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Abstract Bottleneck congestion games properly model the properties of many real-
world network routing applications. They are known to possess strong equilibria—a
strengthening of Nash equilibrium to resilience against coalitional deviations. In this
paper, we study the computational complexity of pure Nash and strong equilibria in
these games. We provide a generic centralized algorithm to compute strong equilibria,
which has polynomial running time for many interesting classes of games such as, e.g.,
matroid or single-commodity bottleneck congestion games. In addition, we examine
the more demanding goal to reach equilibria in polynomial time using natural improve-
ment dynamics. Using unilateral improvement dynamics in matroid games pure Nash
equilibria can be reached efficiently. In contrast, computing even a single coalitional
improvement move in matroid and single-commodity games is strongly NP-hard. In
addition, we establish a variety of hardness results and lower bounds regarding the
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duration of unilateral and coalitional improvement dynamics. They continue to hold
even for convergence to approximate equilibria.

Keywords Bottleneck congestion games · Computation of strong equilibria ·
Improvement dynamics

Mathematics Subject Classification 91A10 Noncooperative games · 91A46
Combinatorial games · 91-08 Computational methods · 90B18 Communication
networks

1 Introduction

One of the central challenges in algorithmic game theory is to characterize the compu-
tational complexity of equilibria. Results in this direction yield important indicators if
game-theoretic solution concepts are plausible outcomes of competitive environments
in practice. Probably the most prominent stability concept in (non-cooperative) game
theory is the Nash equilibrium—a state, from which no player wants to unilaterally
deviate—and its complexity has been under increased scrutiny for quite some time. A
drawback of Nash equilibrium is that in general it exists only in mixed strategies. There
are, however, practically important classes of games that allow pure Nash equilibria
(PNE), most prominently congestion games. In a congestion game [41], there is a set
of resources, and the pure strategies of players are subsets of this set. Each resource
has a delay function depending on the load, i.e., the number of players that select strat-
egies containing the respective resource. The individual cost for a player in a ordinary
congestion game is given by the sum over the delays of the resources in his strategy.

Congestion games are an elegant model to study the effects of resource usage and
congestion with strategic agents. They have been used frequently to model competitive
network routing scenarios [42]. For these games the complexity of exact and approx-
imate PNE is now well-understood. A detailed characterization in terms of, e.g., the
structure of strategy spaces [2,18] or the delay functions [8,11,45] has been derived.
However, ordinary congestion games have shortcomings, especially as models for the
prominent application of routing in computer networks. The throughput of a stream
of packets is usually determined by the delay experienced due to available bandwidth
or capacity of links. Here the throughput of a player is closely related to the perfor-
mance of the most congested (bottleneck) link (see, e.g., [6,12,31,40]). A model that
captures this aspect more realistically are bottleneck congestion games, in which the
individual cost of a player is the maximum (instead of sum) of the delays in his strat-
egy. Despite being a more realistic model for network routing, they have not received
similar attention in the literature. For classes of non-atomic (with infinitesimally small
players) and atomic splittable games (finite number of players with arbitrarily split-
table demand) existence of PNE and bounds on the price of anarchy were considered
in [12,36]. For atomic games with unsplittable demand PNE do always exist [6]. In
fact, Harks et al. [25] establish the finite improvement property via a lexicographic
potential function. Interestingly, they are able to extend these conditions to hold even
if coalitions of players are allowed to change their strategy in a coordinated way. This
implies that bottleneck congestion games do admit even (pure) strong equilibria (SE),
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Computing pure Nash and strong equilibria 195

a solution concept introduced by Aumann [5]. In an SE, no coalition (of any size) can
deviate and strictly decrease the individual cost of each member. Every SE is a PNE,
but the converse holds only in special cases (e.g., for singleton games [28]).

SE represent a very robust and appealing stability concept. In general games, how-
ever, they are quite rare, which makes the existence guarantee in bottleneck congestion
games even more remarkable. For instance, even in dominant strategy games such as
the Prisoner’s Dilemma there might be no SE. Not surprisingly, for ordinary conges-
tion games with linear aggregation the existence of SE is not guaranteed [28,32] and,
in fact, NP-hard to decide [27]. The existence of PNE and SE in bottleneck congestion
games raises a variety of important questions regarding their computational complex-
ity. In which cases can PNE and SE be computed efficiently? As the games have the
finite improvement property, another important issue is the duration of natural (coa-
litional) improvement dynamics. More fundamentally, it is not obvious that even a
single such coalitional improving move can be found efficiently. These are the main
questions that we address in this paper.

1.1 Our results

We examine the computational complexity of PNE and SE in bottleneck congestion
games. In Sect. 2 we focus on computing PNE and SE using (centralized) algorithms.
Our first main result is a generic algorithm that computes an SE for any bottleneck
congestion game. The algorithm iteratively decreases capacities on the resources and
relies on a strategy packing oracle. The oracle decides if a given set of capacities
allows to pack a collection of feasible strategies for all players and outputs a feasible
packing if one exists. The running time of the algorithm is essentially determined by
the running time of this oracle, i.e., the problem of computing SE can be reduced to
solving the strategy packing problem. As a characterization we also prove the reverse
direction: The class of set packing problems addressed by strategy packing oracles can
be solved efficiently if we can efficiently compute SE in bottleneck congestion games.
A slight drawback is that the games constructed in this reduction exhibit a slightly
different combinatorial structure than the packing problem. For the case of two players
we can circumvent this problem and show polynomial equivalence between packing
and SE computation even when we fix the underlying combinatorial structure.

In terms of complexity, we prove a number of upper and lower bounds for specific
classes of games. For upper bounds we focus on three classes of games: single-com-
modity networks, branchings, and matroids (see Sect. 2.2 for the definition of sin-
gle-commodity networks and branchings and Sect. 1.3 for the definition of matroids).
Single-commodity network games represent a natural and frequently studied class of
network routing. Branchings model a natural scenario when players strive to imple-
ment a broadcast from a set of source nodes to all other nodes in the network. Finally,
matroid games have been studied prominently in ordinary congestion games [2] and
represent a straightforward extension of the popular singleton case. In all these cases,
there are strategy packing oracles that can be implemented in polynomial time. Thus,
our generic algorithm yields an efficient algorithm to compute SE for all these classes
of games. For general games, however, we show that the problem of computing an SE
is NP-hard, even in two-commodity networks.
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In Sect. 3 we study the duration and complexity of sequential improvement dynam-
ics that converge to PNE and SE. Note that quick convergence (i.e., in a polynomial
number of rounds) implies efficient computation. Therefore, we focus particularly on
the classes of games, for which we found positive results in terms of computation. In
particular, we first observe that for every matroid bottleneck congestion game a variant
of best response dynamics presented in [2] called “lazy best response” converges in
polynomial time to a PNE. In contrast to this positive result for unilateral dynamics,
we show that it is NP-hard to decide if a coalitional improving move exists, even for
matroid and single-commodity network games, and even if the deviating coalition is
fixed a priori. This highlights an interesting contrast for these two classes of games:
While there are polynomial-time algorithms to compute an SE, it is impossible to
decide efficiently if a given state is an SE—the decision problem is co-NP-hard.

For more general games, we observe in Sect. 3.2 that constructions of [45] regard-
ing the hardness of computing PNE in ordinary games can be adjusted to yield similar
results for bottleneck games. In particular, in (a) symmetric games with arbitrary delay
functions and (b) asymmetric games with bounded-jump delay functions computing
a PNE is PLS-complete. In addition, we show that in both cases there exist games
and starting states, from which every sequence of improvement moves to a PNE is
exponentially long. We extend this result to the case when moves of coalitions of size
O(n1−ε) are allowed, for any constant ε > 0. In addition, we observe that all of these
hardness results generalize to the computation of α-approximate PNE and SE (see
Sect. 1.3 for the definition), for any polynomially bounded factor α.

We conclude the paper in Sect. 4 by outlining some interesting open problems
regarding the convergence to approximate equilibria.

1.2 Related work

Congestion games (in the ordinary sense) were introduced by Rosenthal [41] and fur-
ther characterized by Monderer and Shapley [38]. Holzman and Law-Yone [28] studied
the existence of SE in congestion games with monotone increasing delay functions.
They showed that SE need not exist in such games and gave a structural characteriza-
tion of the strategy space for symmetric (and quasi-symmetric) congestion games that
admit SE. They also introduced the concept of a strong potential function: a function
on the set of states that decreases for every profitable deviation of a coalition. More
recently, Hoefer and Skopalik [27] showed that deciding existence of SE in congestion
games is NP-hard, even for two players, and even in games which are both matroid
and single-commodity network games. Rozenfeld and Tennenholtz [43] explored the
existence of (correlated) SE in congestion games with non-increasing delay functions.
Exact and approximate SE have also been considered in other games, e.g., in cost
sharing congestion games [3,17,34].

A generalization of congestion games has been proposed by Milchtaich [37], where
he allows for player-specific delay functions on the resources (see also [1,24,27,35]
for subsequent work on (weighted) congestion games with player-specific delay func-
tions). For games with singleton strategies and monotonic delay functions, Milchtaich
proves existence of PNE. As shown by Voorneveld et al. [47], the singleton games
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considered by Milchtaich are equivalent to the games considered by Konishi et al. [32].
This is worth noting as they established existence of SE in such games. Closely related,
Andelman et al. [4] considered scheduling games on unrelated machines and proved
that the load-lexicographically minimal schedule is an SE. Efficiency of strong equilib-
ria in scheduling games has been studied by Fiat et al. [21], and notions of approximate
strong equilibria were analyzed by Feldman and Tamir [19].

Bottleneck congestion games with network structure have been considered by Ban-
ner and Orda [6]. They proved existence of PNE in the unsplittable and splittable flow
settings. Harks et al. [25] considered a generalization of bottleneck congestion games
and proved that these games possess the strong finite improvement property. Epstein
et al. [16] characterized network topologies for both ordinary and bottleneck network
congestion games such that in the resulting games all PNE are socially optimal. The
price of anarchy for PNE in bottleneck congestion games was studied in [9,14,30].

Bottleneck routing with non-atomic players and elastic demands has been stud-
ied by Cole et al. [12], who derived bounds on the price of anarchy. For subsequent
work on the price of anarchy in bottleneck routing games with atomic and non-atomic
players, we refer to the paper by Mazalov et al. [36].

1.3 Preliminaries

Bottleneck congestion games are strategic games G = (N ,S, (ci )i∈N ), where N =
{1, . . . , n} is the non-empty and finite set of players, S = ×i∈N Si is the non-empty
set of states or strategy profiles, and ci : S → N is the individual cost function that
specifies the cost value of player i for each state S ∈ S. A game is called finite if S is
finite. For the sake of a clean mathematical definition, we define strategies and costs
using the general notion of a congestion model. A tuple M = (N , R,S, (dr )r∈R)

is called a congestion model if N = {1, . . . , n} is a non-empty, finite set of players,
R = {1, . . . , m} is a non-empty, finite set of resources, and S = ×i∈N Si is the
set of states or profiles. For each player i ∈ N , the set Si is a non-empty, finite set
of pure strategies Si ⊆ R. Given a state S, we define �r (S) = |{i ∈ N : r ∈ Si }|
as the number of players using r in S. Every resource r ∈ R has a delay function
dr : S → N defined as dr (S) = dr (�r (S)). In this paper, all delay functions are
non-negative and non-decreasing. Delay function dr satisfies the β-bounded-jump
condition if dr (x + 1) ≤ β · dr (x) for any x ≥ 1. A congestion model M is called
matroid congestion model if for every i ∈ N there is a matroid Mi = (R, Ii ) such
that Si equals the set of bases of Mi . We denote by rk(M) = maxi∈N rk(Mi ) the
rank of the matroid congestion model. (Bottleneck) congestion games corresponding
to matroid congestion models will be called matroid (bottleneck) congestion games.
Matroids exhibit numerous nice properties, some of which are summarized in the
Appendix A.1. For a comprehensive overview see standard textbooks [33, Chapter
13] and [44, Chapters 39–42].

Let M be a congestion model. The corresponding bottleneck congestion game
is the strategic game G(M) = (N ,S, (ci )i∈N ) in which ci is given by ci (S) =
maxr∈Si dr

(
�r (S)

)
. We drop M whenever it is clear from context. We define the cor-

responding ordinary congestion game in the same way, the only difference is that
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ci (S) = ∑
r∈Si

dr
(
�r (S)

)
. For a coalition C ⊆ N we denote by −C its complement

and by SC = ×i∈CSi the set of states of players in C . A pair
(
S, (S′

C , S−C )
) ∈ S×S

is called an α-improving move of coalition C if ci (S) > αci (S′
C , S−C ) for all i ∈ C

and α ≥ 1. For α = 1 we call
(
S, (S′

C , S−C )
)

an improving move (or profitable devia-
tion). A state S is a k-strong equilibrium (k-SE), if there is no improving move (S, ·)
for a coalition of size at most k. We say S is a strong equilibrium (SE) if and only if it
is an n-SE. Similarly, S is a pure Nash equilibrium (PNE) if and only if it is a 1-SE.
We call a state S an α-approximate SE (PNE) if no coalition (single player) has an
α-improving move (S, ·). We denote by I (S) the set of all possible improving moves
(S, S′) to other states S′ ∈ S. We call a sequence of states (S0, S1, . . .) an improve-
ment path if every tuple (Sk, Sk+1) ∈ I (Sk) for all k = 0, 1, 2, . . .. Intuitively, an
improvement path is a path in a so-called state graph G(G) derived from G, where
every state S ∈ S corresponds to a node in G(G) and there is a directed edge (S, S′)
if and only if (S, S′) ∈ I (S).

2 Computing strong equilibria

In this section, we investigate the complexity of computing an SE in bottleneck conges-
tion games. We first present a generic algorithm that computes an SE for an arbitrary
bottleneck congestion game. It uses an oracle that solves a strategy packing problem
(see Definition 1), which we term strategy packing oracle. For games in which the
strategy packing oracle can be implemented in polynomial time, we obtain an efficient
algorithm computing an SE. We then examine games for which this is the case. In gen-
eral, however, we prove that computing an SE is NP-hard, even for two-commodity
bottleneck congestion games.

2.1 The dual greedy

The general approach of our algorithm is to introduce upper bounds ur (capacities)
on each resource r . The idea is to iteratively reduce upper bounds of costly resources
as long as the residual capacities admit a feasible strategy packing, see Definition 1
below. Our algorithm can be interpreted as a dual greedy, or worst out algorithm as
studied, e.g., in the field of network optimization, see Schrijver [44].

Definition 1 (Strategy packing oracle)
Input: Finite set of resources R with upper bounds (ur )r∈R , and n collections
S1, . . . ,Sn ⊆ 2R given implicitly by a certain combinatorial property.
Output: Sets S1 ∈ S1, . . . , Sn ∈ Sn such that |i ∈ {1, . . . , n} : r ∈ Si | ≤ ur for all
r ∈ R, or the information, that no such sets exist.

More specifically, when the algorithm starts, no strategy has been assigned to any
player and each resource can be used by n players, thus, ur = n. If r is used by n
players, its delay equals dr (n). The algorithm now iteratively reduces the maximum
resource delay by picking a resource r ′ with maximum delay dr (ur ) and ur > 0.
The number of players allowed on r ′ is reduced by one and the strategy packing ora-
cle checks, if there is a feasible strategy profile obeying the capacity constraints. If
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Computing pure Nash and strong equilibria 199

Algorithm 1: Dual greedy, the strategy packing oracle is denoted by O.
Input: Bottleneck congestion game G(M) to the model M = (N , R, S, (dr )r∈R)

Output: SE of G
set N ′ = N , ur = n, lr = 0 for all r ∈ R, and S′ = O(R, SN ′ , ur );1
while {r ∈ R : ur > 0} �= ∅ do2

choose r ′ ∈ arg maxr∈R:ur >0{dr (ur + lr )} ;3
ur ′ := ur ′ − 1 ;4

if O(R, SN ′ , ur ) = ∅ then5
ur ′ := ur ′ + 1 ;6
foreach j ∈ N ′ with r ′ ∈ S′

j do7
S j := S′

j ;8

set lr := lr + 1, ur := ur − 1 for all r ∈ S′
j ;9

N ′ := N ′\{ j} ;10
end11

end12

S′ = O(R, SN ′ , ur ) ;13
end14
return S ;15

the strategy packing oracle outputs such a feasible state S, the algorithm reiterates
by choosing a (possibly different) resource that has currently maximum delay. If the
strategy packing oracle returns ∅ after the capacity of some r ′ ∈ R was reduced to
ur ′ − 1, we fix the strategies of those ur ′ many players that used r ′ in the state the
strategy packing oracle computed in the previous iteration and decrease the bounds
ur of all resources used in the strategies accordingly. This ensures that r ′ is frozen,
i.e., there is no residual capacity on r ′ for allocating this resource in future iterations
of the algorithm. The algorithm terminates after at most n · m calls of the oracle. For
a formal description of the algorithm see Algorithm 1.

Theorem 1 Dual greedy computes an SE.

Proof Let S denote the output of the algorithm. In addition, we denote by Nk, k =
1, . . . , K , the sets of players whose strategies are determined after the strategy pack-
ing oracle (denoted by O) returned ∅ for the kth time. Clearly, ci (S) ≤ c j (S) for all
i ∈ Nk , j ∈ Nl , with k ≥ l. We will show by complete induction over k that the
players in N1 ∪ · · · ∪ Nk will not participate in any improving move of any coalition.

We start with the case k = 1. Let (ur )r∈R be the vector of capacities in the algo-
rithm after the strategy packing oracle returned ∅ in line 5 for the first time and ur ′ is
updated in line 6.

Suppose there is a coalition C ⊆ N with C ∩ N1 �= ∅ that deviates profitably from
S to T = (S′

C , S−C ). We distinguish two cases.

Case 1: �r (T ) ≤ ur for all r ∈ R. Let ũr = ur − 1, if r = r ′ and ũr = ur , else. Since
O(R,S, ũ) = ∅, at least |N1| players use r ′ in T . Using dr ′(T ) ≥ dr (S) for all r ∈ R,
we obtain a contradiction to the fact that every member of C must strictly improve.

Case 2: There is r̃ ∈ R such that �r̃ (T ) > ur̃ . Using that dual greedy iteratively
reduces the capacity of those resources with maximum delay (line 3), we derive that
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dr̃ (T ) ≥ dr (S) for all r ∈ R. Using �r̃ (T ) > ur̃ and �r (S) ≤ ur for all r ∈ R, there
is at least one player i ∈ C with r̃ ∈ S′

i , hence, this player does not strictly improve.
For the induction step k → k + 1, suppose the players in N1 ∪ · · · ∪ Nk stick to

their strategies and consider the players in Nk+1. As the strategies of the players in
N1 ∪ · · · ∪ Nk are fixed, the same arguments as above imply that no subset of Nk+1
will participate in a profitable deviation from S. �


It is worth noting that the dual greedy algorithm applies to arbitrary strategy spaces.
If the strategy packing problem can be solved in polynomial time, this algorithm com-
putes an SE in polynomial time. This follows easily because the algorithm calls the
packing oracle at most n · m times.

Corollary 1 For bottleneck congestion games in which the strategy packing problem
is polynomial-time solvable, dual greedy computes an SE in polynomial time.

While the problem of computing an SE is polynomial-time reducible to the strategy
packing problem, for general bottleneck congestion games the converse is also true.

Theorem 2 The strategy packing problem is polynomial-time reducible to the problem
of computing an SE in a bottleneck congestion game.

Proof Given an instance of the strategy packing problem Π we construct a bottle-
neck congestion game GΠ . Let Π be given as set of resources R with upper bounds
(ur )r∈R , and n collections S1, . . . ,Sn ⊆ 2R . The game GΠ consists of the resources
R ∪ {r1, . . . , rn} and the players 1, . . . , n + 1. The set of strategies of player i ∈
{1, . . . , n} is {Si ∪ {ri } | Si ∈ Si }. Player n + 1 has the strategies R and {r1, . . . , rn}.
For each resource r ∈ R the delay is 0 if used by at most ur +1 players and 2 otherwise.
For each resource r ∈ {r1, . . . , rn} the delay is 0 if used by at most one player and 1
otherwise.

If a strategy profile of players 1, . . . , n violates an upper bound ur on a resource
r ∈ R, player n+1 has delay of 2 if he plays strategy R. If he plays {r1, . . . , rn}, he and
all other players have delay of 1. Hence, if there is a feasible strategy packing, every
SE of the game yields delay 0 for every player. Otherwise, every SE yields delay 1 for
every player. Therefore, the state of the players 1, . . . , n in an SE of GΠ corresponds
to a solution for the strategy packing problem Π , if such a solution exists. On the other
hand, if there is no solution for Π , every player in every SE in GΠ has delay of 1.

�

Note that while the previous theorem establishes a reduction in general, the game

GΠ constructed from the instance Π of the packing problem has a different combi-
natorial structure than Π . More concretely, GΠ is based on a larger set of resources
and different strategy sets than the ones used in Π . The next theorem shows that for
games with two players, we can obtain a stronger equivalence result without chang-
ing the underlying combinatorial structure. It remains an open problem to extend this
stronger result to games with an arbitrary number of players and more general packing
problems.

Theorem 3 Let R be a finite set and S1,S2 ⊆ 2R two collections of subsets of R.
Then the following two problems are polynomially equivalent:
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Computing pure Nash and strong equilibria 201

1. Compute an SE of G(M) for the congestion model M = ({1, 2}, R,S, (dr )r∈R)

where (dr )r∈R is an arbitrary set of non-decreasing delay functions.
2. Compute S1 ∈ S1, S2 ∈ S2 such that |i ∈ {1, 2} : r ∈ Si }| ≤ ur or decide that

no such strategies exist where ur ∈ {1, 2} for all r ∈ R is arbitrary.

Proof “2. → 1.”: As the dual greedy algorithm computes an SE using polynomial
many calls of the strategy packing oracle the first problem is polynomially reducible
to the second one.

“1. → 2.”: Suppose we are given an instance
(
R,S, (ur )r∈R

)
of the second prob-

lem. We regard the congestion model M = ({1, 2}, R,S, (dr )r∈R
)

where dr is defined
as

dr (�) =
{

0, if � ≤ ur

1, otherwise.

Now, let G be a corresponding bottleneck congestion game and let S∗ be an SE of G.
We claim that c1(S∗) = c2(S∗) = 0 and S∗ is a solution of the strategy packing prob-
lem if such a solution exists, and c1(S∗) = c2(S∗) = 1, otherwise. At first, note that
ur ∈ {1, 2}, and therefore a player gets a delay of 1 if and only if there is r ∈ S∗

1 ∩ S∗
2

with ur = 1. In this case, however, both players have a delay of 1, so we have either
c1(S∗) = c2(S∗) = 1 or c1(S∗) = c2(S∗) = 0. Suppose that c1(S∗) = c2(S∗) = 1
and assume for a contradiction that there is solution S′ = (S′

1, S′
2) to the strategy pack-

ing problem. Then, by the definition of dr we get that c1(S′) = c2(S′) = 0 and, thus,
the deviation from S∗ to S′ is profitable both for player 1 and 2. This is a contradiction
to the fact that S∗ is an SE. Hence, no such state S′ exists.

For the other direction, it is easy to check that c1(S∗) = c2(S∗) = 0 only if the
strategies S∗

1 and S∗
2 obey the upper bounds on each resource. �


2.2 Complexity of strategy packing

In the previous section we have characterized the computation of SE in terms of a set
packing problem. In this section, we examine the computational complexity of strat-
egy packing and SE computation. In particular, we consider three classes of games,
in which strategy packing can be done efficiently. For the general case, we show that
computation becomes NP-hard. A more detailed characterization as to which struc-
tural properties are crucial for efficient strategy packing or hardness is an interesting
avenue for future work.

Our first result is for matroid games, which represent a natural extension of single-
ton games. In a singleton game we have |Si | = 1 for every strategy Si ∈ Si of every
player i . In such games, SE are exactly the PNE and computation of SE can trivially
be done in polynomial time. Also, strategy packing reduces to perfect matching in a
bipartite graph.1 For matroid games, we have to resort to more advanced algorithmic
techniques.

1 We construct the graph as follows. The first partition contains a node for each player, the second partition
contains ur nodes for each r ∈ R. The node of player i is connected to all nodes of each r ∈ Si .
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202 T. Harks et al.

Theorem 4 The strategy packing problem can be solved in polynomial time for mat-
roid bottleneck congestion games where the strategy set of player i equals the set of
bases of a matroid Mi = (R, Ii ) given by a polynomial independence oracle.

Proof For each matroid Mi = (R, Ii ), we construct a matroid M ′
i = (R′, I ′

i ) as
follows. For each resource r ∈ R, we introduce ur resources r1, . . . , rur to R′. We
say that r is the representative of r1, . . . , rur . Then, a set I ′ ⊂ R′ is independent in
M ′

i if the set I that arises from I ′ by replacing resources by their representatives is
independent in Mi . This construction gives rise to a polynomial independence oracle
for M ′

i .
Now, we regard the matroid union M ′ = M ′

1 ∨ · · · ∨ M ′
n , see Definition 2 in the

Appendix A.1, which again is a matroid. Using the algorithm proposed by Cunning-
ham [13] we can compute a maximum-size set B in I ′

1 ∨ · · · ∨ I ′
n in time polynomial

in n, m, rk(M), and the maximum complexity of the n independence oracles.
Clearly, if |B| <

∑
i∈N rk(Mi ), there is no feasible packing of the bases of

M1, . . . , Mn . If, in contrast, |B| = ∑
i∈N rk(Mi ), we obtain the corresponding strat-

egies (S1, . . . , Sn) using the algorithm. �

Let us now consider strategy spaces defined as a-arborescences, which are in gen-

eral not matroids. Let D = (V, R) be a directed graph with |R| = m. For a distin-
guished node in a ∈ V , we define an a-arborescence as a directed spanning tree,
where a has in-degree zero and every other vertex has in-degree one. In this case, we
can regard a ∈ V as a common source, and each player strives to make a broadcast
with source a by allocating a tree.

Theorem 5 The strategy packing problem can be solved in time O(m2 n2) for a-
arborescence games in which the set of strategies of each player equals the set of
a-arborescences in a directed graph D = (V, R).

Proof The problem of finding k disjoint a-arborescences in G can be solved in poly-
nomial time O(m2 k2), see Gabow [23, Theorem 3.1]. Introducing ur copies for each
edge r ∈ R, the problem of finding admissible strategies in the original problem is
equivalent to finding n disjoint a-arborescences. �


Recently, the polynomial packing algorithm for a-arborescences has been extended
to branchings. Formally, we are given for each player i a root set Ri ⊆ V and a convex2

set Ui ⊆ V with Ri ⊆ Ui . For any vector of capacities (ur )r∈R , the polynomial algo-
rithm of Bérczi and Frank [7] computes for every player a branching which is rooted in
Ri and spans Ui , that is, the in-degree of every vertex v ∈ Ri is zero and the in-degree
of every vertex v ∈ Ui\Ri is one, such that the capacity restriction of every edge is
satisfied. This more general framework allows to model situations in which the players
wish to broadcast from multiple broadcasting stations, where the broadcasts need not
cover all vertices. It is worth mentioning that the convexity of Ui is necessary for
efficient computation, because otherwise, the corresponding decision problem turns
out to be NP-complete.

2 In this context, a subset of vertices U ⊆ V is called convex if there is no vertex v ∈ V \U such that there
is both a directed path from v to some vertex u ∈ U and a directed path from some node u′ ∈ U to v.
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When we turn to single-commodity networks, then efficient computation of an SE is
possible using well-known flow algorithms to implement the oracle. For more general
cases with two commodities, however, a variety of problems concerning SE become
NP-hard by a simple construction.

Theorem 6 The strategy packing problem can be solved in time O(m3) for single-
commodity bottleneck congestion games.

Proof Assigning a capacity of ur to each edge and using the algorithm of Edmonds
and Karp we obtain a maximum flow within O(m3). Clearly, if the value of the flow
is smaller than n, no admissible strategies exist and we can return ∅. If the flow is n
or larger we can decompose it in at least n unit flows and return n of them. �

Theorem 7 In two-commodity network bottleneck games it is strongly NP-hard to (1)
compute an SE, (2) decide for a given state whether any coalition has an improving
move, and (3) decide for a given state and a given coalition if it has an improving
move.

Proof We reduce from the 2 Directed Arc- Disjoint Paths (2DADP) problem,
which is strongly NP-hard, see Fortune et al. [22]. The problem is to decide if for a
given directed graph D = (V, A) and two node pairs (s1, t1), (s2, t2) there exist two
arc-disjoint (s1, t1)- and (s2, t2)-paths. For the reduction, we define a corresponding
two-commodity bottleneck game by introducing non-decreasing delay functions on
every arc r by dr (x) = 0, if x ≤ 1 and 1, else. We associate every commodity with
a player. For proving (1), we observe that 2DADP is a Yes-instance if and only if
every SE provides a payoff of zero to every player. For proving (2) and (3), we simply
construct a solution in which the strategies for both players are not arc-disjoint. �


3 Convergence of improvement dynamics

In the previous section, we have outlined some prominent classes of games, for which
SE can be computed in polynomial time. Furthermore, it is known [25] that sequen-
tial improvement dynamics converge to PNE and SE. In this section, we consider the
duration of improvement dynamics in these games. As polynomial-time convergence
implies polynomial-time computation, we first focus on classes of games, in which
we have shown efficient computation, i.e., matroid and single-commodity network
games. For matroid games we show polynomial-time convergence to a PNE using
unilateral improving moves. For the convergence to SE we have to consider coali-
tional improving moves, but we show that deciding if such a move exists is NP-hard
even in matroid games or single-commodity network games. This implies that even
in these specialized classes of games with efficient computation of an SE, recognition
of a state as an SE is co-NP-hard.

In more general games, hardness of recognition is not the only source of difficulty.
In particular, we prove that in general games even computing an α-approximate PNE is
PLS-hard. There are games and starting states, for which every sequence of unilateral
improving moves is exponentially long. Perhaps surprisingly, this also holds when we
consider coalitional improving moves of coalitions of size O(n1−ε), for any constant
ε > 0.

123



204 T. Harks et al.

3.1 Matroid and single-commodity network games

We first observe that bottleneck congestion games can be transformed into ordinary
congestion games while preserving useful properties regarding the convergence to
PNE. This allows to show fast convergence to PNE in matroid bottleneck games and
mirrors a prominent result for ordinary matroid games [2].

3.1.1 Convergence to pure Nash equilibria

The following lemma establishes a connection between bottleneck and ordinary con-
gestion games. For a bottleneck congestion game G we denote by Gsum the ordinary
congestion game with the same congestion model as G except that we choose d ′

r (S) =
mdr (·), r ∈ R.

Lemma 1 Every PNE for Gsum is a PNE for G.

Proof Suppose S is a PNE for Gsum but not for G. Thus, there is player i ∈ N and
strategy S′

i ∈ Si , such that maxr∈Si dr (�r (S)) > maxr∈S′
i
dr (�r (S′

i , S−i )). We define

d̄ := maxr∈S′
i
dr (�r (S′

i , S−i )). This implies maxr∈Si dr (�r (S)) ≥ d̄ + 1. We obtain a
contradiction by observing

∑

r∈Si

d ′
r (�r (S)) ≥ max

r∈Si
d ′

r (�r (S)) ≥ md̄+1 > (m − 1) md̄ ≥
∑

r∈S′
i

d ′
r (�r (S′

i , S−i )).

�


We analyze the lazy best response dynamics considered for ordinary matroid con-
gestion games presented in [2]. Note that in matroid games, a player always picks as
strategy a basis of a matroid. A lazy best response means that a player only exchanges
a minimum number of resources that is needed to arrive at a basis representing a best
response strategy (for details see [2]). Our analysis here is quite simple and does not
explicitly rely on these details. In particular, we transform the game to an ordinary game
as outlined in Lemma 1. Then we use the lazy best response dynamics in the ordinary
game and the convergence result of [2] as a “black box” with the slight adjustment
that we only execute moves yielding a strict improvement in the bottleneck resource
of the moving player. This allows to establish the following result.

Theorem 8 Let G be a matroid bottleneck congestion game. Then the lazy best
response dynamics converges to a PNE in at most n2 · m · rk(M) steps.

Proof We consider the lazy best response dynamics in the corresponding game Gsum.
In addition, we suppose that a player accepts a deviation only if his bottleneck value
is strictly reduced. This might lead to even earlier termination of the dynamics. Thus,
the duration is still bounded from above by n2 · m · rk(M) moves as shown in [2].

�
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3.1.2 Convergence to strong equilibria

For matroid bottleneck congestion games we have shown above that there are poly-
nomially long sequences of unilateral improving moves to a PNE from every starting
state. While previous work [25] also establishes convergence to SE for every sequence
of coalitional improving moves, it may already be hard to find one such move. In fact,
we show that even an α-improving move can be strongly NP-hard to find, for any poly-
nomial-time computable α, even if strategy spaces have simple matroid structures. This
implies that deciding whether a given state is an α-approximate SE is strongly co-NP-
hard—even if all delay functions satisfy the β-bounded-jump condition, for any β > α.

Theorem 9 In matroid bottleneck congestion games it is strongly NP-hard to decide
for a given state S if there is some coalition C ⊆ N that has an α-improving move,
for every polynomial-time computable α.

Proof We reduce from Set Packing. An instance of Set Packing is given by a set
of elements E and a set U of sets U ⊆ E , and a number k. The goal is to decide if there
are k mutually disjoint sets in U . Given an instance of Set Packing we show how
to construct a matroid game G and a state S such that there is an improving move for
some coalition of players C if and only if the instance of Set Packing has a solution.

The game will include |N | = 1 + |U | + |E | + ∑
U∈U |U | many players. First, we

introduce a master player p1, which has two possible strategies. He can either pick a
coordination resource rc or the trigger resource rt . For each set U ∈ U , there is a set
player pU . Player pU can choose either rt or a set resource rU . For each set U and each
element e ∈ U , there is an inclusion player pU,e. Player pU,e can use either the set
resource rU or an element resource re. Finally, for each element e, there is an element
player pe that has strategies {rc, re} and {rc, ra} for some absorbing resource ra .

The state S is given as follows. Player p1 is on rc, all set players use rt , all inclu-
sion players the corresponding set resources rU , and all element players the strategies
{rc, re}. The coordination resource rc is a bottleneck for the master player and all
element players. The delays are drc (x) = α + 1, if x > |E | and 1, otherwise. The
trigger resource has delay drt (x) = 1, if x ≤ |U | − k + 1, and α + 1, otherwise. For
the set resources rU the delay is drU (x) = 1, if x ≤ 1 and α + 1, otherwise. Finally,
for the element resources the delay is dre (x) = 1 if x ≤ 1 and α + 1 otherwise.

Suppose that the underlying Set Packing instance is a Yes-instance, then an
α-improving move is as follows. The master player moves to rt , the k set players
corresponding to a solution choose their set resources, the respective inclusion players
move to the element resources, and all element players move to ra . The delay of rc

reduces from α + 1 to 1, and the delay of rt reduces from α + 1 to 1. Thus, the master
player, all set players, and all element players improve their bottleneck by a factor of
α +1. The migrating inclusion players do not interfere with each other on the element
resources. Thus, they also improve the delay of their bottleneck resource by factor
α+1, and we have constructed an α-improving move for the coalition of all migrating
players, all set players, and all element players.

Suppose that the underlying Set Packing instance is a No-instance. For contra-
diction, assume that there is a coalition C that has an α-improving move. Consider
any player p ∈ C . We will show that for any player p �= p1, i.e., any set, inclusion, or
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element player, p1 ∈ C is a prerequisite for achieving any strict improvement. We first
note that the master player can never strictly improve without changing his strategy,
because all element players will always use rc in their strategy. A move from rc to rt is
an improvement if and only if at least k set players drop rt . These players must switch to
the corresponding resources. However, for a set player pM such a move is an improve-
ment if and only if all inclusion players on rU drop this resource from their strategy.
These inclusion players must switch to the element resources. An inclusion player
pU,e improves by such a move if and only if the element player drops the resource and
pU,e is the only inclusion player moving to re. This implies that the moving set players
must correspond to sets that are mutually disjoint. Finally, the element players move
from re to ra with delay dra = 0, and this is an improvement if and only if the master
player moves away from rc. This last argument establishes that p ∈ C implies p1 ∈ C .

However, if the master player p1 ∈ C , then we again follow the chain of reasoning
above and see that the players corresponding to at least k mutually disjoint sets must
move and therefore be in C . This is a contradiction to having a No-instance.

Finally, we can add the resource ra to every strategy of the master, set, and inclusion
players. In this way, the combinatorial structure of all strategy spaces is the same—a
partition matroid M with rk(M) = 2 and partitions of size 1 and 2—only the mapping
to resources is different for each player. �


The previous theorem shows hardness of the problem of finding a suitable coalition
and a corresponding improving move. Even if we specify the coalition in advance and
search only for strategies corresponding to an improving move, the problem remains
strongly NP-hard.

Corollary 2 In matroid bottleneck congestion games it is strongly NP-hard to decide
for a given state S and a given coalition C ⊆ N if there is an α-improving move for
C, for every polynomial-time computable α.

Proof We will show this corollary using the games constructed in the previous proof
by fixing the coalition C = N . Consider the construction in the previous proof. The
coalition described above that has an improving move for a Yes-instance consists of
the master player, all set players, all element players and the inclusion players that
correspond to the sets of the solution to Set Packing. However, the inclusion players
are only needed to transfer the chain of dependencies to the element players. We can
set the strategy space of player pU,e to {rh, rl} × {rU , re}. Here rh and rl are two
resources with delays drh = α +1 and drl = 0. In S we assign the inclusion players to
strategies {rh, rU }. Then an improving move for the inclusion players that remain on
rU is to exchange rh by rl . Thus, the problem of finding an arbitrary coalition with an
improving move becomes trivial. However, we strive to obtain an improving move for
C = N , and this must generate improvements for the master player and the set play-
ers. Thus, we still must reassign some inclusion players from the resources rU to the
element resources re. Here we need to resolve conflicts as before, because otherwise
inclusion players end up with a delay of α+1 on re and do not improve. Following the
previous reasoning we have an α-improving move if and only if the underlying Set
Packing instance is solvable. Finally, by appropriately adding dummy resources, we
can again ensure that the combinatorial structure of all strategy spaces is the same. �
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Fig. 1 Network construction for a Set Packing instance with U = {{e1, e2}, {e2, e3}, {e3, e1}}. Gray
nodes serve as identification for players as discussed in the text

We can adjust the previous two hardness results on matroid games to hold also for
single-commodity network games.

Theorem 10 In single-commodity network bottleneck congestion games it is strongly
NP-hard to decide for a given state S (1) if there is some coalition C ⊆ N that has
an α-improving move, and (2) if a given coalition C ⊆ N has an α-improving move,
for every polynomial-time computable α.

Proof We transform the construction of Theorem 9 into a symmetric network bottle-
neck congestion game, see Fig. 1 for an example. First, we introduce for each resource
rc, rt , rU for all U ∈ U and re for all e ∈ E an edge with the corresponding delay
function as before. Additionally, we identify players and their strategies by routing
them through a set of gadgets composed of edges, which have capacities implemented
by delay functions that are 1 up to a capacity bound and α + 10 above.

The first gadget is to separate the players into groups. An edge with capacity 1
identifies the master player, an edge with capacity |U | the set players, an edge with
capacity

∑
U∈U |U | the inclusion players, and an edge with capacity |E | the element

players. The set and inclusion players are then further divided into their particular
identities by edges of capacity 1. The element players route all over rc. In addition, the
master player has the alternative to route over rc or rt . After the players have passed
rc they again split into specific element players using edges of capacity 1. One player
is allowed to route directly to the source t . This is meant to be the master player, but
it does not hurt our argument if this is not the case.
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After the players have routed through the capacitated gadgets, they can be assumed
to reach an identification point (indicated by gray nodes in Fig. 1) and obtain an iden-
tity. Then they decide on a strategy from the previous game by routing over one of two
allowed paths. In particular, we can allow the set players to route either over rt or their
rU , the inclusion players over rU or re, and the element players over re or directly to
the sink t .

We can create the corresponding state S as before by assigning the master player
to route over rc directly to the sink, the set players over rt , the inclusion players over
rU and the element players over re. This assignment is such that every player receives
one identity (i.e., routes over exactly one gray node) and every identity is taken (i.e.,
every gray node is reached by exactly one player). This property also holds for every
improving move—with the exception of one element player, who might route directly
from rc to the sink, but as noted before this does not hurt the argument.

Our network structure allows to reconstruct the reasoning as before. Any improv-
ing move must include the master player, which improves if and only if he moves
together with players corresponding to a solution to the Set Packing instance. Note
that even by switching player identities, we cannot create an improving move when
the underlying Set Packing instance is unsolvable. This proves the first part of the
theorem.

For the second part, we use the same adjustment as in Corollary 2 to ensure that
inclusion players can always improve. Directly before the middle fan out (see Fig. 1)
that results in identification of inclusion players we simply insert a small gadget with
2 parallel edges rl and rh . In this way, all inclusion players must route over one of rl or
rh and one of their corresponding rU or re. This resembles the strategy choices in the
matroid game and yields hardness of computing an improving move for the coalition
C = N . This proves the theorem. �


3.2 General games and approximation

The results of the previous sections imply hardness of the computation of SE or coali-
tional deviations, even in network games. Therefore, when considering general games
we here restrict ourselves mostly to unilateral improving moves and PNE. Unfortu-
nately, even in this restricted case the hardness results for ordinary congestion games
in Skopalik and Vöcking [45] immediately imply identical results for bottleneck con-
gestion games. The main result of [45] shows that computing an approximate PNE
is PLS-hard. The proof is a reduction from CircuitFlip, a prominent PLS-complete
problem for feedback-free Boolean circuits. The problem is to find a local optimum,
i.e., a bit string x such that the output resulting from applying the circuit to x cannot
be improved lexicographically by switching a single bit in x [29].

We can regard the resulting congestion game in the reduction of [45] as a bottleneck
congestion game. It is straightforward to adjust all arguments in the proof of [45] to
remain valid for bottleneck congestion games. This simple fact has been observed
before, e.g., in [46], and we include it here for completeness. A standard transfor-
mation [18] immediately yields the same result even for symmetric games, in which
Si = S j for all i, j ∈ N .
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Corollary 3 Finding an α-approximate PNE in a symmetric bottleneck congestion
game with positive and increasing delay functions is PLS-complete, for every poly-
nomial-time computable α > 1.

A second result in [45] reveals that sequences of α-improving moves do not reach an
α-approximate PNE quickly—even if all delay functions satisfy the β-bounded-jump
condition with a constant β. Again, the proof remains valid if one regards the game
as an asymmetric bottleneck congestion game. This yields the following corollary.

Corollary 4 For every α > 2, there is a β > 1 such that, for every n ∈ N, there
is a bottleneck congestion game G(n) and a state S with the following properties.
The description length of G(n) is polynomial in n. The length of every sequence of
α-improving moves leading from S to an α-approximate equilibrium is exponential in
n. All delay functions of G(n) satisfy the β-bounded-jump condition.

Using the same trick as before to convert an asymmetric game in a symmetric
one yields a similar result for symmetric games. However, we must sacrifice the β-
bounded-jump condition of the delay functions, for every β polynomial in n.

Despite the fact that (coalitional) improving moves are NP-hard to compute, one
might hope that the state graph becomes sufficiently dense such that it allows short
improvement paths. Unfortunately, we can show that this is not true, even if we con-
sider all improving moves of coalitions of size up to O(n1−ε), for any constant ε > 0.
Again, the same result holds for symmetric games when sacrificing the bounded-jump
condition.

Theorem 11 For every α > 2, there is a β > 1 such that, for every n ∈ N and for
every k ∈ N, there is a bottleneck congestion game G(n, k) and a state S′ with the
following properties. The description length of G(n, k) is polynomial in n and k. The
length of every sequence of α-improving moves of coalitions of size at most k leading
from S′ to an α-approximate k-SE is exponential in n. All delay functions of G(n, k)

satisfy the β-bounded-jump condition.

Proof Our proof adjusts the construction of [45], which we recapitulate in the Appen-
dix A.2. The main idea of our adjustment is to construct a bottleneck congestion game
G(n, k) by generating k copies of the game G(n). We add resources to the strategies.
These resources make sure that there is an improvement step for a player in G(n) if
and only if there is an improvement step of corresponding k players of the k copies in
G(n, k). For each t ∈ {1, . . . , 9}, i ∈ {1, . . . , n}, m ∈ {1, . . . , k}, and m′ �= m, we add
a new resource At

i,m,m′ to strategy t of player Maini in copy m and to all strategies t ′ �= t
of players Maini of copy m′. For each j ∈ {1, . . . , 8}, i ∈ {1, . . . , n}, m ∈ {1, . . . , k},
and m′ �= m we add a new resource B j

i,m,m′ to strategy 1 of player Block j
i of copy m

and to strategy 2 of Block j
i of copy m′. Each of the above resources added has delay

of δi−1 if it is allocated by at most one player and δi+3, otherwise.
We obtain the initial strategy profile S′ of G(n, k) if every player of every copy m of

G(n) plays according to the initial strategy profile S of his copy. It it easy to see that no
coalition of less than k players has an incentive to change their strategies. At least one
of them would have to allocate an A- or B-resource that is already in use by a player of
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another copy. Thus, it is not an improvement step for these players. We conclude that
all k copies of a player always choose the same strategy. On the other hand, if there is
an improving move of one player in G(n), there is a coalitional improving move of all
k copies of that player in G(n, k). If all players mimic this deviation in their copies,
by construction, no two players allocate the same A- or B-resource. Furthermore, if
the improvement step decreases the delay in G(n), it does so for every copy of the
player in G(n, k).

Finally, note that as long as k is polynomial in n we obtain a reduction of polynomial
size. In particular, for k = n1/ε−1 we obtain a new game with nk players, for which
the unilateral moves of G(n) are exactly moves of coalitions of size (nk)1−ε and no
smaller coalitions have improving moves. This proves the theorem. �


4 Conclusion

We have provided a detailed study of the computational complexity of exact and
approximate pure Nash and strong equilibria in bottleneck congestion games. How-
ever, some important and fascinating open problems remain. A major open problem
is to find other interesting classes of games, for which efficient computation of and/or
fast convergence to SE can be shown. As computation postulates less stringent require-
ments in terms of locality, there is generally more hope to derive positive results. In
particular, what can be said about efficient computation of α-approximate SE?

For convergence to SE, we have provided a series of quite strong lower bounds.
In this case, it natural to consider weaker concepts of stability that avoid our hard-
ness results. For instance, we did not succeed in translating positive results known
for ordinary congestion games and convergence to approximate PNE [8,10,11]. In
addition, there are open problems regarding the duration of unilateral dynamics in
symmetric network games and hardness of computing PNE in asymmetric networks.
Finally, it is a major open problem how to augment the concept of PNE with resil-
ience to coalitional deviations and avoid the hardness results we have observed. It
would be interesting to consider computation and convergence characteristics of, e.g.,
k-SE, for 1 < k < n, or equilibrium notions based on player partitions [20] or social
networks [26].

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

Appendix

Appendix A: Basics in matroid theory

In the following, we will briefly introduce the notion of matroids. For a comprehensive
introduction as well as for the proofs of the mentioned results we refer the reader to the
textbooks of Korte and Vygen [33, Chapter 13] and Schrijver [44, Chapters 39–42].

Let F be a finite set. A tuple M = (F, I) where I ⊂ 2F is called a matroid if (i)
∅ ∈ I, (ii) if I ∈ I and J ⊆ I , then J ∈ I, and (iii) if I, J ∈ I and |J | < |I |, then
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there exists an i ∈ I\J with J ∪ {i} ∈ I. A set A ⊆ F is called independent if A ∈ I
and dependent, otherwise. The set of (inclusion wise) maximal independent subsets
of F is called the basis of M .

For given F , a matroid (F, I) may be of exponential size, thus, one frequently
assumes that a matroid comes with an independence oracle that returns for all sets
A ⊆ F whether A ∈ I or not. It shall be noted that for many subclasses of matroids
an independence oracle can be implemented in polynomial time.

Another way of representing matroids is via a rank function rk : 2F → N. Every
sub-cardinal, monotonic and sub-modular function rk gives rise to a matroid whose
independent sets then are defined as {A ⊆ F : rk(A) = |A|}. If the independent
sets are known a priori via an independence oracle the rank function is defined as
rk(A) = maxI∈I:I⊆A |I |. With a slight abuse of notation, we define for a matroid
M = (F, I) the rank of the matroid itself as rk(M) = rk(F).

To present our positive results for matroid bottleneck congestion games in a general
framework we give the definition of matroid union. This concept has been introduced
by Nash-Williams [39] and Edmonds [15].

Definition 2 (Matroid union) Let M1 = (S1, I1), . . . , Mk = (Sk, Ik) be matroids.
Define the union of these matroids as M1 ∨ · · · ∨ Mk = (S1 ∪ · · · ∪ Sk, I1 ∨ · · · ∨ Ik)

where

I1 ∨ · · · ∨ Ik = {I1 ∪ · · · ∪ Ik : I1 ∈ I1, . . . , Ik ∈ Ik}.

Nash-Williams proved that for k matroids M1 = (S1, I1), . . . , Mk = (Sk, Ik) their
union M1 ∨ · · · ∨ Mk is a matroid again. The maximum cardinality of an independent
set in I1 ∨ · · · ∨ Ik equals the maximum cardinality of a common independent set of
two suitably constructed matroids. This observation reduces the problem of finding a
maximum-size set in I1 ∨ · · ·∨Ik to the intersection problem of two matroids, which
can be solved in polynomial time, see Cunningham [13].

Appendix B: Description of G(n)

In this section, we recapitulate the construction of G(n) from [45]. This shows that
(bottleneck) congestion games do not converge quickly to a PNE even if the players
only perform unilateral α-improving moves.

We construct a (bottleneck) congestion game G(n) that resembles a recursive run
of n programs, i.e., sequences of unilateral α-improving moves. After its activation,
program i triggers a run of program i − 1, waits until it finishes its run, and triggers it
a second time. These sequences are deterministic apart from the order in which some
auxiliary players make their improvement steps.

A program i is implemented by a gadget Gi consisting of a main player that we
call Maini and eight auxiliary players called Block1

i , . . . , Block8
i . The main player has

nine strategies numbered from 1 to 9. Each auxiliary player has two strategies, a first
and a second one. A gadget Gi is idle if all of its players play their first strategy. Gadget
Gi+1 activates gadget Gi by increasing the delay of (the bottleneck resource in) the
first strategy of player Maini . In the following sequence of improvement steps the
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Fig. 2 Definition of the

strategies of the players Block j
i

player Maini successively changes to the strategies 2, . . . , 8. We call this sequence a
run of Gi . During each run, Maini activates gadget Gi−1 twice by increasing the delay
of the (bottleneck resource in the) first strategy of Maini−1. Gadget Gi+1 is blocked
(by player Block8

i ) until player Maini reaches its strategy 9. Then Gi+1 continues
its run, that is, it decreases the delay of the bottleneck resource in the first strategy
of player Maini , waits until gadget Gi becomes idle again, and afterwards triggers a
second run of Gi . The role of the auxiliary players of Gi is to control the strategy
changes of Maini and Maini+1.

In the initial state s, every gadget Gi with 1 ≤ i ≤ n − 1 is idle. Gadget Gn

is activated. In every improvement path starting from s, gadget Gi is activated 2n−i

times, which yields the theorem.
Now we go into the details of our construction. The (bottleneck) congestion game

G(n) consists of the gadgets G1, . . . , Gn . Each gadget Gi consists of a player Maini

and the players Block1
i , . . . , Block8

i . The nine strategies of a player Maini are given

in Fig. 3. The two strategies of a player Block j
i are given in Fig. 2. δ = 10α9 is a

scaling factor for the delay functions.
The auxiliary players implement a locking mechanism. The first strategy of player

Block j
i is {t j

i , b j
i } and its second strategy is {c j

i }. The delays of the resources b j
i and

c j
i are relatively small (δi−1 and 2αδi−1, respectively) if allocated by only one player.

If they are allocated by two or more players, however, then each of them induce a
significantly larger delay of δi+2. Theses resources are also part of the strategies of
Maini or Maini+1. Note, that neither Maini nor Maini+1 has an incentive to change
to a strategy having a delay of δi+2 or more. The delay of the resource t j

i is chosen

such that Block j
i has an incentive to change to its second strategy if Maini allocates

this resource. If Maini neither allocates this resource nor the resource b j
i , it has an

incentive to change to its first strategy. Due to scaling factor δi−1 the delays of the
resource t j

i do not affect the preferences of Maini .

These definitions yield the following properties. If auxiliary player Block j
i of gad-

get Gi plays its first strategy then this prevents Maini from choosing strategy j + 2.
Player Block j

i has an incentive to change to its second strategy only if player Maini

chooses its strategy j + 1. By this mechanism, we ensure that Maini chooses the
strategies 1 to 8 in the right order. In addition, the first strategy of Block8

i prevents
Maini+1 from going to strategy 4 or 8. This ensures that Maini+1 waits until the run of
player Maini is completed. Furthermore, Maini+1 can enter into strategy 3 or 7 only if
all auxiliary players of gadget Gi use their first strategy. This ensures that a run starts
with all auxiliary players being in their first strategy.

This shows that in every sequence of improvement steps from s to a Nash equilib-
rium in the (bottleneck) congestion game G(n) each gadget i is activated 2n−i times.
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Fig. 3 Definition of the
strategies of the players Maini .
The delay of resource e1

n is
constantly 9α9δn

One can easily check that every improvement step of a player decreases its delay (of
the bottleneck resource) by a factor of at least α and every delay function satisfies the
β-bounded-jump condition with β = δ3 with δ = 10α9.
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