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Abstract

Radiation therapy is one of the major tools of cancer treatment, and is widely used for a variety of malignant
tumours. Radiotherapy causes DNA damage directly by ionization or indirectly via the generation of reactive
oxygen species (ROS), thereby destroying cancer cells. However, ionizing radiation (IR) paradoxically promotes
metastasis and invasion of cancer cells by inducing the epithelial-mesenchymal transition (EMT). Metastasis is a
major obstacle to successful cancer therapy, and is closely linked to the rates of morbidity and mortality of many
cancers. ROS have been shown to play important roles in mediating the biological effects of IR. ROS have been
implicated in IR-induced EMT, via activation of several EMT transcription factors—including Snail, HIF-1, ZEB1, and
STAT3—that are activated by signalling pathways, including those of TGF-β, Wnt, Hedgehog, Notch, G-CSF, EGFR/
PI3K/Akt, and MAPK. Cancer cells that undergo EMT have been shown to acquire stemness and undergo metabolic
changes, although these points are debated. IR is known to induce cancer stem cell (CSC) properties, including
dedifferentiation and self-renewal, and to promote oncogenic metabolism by activating these EMT-inducing
pathways. Much accumulated evidence has shown that metabolic alterations in cancer cells are closely associated
with the EMT and CSC phenotypes; specifically, the IR-induced oncogenic metabolism seems to be required for
acquisition of the EMT and CSC phenotypes. IR can also elicit various changes in the tumour microenvironment
(TME) that may affect invasion and metastasis. EMT, CSC, and oncogenic metabolism are involved in radioresistance;
targeting them may improve the efficacy of radiotherapy, preventing tumour recurrence and metastasis. This study
focuses on the molecular mechanisms of IR-induced EMT, CSCs, oncogenic metabolism, and alterations in the TME.
We discuss how IR-induced EMT/CSC/oncogenic metabolism may promote resistance to radiotherapy; we also
review efforts to develop therapeutic approaches to eliminate these IR-induced adverse effects.
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Background
Ionizing radiation (IR) is an effective and common thera-
peutic tool for cancer treatment. More than half of cancer
patients are treated with IR at some point during their treat-
ment, either alone or in combination with surgery and/or
chemotherapy [1–6]. In radiotherapy, fractionated treatment
regimens have been established. The standard fractionation
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schedule is the delivery of 1.8–2.0 Gy per day, five days per
week. This reduces side effects, and allows damaged normal
cells to recover before additional doses are given [4, 5]. Frac-
tionated radiotherapy increases damage to the tumour; it
may reoxygenate the tumour cells and re-distribute their cell
cycles into more sensitive phases. It also minimises
repopulation of the tumour during therapy [2, 4, 7].
Nuclear DNA is the primary target of IR; it causes DNA

damage (genotoxic stress) by direct DNA ionization. IR also
indirectly induces DNA damage by stimulating reactive
oxygen species (ROS) production [8–15]. The therapeutic
effects of IR are traditionally associated with the DNA
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double-strand breaks (DSBs) that are the most lethal form
of damage to tumour cells. Much evidence has shown that
p53 is activated in response to IR-induced DNA damage
[8–11]. p53 is a multifunctional transcription factor and it
acts principally as a tumour suppressor. It increases the
expression of several genes to induce cell cycle arrest (p21,
14-3-3σ), apoptosis (PUMA, NOXA, BAX), autophagy
(phosphatase and tensin homolog [PTEN], TSC1, DRAM),
or senescence (p21), depending on the cell type and the
severity of damage [9, 10]. These are important therapeutic
effects of IR.
ROS have been shown to play an important role in

mediating the biological effects of IR [12–19]. IR can in-
crease ROS production both by inducing extracellular
water radiolysis and by causing intracellular metabolic
changes or damage to mitochondria. IR induces delayed
(24 h onward), persistent (for days) increases in mito-
chondrial ROS production, while ROS generated from
water have very short life spans (10-9 s) [15, 17]. IR also
induces a reversible mitochondrial permeability transi-
tion that stimulates ROS production [16]. IR-induced
mitochondrial ROS production is associated with partial
deactivation of mitochondrial respiratory complexes I
and III of the electron transport chain [18, 19]. In turn,
excess ROS can disrupt intracellular oxidation/reduction
systems and cause oxidative damage to biomolecules, in-
cluding DNA [12–15]. Activation of the mitochondrial
permeability transition also increases levels of reactive
nitrogen species (RNS), such as nitric oxide (NO) [16].
Although IR is used as a standard treatment for a variety

of malignant tumours, IR paradoxically also promotes
tumour recurrence and metastasis [20–28]. The epithelial-
mesenchymal transition (EMT) has been shown to endow
cancer cells with migratory and invasive properties, enab-
ling the initiation of metastasis [29–31]. IR is known to
induce EMT in vitro [20–26]. EMT may be closely linked
to cancer stem cells (CSCs) and the metabolic reprogram-
ming of cancer cells, although there is disagreement in the
field on these points.
IR is known to induce stemness and metabolic alter-

ations in cancer cells; IR can also cause various changes
in the tumour microenvironment (TME) that may promote
tumour invasion and metastasis. Oncogenic metabolism
has been shown to play important roles in the acquisition
of EMT and CSC phenotypes; thus, IR seems to induce
EMT and CSC phenotypes by regulating cellular metabol-
ism. EMT, stemness, and oncogenic metabolism are known
to be associated with resistance to radiotherapy and chemo-
therapy. Therefore, understanding the molecular mecha-
nisms of IR-induced EMT/CSC/oncogenic metabolism and
changes in the TME is required to improve the efficacy of
radiotherapy. Here, we review recent advances in the un-
derstanding of the molecular mechanisms of IR-induced
EMT, CSC, oncogenic metabolism, and changes in TME,
and we discuss a relationship between EMT/CSC/onco-
genic metabolism and radioresistance.

Induction of EMT, invasion, and metastasis by IR
EMT, invasion, and metastasis
Cancer cells can acquire multiple biological capabil-
ities during their multistage development. Hanahan
and Weinberg proposed ten hallmarks of cancer that
alter cell physiology to enhance malignant growth: 1)
sustained proliferation, 2) evasion of growth suppression, 3)
cell death resistance, 4) replicative immortality, 5) evasion
of immune destruction, 6) tumour-promoting inflamma-
tion, 7) activation of invasion and metastasis, 8) induction
of angiogenesis, 9) genome instability, and 10) alteration of
metabolism [32, 33]. Recently, it has also been suggested
that cancer is characterised by a breakdown of multicellular
cooperation by instances of cellular “cheating” that disrupt
all of the following: proliferation inhibition, regulation of
cell death, division of labour, resource transport, and main-
tenance of the extracellular environment. Furthermore, it
has also been suggested that deregulation of differentiation
is another important aspect of tumourigenesis [34] (Fig. 1).
Among the known characteristics of cancer, metastasis

is the major obstacle to therapeutic access [29, 35, 36].
EMT is closely linked to the induction of metastasis.
EMT is a developmental process that plays critical roles
in embryogenesis, wound healing, and organ fibrosis
[29–31]. EMT confers mesenchymal properties on epi-
thelial cells; it is characterised by the loss of epithelial
morphology and markers (including E-cadherin, desmo-
plakin, Muc-1, cytokeratin-18, occludins, claudins, and
ZO-1), and by the acquisition of mesenchymal markers
(including N-cadherin, vimentin, fibronectin, vitronectin,
α-smooth muscle actin [α-SMA], and FSP1). Thus, can-
cer cells undergoing EMT acquire invasive and meta-
static properties [29–31].
EMT programs are regulated by a network of signal-

ling pathways that involve components such as growth
factors (transforming growth factor-β [TGF-β], epider-
mal growth factor [EGF]) and their associated signalling
proteins (Wnt, Notch, Hedgehog, nuclear-factor kappa
B [NF-κB], extracellular signal-regulated kinase [ERK],
and phosphatidylinositol 3-kinase [PI3K]/Akt) in re-
sponse to stresses involved in tumourigenesis, including
hypoxia, oncogenic or metabolic stress, inflammation,
and physical constraints [30, 31, 37–39].
These signals activate EMT-inducing transcription fac-

tors, including Snail/Slug, ZEB1/δEF1, ZEB2/SIP1, Twist1/
2, and E12/E47 [40–42]. EMT-inducing transcription fac-
tors regulate the expression of proteins involved in cell po-
larity, cell-cell contact, cytoskeletal structural maintenance,
and extracellular matrix (ECM) degradation, and they sup-
press key epithelial genes. Loss of E-cadherin is considered
a hallmark of EMT; these EMT-inducing transcription



Fig. 1 Epithelial-mesenchymal transition (EMT), metastasis, cancer stem cells (CSCs), and oncogenic metabolism. Cancer cells can acquire multiple
capabilities, including sustained proliferation, evasion of growth suppression, cell death resistance, replicative immortality, evasion of immune
destruction, tumour-promoting inflammation, activation of invasion and metastasis, induction of angiogenesis, genome instability, and alteration
of metabolism. Deregulation of differentiation, acquisition of stem cell phenotypes, and their tumour microenvironment are also important aspects of
tumourigenesis. Several signal pathways (such as those of TGF-β, Wnt, EGF, Hedgehog, Notch, and ROS) and mutation/genomic instability are closely
associated with tumourigenesis and tumour progression. These signals could activate oncogenes and inactivate tumour suppressors. Activation of
oncogenes, or loss of tumour suppressors, can drive tumour progression, particularly via metabolic reprogramming. Metabolic reprogramming may be
required for malignant transformation and tumour development, including invasion and metastasis, CSC phenotype, and TME
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factors bind to E-box elements in the E-cadherin gene pro-
moter to repress its transcription. Of particular note, Snail
is an early marker of EMT that is involved in the initial
cell-migratory phenotype, and it occasionally induces other
factors [40–42].
In addition to having pro-metastatic roles, these EMT-

inducing transcription factors are also implicated in
tumour initiation and early tumour development. Their
oncogenic potential has proven to be associated with the
capacity to inhibit tumour-suppressive 'fail-safe' programs
(senescence and apoptosis), and to induce stemness proper-
ties and metabolic alterations. The Twist protein is known
to inhibit senescence and apoptosis. Although the roles of
Snail and ZEB in senescence are debated, these proteins
have been shown to confer resistance to cell death.
Snail, ZEB, and Twist also induce malignant transform-
ation, as well as the acquisition of stemness properties
[40, 43]. Emerging evidence also shows that Snail can
promote metabolic alterations [42, 43]. The roles of
these proteins in the CSC phenotype, metabolic alter-
ation, and resistance to therapy will be addressed in
more detail below.

Induction of EMT, invasion, and metastasis by IR
IR has been shown to induce EMT to enhance the mo-
tility and invasiveness of several cancer cells, including
those of breast, lung, and liver cancer, and glioma cells
[20–27]. Clinical and preclinical evidence suggests that
IR may increase metastasis in both the primary tumour
site and in normal tissues under some circumstances
[20, 23, 27]. Even sublethal doses of IR have been shown
to enhance the migratory and invasive behaviours of gli-
oma cells [21, 22].
ROS are known to play an important role in IR-induced

EMT [44, 45]. ROS act as second messengers in intracel-
lular signalling that induce tumourigenicity and sustain
tumour progression. ROS have been closely associated
with tumourigenesis and tumour progression. ROS can
act as signalling molecules that regulate cell proliferation
and death [46–52]. Mitochondrial ROS production is
known to be activated by hypoxia, oncogenes, loss of
tumour suppressors, or mitochondrial mutations to in-
crease tumourigenicity [50, 51]. High levels of ROS
trigger cell death by causing irreversible damage to cel-
lular components such as proteins, nucleic acids, and
lipids, whereas low levels of ROS have been shown to
promote tumour progression—including tumour growth,
invasion, and metastasis [46–52]. It has been noted that
cancer cells also express high levels of antioxidant proteins
to inhibit ROS-induced cytotoxicity [47–49, 51]. There-
fore, ROS levels are crucial for radiotherapy outcomes.
ROS promote EMT to allow cancer cells to avoid hostile
environments [46–49, 52].
IR can induce ROS production directly and indirectly, by

extracellular water radiolysis and by intracellular metabolic
alterations or mitochondrial dysfunction [15, 17]. Treat-
ment with the N-acetylcysteine (NAC), a general ROS scav-
enger, prevents IR-induced EMT, adhesive affinity, and
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invasion of breast cancer cells, suggesting an important role
for ROS in IR-induced EMT [44, 45].
Snail has been shown to play a crucial role in IR-induced

EMT, migration, and invasion [53–56]. ROS are also in-
volved in IR-induced Snail expression. IR-induced ROS ac-
tivate ERK1/2, which inactivates glycogen synthase kinase
3β (GSK3β), an endogenous inhibitor of Snail, thereby up-
regulating Snail [53]. Sustained elevation of Snail expres-
sion is required for IR-induced ERK activation and GSK3β
inhibition, suggesting that ERK/GSK3β/Snail might form a
positive feedback loop [54]. Several signalling pathways
have also been implicated in IR-induced Snail expression,
including TGF-β, Wnt, Hedgehog, Notch, granulocyte-
colony stimulating factor (G-CSF), EGFR/PI3K/Akt,
mitogen-activated protein kinase (MAPK), and p21-
activated kinase 1 (PAK1), as discussed below. IR activates
the p38 MAPK pathway, which contributes to the induc-
tion of Snail expression to promote EMTand invasion [56].
PAK1 is also activated by IR, after which it directly binds to
Snail, which increases the transcriptional repression activity
of Snail, thereby repressing E-cadherin expression [55].
Snail is known to be regulated by distal-less homeobox-2

(Dlx-2) [57, 58]. Dlx-2 is a homeobox transcription factor and
is involved in embryonic and tumour development [59–63].
We previously showed that Dlx-2 acts as an upstream regula-
tor of Snail [57, 58]. In addition, IR has been shown to upregu-
late Dlx-2 by activating Smad2/3 signalling that induces EMT
in A549 and MDA-MB-231 cell lines [64]. We also found that
Dlx-2 is implicated in IR-induced EMT by activating Snail;
Dlx-2 expression was increased by IR-induced ROS. Dlx-2
shRNA suppressed the IR-induced EMT phenotype, and was
accompanied by downregulation of Snail (data not shown;
see the abstract of MSIP reports (No. 2012M2B2A9A020
29802; http://www.ndsl.kr/ndsl/search/detail/report/report
SearchResultDetail.do?cn=TRKO201300032641 and No. 20
13M2B2A9A03050902; http://www.ndsl.kr/ndsl/search/de
tail/report/reportSearchResultDetail.do?cn=TRKO20160000
9259). These results suggest that IR induces EMT via ROS-
dependent activation of Dlx-2 and Snail.
In addition, ultraviolet (UV) radiation, a form of non-IR,

which is considered the main cause of skin cancer, is also
known to enhance cell migration by increasing ROS levels,
similar to IR. UV radiation-induced ROS activates NF-κB
signalling that promotes cell migration [65]. NF-κB is
known to increase Snail stabilisation by preventing the
ubiquitination and degradation of Snail, which promotes
cell migration and invasion [66, 67]. Snail also plays an
important role in UV radiation-induced EMT. UV radi-
ation induces Snail expression by activating the EGFR,
ERK, and p38 MAPK cascades [68–70]. MAPK signalling
activates AP-1 transcription factor to directly increase
Snail expression in keratinocytes [69].
ZEB1 is also implicated in IR-induced EMT [71, 72].

IR-induced GSK3β inactivation has been shown to
contribute to the induction of ZEB1 expression [72]. IR
also promotes Akt phosphorylation to elevate ZEB1 ex-
pression, which promotes EMT. Indeed, following radio-
therapy, high levels of ZEB1 and phosphorylated Akt
(S473) are correlated with recurrence and distance me-
tastasis in patients with nasopharyngeal carcinoma [71].
In addition, hypoxia-inducible factor-1 (HIF-1) is in-

volved in IR-induced EMT [73–82]. HIF-1 is a hetero-
dimer composed of an oxygen-sensitive α subunit and
a constitutively expressed β subunit. Under normoxia,
HIF-1α is rapidly degraded, whereas hypoxia induces
stabilisation and accumulation of HIF-1α [73–76]. Several
mechanisms are known to induce HIF-1 activation by in-
creasing the translation of HIF-1α mRNA or inhibiting
HIF-1α degradation; levels of HIF-1α mRNA are enhanced
by activation of the PI3K/Akt/mammalian target of rapa-
mycin (mTOR) pathway and by the binding of YB-1, an
RNA and DNA binding protein. HIF-1α protein degrad-
ation has been prevented by ROS and NO. Inactivation of
von Hippel-Lindau tumour suppressor protein (pVHL, an
E3 ubiquitin ligase targeting HIF-1α) and activation of
WSB1 (an E3 ligase targeting pVHL) and ubiquitin C-
terminal hydrolase-L1 (UCHL1, a HIF-1 deubiquiti-
nating enzyme) are also known to induce HIF-1α
stabilisation and activation [73–77].
IR is known to increase stabilisation and nuclear accu-

mulation of HIF-1α, since hypoxia is a major condition
for HIF-1 activation [73, 75]. IR induces vascular damage
that causes hypoxia. In addition, ROS is implicated in
IR-induced HIF-1 activation; IR causes the reoxygena-
tion of hypoxic cancer cells to increase ROS production,
which leads to the stabilisation and nuclear accumula-
tion of HIF-1 [77, 78]. IR-induced reoxygenation also en-
hances the translation of HIF-1-regulated transcripts
[77]. In addition, IR increases glucose availability under
reoxygenated conditions that promote HIF-1α translation
by activating the Akt/mTOR pathway [78]. Furthermore, IR
upregulates Nijmegen breakage syndrome protein 1
(NBS1), which directly interacts with HIF-1α and stabi-
lises it [80]. The stabilised HIF-1α then translocates to
the nucleus, dimerizes with HIF-1β, and increases gene
expression— including the expression of essential EMT
regulators such as Snail—to induce EMT, migration,
and invasion [73, 83].
A number of signalling pathways, including those of

TGF-β, Wnt, Hedgehog, Notch, G-CSF, EGFR/PI3K/
Akt, CXCL12/CXCR4, PAI-1, and MAPK, have been im-
plicated in IR-induced EMT [45, 84–117] (Fig. 2). TGF-
β signalling has been shown to play a crucial role in IR-
induced EMT [84–94]. Among three isoforms of TGF-β
(TGF-β1, TGF-β2, and TGF-β3), IR is known to specific-
ally induce TGF-β1 [84, 85]. AP-1 transcription factor is
involved in IR-induced TGF-β1 expression [84]. After it
is synthesised, TGF-β is secreted as an inactive homodimer
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Fig. 2 Signalling pathways of IR-induced EMT, metastasis, CSCs, and oncogenic metabolism. Ionizing radiation (IR) causes DNA damage directly,
by ionization, or indirectly, by the production of reactive oxygen species (ROS) in tumours. In response to DNA damage, p53 is activated and it
exerts the therapeutic effects of IR: induction of cell cycle arrest, apoptosis, autophagy, or senescence. However, IR is also known to enhance the
metastatic potential of cancer cells by inducing EMT. IR-induced EMT is mediated by transcription factors (including Snail, HIF-1, ZEB1, Twist, and
STAT3) that are activated by signalling pathways (including those of TGF-β, Wnt, Hedgehog, Notch, G-CSF, EGFR/PI3K/Akt, CXCL12/CXCR4, PAI-1,
and MAPK). ROS are implicated in IR-induced EMT via the activation of these transcription factors and signalling pathways. Cancer cells that
undergo EMT also acquire stemness and oncogenic metabolisms. In addition, EMT, CSCs, and oncogenic metabolism are known to contribute to
the radioresistance of cancer cells
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that binds to latent TGF-β binding protein (LTBP), forming
a latent complex. The latent TGF-β complexes can be acti-
vated by extracellular stimuli (ROS and acidic conditions)
or by the proteolytic activity of proteases (matrix metallo-
proteinase [MMP]-2 and MMP-9) [87, 88].
IR-induced ROS is known to promote the extracellular

proteolytic cleavage of latent complexes so that the bio-
logically activated TGF-β can bind to its receptors [86].
TGF-β binds with the TGF-β type II receptor (TβRII);
this receptor-ligand complex recruits and phosphory-
lates a TGF-β type I receptor, ALK5. ALK5 then phos-
phorylates the proteins Smad2 and 3, which bind to
Smad4 and translocate to the nucleus, where they
transactivate target genes [87, 88]. In addition to activa-
tion of the synthesis and secretion of TGF-β1, IR pro-
motes intracellular TGF-β signalling, as evidenced by
the phosphorylation of Smad 2/3C and the upregulation
of its target genes (TβRII and ALK5), thereby leading to
hyperactivation of TGF-β signalling [93]. Furthermore, IR
elevates FoxM1, which acts downstream of TGF-β1/Smad
signalling. IR-induced FoxM1 directly binds to the Snail
promoter and increases Snail expression to mediate TGF-
β-induced EMT [92].
Wnt/β-catenin signalling is also implicated in IR-induced

EMT [95–98]. IR has been shown to increases Wnt signal-
ling by increasing Wnt ligand expression [96]. Generally,
Wnt binds to its receptor Frizzled and to its co-receptor,
lipoprotein receptor-related protein (LRP) 5/6 that sup-
presses GSK3β-mediated phosphorylation of β-catenin [39].
IR is known to enhance β-catenin stabilisation [95, 97].
Subsequently, the stabilised β-catenin is translocated to
the nucleus and binds to T-cell factor (TCF)/lymphoid
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enhancer factor (LEF) transcription factors to activate
target gene expression [39]. IR also induces the nuclear
translocation and accumulation of β-catenin, and in-
creases β-catenin/TCF transcriptional activities [95, 98].
In addition, Wnt signalling increases Snail protein sta-

bility in the nucleus by activating an Axin2 pathway,
thereby inducing EMT. Axin2 acts as a chaperone for
nuclear export of GSK3β, the dominant kinase respon-
sible for Snail protein turnover and activity [118, 119].
Recently, we showed that the Dlx-2/Snail cascade is
implicated in TGF-β- and Wnt3a-induced EMT [57]. IR-
induced Wnt/β-catenin signalling elevates Snail to pro-
mote EMT, migration, and invasiveness of progeny from
irradiated colorectal cancer cells [95, 97].
Notch signalling is known to be involved in IR-induced

EMT [99, 100]. Notch signalling is activated by interaction
between transmembrane Notch receptors (Notch 1–4)
and ligands (Jagged-1, Jagged-2, Delta-like 1, Delta-like 3,
Delta-like 4) on contacting cells. IR activates the IL-6/
JAK/signal transducer and activator of transcription 3
(STAT3) pathway to upregulate Notch-2, Jagged1, and
Delta-like 4, and induces EMT [100]. IR also increases
Notch-1 expression [99]. Notch-1 is known to induce
EMT by upregulating Snail. Treatment with two Notch-1-
regulating radiosensitizers, rhamnetin and cirsiliol, in-
duces the miR-34a-mediated downregulation of Notch-1,
preventing IR-induced EMT [99].
IR has also been shown to activate Hedgehog (Hh)

signalling to induce EMT [101]. IR increases expression
of the Hh ligand (Indian Hh, Sonic Hh), the Hh receptor
(Smoothened), and the Hh-target gene (Gli2), with en-
hanced expression of the EMT-stimulating factor (TGF-β)
and mesenchymal markers (N-cadherin, α-SMA). Blocking
Hh activity suppresses the IR-induced expression of EMT-
stimulating genes, suggesting a potential role for Hh signal-
ling in IR-induced EMT [101].
Furthermore, EGFR activation is known to be associated

with IR-induced EMT, cell migration, and invasion by
activating two downstream pathways: PI3K/Akt and Raf/
MEK/ERK [45, 102–108]. Ligand binding to EGFR gener-
ally induces receptor dimerization, activation of its kinase
domain, and consequent autophosphorylation [102, 103].
IR promotes EGFR heterodimerization with ErbB2 in a
ligand-independent manner [104].
ROS and RNS are also implicated in IR-induced EGFR

activation [45, 105]. IR-induced ROS are known to promote
phosphorylation of EGFR or ErbB2 Y877 [45, 105]. IR-
induced RNS also induce autophosphorylation on
EGFR Y1173. Following IR, NO is generated within mi-
nutes, which is necessary for the rapid activation of
EGFR [105]. UV-induced ROS are also implicated in
IR-induced EGFR activation. NAC prevents UV-
mediated EGFR phosphorylation at Y992 and Snail ex-
pression [70]. These studies suggest important roles
for ROS and RNS in IR-induced activation of the
EGFR pathway that may upregulate Snail to induce
EMT and invasion. In addition, IR has been shown to
induce Src activation [45, 106]. Src is a non-receptor
tyrosine kinase that acts both upstream and downstream
of EGFR and ErbB2. IR-induced Src activation promotes
phosphorylation of EGFR and ErbB2 [45, 106]. Further-
more, IR-induced EGFR and IGFR-1 activation are known
to promote the PI3K-dependent Rho signalling path-
way, which enhances the invasive potential of glioblast-
oma cells [107].
IR has been shown to induce Akt activation through

several signalling pathways (EGFR, C-X-C chemokine
receptor type 4 [CXCR4]/C-X-C motif chemokine 12
[CXCL12], plasminogen activator inhibitor 1 [PAI-1]) and
upstream regulators (Bmi1, PTEN) that promote EMT
and invasion [81, 104, 109–111]. IR-mediated activation of
EGFR leads to Akt activation through phosphorylation at
two key regulatory residues, T308 and S473 [104]. ROS is
also involved in IR-mediated Akt activation to enhance in-
vasiveness. IR-induced ROS upregulates CXCR4, which
interacts with its ligand, CXCL12, and activates the PI3K/
Akt and ERK1/2 pathways [109].
PAI-1 signalling is also implicated in IR-induced Akt

activation that increases Snail levels to induce EMT [81].
IR increases the expression and secretion of PAI-1 by
upregulating HIF-1α, p53, and phospho-Smad3. PAI-1
secreted from radioresistant NSCLC cells induces EMT
and the radioresistance of nearby cells in a paracrine man-
ner; extracellular PAI-1 associates with the urokinase-type
plasminogen activator (uPA)/uPAR complex and then binds
to its receptor, low density LRP-1, which subsequently acti-
vates Akt and ERK1/2 to upregulate Snail, thereby inducing
EMTand cell survival in radiosensitive cells [81]. IR also in-
creases the expression of Bmi-1, which acts as an upstream
regulator of the PI3K/Akt pathway. Bmi-1 is known as a
key gene involved in EMT and the self-renewal of cancer
cells [110]. In addition, IR downregulates PTEN to activate
the PI3K/Akt pathway, which then inactivates GSK3β to in-
crease Snail expression and induce EMT [111].
The IR-induced PI3K/Akt pathway also stabilises β-

catenin, which directly binds to the promoter region of
G-CSF. Subsequently, G-CSF is secreted and binds to G-
CSFR to activate the JAK/STAT3 pathway [112]. STAT3
activation is also mediated by EGFR-Akt, as well as by
the EGFR-p38/ERK pathway, in response to IR [113].
STAT3 is known to be involved in IR-induced EMT and
invasion by upregulating the molecules governing EMT
(N-cadherin, vimentin, uPA), invasion (MMP-2, MMP-9),
and angiogenesis (vascular endothelial growth factor
[VEGF], iNOS) [113–115]. In addition, IR-induced STAT3
also increases FoxM1 expression and it interacts and co-
localizes with FoxM1 in the nucleus [117]. IR-induced
FoxM1 directly binds to Snail promoter to induce Snail
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expression, thereby showing the involvement of STAT3/
FoxM1 complex in EMT [92]. In addition, in radioresis-
tant cervical cancer cells, IR induces K-Ras activation that
promotes the c-Raf/p38 pathway to increase cell migration
and metastatic potential [116].
Induction of CSCs by IR
CSCs
CSCs possess a capacity for self-renewal, and they can
persistently proliferate to initiate tumours upon serial
transplantation, thus enabling them to maintain the
whole tumour. Under certain microenvironment, CSCs
exhibit plasticity; mutations in normal stem cells, pro-
genitor cells, and/or differentiated cells can give rise to
CSCs, and these newly generated CSCs produce daughter
CSCs as well as differentiated bulk cancer cells [120–124].
Notably, some CSCs can spontaneously arise from normal
and neoplastic nonstem cells, suggesting a bidirectional
interconversion between the stem and non-stem cell state.
Thus, different types of CSC coexist and contribute to
tumour heterogeneity [120–123, 125]. Conventional can-
cer treatments kill most cancer cells, but CSCs survive
due to their resistance to therapy, eventually leading to
tumour relapse and metastasis [126–131].
For the identification of CSCs, three types of markers

are utilised: cell surface molecules, transcription fac-
tors, and signalling pathway molecules [132–140]. CSCs
express distinct and specific surface markers; com-
monly used ones are CD24, CD34, CD38, CD44, CD90,
CD133, and ALDH. These markers enable CSCs to be
distinguished from other tumour cells and from normal
stem cells [132–140]. For example, breast CSCs express
CD44+CD24-, while pancreatic or ovarian CSCs express
CD44+CD24+EpCAM+ [135–137].
Transcription factors, including Oct4, Sox2, Nanog,

c-Myc, and Klf4, and signalling pathways, including
those of TGF-β, Wnt, Hedgehog, Notch, platelet-derived
growth factor receptor (PDGFR), and JAK/STAT, are
known to play crucial roles in maintaining the self-
renewal abilities and pluripotency of stem cells [132–134].
These transcription factors and signalling pathways are
also frequently used as CSC markers. In addition, several
microRNAs (miRNAs), including let-7, miR-22, miR-34a,
miR-128, the miR-200 family, and miR-451, are known to
regulate the self-renewal, differentiation, and tumourigeni-
city of CSCs [141–143].
The CSC state can be regulated by cell-autonomous

forces (genetic, epigenetic, and metabolic regulation)
and by external forces (niche factors and the immune
system) [120–123]. Non-CSCs can be reprogrammed to
become CSCs by epigenetic and genetic changes that
are involved in phenotypic heterogenicity among cancer
cells [141–145]. Epigenetic changes, including DNA
methylation, histone modifications, and miRNAs, play
important roles in the acquisition of CSC properties.
In particular, miRNAs have been shown to play im-

portant roles in stemness and tumour metastasis; they
modulate the expression of many target genes that regu-
late tumour cell EMT, motility, invasion, intravasation,
resistance to anoikis, extravasation, and metastatic col-
onisation, as well as cell stemness, dormancy, metabolic
reprogramming, and the TME. Through these means,
miRNA can positively or negatively regulate tumour pro-
gression and tumour metastasis [141–143, 146–149]. In
addition, long noncoding RNAs (lncRNAs) have been as-
sociated with numerous functions in cells [147, 150–154].
LncRNAs are known to positively or negatively affect the
expression of nearby genes, control protein activity or
localisation, and serve as organisational frameworks of
subcellular structures. Many lncRNAs are also processed
to yield small RNAs or to modulate other RNAs to be
processed [154]. In particular, MALAT1, HOTAIR, and
H19 lncRNAs are known to control stemness, cell migra-
tion and invasion, EMT, and metastasis by epigenetic
regulation, alternative splicing, chromatin modification,
and translational control [147, 150–153].

EMT and CSCs
EMT has been shown to play important roles in the
acquisition of stemness in cancer cells [155–160]. EMT-
inducing transcription factors, such as Snail, ZEB1, and
Twist1, are known to confer CSC properties [161–165]. In
addition to its role in EMT, Snail is known to induce the
CSC phenotype in colorectal carcinoma cells, where it
enhances stemness properties—including self-renewal,
tumourigenicity, and resistance to radiotherapy/chemother-
apy—with an increased metastatic potential [161–163].
ZEB1 is implicated in maintaining stemness and EMT

properties in pancreatic and colorectal cancer cells [164].
ZEB1 represses the expression of stemness-inhibiting miR-
NAs, including miR-183, miR-200c, and miR-203, thereby
upregulating the stem-cell factors Sox2 and Klf4. Knock-
down of ZEB1 prevents not only EMT, invasion, and me-
tastasis, but also the stemness phenotype [164]. In addition,
Twist1 is known to link EMT to stem-like features. Twist1
directly increases Bmi-1 expression, and acts cooperatively
with Bmi-1 to induce EMTand stemness properties [165].
Signalling pathways involved in EMT, including those

of TGF-β, Wnt, and Notch, have been shown to play
important roles in inducing the CSC phenotype [166–168].
TGF-β1 not only increases EMT markers (Slug, Twist1,
β-catenin, N-cadherin), but also upregulates CSC markers
(Oct4, Sox2, Nanog, Klf4) in breast and lung cancer
cells [166, 167].
Wnt/β-catenin signalling also plays critical roles in in-

creasing the stemness properties of liver CSCs by acti-
vating Notch1 [168]. Blocking Wnt/β-catenin and/or
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Notch decreases the expression of transcription factors in-
volving EMT (such as Snail) and stemness (such as Sox2
and Nanog). These changes result in reduced metastatic
potential in vivo, and they inhibit CSC properties, includ-
ing self-renewal and tumourigenicity. This suggests a role
for EMT in the acquisition of CSC phenotypes [168].
However, in heterogeneous solid tumours, some CSC

subpopulations arise independently of EMT [169, 170].
This suggests that CSC populations may be heterogeneous,
and may contain a significant proportion of epithelial stem
cells in which stemness is entirely uncoupled from EMT.
These epithelial stem cells may cooperatively interact
with non-CSCs, thereby potentiating the metastatic
behaviours of the combined tumour cell populations
[171–174]. Therefore, other mechanisms are likely in-
volved in the induction of CSC in an EMT transcrip-
tion factors-independent manner.

Induction of the CSC phenotype by IR
IR has been shown to induce the CSC phenotype in
many cancers, including breast, lung, and prostate cancers,
as well as melanoma [175–181]. Genotoxic stress due to IR
or chemotherapy promotes a CSC-like phenotype by in-
creasing ROS production [179]. IR has been shown to
induce reprogramming of differentiated cancer cells
into CSCs [181]. In prostate cancer patients, radiother-
apy increases the CD44+ cell population that exhibit
CSC properties [175]. IR also induces the re-expression
of stem cell regulators, such as Sox2, Oct4, Nanog, and
Klf4, to promote stemness in cancer cells [176, 181].
EMT has been implicated in the acquisition of the

IR-induced CSC phenotype [178, 179]. After IR, sur-
viving cells exhibit a complex phenotype combining
the properties of EMT and CSC with high expression
levels of Snail, CD24, CD44, and PDGFR-β in NSCLC
cells [178]. In addition, the subset of CD24+ ovarian
cancer cells or CD133+ colorectal cancer cells that possess
CSC properties exhibit the EMT phenotype—includ-
ing higher levels of expression of Snail, Twist, and
vimentin, and lower levels of expression of E-cadherin
[159, 160].
EMT-inducing transcription factors and signalling

pathways, including Snail, STAT3, Notch signalling, the
PI3K/Akt pathway, and the MAPK cascade, have been
shown to play important roles in IR-induced CSC prop-
erties [180–184]. STAT3 has been shown to be involved
in the IR-induced increase of CSCs [180], and is known
to activate Snail to induce the CSC phenotype. STAT3
directly binds to the Snail promoter and increases Snail
transcription, which induces the EMT and CSC pheno-
types, in cisplatin-selected resistant cells [163]. Inhib-
ition of the DNA-binding activity of STAT3 prevents
IR-induced increases of the CSC population, and sensi-
tises cells to radiotherapy [180].
Notch signalling is also implicated in the IR-induced
de novo generation of CSCs [181, 184]. Inhibition of
Notch signalling partially prevents the IR-induced re-
expression of Oct4, Sox2, Nanog, and Klf4 [181]. Notch
signalling also plays important roles in the IR-induced
metastatic potential of CSCs. IR upregulates disintegrin
and metalloproteinase-17 (ADAM17) to activate Notch
signalling, which increases the migration and invasive-
ness of CSCs [182].
The PI3K/Akt pathway and the MAPK cascade are in-

volved in the IR-induced CSC and EMT phenotypes. IR
promotes Src activity to trigger the PI3K/AKT and p38
MAPK pathways that induce both CSC status and EMT
[183]. Therefore, EMT transcription factors and signal-
ling pathways may enable CSCs to acquire the ability to
invade, migrate, and disseminate.

Induction of oncogenic metabolism by IR
Oncogenic metabolism
Most cancer cells produce their energy predominantly
by high rate of glycolysis rather than by oxidative phosphor-
ylation, even in the presence of oxygen: a phenomenon that
has been termed the Warburg effect, aerobic glycolysis, or
the glycolytic switch [185–194]. Other oncogenic metabolic
pathways, including glutamine metabolism, the pentose
phosphate pathway (PPP), and synthesis of fatty acids and
cholesterol, are also enhanced in many cancers. These alter-
ations are known to contribute to cell survival and sustain
the increased demands of cell proliferation by providing
biosynthetic precursors for nucleic acids, lipids, and pro-
teins [186–196].
The activation of oncogenes and the loss of tumour

suppressors have been shown to drive tumour pro-
gression; in particular, they seem to drive metabolic
reprogramming. Several transcription factors, includ-
ing HIF-1α, p53, and c-Myc, are known to contribute
to oncogenic metabolism [186–194]. Emerging evi-
dence suggests that metabolic reprogramming is one
of the hallmarks of cancer, and may be required to
convert a normal cell into a malignant cell [186–194].
Although the Warburg effect has been considered a

metabolic signature of tumour cells, increasing evi-
dence indicates that tumour cells exhibit high mito-
chondrial metabolism as well as aerobic glycolysis.
These contradictory findings have even been reported
as occurring within the same tumour [197–208]. In
addition, CSCs exhibit unique metabolic features in a
tumour type-dependent manner. CSCs can be highly
glycolytic-dependent or oxidative phosphorylation
(OXPHOS)-dependent. In any case, mitochondrial
function is crucial for maintaining CSC functionality
[209–212]. To explain such contradiction, reverse
Warburg effects and metabolic symbiosis have been
proposed [197–208, 212].
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According to this model, cancer cells depend on mito-
chondrial metabolism and increase mitochondrial produc-
tion of ROS that cause pseudo-hypoxia. Tumour tissue is a
heterogeneous population of cells consisting of cancer cells
and surrounding stromal cells, with various genetic and epi-
genetic backgrounds. These ROS reduce caveolin-1 expres-
sion in cancer-associated fibroblasts (CAFs), which are the
main component of tumour stroma. Loss of caveolin-1 in
CAFs leads to further increases in ROS production, which
stabilise HIF-1α (and by extension, this increases levels of
the HIF-1 heterodimer). HIF-1 then enhances glycolysis in
CAFs. Furthermore, tumour cell-derived ROS also in-
duce autophagy in CAFs. Autophagy is a lysosomal
self-degradation process that removes damaged mito-
chondria through mitophagy. Thus, CAFs have defect-
ive mitochondria that lead to the cells exhibiting the
Warburg effect; the cells take up glucose, and then se-
crete lactate to 'feed' adjacent cancer cells [197–207].
In tumour tissue, epithelial cancer cells and CAFs

express different subtypes of the lactate transporter,
monocarboxylate transporter (MCT). This heterogeneity
of MCT expression induces metabolic symbiosis between
epithelial cancer cells and CAFs. Metabolic symbiosis is
required for adaptation to changes in the nutrient micro-
environment that is caused by cancer treatment. Epithelial
cancer cells express MCT1, while CAFs express MCT4.
MCT4-positive, hypoxic CAFs secrete lactate by aerobic
glycolysis, and MCT1-expressing epithelial cancer cells
then uptake and use that lactate as a substrate for the tri-
carboxylic acid (TCA) cycle [197–201].
However, the reverse Warburg effect may not be per-

vasive in all cancers. MCT4-expressing tumour cells or
the mesenchymal phenotype do not lead to the reverse
Warburg phenomenon. Rather, hierarchical metabolic
heterogeneity may be observed in cancer cells; MCT4-
positive cancer cells depend on glycolysis and then efflux
lactate, while MCT1-positive cells uptake lactate and
rely on OXPHOS. Therefore, metabolic heterogeneity
induces a lactate shuttle between hypoxic/glycolytic cells
and oxidative/aerobic tumour cells. This kind of lactate
shuttle has also been observed between neurons and as-
trocytes in normal brain tissue [198, 200].
This interaction between cancer cells and stromal cells

can contribute to tumour progression—including tumour
EMT, invasion, growth, and angiogenesis. Cancer cells
interact with stromal cells and use their environment to
sustain tumour growth. In addition, cells in the tissues
surrounding the tumour, such as CAFs and adipocytes,
create a nutrient-rich microenvironment that feeds the
cancer cells; cancer cells then secrete waste products (e.g.,
CO2, H+, ammonia, polyamines) that further promote
EMT, invasion, and angiogenesis [198, 200, 208].
MCT1-positive cancer cells are also involved in the

stem-like phenotypes observed within heterogeneous
tumour populations. While bulk tumour cells exhibit a
glycolytic phenotype, with increased conversion of glucose
to lactate (and enhanced lactate efflux through MCT4),
CSC subsets depend on oxidative phosphorylation; most
of the glucose entering the cells is converted to pyruvate
to fuel the TCA cycle and the electron transport chain
(ETC), thereby increasing mitochondrial ROS production
[198, 209, 212]. In these cells, the major fraction of glu-
cose is directed into the pentose phosphate pathway, to
produce redox power through the generation of NADPH
and ROS scavengers [212]. Therefore, this activated mito-
chondrial metabolism provides enough energy for CSC
self-renewal, invasion, and metastasis.

EMT/CSC regulators involved in oncogenic metabolism
Several transcription factors, including HIF-1α, p53, and
c-Myc, are known to contribute to oncogenic metabolism.
Many regulatory molecules involved in EMT and CSCs,
including Snail, Dlx-2, HIF-1, STAT3, TGF-β, Wnt, and
Akt, are implicated in the metabolic reprogramming of
cancer cells. The induction of EMT is involved in the ac-
quisition of CSC properties, as well as in reduced mito-
chondrial metabolism and induction of the glycolytic
switch [57, 58, 213–222].
Snail has been shown to induce mitochondrial repression

and glucose metabolism by downregulating cytochrome C
oxidase (COX) subunits or fructose-1,6-bisphosphatase 1
(FBP1). Snail has also been shown to induce the EMT
phenotype [57, 58, 213–215].
HIF-1 induces the expression of glycolytic enzymes,

including the glucose transporter GLUT, hexokinase,
lactate dehydrogenase (LDH), and MCT, resulting in
the glycolytic switch. In addition, HIF-1 represses the
expression of pyruvate dehydrogenase kinase (PDK),
which inhibits pyruvate dehydrogenase (PDH), thereby
inhibiting mitochondrial activity [216, 217].
STAT3 has been implicated in EMT-induced metabolic

changes as well [218]. Stable EMT cells are generated
through mammosphere culture in epithelial breast cancer
cells. These EMT-derived cancer cells exhibit elevated
activation of STAT3 and enhanced aerobic glycolysis,
with upregulation of certain enzymes and transporters
related to glycolysis (such as MCT2); these cells also
show downregulation of gluconeogenesis and some
anabolic side-pathways. Inhibition of STAT3 suppresses
certain EMT-related metabolic alterations in the ex-
pression of MCT2 and ZEB1, suggesting a role for
STAT3 in EMT-induced metabolic changes [218].
Emerging evidence suggests that TGF-β and Wnt play

important roles in the metabolic alteration of cancer
cells [57, 58, 214, 219–221]. TGF-β and Wnt are known
to induce mitochondrial repression and the glycolytic
switch by activating Dlx-2 and Snail [57, 58]. TGF-β/
Wnt-induced mitochondrial repression is mediated by
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inhibition of mitochondrial complex IV (COX) [57, 214].
Wnt also directly targets PDK1, thereby inhibiting
mitochondrial respiration and promoting the glyco-
lytic switch [219, 221].
Akt is also implicated in the glycolytic switch and in

promoting cancer cell invasiveness [222]. Overexpression
of Akt impairs mitochondrial function, promotes glyco-
lytic metabolism with upregulation of glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), and converts radial
growth (i.e., noninvasive) melanoma into vertical growth
(i.e., invasive) melanoma [222].

Oncogenic metabolism plays a critical role(s) in EMT and
CSC phenotypes
Accumulating evidence suggests that metabolic alteration
is one of the hallmarks of cancer, and may contribute to
malignant transformation and tumour development—in-
cluding the induction of EMT, invasion, metastasis, and
stemness [58, 211–213, 223–233] (Fig. 1). Metabolic re-
programming of cells toward aerobic glycolysis has been
shown to support the invasive phenotype of malignant
melanoma [224]. A glycolytic mechanism is also known
to modulate the angiogenic switch for metastatic
growth [225].
Several glycolytic enzymes, including pyruvate kinase

M2 (PKM2), LDH, and pyruvate carboxylase (PC), are
implicated in the induction of the EMT and CSC pheno-
types [234–237]. PKM2 is a less active isoform of pyru-
vate kinase and is primarily expressed in embryonic and
cancer cells. This decreased activity of PKM2 is known
to promote an overall shift in metabolism to aerobic gly-
colysis. EMT-inducing stimuli cause nuclear transloca-
tion of PKM2, which promotes EMT; nuclear PKM2
directly interacts with TGF-β-induced factor homeobox
2 (TGIF2), a transcriptional repressor of TGF-β signal-
ling, and recruits histone deacetylase 3 to the E-cadherin
promoter to suppress E-cadherin transcription [234].
LDH catalyses the bidirectional conversion of lactate

to pyruvate [237]. LDHA is one of the predominant iso-
forms of LDH; it is also known to be implicated in the
Warburg effect, as well as in cell invasion and migration.
High levels of LDHA are positively correlated with the
expression of EMT and CSC markers in invasive bladder
cell lines and in muscle-invasive bladder cancer speci-
mens, suggesting a critical role for LDHA in the activa-
tion of EMT and CSC [237].
In addition, PC is implicated in cell migration and

invasion [236]. PC is a key enzyme of anaplerosis that
converts pyruvate to oxaloacetate, which replenishes the
TCA cycle. Knockdown of PC inhibits proliferation,
migration, and invasion behaviours in invasive breast
cancer cells; conversely, the overexpression of PC pro-
motes proliferation, migration, and invasion abilities in
noninvasive breast cancer cells [236].
Furthermore, the misregulation of lipogenic metabolism
is involved in the regulation of EMT [238, 239]. Fatty acid
synthase (FASN) is a key lipogenic enzyme that catalyses de
novo synthesis of fatty acids. FASN signalling is known to
modulate subcellular structural components that determine
the epithelial or mesenchymal state of a cell. Transient
knockdown of FASN suppresses structural hallmarks of
EMT in stem-like cells. Loss of FASN signalling also re-
verses a tumour phenotype to a normal-like tissue pheno-
type, and efficiently suppresses the tumourigenicity of
metastatic breast cancer cells in vivo [238]. Mechastically,
FASN increases TGF-β levels and TGF-β, in turn, elevates
FASN expression. These results suggest that a FASN-TGF-
β-FASN positive loop contributes to high EMT/metastatic
potential in cisplatin resistant cancer cells [239].
Interestingly, the respiratory enzymes citrate synthase

(CS) and succinate dehydrogenase subunit B (SDHB),
and the gluconeogenesis regulatory enzyme FBP, are
known to negatively regulate the EMT and CSC pheno-
types [215, 240, 241]. Loss of CS has been shown to in-
duce EMTand the glycolytic switch. CS is a mitochondrial
respiratory enzyme that catalyses the first step of the TCA
cycle. CS knockdown cells exhibit EMT, mitochondrial
repression, and the glycolytic switch, with concomitant
upregulation of Snail and Twist, and downregulation of
p53 and its target genes (TIGAR and SCO2). p53 is
known to prevent glycolysis and promote mitochondrial
respiration by increasing the expression of TIGAR and
SCO2. p53 reactivation inhibits CS-knockdown-induced
EMT, suggesting a role for p53 in these metabolic alter-
ations and in malignant transformation [240].
SDHB is also implicated in EMT, glucose and glutamine

metabolism, and mitochondrial dysfunction. SDH is a mito-
chondrial metabolic enzyme complex that participates in
both the TCA cycle and the electron transport chain; it
converts succinate into fumarate in the TCA cycle and
catalyses the transfer of electrons to the ubiquinone pool in
the electron transport chain. SDH mutations have fre-
quently been observed in many cancers. Knockdown of
SDHB leads to alterations of the epigenome; this pro-
motes EMT, induces altered glucose and glutamine util-
isation, and induces mitochondrial dysfunction [241].
In addition, loss of FBP has been associated with the

EMT-driven CSC phenotype. FBP catalyses the conversion
of fructose 1,6-bisphosphate to fructose-6-phosphate. Snail
induces epigenetic silencing of FBP1; this enhances glycoly-
sis, suppresses oxygen consumption and ROS production,
and promotes the EMTand CSC phenotypes [215].
We also showed that glutamine metabolism plays an

important role in the induction of EMT [58]. Glutaminase
1 (GLS1) converts glutamine to glutamate. The inhibition
of glutamine metabolism (via GLS1 knockdown, glutamine
deprivation, or glutamine metabolism inhibitors) sup-
pressed Dlx-2-, TGF-β-, Wnt-, and Snail-induced EMT
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and the glycolytic switch. In addition, GLS1 knockdown
also suppressed tumour growth and metastasis in vivo.
Dlx-2 knockdown and glutamine metabolism inhibition
decreased Snail mRNA levels through the p53-dependent
upregulation of Snail-targeting microRNAs (miR-23b,
miR-29b, miR-30, miR-34, miR-125b, miR-148a, miR-153,
miR-200, and miR-203). These results indicate that the
Dlx-2/GLS1/glutamine metabolic axis is a crucial regula-
tor of TGF-β/Wnt-induced, Snail-dependent EMT, metas-
tasis, and the glycolytic switch [58].
Oncogenic metabolism, including glutamine metabolism,

is known to endow cancer cells with growth advantages by
providing biosynthetic precursors [187–196]. Given that
GLS1 knockdown suppressed tumour growth and metasta-
sis in vivo, it is possible that knockdown of any component
enzyme in oncogenic metabolism results in a pronounced
suppression of metastasis. Like GLS1, other enzymes in
oncogenic metabolism may also regulate p53-dependent
modulation of Snail-targeting microRNAs to mediate Snail-
induced EMT. Therefore, we propose that all oncogenic
metabolic pathways are interconnected so that inhibition of
any component enzyme within the overall oncogenic me-
tabolism may suppress EMT. Further studies are needed to
determine which enzyme inhibition is the most effective in
producing EMT inhibition.

IR induces oncogenic metabolism
IR has been shown to induce metabolic changes in cancer
cells [242–247]. IR enhances glycolysis by upregulating
GAPDH (a glycolysis enzyme), and it increases lactate
production by activating LDHA, which converts pyruvate
to lactate. IR also elevates MCT1 expression that exports
lactate into the extracellular environment, leading to
acidification of the tumour microenvironment. These
changes are associated with IR-induced invasion of the
non-irradiated, surrounding breast cancer tissues and
normal endothelial cells [243].
IR increases intracellular glucose, glucose 6-phosphate,

fructose, and products of pyruvate (lactate and alanine),
suggesting a role for IR in the upregulation of cytosolic
aerobic glycolysis; this was also revealed in the metabo-
lomic profile of hepatoma cells [246]. Lactate can acti-
vate latent TGF-β through a pH-dependent mechanism
so that LDHA inhibition prevents radiation-induced activa-
tion of TGF-β [247]. In addition, lactate stimulates cell mi-
gration and enhances secretion of hyaluronan from CAF
that promote tumour metastasis [235]. In addition to gly-
colysis, IR has been shown to affect other components of
oncogenic metabolism. For example, radioresistant head
and neck squamous cells exhibit profound alterations in
their metabolism; they demonstrate increased glucose
uptake, enhanced PPP signalling, and increased fatty
acid biosynthesis, while also showing decreased mito-
chondrial oxidative phosphorylation [245].
ROS are known to play important roles in the IR-
induced glycolytic switch [242]. IR-induced ROS gen-
eration increases tumour glucose uptake in vivo. An
antioxidant SOD mimic prevents IR-induced glucose
uptake, forestalls the glycolytic switch, and inhibits
invasiveness [242]. IR-induced ROS generation is
known to increase the activity of transcription factors
and inducers that are involved in the EMT and CSC
phenotypes, such as Snail, Dlx-2, HIF-1, and TGF-β.
These factors have been shown to regulate the en-
zymes involved in glycolysis and mitochondrial oxida-
tive phosphorylation, which may be involved in the
IR-induced glycolytic switch.
Snail has been shown to induce the glycolytic switch

with EMT phenotypes [57, 58, 213–215]. Because Snail
is known to be induced by IR [53–56], we investigated
whether Snail affected the IR-induced glycolytic switch
(data not shown). We found that IR increases glucose
consumption and lactate production, and decreases O2

consumption; this indicates that IR induces mitochon-
drial repression and the glycolytic switch in MCF-7 cells.
Conversely, Snail shRNA prevented IR-induced mito-
chondrial repression and glycolytic switch, indicating
that IR induces these phenomena via Snail.
Dlx-2 shRNA also decreased the IR-induced glycolytic

switch and mitochondrial repression, and resulted in the
downregulation of Snail. Thus, the Dlx-2/Snail axis seems
to be implicated in the IR-induced glycolytic switch. Using
cDNA microarray technology, we also found that Dlx-2 ele-
vates a key enzyme in glutamine metabolism, GLS1, and
that the Dlx-2/GLS1/Gln metabolic axis plays important
roles in TGF-β/Wnt/Snail-dependent EMT and in the
glycolytic switch [58]. These results suggest that Dlx-2 may
be implicated in IR-induced alterations of other oncogenic
metabolic pathways. In addition, we found that GLS1
knockdown inhibits IR-induced EMT (data not shown).
HIF-1 is also implicated in IR-induced metabolic alter-

ations [244]. IR increases HIF-1α expression that inhibits
PDH and the tricarboxylic acid cycle, and triggers a
metabolic switch to increase lactate production [244].
As described above, metabolic changes have been im-

plicated as being closely involved in the acquisition of
the EMT and CSC phenotypes [58, 211–213, 223–233].
IR may indirectly activate several signalling pathways
through ROS production, and may induce the activation
of oncogenes or the inactivation of tumour suppressors,
which then leads to metabolic alterations, EMT, and
stemness phenotypes. Therefore, IR appears to induce
the EMT and CSC phenotypes by promoting oncogenic
metabolism.
Similarly, UV radiation is known to induce the Warburg

effect to promote melanoma invasion. UV radiation in-
creases glucose consumption and lactate production, which
is partly mediated by ROS. Lactic acid then enhances the
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invasive potential of melanoma cells. UV radiation also
upregulates Transketolase (an enzyme of the PPP) and
activates Akt, both of which are involved in metabolic
changes [248].

Changes in TME by IR
Crosstalk between cancer cells and their microenvironment
is critical for invasive growth and metastasis. The TME is
composed of ECM and multiple cell types, including
fibroblasts, vascular endothelial cells, immune cells,
pericytes, and adipocytes. Cancer cells secrete multiple
factors, such as growth factors, cytokines, and chemo-
kines, that regulate the phenotype and function of
tumour-resident cells and that influence the compos-
ition and organisation of the ECM, thereby regulating
such qualities as tumour stiffness [36, 249–253]. IR can
elicit various changes in the TME. These changes con-
tribute to creating a favourable microenvironment for
tumour metastasis and for the self-renewal and main-
tenance of cancer stem cells [87, 249–253].

TME

1. Cancer-associated fibroblasts (CAFs)

Fibroblasts are derived from mesenchyme; they form
the structural framework in tissues, and typically
prevent tumour formation. Unlike normal
fibroblasts, CAFs do the following: promote tumour
survival, growth, invasion, and metastasis; enhance
the stiffness of the ECM; contribute to angiogenesis;
and induce inflammation by releasing several growth
factors and cytokines (TGF-β, VEGF, hepatocyte
growth factor [HGF], PDGF, and stromal cell-derived
factor 1 [SDF1]), as well as MMP [249, 254–256].
Recent studies have demonstrated that CAFs also
exert tumour-suppressive effects through direct
suppression of cancer cells and via regulation of
immune cell behaviour. Although some debate exists
on this subject, CAFs are predominantly assigned a
tumour-promoting function [254].
2. Vascular endothelial cells

The tumour vascular network is dynamic and is
associated with tumour growth. A growing tumour
requires a constant supply of oxygen, nutrients, and
blood-borne mitogens, and requires an effective way
to remove toxic metabolites. Thus, tumours recruit
the host tissue’s blood vessel network to perform
four mechanisms: angiogenesis (formation of new
vessels), vasculogenesis (de novo formation of blood
vessels from endothelial precursor cells), co-option,
and modification of existing vessels within tissues.
These mechanisms are required for continuous tumour
growth and metastatic potential [36, 249, 252].
3. Immune cells

The immune infiltrate can be composed of a variety
of different cell types. These cell populations can
have both pro- and anti-tumour functions, and can
vary in their activation status and their localisation
within the tumour. Innate (macrophages, dendritic
cells, myeloid-derived suppressor cells (MDSCs),
natural killer cells, etc.) and adaptive (T and B cells)
immune system components play major roles in the
regulation of tumour growth [257, 258]. Although
immune cells have commonly been accepted to exert
anti-tumour responses, mechanisms of immune
suppression can prevent this process. These immune
suppression networks include the immunosuppressive
cells such as tumour-associated macrophages (TAM),
MDSCs, and regulatory T cells, and the immunosup-
pressive cytokines, TGF-β and interleukin-10 (IL-10)
[259]. Cancer cells interact with the immune system,
and can either reduce its intrinsic immunogenicity or
induce tolerance [249, 260, 261].
This tumour-host immune relationship is referred to
as ‘cancer immunoediting’, which is described by
three phases: 1) elimination, 2) equilibrium, and 3)
escape. In the elimination phase, highly immunogenic
transformed cells are immediately recognised and
destroyed by both the innate and adaptive immune
systems. In the equilibrium phase, some tumours
elude the initial host defences and coexist with the
adaptive immune system. In this phase, tumours try
to grow but they are inhibited by the immune
system. The third phase, tumour escape, is mediated by
antigen loss, immunosuppressive cells (TAM, MDSCs,
and regulatory T cells), and immunosuppressive
cytokines (TGF-β and IL-10). Various types of
immunotherapy try to shift the tumour from the
escape phase and equilibrium phase to the elimination
phase [36, 261]. Heterogeneity in the tumour immune
system is associated with various factors, including
CAF-secreted factors, vasculature permeability, and
the tumour cells themselves [249].
Changes in TME by IR
IR can elicit various changes in the TME, such as CAF
activity-mediated ECM remodelling and fibrosis, cycling
hypoxia, and an inflammatory response [87, 249–253]
(Fig. 3). IR activates CAFs to promote the release of
growth factors and ECM modulators, including TGF-β
and MMP. TGF-β is a major CAF-secreted factor [87,
255, 256]. TGF-β directly influences tumour cells and
CAFs, promotes tumour immune escape, and activates



Fig. 3 IR-induced side effects on cancer cells and the tumour microenvironment (TME). Radiotherapy has the paradoxical side-effect of increasing
tumour aggressiveness. IR promotes ROS production in cancer cells, which may induce the activation of oncogenes and the inactivation of
tumour suppressors, which further promote oncogenic metabolism. Metabolic alterations are involved in tumour progression, and include growth,
invasion, metastasis, and the acquisition of the CSC phenotype, thereby contributing to tumour recurrence and distant metastasis. Given that IR
induces EMT and CSC properties in cancer cells, it is possible that IR-induced oncogenic metabolism is required for the acquisition of the EMT
and CSC phenotypes. IR can also elicit various changes in the TME, such as: 1) the emergence of cancer-associated fibroblasts (CAFs), activity-
mediated extracellular matrix (ECM) remodelling, and fibrosis, 2) cycling hypoxia, and 3) an inflammatory response. IR activates cancer-associated
fibroblasts (CAFs) to promote the release of growth factors, including transforming growth factor-β (TGF-β), and extracellular matrix (ECM) modulators,
including matrix metalloproteinase (MMP). TGF-β directly affects tumour cells and CAFs, enhances tumour immune escape, and activates hypoxia-inducible
factor-1 (HIF-1) signalling. MMPs degrade the ECM, facilitating tumour invasion and metastasis. IR can also cause damage to the vascular endothelial cells
(EC), leading to hypoxia that further promotes HIF-1 signalling. HIF-1 increases the expression of vascular endothelial growth factor (VEGF) and chemokine
(C-X-C motif) ligand 12 (CXCL12), both of which induce angiogenesis and vasculogenesis. IR also upregulates integrins on ECs that enhance survival and
confer radioresistance. Although IR activates an antitumour immune response, this signalling is frequently suppressed by tumour escape mechanisms (such
as programmed cell death protein 1 ligand 1 [PDL1] signalling) and by suppressive immune cells (regulatory T cells [Treg], myeloid-derived suppressor cells
[MDSC], and tumour-associated macrophages [TAM]), which are relatively less radiosensitive than other lymphocyte subsets. These IR-mediated changes in
the TME may constitute additional adverse effects of IR on the patient by promoting angiogenesis, invasion, metastasis, and radioresistance
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HIF-1 signalling [87, 252, 255]. MMPs degrade ECM
that facilitates angiogenesis, tumour cell invasion, and
metastasis [262]. IR also promotes MMP-2/9 activation
in cancer cells to promote EMT, invasion, and metastasis
[54, 106, 263–266]. IR enhances MMP-2 transcription
and protein secretion by activating the EGFR/p38/Akt
and EGFR/PI3K/Akt signalling pathways, which enhance
the invasion of glioma cells [106]. IR-induced Snail
increases MMP-2 expression to promote EMT [54]. IR
also increases MMP-9 expression by activating the
PI3K/Akt/NF-κB pathway, which enhances hepatocellu-
lar carcinoma cell invasion [263]. IR-induced MMP-2/
MMP-9 expression not only degrades ECM proteins, but
also cleaves latent TGF-β1 to activate the TME [266].
IR can also damage endothelial cells, resulting in

hypoxia that further promotes HIF-1 signalling. HIF-1
induces angiogenesis and vasculogenesis through the
upregulation of VEGF and CXCL12 [75, 267–271].
VEGF is known to be induced by various upstream
activators, such as environmental cues, growth factors,
cytokines, hormones, and oncogenes. IR increases VEGF
expression by upregulating HIF-1α and NF-κB in prostate
cancer [269, 270]. As mentioned above, IR also induces
the reoxygenation of hypoxic cancer cells to activate HIF-
1 signalling. IR-induced reoxygenation also enhances the
translation and secretion of HIF-1-regulated genes and
VEGF, thereby increasing endothelial cell radioresistance
[77]. Inhibition of HIF-1α/VEGF-A signalling enhances
radiosensitivity [271]. Notably, the hypoxic regions of tu-
mours can function as a refuge for CSCs, and increase
their survival during chemotherapy. In addition, stem cell-
like properties could be induced by paracrine signalling
from endothelial cells, thereby increasing chemoresistance
[249]. Furthermore, IR also upregulates integrins on endo-
thelial cells, which enhances their survival and confers
radioresistance [249, 252].
Endothelial cell damage also leads to initiation of in-

flammatory signalling and increased attraction of innate
immune cells [75, 267, 268]. Although IR stimulates an
immune response by inducing damage-associated mo-
lecular pattern (DAMP) and NKG2D signalling in cancer
cells, this signalling is frequently suppressed by regula-
tory T cells, which leads to immune tolerance. Other
tumour escape mechanisms, such as programmed cell
death protein 1 ligand 1 (PDL1) signalling and MDSC/
TAM-derived IL-10 immunosuppression, also remain
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intact. In addition, after radiotherapy, the number of these
locally immunosuppressive cells (TAM, MDSCs, and
regulatory T cells) is relatively high owing to their lower
radiosensitivity compared to other lymphocyte subsets
[252, 260, 261].
These IR-mediated changes in the TME may be add-

itional adverse effects of IR by promoting radioresistance,
tumour recurrence, and metastasis. The roles of the TME
in determining radiotherapy outcomes have been reviewed
elsewhere, and are not discussed in detail here.

The roles of EMT, CSC, and oncogenic metabolism in
radioresistance
More than half of cancer patients receive radiotherapy,
with varying success. The dose of IR delivered to the
tumour is limited by the risk of damage to the surrounding
normal tissues. Therefore, radiation therapy aims to minim-
ise the toxicity to normal tissues in the first approach, while
maximising doses to cancer cells in the second approach.
Three main biological factors of tumours can influence
treatment outcome: 1) the intrinsic radioresistance of the
cancer cells, 2) the repopulation capacity of surviving can-
cer cells during the intervals between treatments, and 3)
the degree of hypoxia in the tissue environment [4, 272].
Radioresistance has been shown to arise from the acti-

vation of several different pathways, including survival
pathways (PI3K/Akt, ERK), DNA DSB repair pathways
(homologous recombination and non-homologous end-
joining [NHEJ]), glycolysis, and autophagy. Radioresistance
has also been shown to arise from the induction of cell
cycle redistribution, and the inactivation of the apoptosis
pathway, that follows exposure to radiation [272–275].
EMT, CSCs, and oncogenic metabolism play important
roles in the development of cancer radioresistance by acti-
vating these pathways. Understanding these mechanisms is
important to be able to develop new strategies to enhance
cancer radiotherapy.

The roles of EMT signalling pathways in radioresistance
EMT has been shown to confer resistance to radiation
and chemotherapy in many cancers [273–277]. After IR,
surviving cells exhibit an EMT phenotype with upregula-
tion of EMT markers, including Snail, Slug, ZEB1, Twist1,
vimentin, and N-cadherin, in lung adenocarcinoma cells
[277]. Cells undergoing EMT also exhibit increased radio-
resistance by acquiring stem-like properties, preventing
apoptosis, enhancing survival pathways, and activating sig-
nalling pathways involved in cell cycle progression and
DNA damage repair [273–275].
EMT-promoting transcription factors, including Snail,

Slug, ZEB1, and ZEB2, are known to be associated with
radioresistance [43, 278–286]. Snail is known to play im-
portant roles in radioresistance by inhibiting p53-mediated
apoptosis, activating survival pathways, and inducing stem
cell properties [278, 279]. IR induces apoptosis by upregu-
lating the p53 target gene PTEN, a negative regulator of the
PI3K/Akt survival pathway. Snail protein is stabilised by IR
and subsequently binds to the PTEN promoter that inhibit
p53 binding to the PTEN promoter. Thus, Snail prevents
IR-mediated PTEN upregulation and activates the Akt
pathway, thereby increasing radioresistance [278].
Slug is also known to be involved in radioresistance by

inhibiting p53-mediated apoptosis and activating stem
cell properties [279–282]. Slug knockout mice exhibited
increased radiosensitivity [280, 281]. IR upregulates Slug
by activating p53; Slug then directly represses p53-target
gene PUMA transcription, thereby preventing IR-induced
apoptosis [281]. Slug also induces CSC activity and
radioresistance [279, 282]. Long non-coding RNA MALAT1
regulates Slug expression by reciprocally repressing miR-1,
which contributes to CSC activity and radioresistance [282].
IR-induced Snail and Slug also promote EMT and stem cell
properties, and they suppress p53-mediated apoptosis [279].
All these events help cancer cells to escape to newer and less
adverse niches, generate the critical tumour mass necessary
to form macrometastases, and survive under stress condi-
tions in the primary tumour [279].
In addition, ZEB1 and ZEB2 have been associated

with radioresistance [283–286]. ZEB1 is known to con-
fer radioresistance by activating DNA damage repair
pathways [283]. IR-induced DNA damage increases
ATM activation that stabilises ZEB1. ZEB1, in turn, dir-
ectly binds to USP7 deubiquitinase to stabilise CHK1,
thereby activating the recombination-dependent DNA
repair response. ZEB1 inhibition enhances radiosensi-
tivity, but has no effect on EMT [283]. Consistent with
this observation, ZEB2 also protects cancer cells from
IR-induced apoptosis by inhibiting ATM/ATR activation
in an EMT-independent manner [285]. These observa-
tions suggest EMT-independent roles for these transcrip-
tion factors in radioresistance, but contradictory evidence
also exists: ZEB1-induced EMT is involved in the radiore-
sistance of nasopharyngeal carcinoma cells [284]. There-
fore, further studies are needed to precisely determine the
contribution of EMTand EMT-inducing transcription fac-
tors in responses to cancer therapy.
The signalling pathways involved in EMT, including those

of TGF-β, Wnt, Notch, Hedgehog, and EGFR, are also
known to be involved in radioresistance [90, 287–302].
TGF-β has been shown to play critical roles in radioresis-
tance by inducing CSC properties and by activating DNA
repair pathways [287–291]. TGF-β is known to promote
IR-induced self-renewal pathways, including Notch1, and
to induce effective DNA damage responses that lead to the
radioresistance of glioblastoma-initiating cells [288]. TGF-β
activates the NHEJ DNA repair pathway upon IR, by upreg-
ulating LIG4 (a DNA ligase in DNA DSB repair), thereby
protecting cells from IR [290].
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It is generally agreed that TGF-β switches from a tumour
suppressor (in an early stage of tumourigenesis) to a
tumour promoter (in a later stage of tumourigenesis)
[37, 38]. Thus, the role of the TGF-β pathway in radio-
therapy is still a matter of debate. However, inhibition
of TGF-β signalling has been shown to increase radio-
sensitivity in vitro and enhance IR-induced tumour
growth delay in vivo [287]. Inhibition of TGF-β also
prevents IR-induced metastases in tumour-bearing mice
[90]. In addition, increased circulating TGF-β levels during
radiotherapy have been strongly correlated with poor
prognoses for patients with non-small cell lung
cancer [291].
Wnt/β-catenin signalling has been shown to confer

radioresistance by enhancing stemness, by activating
survival pathways, and by activating DNA damage repair
pathways [292–296]. High Wnt signalling activity is as-
sociated with increased stemness and radioresistance in
colorectal cancer cells and intestinal stem cells [296]. IR
selectively increases β-catenin expression and nuclear
localisation in progenitor cells, but not in nonprogenitor
cells. β-catenin then enhances cell survival, partly by up-
regulating survivin, an apoptosis inhibitor [292, 293]. β-
catenin also promotes the self-renewal of progenitor
cells [293]. These behaviours may lead to increases in
the IR-induced enrichment of progenitor cells, and may
further enhance their radioresistance [292]. In addition,
β-catenin activates the NHEJ DNA repair pathway by
directly promoting LIG4 transcription, thereby increas-
ing radioresistance [296]. Supporting this observation,
nuclear β-catenin expression has been highly correlated
with poor outcomes after radiotherapy in patients with
cervical squamous cell carcinoma [294].
In addition, Notch signalling is associated with radio-

resistance by preventing apoptosis and enhancing sur-
vival pathways. Notch signalling confers radioresistance
to glioma cells by activating the PI3K/Akt pathway and
increasing expression of Mcl-1, an anti-apoptotic Bcl-2
family protein [297]. Akt activation is also mediated by
EGFR signalling, and also increases radioresistance [298].
The PI3K/Akt/mTOR pathway promotes the EMT and
CSC phenotypes via elevated levels of Snail, thereby
increasing radioresistance [299]. Increased Akt Ser
(473) phosphorylation and mTORC1 protein expres-
sion are also associated with enhanced EMT and
radioresistance [301].
Furthermore, Hedgehog signalling is involved in

radioresistance [302]. GLI1 proteins are the transcrip-
tion factors of the Hedgehog effector. IR triggers the
mTOR/S6K1 pathway that increases expression and nu-
clear translocation of GLI1, accompanied by increased
expression of Snail. These events and components me-
diate radioresistance and IR-induced tumour repopula-
tion in vivo [302].
The roles of CSC signalling pathways in radioresistance
Several lines of evidence support the assertion that CSCs
are implicated in radioresistance [126–129, 303–306].
Clinical studies showed that the expression of CSC
markers, including CD44, CD133, and ALDH1, is corre-
lated with a poor prognosis after radiotherapy in patients
with lung and larynx cancer [303, 304]. The radioresistance
of CSCs is associated with both the intrinsic properties of
CSCs (increased DNA repair capability, cell cycle status,
upregulated ROS scavengers, inhibited apoptosis, induced
autophagy, induced survival pathways) and the adaptive
responses of CSCs that are caused by IR and by micro-
environmental changes (e.g., changes in endothelial
cells, ECM, cytokine levels, NO levels, oxygen levels)
[198, 305, 307–315]. As mentioned above, CSCs can ex-
hibit additional metabolic reprogramming in response to
cancer treatment, and this can lead to adaptive and ac-
quired resistance [198]. IR can also modify the TME, and
these factors affect the IR response of CSCs [305].
In particular, CSCs exhibit several biological features

that are responsible for resistance to conventional anti-
tumour therapies. CSCs commonly express high levels of
genes involved in DNA damage response (ATM, SMC1,
CHK1, CHK2, p53) and in DNA DSB repair pathways, in-
cluding homologous recombination genes (BRCA1, Exo1,
Rad51, Rad52) and genes involved in NHEJ (XLF), that
contribute to radioresistance [307–311]. In addition, over-
expression of stem cell factors, such as ALDH, increases
the clonogenic capacity of CSCs and decreases their growth
rates, thereby also conferring radioresistance [312].
ROS scavengers are also highly expressed in the CSCs in

some tumours, and these protect them from ROS-induced
damage [313, 314]. Pharmacological depletion of ROS scav-
engers decreases the colony-forming ability of CSCs and
enhances their radiosensitivity, indicating that ROS levels
are involved in CSC radioresistance [313].
In addition, regulation of the apoptosis and survival

pathways is involved in CSC radioresistance. CD133+ liver
CSCs exhibit elevated levels of anti-apoptotic Bcl-2, and
show activation of the PI3K and ERK pathways, compared
with CD133- cells [314]. Furthermore, autophagy is impli-
cated in CSC radioresistance. IR induces a larger degree of
autophagy in CD133+ CSCs, with upregulation of the
autophagy-related proteins LC3, ATG5, and ATG12, as
compared with CD133- cells. Inhibition of autophagy en-
hances the radiosensitivity of CD133+ CSCs, suggesting a
role for autophagy in radioresistance [315].

The roles of oncogenic metabolism signalling pathways in
radioresistance
Metabolic alteration leads to adaptive and acquired resist-
ance to cancer treatment. Accumulating evidence suggests
that alterations in cancer cell metabolism are associated
with radioresistance [245, 316–329]. Radioresistant cells
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have been shown to exhibit the Warburg effect, with in-
creased glucose uptake and decreased mitochondrial
oxidative phosphorylation to support their growth
[245]. Consistent with this observation, mitochondrial
respiration-deficient ρ(0) cells are more resistant to ra-
diation than ρ(+) cells [317].
High glucose levels are also known to prevent IR-

induced cell death and to promote EMT by increasing
levels of the DANGER protein (also known as ITPRIP or
‘inositol 1,4,5-trisphosphate receptor [IP3R] interacting
protein’), resulting in radioresistance [322]. DANGER is
known to bind directly to death-associated protein kin-
ase (DAPK) and disrupts the catalytic activity of DAPK,
which mediates anoikis (anchorage-dependent apop-
tosis). IR increases DAPK activity, which enhances p53
transcriptional activity, which leads to anoikis. High glu-
cose levels upregulate DANGER and inhibit DAPK activ-
ity, which prevents anoikis and promotes EMT, thereby
increasing radioresistance. Much clinical evidence has
supported the assertion that high glucose uptake in a
tumour translates to a poor prognosis for the patient
[322]. Thus, inhibition of the glycolytic switch could be
a promising therapeutic strategy for treating many can-
cers, by enhancing their radiosensitivity [320, 323–328].
In addition, glutamine metabolism has been shown to

play critical role in radioresistance. Glutamate is a pre-
cursor for glutathione synthesis, which regulates redox
homeostasis and thereby contributes to cellular defense
systems. Thus, inhibition of GLS markedly enhances the
radiosensitivity of cancer cells, suggesting an important
role of glutamine metabolism in radioresistance [329].
Because the same metabolic pathways are required for
both proliferating normal cells and proliferating cancer
cells, understanding the molecular mechanisms of cancer
metabolism opens a new therapeutic window to the devel-
opment of better and more successful cancer treatments,
by enabling the targeting of oncogenic metabolic pathways.

Conclusions
Many types of therapy are used to treat cancer, including
surgery, chemotherapy, and ionizing radiation (IR) ther-
apy. IR is a major therapeutic tool for treating a variety
of malignant tumours. However, IR paradoxically also
enhances the migration and invasiveness of cancer cells
by inducing EMT. IR induces stromal, vascular, and im-
munological changes in the TME that present additional
adverse effects for the cancer patient by promoting
tumour recurrence and metastasis. These side effects are
also commonly observed after chemotherapy.
Cancer cells that undergo EMT not only exhibit en-

hanced metastatic ability, but also acquire stemness and
metabolic alterations. EMT, CSCs, oncogenic metabol-
ism, and the TME have all been shown to play important
roles in determining cancer treatment outcomes. It is
now understood that metabolic changes are associated
with malignant transformation, tumour invasion, and
metastasis. Oncogenic metabolism has been shown to
drive the EMT and CSC phenotypes; these changes may
cause resistance to radiotherapy and promote tumour
recurrence. Supporting this view, dysregulated metabol-
ism is known to have played important roles in the evo-
lution of cell motility. Cells with higher metabolic rates
evolve to have increased motility in premalignant neo-
plasms, and this may enable cells to preadapt for subse-
quent invasion and metastasis [330].
Thus, targeting CSCs, EMT, and oncogenic metabolic

pathways may reduce primary tumour recurrence, pre-
vent invasion, and prevent distant metastasis. For ex-
ample, inhibition of TGF-β signalling with a selective
inhibitor of ALK5 seems to enhance radiosensitivity by
preventing EMT, disrupting self-renewal capabilities,
blocking the DNA damage response, and increasing
apoptosis [331–333]. Blocking Akt with an inhibitor,
such as GSK690693, may also prove useful in suppress-
ing IR-induced EMT and increasing radiosensitivity [71].
A dual PI3K/mTOR inhibitor, BEZ235, is also known to
enhance the radiosensitivity of prostate cancer cells with
reduced EMT/CSC phenotypes [299].
IR can increase ROS production, which can loop back

and mediate most of the biological effects of IR itself
[12–19]. ROS have been closely associated with tumori-
genesis and tumour progression. High levels of ROS
trigger cell death by causing irreversible damage to cel-
lular components such as proteins, nucleic acids, and
lipids, whereas low levels of ROS have been shown to
promote tumour progression via growth, invasion, and
metastasis [46–52]. Thus, this review suggests that IR-
induced ROS may play important roles in the induction
of EMT, CSCs, and oncogenic metabolic pathways as
undesired side effects. Notably, cancer cells express high
levels of antioxidant proteins to detoxify themselves
against ROS [47, 49, 51]. Therefore, use of radiotherapy
must include considerations of the unique redox status
of the target tumour.
p53 is one of the most important tumour suppressors.

It is well known that p53 is activated in response to IR-
induced DNA damage; p53 induces growth arrest, apop-
tosis, or senescence-like, irreversible growth-arrest in
cancer cells, and these actions constitute the therapeutic
effects of IR [8–11]. A recent study showed that ele-
phants are cancer-resistant, potentially because of their
multiple copies (40 alleles) of TP53, compared with the
smaller number of copies (2 alleles) in humans. Thus, in
response to IR-induced DNA damage, elephant cells ex-
hibit higher rates of apoptotic death than human cells,
suggesting a role for tumour suppressor p53 in cancer
resistance [334]. In addition, while wild-type p53 is a
tumour suppressor, the mutant form of p53 has been
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shown to represent not just a loss-of-function phenotype of
the protein, but also a gain-of-function phenotype in terms
of pro-oncogenic activities [335]. Interestingly, a recent
study showed an opposite result, in which IR-induced p53
played an important role in the development of lymph-
omas. After IR, p53 promoted bone marrow cell death; this
created a favourable environment for the expansion of
tumour-initiating cells in the thymus, by decreasing cell
competition from the bone marrow. Through this
mechanism, p53 promoted the IR-induced development
of lymphoma [336]. Thus, radiotherapy needs to be care-
fully considered regarding its effects on p53.
This review concludes that IR can induce EMT, CSCs,

and oncogenic metabolism in many cancer cells, as a
side-effect; several other studies also raise the possibility
that IR causes unwanted side effects. Therefore, a better
understanding of the mechanisms involved in IR-induced
EMT, CSCs, and oncogenic metabolism may help improve
the effectiveness of radiotherapy.
Furthermore, after chemotherapy, surviving cells have

been shown to display EMT and CSC phenotypes, onco-
genic metabolism, and additional metabolic reprogram-
ming. Similar roles for the EMT and CSC phenotypes,
and for oncogenic metabolism, have been demonstrated
in cancer cell chemoresistance. Chemotherapy is known
to induce the EMT and CSC phenotypes [163, 337–342].
EMT leads cancer cells to become quiescent circulating
tumour cells (CTCs) that enter the bloodstream. These
CTCs are transformed into CSCs that display both the
EMT phenotype and chemoresistance. Thus, surviving
CSCs repopulate the tumour and cause a relapse [337].
For example, cisplatin-resistant cancer cells are known
to display enhanced EMT features and CSC properties,
via the activation of the Akt/β-catenin/Snail signalling path-
way [341]. Chemotherapy is also known to induce meta-
bolic alterations [343–347]. For example, taxol-resistant
breast cancer cells exhibit higher LDHA expression and
activity than do taxol-sensitive cells. Inhibition of LDHA
can resensitise these resistant cells to taxol, suggesting a
role for metabolic alteration in chemoresistance [345]. Fur-
thermore, chemotherapy can induce the reverse Warburg
effect [348–351]; chemotherapy drives stromal fibroblasts
to become CAFs that subsequently exhibit the glycolytic
switch, activating the HIF-1, STAT3, TGF-β, JNK/AP1, and
NF-κB pathways. These CAFs, in turn, set up synergistic
relationships with adjacent epithelial cancer cells to
acquire stemness [350]. Therefore, chemotherapy also
causes undesired side effects in cancer cells by indu-
cing EMT, CSCs, and oncogenic metabolic pathways,
in a manner similar to IR. In the long term, any thera-
peutic strategy that affects EMT/CSC/oncogenic
metabolic behaviour will require patient-personalized
considerations of how to best utilize radiotherapy and
chemotherapy.
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