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Abstract

for the next-generation sequencing (NGS) technology.

apoptotic status of cells.

Background: Sheepgrass (Leymus chinensis) is an important perennial forage grass across the Eurasian Steppe and
is adaptable to various environmental conditions, but little is known about its molecular mechanism responding to
grazing and BSA deposition. Because it has a large genome, RNA sequencing is expensive and impractical except

Results: In this study, NGS technology was employed to characterize de novo the transcriptome of sheepgrass after
defoliation and grazing treatments and to identify differentially expressed genes (DEGs) responding to grazing and BSA
deposition. We assembled more than 47 M high-quality reads into 120,426 contigs from seven sequenced libraries. Based
on the assembled transcriptome, we detected 2,002 DEGs responding to BSA deposition during grazing. Enrichment
analysis of Gene ontology (GO), EuKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways revealed that the effects of grazing and BSA deposition involved more apoptosis and cell oxidative
changes compared to defoliation. Analysis of DNA fragments, cell oxidative factors and the lengths of leaf scars after
grazing provided physiological and morphological evidence that BSA deposition during grazing alters the oxidative and

Conclusions: This research greatly enriches sheepgrass transcriptome resources and grazing-stress-related genes,
helping us to better understand the molecular mechanism of grazing in sheepgrass. The grazing-stress-related
genes and pathways will be a valuable resource for further gene-phenotype studies.

Keywords: Leymus chinensis, Grazing, BSA deposition, RNA-seq, Apoptosis, Cell oxidative status

Background

Herbivore feeding is a complex process that includes
wounding, defoliation, and BSA deposition [1]. Often,
the leaves of a plant are completely or partially removed,
affecting the photosynthetic activity, secondary metabol-
ism, and carbohydrate relocation of plants [2-5]. Many
reports have focused on stress-induced gene expression,
photosynthetic capacity, root growth, and nutrient up-
take after wounding and defoliation [6-9]. Resistance to
herbivores depends largely upon aboveground portion of
plants and on leaf-to-leaf wound signaling, which may
involve electrical signaling [10]. The propagation of
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electrical activity leads to the expression of defense
genes not only in wounded leaves but also throughout
aboveground portion of plants.

Animal saliva deposited on plants (especially on
leaves) is another important factor affecting plant re-
covery after grazing. In 1960, Vittora and Rendina first
proposed that interactions between grazers and plants
involve the deposition of herbivore saliva during graz-
ing. This hypothesis has since been tested [11-14]. To
date, many studies of large-herbivore BSA deposition
have focused on macroscopic changes in plants, such as
biomass accumulation, tiller, and increased bud initiation
after grazing [15], rather than on changes in gene expres-
sion and plant physiology. On the other hand, many
growth regulators in insect salivary systems have been
fully researched, such as glucose oxidase, p-glucosidase
[16,17], and various growth factors in certain mammalian
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submaxillary glands (mainly mouse and human), including
thiamine [14], nerve growth factor (NGF), transforming
growth factor (TGF), and epidermal growth factor (EGF)
[18], are known to have growth-regulating activity.
Growth factors can intervene directly in cellular metabol-
ism by promoting differential gene expression and are ex-
pected to be active in a variety of organisms [19]. Injecting
growth-promoting substances from grasshopper saliva
into Bouteloua gracilis stimulates tiller production [11].
Mouse and human EGF can enhance plant growth rates
and promote cell division in the epicotyl [20]. However, to
date, no study has reported the effects of BSA deposition
by large herbivores such as cows, sheep, and camels.
Gene-expression profiling or transcriptome analysis can
provide new insights to understand the molecular me-
chanism of grazing responses in plants. High-throughput
next-generation sequencing (NGS) technologies, such as
454 (ROCHE), Solexa (Illumina), and SOLiD (ABI), have
been widely and effectively used to generate large-scale
transcriptome data in many plant species [21-28], includ-
ing sheepgrass (Leymus chinensis) [29,30]. Sheepgrass is
an important forage species in the genus of Leymus, with
good quality, high nutrition value, and various stress re-
sistance [31-34]. Its genomic formula was NyNX,, X, and
Elymus californicus should be the maternal donor trans-
ferred from the genus Elymus to Leymus [35]. One copy
of the haploid genome of sheepgrass contains 9.65-Gb,
and high-throughput NGS technologies make it possible
to generate genome resources at relatively low cost. So
far, sheepgrass transcriptome databases have been gen-
erated under saline-alkaline treatment [29] and freezing
treatment [30] using Roche-454 massive pyrosequen-
cing technology. These databases provide numerous
DEGs for two stresses. Recently, a comparative tran-
scriptomics analysis of the Illumina sequencing data
was conducted, and the results revealed common and
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distinct mechanisms for sheepgrass responses to defo-
liation compared to mechanical wounding [36]. Based
these transcriptome databases, some grazing responsive
genes were cloned and identified, such as LeSUTI and
LcDREB3 [37,38].

Here, we focus on profiling the effects of herbivore
saliva on sheepgrass and distinguishing BSA deposition
from defoliation in grazing. In our study, we use bovine
serum albumin (BSA) instead of bovine saliva to perform
the grazing simulation treatment. The components of
herbivore saliva are unstable and it usually contains bac-
terium. BSA is an important protein in bovine saliva. Its
homolog has been found in ovine saliva and probably
has interactions with plants [39]. In our study, in order
to enrich sheepgrass transcriptome resource, accelerate
our understanding of the genetic basis of grazing stress,
we used Illumina GAIIx technology to sequence sheep-
grass transcriptome after defoliation and grazing. We
compared defoliation and grazing treatments, and iden-
tified the differentially expressed genes (DEGs) respond-
ing to BSA deposition and corresponding pathways
involved in saliva effects. We performed further bio-
chemical and morphological experiments to verify these
results in transcriptome.

Results

lllumina sequencing and Trinity transcriptome assembly
of sheepgrass

We obtained 47,782,901 raw reads from the seven libraries
representing different time points or treatments via Illu-
mina GAIIx sequencing (Table 1). The sequence reads
generated in this study were deposited in the NCBI
sequence-read archive (SRA065691). The raw reads were
filtered by a stringent criterion as described in Methods.
The remaining reads were considered clean. An additional
file show this in more detail (see Additional file 1).

Table 1 Statistics summary of lllumina sequencing data generated for sheepgrass transcriptome

Library Time point’ Treatment? Raw reads® Clean reads* Average length (bp)® 454 mapping®
C — Control 6,260,824 5,912,096 95 1,996,649

D2 2h Defoliation 9,072,621 8,514,655 93 1,801,714

D6 6 h Defoliation 9,706,319 9,087,056 93 2,200,569

D24 24 h Defoliation 7,369,430 6,917,684 92 2,265,088

G2 2h Grazing 5117612 4,732,256 92 1,721,681

G6 6 h Grazing 7,593,520 7,088,551 95 2457870

G24 24 h Grazing 2,662,575 2,429,333 95 858,130

'"The time point after corresponding treatments.
2The type of the treatment in sheepgrass.
3Total number of reads separated from each library.

“Number of high-quality reads corresponding to mRNA sequences used for further analysis.

®Average length of high-quality clean reads.

SNumber of reads mapped to sheepgrass 454 transcriptome sequencing dataset [29].



Huang et al. BMC Genomics 2014, 15:1126
http://www.biomedcentral.com/1471-2164/15/1126

We obtained 120,426 contigs (=200 bp) using the Trin-
ity assembly software. The mean contig size was 634 bp,
and the contig size ranged from 201 to 28,343 bp. About
one-third of the contigs were longer than 500 bp, and
20,816 contigs were longer than 1,000 bp. Additional file 2
show the quality of the assembly transcripts in more detail
(see Additional file 2).

Contig assembly and gene overview

Using the Trinity de novo assembly program, a total of
120,426 contigs were obtained. 79,459 contigs were de-
tected in Library C (the control). 83,189, 85,184 and
77,786 contigs were detected in three defoliation libraries
(D2, D6, and D24), respectively. Excluding these repeated
contigs in the three samples, there were 110,955 contigs
detected in defoliation libraries. 69,112, 80,829 and 55,874
contigs were detected in three grazing libraries (G2, G6,
and G24), respectively, with a total of 99,026 in grazing li-
braries. The three treatments are summarized in Figure 1.
The quality of the contigs in the seven samples is shown
in Additional files 3 & 4.

Functional annotation and descriptive profile

Gene ontology (GO) assignments were used to classify the
functions of the predicted sheepgrass genes expressed in
response to grazing stress. Based on sequence homology,
9,831 genes were assigned at least one GO term, including
49 second-level functional categories (Figure 2). An add-
itional docx file show the summary of WEGO output data
in more detail (see Additional file 5). Among the assigned
terms, “cell” (7,508 terms, 76.4%), “cell part” (7,508 terms,
76.4%), “organelle” (4,311 terms, 43.9%) and “organelle
part” (1,643 terms, 16.7%) were dominant in the cellular

control (79459)

defoliation (110955) grazing (99026)

Figure 1 The venn diagram of gene counts in the control,
defoliation and grazing treatments. The control contains Library
C. The defoliation treatment contains Library D2, D6, and D24. The
grazing treatment contains Library G2, G6, and G24. Numbers in
parentheses are total number of expressed genes in each treatment.
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component. “Cellular process” (6,690 terms, 68.1%),
“metabolic process” (6,378 terms, 64.9%), “biological regu-
lation” (2,011 terms, 20.5%), “pigmentation” (1,902 terms,
19.3%), and “response to stimulus” (1,701 terms, 17.3%)
were dominant among biological processes. The absolute
majority of molecular-function terms were clustered in
“binding” (6,850 terms, 69.7%) and “catalytic activity”
(5,927 terms, 60.3%).

To further evaluate the completeness of the de novo
transcriptome assembly and to predict the gene func-
tions, all assembled transcripts were compared against
the EuKaryotic Orthologous Groups (KOG) database.
This comparison revealed 9,985 sequences with signifi-
cant homology, each of which was assigned to the ap-
propriate KOG cluster. These KOG classifications were
grouped into 25 functional categories (Figure 3). The
five largest categories were “signal-transduction mecha-
nisms” (16.64%), “general function prediction only”
(9.87%), “posttranslational modification, protein turnover,
chaperones” (9.29%), “translation, ribosomal structure,
and biogenesis” (5.34%), and “intracellular trafficking, se-
cretion and catabolism” (5.14%).

The Kyoto Encyclopedia of Genes and Genomes (KEGG)
is a database resource for the systematic understanding of
high-level gene functions in terms of biological networks,
such as the cell, organism, and ecosystem, from molecular-
level information (http://www.genome.jp/kegg/). The
assembled transcripts were searched against the KEGG
database using BLASTX with a cut-off E-value of 107>
to identify the biological pathways related to grazing re-
sponses in sheepgrass. We obtained 6,820 matching
terms, which were assigned to 275 KEGG pathways in
5 main biological processes. The major pathways were
“biosynthesis of amino acids” (ko01230, 191 tran-
scripts), “ribosome” (ko03010, 165 transcripts), “carbon
metabolism” (ko01200, 163 transcripts), “purine metab-
olism” (ko00230, 137 transcripts), “spliceosome”
(ko03040, 119 transcripts), “protein processing in endo-
plasmic reticulum” (ko04141, 118 transcripts), and
“RNA transport” (ko03013, 114 transcripts).

We applied gene enrichment analysis between the
grazing libraries (G2, G6, and G24) and the control (C)
in Table 2. The results showed 10 GO second-level
functional categories responded to grazing treatment.
These groups were “transporter activity”, “oxidoreduc-
tase activity”, “catalytic activity” and “lyase activity” of
molecular function, “amino acid and derivative metab-
olism”, “transport” and other three groups of biological
process, “external encapsulating structure” of cellular
component. In KOG functional classification, “Lipid
transport and metabolism”, “Amino acid transport and
metabolism” and “Energy production and conversion”
were significantly different (q-value <0.01). 10 KEGG
pathways showed significant difference (q-value < 0.01)
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Figure 2 GO classifications of assembled transcripts using WEGO software (http://wego.genomics.org.cn). The genes were assigned to
three main categories: biological process, molecular function and cellular component. The right hand y-axis indicates the number of annotated

genes. The left hand y-axis indicates the percentage of annotated genes.
A

between the grazing treatment and the control. Path-
ways “Two-component system” and “ABC transporters”
were two of the most different ones.

Differentially expressed genes (DEGs) in response to BSA
deposition

To investigate the changes in gene expression and
understand the critical genes involved in the response of
sheepgrass to BSA deposition, we collected the RPKM
means from the grazing (G2, G6, and G24) and defoli-
ation libraries (D2, D6, and D24) and analyzed the sig-
nificant difference genes using DEGseq package [40].
The differentially expressed genes (DEGs) in response to
defoliation (D), grazing (G) and BSA deposition (G vs.
D) were determined from the changes in expression of
defoliation vs. control, grazing vs. control, and grazing
vs. defoliation. Using a screening criterion of FDR <
0.001, we found 2,002 genes that responded to BSA

deposition, of which 365 were induced and 1,637 were
inhibited. We found 3,156 genes that responded to graz-
ing and 2,759 genes that responded to defoliation
(Table 3). Figure 4 show the details of expression
changes of DEGs in MA plot. A cluster analysis of the li-
braries of control, defoliation, and grazing was per-
formed using the heat map shown in Additional file 6.
GO functional-enrichment analysis was performed for
377 GO terms from BSA deposition (G vs. D) DEGs
compared to the 9,831 GO terms from the full transcrip-
tome at a Bonferroni-corrected P-value <0.05. The re-
sults showed the biological-process categories “cell
death” and “transport” and the molecular-function cat-
egories “antioxidant activity”, “oxidoreductase activity”,
and “transporter activity” were significantly enriched
(Table 4). In the KOG enrichment analysis, 185 KOG
annotation terms were assigned to the saliva-deposition
DEGs. “Energy production and conversion”, “amino acid
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Figure 3 KOG function classifications of assembled transcripts. The contigs were assigned to the KOG database to predict possible functions.
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Table 2 Gene enrichment analysis of DEGs from grazing
vs. control

GO second-level functional groups (DEG number 591; g-value
background number 9,831)

Transporter activity 4.54E-12
Oxidoreductase activity 1.17E-06
Catalytic activity 3.02E-06
Amino acid and derivative metabolism 349E-05
Transport 0.000226
Lyase activity 0.000369
Metabolism 0.000499
Pathogenesis 0.000773
KOG categories (DEG number 337; g-value
background number 9,985)

Carbohydrate transport and metabolism 0.000494
Lipid transport and metabolism 0.002497

Secondary metabolites biosynthesis, transport and catabolism  0.002497

Energy production and conversion 0.002974
KEGG pathway ID (DEG number 420; g-value
background number 6,820)

02020 Two-component system 4.69E-22
02010 ABC transporters 1.20E-19
00281 Geraniol degradation 0.002774
00640 Propanoate metabolism 0.005709
00330 Arginine and proline metabolism 0.005841
00500 Starch and sucrose metabolism 0.005841
00930 Caprolactam degradation 0.005841
00071 Fatty acid degradation 0.006474
00380 Tryptophan metabolism 0.006716
00250 Alanine, aspartate and glutamate metabolism 0.008322

transport and metabolism” and “lipid transport and me-
tabolism” were the significant enrichment categories
(Figure 5, Table 5).

In the KEGG pathway enrichment analysis, 307 anno-
tation terms were obtained for the saliva-deposition
DEGs. These 307 terms belonged to 136 pathways. We
found that 11 pathways were statistically enriched in
the DEGs responding to BSA deposition. As shown in
Table 6, the most enriched pathways were related to envir-
onmental stress responses. For example, two-component

Table 3 Gene statistics of the differentially expressed
genes

Type of the Up-regulated Down-regulated Total
differentially genes (p <0.001) genes (p<0.001) number
expressed genes

Defoliation (D vs. C) 647 2,112 2,759
Grazing (G vs. Q) 592 2,564 3,156
BSA deposition 365 1,637 2,002

(G vs. D)
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Figure 4 The expression change of DEGs responded to
defoliation, grazing, and BSA deposition in MA plots. The MA
plot uses M as the y-axis (log2 fold-change) and A as the x-axis (log2
RPKM mean). The red dots stand for the DEGs which are up-
regulated, and the green dots stand for those down-regulated DEGs.
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Table 4 Enriched GO categories of DEGs from BSA
deposition (G vs. D)

GO categories (DEG number 377; g-value
background number 9,831)

Transporter activity 9.12E-12
Oxidoreductase activity 1.57E-06
Catalytic activity 4.57E-06
Amino acid and derivative metabolism 5.50E-06
Transport 0.000254
Lyase activity 0.000446
Metabolism 0.000641
Pathogenesis 0.001039
External encapsulating structure 0.001629
Integrase activity 0.006320
Ligase activity 0.007898
Biosynthesis 0.008923
Catabolism 0.008923

systems play important roles in signal transduction in re-
sponse to environmental stimuli and growth regulators,
light and osmotic stress.

By aligning our reads to the reference transcriptome
dataset obtained by Roche-454 massive pyrosequencing
technology [30], we obtained further details and annota-
tions (Table 1). Among the DEGs responding to BSA de-
position were serine/threonine protein kinase, apoptotic
ATPase, and aldehyde dehydrogenase-family proteins.
Most of these genes showed different modes of expres-
sion 24 h after defoliation or grazing, as shown in
Table 7.

Programmed cell death after clipping and the effect of
BSA

To confirm the reliability of apoptosis in response to
BSA deposition during grazing, DNA fragments from
cells from the cut ends of leaves treated with water or
BSA were analyzed using agarose-gel electrophoresis. As
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shown in Figure 6, most of the DNA fragments appeared
on the third and fourth days after clipping in both the
BSA- and water-treated groups. Genomic DNA declined
by day 5 and disappeared by day 7 in the water-treated
group. In the BSA-treated group, however, genomic
DNA decreased slowly and was still observed on day 9.

Accumulation of oxidative-stress-related factors in grazed
sheepgrass

The H,O, levels increased significantly in the water- and
ovalbumin (OVA)-treated groups compared to the un-
clipped controls (p < 0.01). The OVA treatment was used
as a control for BSA to eliminate the interference of pro-
teins daubed on the cut surface. Daubing with BSA mar-
ginally affected the H,O, levels in the cells, but this
difference was not significant compared to the controls
(Figure 7).

The changes in malondialdehyde (MDA) were similar
to those in hydrogen dioxide (H,O,). The MDA levels in
the water-treated and OVA-treated group were approxi-
mately 3- to 4-fold higher than those in the unclipped
and BSA-treated groups, and this difference was signifi-
cant at p < 0.01. The MDA levels in the BSA-treated cells
increased slightly compared to the controls (Figure 7).

The superoxide dismutase (SOD) levels in the treated
groups did not differ significantly from those of the con-
trols (Figure 7). Thus, the grazing treatment using BSA
affected the oxidative-stress-related factors in sheepgrass
only slightly.

Analysis of leaf-scar lengths

The lengths of the clipping scars on the leaves reflect
changes in the sheepgrass transcriptome at the macro-
scopic level, especially changes in the cell oxidative sta-
tus and apoptosis. For the first completely expanded
leaf, the scars on the leaves daubed with water were ap-
proximately 1.3-fold longer than those on the leaves
daubed with BSA (Figure 8), and this difference was statis-
tically significant (p <0.01). The phenotype of the OVA-
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Figure 5 KOG function classifications of DEGs responding to BSA deposition. The DEGs were aligned to the KOG database to predict
possible functions related to BSA deposition. A total of 185 DEGs were assigned to 19 categories.
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Table 5 Enriched KOG categories of DEGs from BSA
deposition (G vs. D)

KOG categories (DEG number 185; g-value
background number 9,985)

Energy production and conversion 5.06E-06
Lipid transport and metabolism 5.06E-06
Amino acid transport and metabolism 0.000436

treated leaves was similar to that of the water-treated
leaves but markedly different from that of the BSA-treated
leaves. However, the leaf-scar length on the last com-
pletely expanded leaf was similar in all treatments.

Discussion

Grazing is an important and frequent stress for pasture
and prairie plants. Plant scientists have long studied the
effects of grazing on plants as a single process. However,
grazing is a complex process that involves wounding ef-
fects caused by herbivore feeding, defoliation effects due
to leaf-surface loss during grazing, and the deposition of
herbivore saliva onto the surface of plants. Some studies
have reported that wounding can stimulate plant growth
but clearly differs from grazing [17,41-43]. Defoliation
affects root development in grasses [44,45] and alters
the carbohydrate-metabolism pathway in rice (unpub-
lished). On the other hand, scientists have examined
how plants respond to BSA deposition for decades
[11,12]. Saliva has been found to stimulate plant growth,
enhance tiller and increase biomass [14]. However little
is known about the molecular mechanisms of grazing re-
sponses and the genetic and functional differences
among three components of grazing. To investigate the
genetic profile of the grazing response in sheepgrass and
to elucidate the differences in mechanism between the
saliva-deposition response and the responses to other
grazing components, we analyzed the transcriptomes of
control, defoliated, and grazed plants using RNA-seq.

Sequence quality and annotation
[lumina RNA-seq technology had been widely used in
genome-wide analyses of cotton (Gossypium hirsutum),

Table 6 Enriched pathways of DEGs from BSA deposition
(G vs. D)

Pathway ID (total DEG number 307; DEGs g-value
background number 6,820) number

02020 Two-component system 40 7.04E-19
02010 ABC transporters 35 5.83E-16
00380 Tryptophan metabolism 12 0.002054
00281 Geraniol degradation 7 0.002128
00780 Biotin metabolism 6 0.008817
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radish (Raphanus sativus), Brassica juncea, and Brassica
pekinensis [46-49]. Here, we obtained more than five
million raw reads from most samples. Using the Trinity
transcriptome-assembly software, a total of 120,426 as-
sembled transcripts were obtained from seven sample li-
braries (untreated control, defoliation, and simulated
grazing). Of these transcripts, 14,240 were annotated by
BLASTX and functional-bioinformatics analyses, includ-
ing the GO, KOG, and KEGG databases. No genome of
sheepgrass or close relative species was available, so
most of our transcripts cannot hit known proteins. In
addition, a relative stringent blast parameter (E-value <
le-5) might discard a part of known hits. We obtained
74,087 GO terms, 9,985 KOG terms and 7,240 KEGG
pathway terms for all transcripts combined. The gene-
transcription profiles of sheepgrass after grazing were
stored in an annotated-gene catalog to provide a molecu-
lar understanding of grazing responses. The remaining
un-annotated transcripts may represent a sheepgrass-
specific gene pool. These results provide a solid founda-
tion for further studies of the molecular mechanisms of
grazing responses and for identifying grazing-related genes
in this species.

Gene enrichment analysis and the effects of grazing
Grasslands and grass re-growth after grazing are very
important for both the ecosystem and human dairy food
supply on this planet. Grazing is a processing that have
multiple components including at least wound, defoli-
ation, and BSA deposition. Grazing often removes com-
pletely or partially the leaf part of plants. After grazing,
plants have to transport the carbohydrate such as su-
crose and other energy substance due to root sink de-
mand [50-52]. In our enrichment analysis (Table 2),
“transporter activity” and “amino acid and derivative me-
tabolism” in GO categories, “Amino acid transport and
metabolism” and “Lipid transport and metabolism” in
KOG categories, and KEGG amino acid metabolism
pathways were significant enrichment in grazing treat-
ment. The results indicated that amino acid metabolism
involved in plant grazing response. The amino acid me-
tabolism pathways may contribute to protein biosyn-
thesis and plant recovery after grazing, and the related
genes are worth further study.

Differential genetic profiles in response to BSA deposition
Sheepgrass is a dominant grassland species in northeast-
ern China and Inner Mongolia and is known for its
adaptability to grazing and excellent forage quality
among perennial grasses [53]. In this study, 2,759 genes
were expressed differently between the control and de-
foliation libraries, indicating that these genes responded
to defoliation. Similarly, 3,156 genes were expressed
differently between the control and grazing libraries,
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Table 7 Cell oxidative and apoptosis related genes in DEGs

Page 8 of 17

Gene ID Annotation Expression®
Contig24413  Apoptosis-promoting RNA-binding protein TIA-1/TIAR 2 r
1k
o Luin. W Wl
2h 6h 24h
Contig23357 Serine/threonine protein kinase i B % sje
a1 TN I
1 -, .
2h 6h 24h
Contig14090 Molecular chaperones mortalin /PBP74 /GRP75, HSP70 superfamily 31 * %
5 L ...
im om
o IR | : :
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Contig24049 Metacaspase involved in regulation of apoptosis 3 r sk sk
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Contig08269 Apoptotic ATPase 2
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2h 6Gh 24h
Contig03643 Aldehyde dehydrogenase family 2 member B4 3
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1
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2
1
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Contig10432 L-ascorbate peroxidase Z r 3k i
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Contig14733 Catalase Z C
. .

Gh 24h
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Table 7 Cell oxidative and apoptosis related genes in DEGs (Continued)

Contig18439 Glutathione peroxidase

Contig26462  Ferritin

Contig26780 Ferric reductase, NADH/NADPH oxidase and related proteins

Contig23291 Thioredoxin

Contig08847 Glutaredoxin and related proteins

5 r

J,J ‘.-1.---1.
2h Gh 24h

i S

3 F

1L W
2h Gh 24h

1 B
'. *

1w ow
2h 6h 24h

} -

2 - - ¥

AN T

oim M .
2h 6h 24h

5 r 3k

1 F Eii

i W i

¢ [ auiZ .}

Iim |, . .
2h Gh 24h

"a" Relative expression abundance of genes after sheepgrass treated by defoliation and grazing at 2 h, 6 h, and 24 h (relative expression abundance of genes in
the control =1). The values which are statistically significantly changed (an FDR(false discovery rate) < 0.001) in comparison with control are marked by asterisks
(*). The black bars stand for the gene expression levels in defoliation treatments, and the red bars stand for the gene expression levels in grazing treatments.

indicating that these genes responded to the combined
effects of defoliation and BSA deposition. Furthermore,
2,002 genes were expressed differently between the defoli-
ation and grazing libraries, indicating that these genes
responded to BSA deposition. The only difference between
these two treatments was the liquid deposited on leaves.
As shown in Table 3, most of the DEGs were down-
regulated. In the KOG enrichment analysis (Table 5), the
down-regulated DEGs were enriched in lipid transport
and metabolism; energy production and conversion; and
amino-acid transport and metabolism. Thus, several func-
tionally linked metabolic pathways were down-regulated

in response to grazing. This result is consistent with a
proteomic analysis of rice after ovine BSA deposition [54],
in which the authors found that most photosynthesis-
related, energy-related, and carbohydrate-metabolism re-
lated proteins were down-regulated. BSA deposition on
plants is accompanied by a multitude of stresses including
oxidative stress, pathogenesis, and wounding [55-57].

We examined transcript expression in sheepgrass at
three time points following grazing. The gene-expression
analysis helped to clarify how the expression of the
DEGs adjusts to grazing stress. When G2 (2 h after
treatment), G6 (6 h after treatment), and G24 (24 h after

1 to 9 post-treatment.

Figure 6 Agarose gel images of the DNA fragments. M refers to the DNA marker 2000, C refers to the control, W refers to the water-treated
leaf samples, and B refers to the BSA-treated leaf samples. Lanes from left to right: control, water-treated and BSA-treated leaf samples from days

5 6

WB W B WB WIB WB M

8 9
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Figure 7 The concentration analysis of H202, MDA, and SOD in the leaf scar cells. The statistical data were treated by ANOVA (Analysis of
Variance) test and S-N-K (Student-Newman-Keuls) test. “H,0," and “MDA" groups were significant while “SOD”" group was not significant by ANOVA
test. The same letter over two treatments stands for no significant difference and two treatments under different letters were significantly different in
S-N-K test.

\

treatment) were compared to C (no treatment), 2,367 were differentially expressed after 24 h. Among these,
genes were differentially expressed after 2 h, 2,285 genes 1,074 genes were differentially expressed at all three time
were differentially expressed after 6 h, and 1,692 genes points, indicating that about half of the DEGs were
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the last complete leaf

Figure 8 Analysis of the leaf scars. (A) Images of the leaf scar measurements in the first and last complete leaves. A red line showing the position
of leaf scars. (B) Statistical analyses. Left: data collected from the first complete leaves. Right: data collected from the last complete leaves. P** refers to

stable during the first 24 h after grazing. The key path-

ways involved in grazing-response mechanisms may con-
tain these genes.

Apoptosis-related DEGs

In plants, apoptosis is induced by multiple stresses, in-
cluding salt, nitric oxide, oxidative stress, and wound-
ing [58-61]. This study also shows apoptosis-related
DEGs in response to grazing. Based on functional-

enrichment analysis, the apoptosis pathway is signifi-
cantly involved in the saliva-deposition response. In the
DNA-fragmentation experiment, we found fewer DNA
fragments and delayed DNA fragmentation following
BSA deposition compared to defoliation.

The apoptosis-promoting RNA-binding proteins TIA-1
and TIAR (RRM superfamily) was detected among the
DEGs. These proteins promote DNA fragmentation in
digitonin-permeabilized thymocytes and are pro-apoptotic
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factors that influence some aspect of RNA metabolism
[62]. In our expression-mode analysis, TIA-1/TIAR was
significantly down-regulated in the grazing treatment
compared to the control and defoliation treatments.
Correspondingly, less DNA ladder was seen after BSA
deposition.

The expression of the serine/threonine kinase PAK4
increases the phosphorylation of the pro-apoptotic pro-
tein BAD and inhibits the activation of caspase, which
protects cells against apoptosis [63]. Hsp70 and many
other heat-shock proteins can overcome both caspase-
dependent and caspase-independent apoptotic stimuli and
confer immortality in various cell types [64]. Metacaspases
are evolutionarily distant caspase homologs that are found
outside the Metazoa and are known to play key roles in
programmed cell death (PCD) [65]. However, whether
metacaspases in plants function as caspases is controver-
sial [66]. These apoptosis-inhibiting genes were all up-
regulated only in the grazing treatment.

ATPases, including Na*, K", and H" ATPases, play
critical roles in apoptosis [67,68]. Apoptotic stimuli im-
pair Na*- and K'-ATPase activity as a mechanism of
neuronal death mediated by concurrent ATP deficiency
and oxidative stress [69]. Several genes were annotated
as “apoptotic ATPases” in the KOG functional analysis
and their expression modes are shown in Table 7.

Additional apoptosis- or PCD-related genes were de-
tected among the DEGs. Cullin controls non-lysosomal-
mediated protein degradation and thus cell death [70].
Aldehyde dehydrogenase-2 (ALDH2) converts acetalde-
hyde into acetate, and over-expression of an ALDH2
transgene prevents acetaldehyde-induced cell injury
and apoptosis [71]. The exosome-complex exonuclease
rrp40 forms part of the exosome, which is important to
the RNA-processing machinery of eukaryotes and func-
tions in RNA degradation in both the nucleus and the
cytoplasm [72]. A Ca**-dependent cysteine protease
(CDP) is associated with anoxia-induced root-tip death
in maize [73].

Programmed cell death or apoptosis is an integral part
of plant ontogenesis and plays a fundamental role in
plant development. According to the above described
genes, we suggest that there are some important path-
ways of apoptosis, in response to BSA deposition during
grazing in plants.

Oxidative-stress-related DEGs

Cellular oxidative stress is a common challenge for
plants that usually accompanies wounding [74] or senes-
cence [75] and is closely associated with apoptosis [76].
Many apoptosis-inducing agents are either oxidants or
stimulators of cellular oxidative metabolism. In our mea-
surements of cellular oxidative status, H,O,, and MDA
but not SOD increased substantially after grazing.
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However, cells from sheepgrass leaves subjected to BSA
deposition showed significantly low H,O, and MDA
levels. In addition, we detected cellular oxidative-control
genes among the DEGs.

Major ROS-scavenging enzymes in plants include super-
oxide dismutase (SOD), ascorbate peroxidase (APX),
catalase (CAT), glutathione peroxidase (GPX), and per-
oxiredoxin (PrxR) [77]. We found no SOD genes
among the DEGs, indicating that SOD expression was
stable following the grazing process. This finding is
consistent with the cellular oxidative-status experiment.
Furthermore, we found no PrxR DEGs. However, the
DEGs included APX, CAT, and GPX genes (Table 7).
These three ROS-scavenging enzymes were up-regulated
in the grazing treatment compared to the control. Their
expression was also relatively higher in the grazing treat-
ment than in the defoliation treatment, possibly explaining
the low H,O, and MDA levels after BSA deposition.

The DEGs included other cellular oxidative-stress-
related genes. Ferritin prevents the formation of the highly
toxic HO-radical via the metal-dependent Haber—Weiss
reaction or the Fenton reaction [78]. Several studies have
shown that biotic and abiotic stresses are accompanied by
an oxidative burst mediated by NADPH oxidases [79,80].
The glutaredoxin (Grx) and thioredoxin (Trx) pathways
use NADPH to reduce the disulfide bonds that form in
some cytoplasmic enzymes during catalysis. The thiore-
doxin system consists of thioredoxin reductase and thiore-
doxin, and the glutaredoxin system is composed of
glutathione reductase, glutathione, and three glutaredox-
ins [81]. The differential expression of these genes sug-
gests that grazing stress or BSA deposition was closely
related to cellular oxidative changes.

The present transcriptome-sequencing results and re-
lated biochemical experiments help to elucidate the re-
sponse of sheepgrass to BSA deposition. After grazing,
the plants receive the signal of BSA deposited on the
leaves and elevate the expression of ROS-scavenging en-
zymes and antioxidant pathways to respond to the subse-
quent oxidative burst in the cells. The decreased cellular
oxidative levels result in fewer apoptotic cells in the graz-
ing wound, accelerating the recovery from the grazing
stress in plants. A model of sheepgrass responded to
BSA deposition was indicated in Figure 9. The co-
evolution of plants and herbivores in grazing systems
may have led to this antioxidant mechanism in re-
sponse to BSA deposition.

Conclusion

To investigate the molecular mechanism of grazing re-
sponses, we performed transcriptome sequencing and
analysis to identify DEGs in sheepgrass subjected to sim-
ulated BSA deposition. Our results show that BSA de-
position triggers differential gene expression compared
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Figure 9 Molecular mechanism of sheepgrass responds to BSA deposition. The DEGs in red oval frames are up-regulated and those in blue
oval frames are down-regulated in expression levels in grazing libraries compared with defoliation libraries. The arrow lines stand for the effect of
activation. The blunt lines stand for the effects of inhibition. The dotted lines stand for the unknown effects.
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to defoliation and other grazing components. Based on
a functional analysis of the saliva-deposition DEGs, the
cellular-antioxidant and apoptotic pathways apparently
respond to grazing stress. Macroscopic changes confirm
the effects of these two pathways in sheepgrass. Although
the connection between the two pathways requires further
evidence, we believe that the saliva-deposition-induced
pathways work together to contribute to plant recovery
after grazing.

Methods

Plant materials, growth conditions, and treatments

All sheepgrass plants (Zhongke No. 3) were obtained
from the field 4 weeks before the initiation of the experi-
ment. Seedlings in good condition were collected and
transplanted into trays in the greenhouse. The trays were
filled with a mixture of vermiculite and commercial pot-
ting soil at a ratio of 1:2. The plates were placed in a

greenhouse at 25°C and 70% relative humidity. The
aboveground portion of each plant was cut off, and
plants were allowed to re-grow to the 5- or 6-leaf stage.
To initiate the experimental treatments, two-thirds of
the aboveground portion of each plant was cut off. For
the defoliation treatment, water was then daubed on
the cut ends of the leaves. For the grazing treatment, a
BSA solution (1 mM) was daubed on the cut ends of
the leaves. The remaining aboveground portions of the
plants were collected 2, 6, and 24 h after the clipping
and daubing treatments. The corresponding parts of
the control (unclipped) seedlings were collected at the
same time. All harvested seedlings of each treatment
were immediately frozen in liquid nitrogen and stored
at -80°C. The clipping and daubing treatments were
conducted at 10:00 AM and all the materials collection
was conducted in daylight hours to reduce the effort of
circadian rhythmicity. In total, seven samples were
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obtained: C (control); D2, D6, and D24 (2, 6, and 24 h
after defoliation, respectively); and G2, G6, and G24 (2,
6, and 24 h after grazing, respectively).

RNA-seq library preparation and Illumina sequencing
Total RNA was extracted using the TRIzol reagent (Invi-
trogen, Carlsbad, CA, USA) and NucleoSpin® RNA
Clean-up kit (CapitalBio Company, China) according to
the manufacturer’s instructions. The RNA quality was
assessed by agarose-gel electrophoresis, and the RNA
absorbance was measured by spectrophotometry. The
ratio of the absorbance at 260/280 nm was then used to
determine the RNA quality. 6 pg RNA of each sample
was used for transcriptome sequencing. The RNA was
processed for use on an RNA-seq platform (Illumina,
Inc, San Diego, CA, USA) by the Chinese National
Human Genome Center at Shanghai (CHGC).

mRNA [poly(A) RNA] was then purified from total
RNA using Micropoly(A)Purist™ mRNA purification kit
(Ambion, Cat.No.1919, Foster, CA, USA). The mRNA
was fragmented and converted into a RNA-seq library
using the mRNAseq library construction kit (Illumina
Inc., San Diego, CA, USA) according to the manufac-
turer’s instructions. 2x100 bp paired-end sequencing
was performed using the Illumina Genome Analyzer II x
(Ilumina GAIIx, San Diego, CA, USA).

Sequence filtering and assembly
Sequence reads from all samples were cleaned using the
FASTX toolkit (http://hannonlab.cshl.edu/fastx_toolkit/).
First all the reads containing ‘N’ were discarded using a
perl script, then adapter sequences were removed using
the fastx_clipper program, followed by removal of qual-
ity < 5 bases from the 3" end with fastq_quality_trimmer,
requiring a minimum sequence length of 50 bp. Finally
the reads with at least 90% bases > quality 20 were
chosen using fastq quality filter for further assembly. De
novo transcriptome assembly was performed using Trin-
ity RNA-seq assembly v2013-02-25 with default parame-
ters [PMID: 21572440].

Meanwhile, all sequence reads generated by Illumina
sequencing were aligned to the reference transcriptome
dataset using SOAP2 software [82].

DEG identification

Based on the Trinity assembly results, the number of
reads for each contig from each sample (control, defoli-
ation, and grazing) was converted to reads per kilobase
per million (RPKM) [83]. The MARS (MA-plot-based
method with random-sampling model) module in the
DEGseq package was used to calculate the differential
expression of each contig between the analyzed samples
[40]. The package DEGseq is a free R package for identi-
fying DEGs from RNA-seq data. We used an FDR (false
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discovery rate) to determine the threshold p-value. An
FDR < 0.001 was considered to indicate a significant dif-
ference in expression between the control and treated
samples.

Functional annotation, classification, and pathway
analysis of DEGs

The sheepgrass transcriptome sequencing data had pre-
viously undergone Gene ontology (GO) annotation using
a BLASTP search against the Swiss-Prot and TrEMBL
databases with an E-value < 1le-5 [84]. A GO functional
classification was performed using WEGO software
(http://wego.genomics.org.cn) to understand the distri-
bution of gene functions in grazed sheepgrass [85].

In addition, Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway annotation was performed using the
KEGG Automatic Annotation Server (KAAS) with the bi-
directional best-hit method. For KEGG, KAAS annotates
every submitted sequence with a KEGG orthology (KO)
identifier representing an orthologous group of genes dir-
ectly linked to an object in the KEGG pathways and
BRITE functional hierarchy [86,87]. KEGG pathway en-
richment analysis was conducted using KOBAS 2.0
(http://kobas.cbi.pku.edu.cn/, [88]).

Finally, EuKaryotic Orthologous Groups (KOG) annota-
tion was carried out against the NCBI KOG database with
a typical cut-off E-value < 1e-5. The KOG annotations of
the DEGs were classified into 25 protein functions and
compared between the defoliation and grazing treatments.
KOG enrichment analysis was conducted through hyper-
geometric distribution testing using the Phyper function
in the R software package (http://www.rproject.org/). The
Bonferroni correction was used to adjust the p-values.
The significantly enriched functional clusters were se-
lected based on a corrected g-value (< 0.05).

DNA extraction and DNA-fragmentation assay

Using the same plant material, the cut ends of the leaves
were collected every day for 9 days after clipping and
daubing with water or BSA. Unclipped leaves were used
as controls. Each sample for DNA extraction consisted
of ten 1-cm-long leaf pieces. The leaves were flash-
frozen in liquid nitrogen and stored at —80°C. The leaf
tissues were ground to a fine powder in liquid nitrogen
using a mortar and pestle, and the DNA was extracted
using a plant genomic-DNA extraction kit (TTANGEN,
Beijing, China) according to the manufacturer’s proto-
col. The total DNA was treated with RNase A (TaKaRa
Bio Inc., Dalian, China) to remove any contaminating
RNA. The isolated DNA, which was mainly derived from
apoptotic cell bodies, was electrophoresed on a 2.0% agar-
ose gel at 50 V for 3 h. The DNA fragments, which con-
sisted of 160-200 bp multimers, were visualized under
ultraviolet light after staining with ethidium bromide.
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Measurement of cell oxidative factors concentrations in
the leaves

Using the same plant material, the leaves were clipped
and daubed with distilled water, BSA solution or OVA
solution. Three independent replicates were performed.
Three days later, 1 cm of the cut end of each completely
expanded leaf was collected, and approximately 30 cut
ends were pooled. We chose the first complete leaf ends
for further experiments. The corresponding parts of un-
clipped seedlings were collected as controls. The sam-
ples were frozen in liquid nitrogen and ground to a fine
powder using a mortar and pestle. Approximately 0.2 g
of each crude extract was added to 5 ml of pre-chilled
PBS (50 mM at pH 7.8), thoroughly mixed, and centri-
fuged for 20 min at 4,000 g at 4°C. The supernatants
were simultaneously assayed using the TBA (to measure
MDA), KI (to measure H,0,), and NBT (to measure
SOD) methods [89-91]. The absorbance values were
measured using a 2600 UV spectrophotometer (UNICO,
Shanghai, China).

Leaf-scar measurements and phenotype comparisons
Using the same plant material, two-thirds of the first and
last completely expanded leaves on each seedling were cut
off at 10:00 AM. After clipping, the cut surfaces of the
leaves were immediately daubed with water, 1 mM BSA or
1 mM OVA. Approximately 120 completely expanded
leaves were removed per treatment. Three days later, the
leaf scars were measured, and statistical analyses were per-
formed to evaluate the effects of BSA on the first and last
completely expanded leaves. Three independent replicates
were performed. The statistical analyses were conducted
using SAS 9.0 (SAS Institute, Cary, NC, USA) to compare
the differences among the three treatments.
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