2170). In con-
trast, significant differences were found between ana-
plastic carcinomas (ATCs), the most dedifferentiated
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Figure 2 THADA expression in thyroid hyper- and neoplasias (FFPE samples). Boxplots for the relative quantifications of THADA gene
expression in thyroid normal tissue, goiter, benign and malignant tumors; normal tissue and hyper-/neoplasia type at x-axis. Boxes contain the
inner 50% of all values and a bar at the position of the median, whiskers extend to the extrema of values or to 1.5 * box height, whichever is
smaller, isolated symbols indicate values outside this range. The plus sign shows the arithmetic mean. (n: number of samples).
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type of thyroid tumors, and all other samples (p =
0.0107) and ATCs and all other malignant tumors (p =
0.0234). Comparing anaplastic carcinomas with each
single group, the difference in expression between ATCs
and goiters (p = 0.0049) and adenomas (p = 0.0058)
were marked as significant. As this finding was a result
of systematically comparing anaplastic carcinomas with
the other lesions, a Bonferroni correction for multiple
testing was used (corrected a = 0.0083). Without the
need of correcting for multiple testing also normal tis-
sue and papillary carcinoma would have been assessed
as significantly different from anaplastic carcinoma (p =
0.0485 and p = 0.0350, respectively). Overall, significant
results were mostly seen with the group of anaplastic
carcinomas, indicating a relative stable level of expres-
sion in comparatively differentiated tissues with a signif-
icant reduction only in dedifferentiated tissues.
Recently HMGA2 expression has been shown to indicate

thyroid malignancy and can thus be considered marking
the dedifferentiation of thyroid epithelium [32-34]. As to
the study by Belge et al. [32] and the present one 48 sam-
ples were identical in both studies (seven normal tissues,
one goiter, 15 adenomas and 25 carcinomas, including
three anaplastic carcinomas). For these, RNA was isolated
from adjacent cuts of the same FFPE block and, except for
the different qRT-PCR assays, all samples were treated
identical in both investigations. Thus, it was feasible to
check these samples for a possible correlation between
THADA and HMGA2. Using Spearman’s rank correlation,
there was a highly significant inverse correlation between
THADA and HMGA2 expression (correlation coefficient =

-0.452; p = 0.0015), further underlining a possible role of
THADA in thyroid differentiation.
NIS (sodium-iodide symporter), the transmembrane gly-

coprotein accountable for the uptake of iodine in thyroid
cells, was found to be a marker of thyroid differentiation
[35-38]. To validate our findings NIS expression was mea-
sured in 41 samples, including seven normal tissue sam-
ples, six nodular goiters, five adenomas, and 23
carcinomas (15 papillary, four follicular, and all four ana-
plastic thyroid carcinomas). Using Spearman’s rank corre-
lation, no significant correlation (p = 0.1288) was detected
comparing THADA and NIS expression from all samples.
By contrast, a significant correlation was found constrain-
ing the analysis to the follicular and papillary carcinoma
samples (p = 0.0497, r = 0.456, n = 19), an even stronger
correlation between the expression of THADA and NIS
was found in normal and all malignant samples (p =
0.0021, r = 0.540, n = 30), and in normal tissue and ana-
plastic carcinomas (p = 0.0128, r = 0.718, n = 11)

Transcription factors binding to THADA
Using the SABiosciene DECODE Transcription Factor
Search, no THADA-promotor binding sites for thyroid-
specific transcription factors paired box gene 8 (pax8),
thyroid transcription factor 1 (TTF1), also known as
NK2 homeobox 1 (NKX2-1), and thyroid transcription
factor (TTF-2), sometimes referred to as forkhead box
protein E1 (FOXE1), were found. Amongst others
cAMP response element-binding protein (CREB), acti-
vating transcription factor (ATF-2), c-Jun, hepatic leuke-
mia factor (Hlf), and germ cell nuclear factor (GCNF)
were marked as relevant, FOXC1, Nkx2-2, Nkx2-5, and
Nkx6-1 were displayed with low relevance (data not
shown). HHEX (hematopoietically expressed homeobox)
has been found to be expressed in the adult thyroid
gland and in differentiated thyroid cell lines and to be
correlated with thyroid differentiation [39-41], but is not
included in the SABiosciene DECODE Transcription
Factor Search. A manual search for this transcription
factor revealed no assured binding sites in the THADA
promoter.

Discussion
In this study, THADA turned out to be highly expressed
in the thyroid compared to other normal tissues. In a
group of eight different types of tissue thyroid samples
showed a significantly higher THADA mRNA expression
than salivary gland, lung, heart, myometrium, endome-
trium, blood, and adipose tissue, hinting at a possibly
important role of THADA in the thyroid.
The results in part contradict data available online.

NCBI ESTProfileViewer predicted a higher expression in
heart and lung tissue and a slightly lower in the thyroid.
For uterus and blood the data are in concordance with

Table 2 Detailed view of THADA expression in thyroid
hyper- and neoplasias

sample type n average standard deviation median

normal tissue 8 1 0.217 0.959

goiter 18 1.15 0.303 1.132

nodular goiter 7 1.266 0.175 1.305

Graves disease 1 1.103 - 1.103

adenomatous goiter 10 1.073 0.369 1.021

adenoma 35 1.156 0.496 1.029

autonomous adenoma 2 0.873 0.212 0.873

follicular adenoma 27 1.158 0.522 1.029

macrofollicular adenoma 1 1.904 - 1.904

microfollicular adenoma 4 1.225 0.268 1.199

oncocytic adenoma 1 0.637 - 0.637

carcinoma 32 0.842 0.381 0.842

papillary carcinoma 19 0.872 0.352 0.858

follicular carcinoma 5 0.991 0.353 1.031

medullary carcinoma 4 0.932 0.391 0.834

anaplastic carcinoma 4 0.423 0.383 0.334

The arithmetic mean (with the standard deviation) and median relative
quantification of THADA gene expression in thyroid normal tissue, hyper- and
neoplasias are listed. (n: number of samples)
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those obtained from the EST-based estimates. For sali-
vary gland and adipose tissue the TPM (transcripts per
million)-values are zero, this could be due to an overall
small EST pool (20155 ESTs for salivary gland, 13106
ESTs for adipose tissue), resulting in less than one gene
EST (all normal tissues average: 31073 ESTs per gene
EST). Comparison to Affymetrix GeneChip Human
Genome array-based results from The Genomics Insti-
tute of the Novartis Research Foundation (GNF) showed
similar discrepancies. There are three probes, one
(gnf1h10751_at) is diverging considerably from the
other two and was therefore omitted. Compared to our
data both remaining probes resulted in similarly average
Spearman’s rank correlation coefficients and no signifi-
cances (p ≥ 0.2). GNF results showed thyroid as the tis-
sue with the highest THADA expression but less distinct
from the other tissues. Overall, the more precise and
reliable qRT-PCR-method disclosed results that are
diverging from those available from online databases.
Furthermore, evidence that THADA expression is

associated to thyroid differentiation has been presented.
Analysis of 93 thyroid FFPE samples revealed significant
differences between benign and malignant thyroid
lesions, especially when comparing the group of anaplas-
tic carcinomas with other types of lesions. Despite one
outlier with an expression level almost identical to nor-
mal tissue, the values were significantly lower compared
to all other samples as well as to all other malignant
tumors. A comparison of the expression level of
THADA and NIS (sodium-iodide symporter) confirmed
these observations. Amongst others, a significant corre-
lation between THADA and this well established marker
of thyroid differentiation [35-38] has been detected in
normal tissue and anaplastic carcinomas. This suggests
that THADA expression decreases with dedifferentiation
of the thyroid epithelium. This hypothesis is further
supported by the significant inverse correlation between
the expression of THADA and HMGA2. Belge et al. [32]
showed that HMGA2 is significantly overexpressed in
malignant thyroid tumors compared to benign lesions.
As a rule, a high HMGA2 expression seems to be
accompanied by a low THADA expression. As yet the
underlying mechanism is unknown but it does not seem
to involve thyroid-specific transcription factors, since no
binding sites for pax8, TTF-1 and -2 were found. How-
ever, the SABiosciene DECODE Transcription Factor
Search revealed a binding site of the cAMP response
element-binding protein (CREB). CREB has been shown
to regulate diverse cellular responses, including differen-
tiation [42], targeted expression of dominant-negative
mutants of CREB in transgenic mice has been associated
with thyroid hypoplasia [43]. cAMP indirectly plays a
crucial role in the differentiation of endocrine tissues
[43], including the thyroid [44,45]. Thus one might

speculate about an involvement in the decreased expres-
sion of THADA in dedifferentiated thyroid cells.
In thyroid adenomas THADA was frequently found to

be truncated [3]. Whereas the intact THADA may be
involved in maintaining the differentiation of thyroid
epithelium, the truncated allele might play a key role in
tumor development of the thyroid. While competing
with the full-length protein translated from the normal
allele of THADA the altered protein derived from the
truncated gene might lead to an impaired induction of
apoptosis, and subsequently give rise to an increased
cell proliferation leading to benign thyroid tumors with
2p21 translocations [3], without significant changes of
the expression level.

Conclusions
THADA expression, though not restricted to the follicu-
lar cells of the thyroid, is higher in the thyroid than in
other tissues tested (salivary gland, heart, endometrium,
myometrium, lung, blood, and adipose tissue). As to its
normal function, THADA expression has been found to
be decreased in anaplastic carcinomas and to be corre-
lated with the expression of NIS, a marker of thyroid
differentiation, and inversely correlated with that of
HMGA2, a marker of malignant transformation of the
thyroid and cancer stemness. It may thus have essential
functions in maintaining the differentiation of the folli-
cular epithelium.
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