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Abstract The deterioration of skeletal muscle with advanc-
ing age has long been anecdotally recognized and has been
of scientific interest for more than 150 years. Over the past
several decades, the scientific and medical communities
have recognized that skeletal muscle dysfunction (e.g., mus-
cle weakness, poor muscle coordination, etc.) is a debilitat-
ing and life-threatening condition in the elderly. For
example, the age-associated loss of muscle strength is high-
ly associated with both mortality and physical disability. It is
well-accepted that voluntary muscle force production is not
solely dependent upon muscle size, but rather results from a
combination of neurologic and skeletal muscle factors, and
that biologic properties of both of these systems are altered
with aging. Accordingly, numerous scientists and clinicians
have used the term “muscle quality” to describe the rela-
tionship between voluntary muscle strength and muscle size.
In this review article, we discuss the age-associated changes

in the neuromuscular system—starting at the level of the
brain and proceeding down to the subcellular level of indi-
vidual muscle fibers—that are potentially influential in the
etiology of dynapenia (age-related loss of muscle strength
and power).
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1 Introduction

In 2006, there were 37.3 million adults over the age of
65 years living in the USA [1], and it is expected that this
number will double by the year 2050. Among these individ-
uals, it is estimated that 42% have limitations in performing
one or more daily tasks (e.g., walking two to three blocks,
transferring from sitting to standing) that are essential for
maintaining physical independence [1]. While the causes of
physical disability are multifactorial, it is well established
that contributing factors associated with age-related physical
disability are low levels of voluntary muscle strength and
power [2–7]. Indeed, over the past several decades, the scien-
tific and medical communities have recognized that both
skeletal muscle wasting and weakness are a debilitating—
and even life-threatening—condition in older persons [8].

It was originally thought that the loss of skeletal muscle
mass largely explained the muscle weakness observed in
older adults [9]; however, recent longitudinal data suggest
that other physiologic factors—independent of tissue size—
play an important role in muscle weakness. Specifically,
data from the Health ABC study indicate that the decline
in muscle strength is much more rapid than the concomitant
loss of muscle mass and that the change in quadriceps
muscle area only explains ∼6–8% of the between-subject
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variability in the change in knee extensor muscle strength
[10]. Moreover, maintaining or gaining muscle mass does
not prevent aging-related declines in muscle strength [10].
Accordingly, these findings indicate that the loss of muscle
strength in older adults is weakly associated with the loss of
lean body mass. Our findings using animal models of aging
and experimental disuse models of muscle weakness (e.g.,
cast immobilization and unilateral lower limb suspension)
also suggest that the relative contribution of muscle atrophy
to the disuse-induced muscle weakness is only modest
[11–13]. In recent years, we have attempted to highlight
the paucity of knowledge and our lack of understanding of
the mechanisms of weakness in the elderly, and in 2008, a
new term to more accurately define the loss of muscle
strength with age was coined: dynapenia [14].

Numerous scientists and clinicians have used the term
“muscle quality”—and other related terms such as specific
force—to describe the relationship between voluntary muscle
strength and muscle size (i.e., decreased muscle quality is
indicative of lower muscle strength relative to muscle size)
[2, 10, 15–24]. Recent longitudinal data from the Health ABC
study of more than 1,600 older adults indicate that knee
extensor muscle quality—as defined above—decreases at a
staggering rate of ∼2.5%/year (in contrast to muscle cross-
sectional area decreasing at a rate of ∼1%/year) [10]. Similar
findings have also been observed in cross-sectional studies
[2]. These findings further indicate that changes in neurolog-
ical function and/or the intrinsic force-generating properties of
skeletal muscle contribute to dynapenia in older adults. These
potential contributors to reduced muscle quality are numerous
and likely even vary within the context of specific tasks. In
general though, the mechanisms determining muscle quality
largely arise from two factors: (1) neurological and (2) skeletal
muscle properties, as it is well known that the output from
these sources controls muscle force production. Specifically,
within the neuromuscular system, there are several potential
sites affecting muscle quality, such as excitatory drive to the
lower motor neurons, α-motor neuron excitability, neuromus-
cular transmission, and excitation–contraction (E–C) coupling
[25]. In this review article, starting at the level of the brain and
proceeding down to the muscle fiber level, wewill discuss and
describe the potential physiological factors leading to reduc-
tions in muscle quality in older adults.

2 Effects of aging on the mechanisms determining
optimal force output

2.1 Neural contributors to force generation

In this section, we will discuss age-related changes in central
(voluntary) activation, followed by discussing the effects of
aging on supraspinal and spinal form and function.

2.1.1 Age-related changes in central (voluntary) activation

As stated earlier, aging is commonly associated with muscle
weakness. This loss of muscle strength is likely due to a
wide variety of physiologic reasons, including reductions in
muscle mass and changes in the excitation–contraction
coupling process. However, it is also probable that a por-
tion of the strength loss is attributable to the nervous
systems ability—or lack thereof—to fully activate skeletal
muscle. Thus, it is imperative that scientists and clinicians
understand the role of the central nervous system in medi-
ating the muscle weakness observed with advancing age.

There is evidence to suggest that aging results in im-
paired agonist activation and/or increased antagonistic coac-
tivation [26]; however, age-related differences in voluntary
activation appear to vary between muscle groups. Prior to
more fully discussing the effects of aging on voluntary
activation, we will first provide a brief overview of the
assessment of voluntary activation. A voluntary effort, or a
voluntary contraction of a muscle, comprises the recruit-
ment of motor neurons, and hence muscle fibers, by in-
creased descending drive. Hence, with an increased force
of contraction, there is increased activation of neurons in the
primary motor cortex with increased firing of corticospinal
neurons [27]. Increased descending drive recruits greater
numbers of motor neurons in the spinal cord. While there
are many influences on motor neurons during voluntary
contractions, such as excitatory and inhibitory sensory feed-
back, and alterations in motor neuron properties that may
make them more or less responsive to synaptic input [28],
descending drive from the motor cortex is the major deter-
minant of the timing and strength of voluntary contractions.
Voluntary activation is commonly assessed using the inter-
polated twitch method, or a derivative thereof (e.g., central
activation ratio) [29–32]. Here, the motor nerve to the mus-
cle is electrically stimulated during a voluntary effort. Dur-
ing maximal voluntary efforts, any increment in force
evoked by a stimulus indicates that voluntary activation is
less than 100%. That is, some motor units are not recruited
or are not firing fast enough to produce fused contractions
[33]. The extra force evoked by stimulation during contrac-
tion can be quantified by comparison to the force produced
by the whole muscle. Thus, voluntary activation represents
the proportion of maximal possible muscle force that is
produced during a voluntary contraction. Measurement of
voluntary activation does not quantify the descending drive
reaching the motor neurons, nor whether motor neuron
firing rates are maximal, nor does it take into account the
source of drive to the motor neurons [30].

There are equivocal reports in the literature on whether or
not advancing age reduces voluntary activation capacity
[34–53] (for review, see [2]). A synthesis of the literature
provides some insight into potential explanations of these
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equivocal reports. Specifically, several studies examining
the effect of age on voluntary isometric activation of the
knee extensors (Fig. 1a) and the elbow flexors (Fig. 1b)
suggest that older adults, particularly those greater than
70–75 years of age, exhibit a decrease in voluntary activation,

whereas investigations on the age-related changes in volun-
tary activation of the dorsiflexors yield null findings (Fig. 1c).
Due to the functional differences between these muscles, as
well as differences in their physiologic profiles (e.g., motor
unit innervations and fiber-type characteristics), these muscle
group-specific effects are not overly surprising. We should
note that three studies indicating a dramatic impairment in
voluntary activation are highlighted with an arrow in Fig. 1.
Two of these (Fig. 1a) relate to the knee extensor muscles and
one relates to the elbow flexors (Fig. 1b). With regards to the
knee extensors, a number of reports show no differences
between old and young adults, but two reports stand out as
showing a deficit in voluntary activation with aging (Fig. 1a,
vertical arrows) [40, 42, 50]. One of these represents data from
the oldest known cohort of individuals that has been examined
to date (n011, age range 85–97 years) [40], and this observa-
tion suggests that deficits in the neural drive can contribute to
much of the muscle weakness observed in the very elderly—at
least in the knee extensor muscles. The second of the high-
lighted studies deserves particular attention because it is the
largest to date (young adults: n046, 18–32 years; older adults:
n046, 64–84 years) [50]. Here, the voluntary activation of
older adults was calculated to produce 87% of maximal mus-
cle force in comparison to 98% maximal force produced by
younger subjects. With regards to the elbow flexors, one study
is highlighted as this study averaged voluntary activation
across numerous trials (as opposed to a single best trial or
two) and thus provides some evidence that voluntary activa-
tion is less consistent across trials in older men compared to
younger men [42]. Together, these studies provide proof of
principle that older adults likely exhibit impairments in vol-
untary activation and that this likely varies with the specifics
of a given task and the muscle group being examined.

2.1.2 Age-related changes in supraspinal properties

The neurons in the premotor and primary motor cortex form
a complex network of glutamatergic interneurons, afferent
projections, and pyramidal neurons that project to the stria-
tum and spinal cord, among other areas of the central ner-
vous system. Although it is often widely assumed that there
is a progressive decay in the number of primary motor
cortex (M1) neurons in normal aging, it does not appear
that an actual decrease in cortical neurons occurs [54, 55].
However, there are substantial morphometric changes in the
motor cortex that do occur with normal aging. For example,
cadaveric dissections from humans who died without neu-
rological signs suggest that individuals over 65 years of age
exhibit a 43% volumetric reduction in the premotor cortex
neuron cell body size in comparison to adults younger than
45 years [54], which have more recently been corroborated
in living humans using high-resolution magnetic resonance
imaging [56]. Furthermore, there is also evidence to suggest

Fig. 1 Age-related changes in voluntary activation (a measure of how
much of a muscle’s possible force is produced by a voluntary contrac-
tion) is muscle group specific. Studies quantifying age-related differ-
ences in voluntary activation of the knee extensors (a), elbow flexors
(b), and ankle dorsiflexors (c) during isometric contractions. Selected
studies have been highlighted with an arrow pointing to them (see
main text for further discussion on these specific papers). Data points
in a correspond to the following articles: filled circles: [50], filled
squares: [48], filled diamonds: [35], filled triangle: [40], open circles:
[51], open squares: [36], open diamonds: [46]. Data points in b
correspond to the following articles: filled circles: [38], filled squares:
[34], filled diamonds: [45], filled triangle: [42], open circles: [52],
open squares: [41], open diamonds: [53]. Data points in c correspond
to the following articles: filled circles: [43], filled squares: [38], filled
diamonds: [47], filled triangle: [44], open circles: [49], open squares:
[37]. Reprinted with permission from [233]
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that age-related differences exist in mass of white matter and
of myelinated nerve fiber length with individuals losing
∼45% of the total length of the myelinated fibers, mostly
in the smallest white matter nerve fibers [57]. Also, cross-
sectional studies further suggest that aging disrupts the
integrity of white matter [58]. Functionally, it appears that
these changes due to aging would affect the connectivity of
the cortex with itself as well as the rest of the central nervous
system.

In addition to morphometric changes, there has long been
interest regarding the neurochemical changes within the
basal ganglia that can be attributed to aging. This interest
was largely driven by the hypothesis that changes in neuro-
transmitters and their receptors may be attributed to
decreases in cognitive as well as motor functions. Certainly,
it has been shown that impaired neurotransmission is re-
sponsible for at least some age-related behavioral abnormal-
ities [59], including the serotonergic [60, 61], cholinergic
[62], adrenergic [61], dopaminergic [63–66], GABAergic
[63, 65], and glutamatergic systems [63, 65]. Reductions
in neurotrophic factors have been shown within the motor
cortex as well [67]. Age-related changes in the dopaminer-
gic system are perhaps the best understood from work on
different neurological conditions such as Parkinson’s dis-
ease. Older adults have been reported to exhibit reduced
dopamine transporter availability [68], and animal findings
show that older rodents have decreased dopamine (D2)
receptors [69].

Aging also affects motor cortical properties at the sys-
tems level. Specifically, aging has been shown to result in
decreased cortical excitability [70–73], increased activation
in areas of sensorimotor processing and integration [74–76],
and reduced cortical plasticity [77, 78]. In the following
exposition, we will briefly summarize some of the evidence
indicating these pertinent changes.

The effect of aging on cortical excitability is most com-
monly examined using paired-pulse transcranial magnetic
stimulation (TMS), which also allows for the assessment of
intracortical excitability [79, 80]. More specifically, paired-
pulse TMS permits the assessment of short- and long-
interval intracortical inhibition, which is generally thought
to be mediated by gamma-aminobutyric acid (GABA) type
A [81, 82] and B [81, 83] receptors, respectively (GABAA,
GABAB). Additionally, intracortical facilitation—a measure
that is mediated by excitatory glutamatergic interneurons and
N-methyl-D-aspartate (NMDA) receptors [82, 84, 85]—can
also be quantified. A recent investigation on age-related
changes in intracortical facilitatory and inhibitory properties
using paired-pulse TMS suggests that middle-aged adults
exhibit reduced cortical excitability in comparison to younger
adults, as it has been observed that individuals in their late 50s
and early 60s exhibit more intracortical inhibition and less
intracortical facilitation than adults in their 20s [70]. Our

recent findings in the elderly (mean age of 71 years) support
these previous data, as we have observed that older adults
exhibit substantially more intracortical inhibition and less
intracortical facilitation in comparison to young adults under
resting conditions, but that when these data were elicited
during a submaximal contraction these differences disap-
peared [73]. Collectively, these findings suggest that aging
results in cortical atrophy, altered neurochemistry, and
reduced motor cortical excitability, all of which could be
mechanistically link to impairments in voluntary activation
capacity and contribute to age-related reductions in motor
performance.

2.1.3 Age-related changes in spinal properties
and the neuromuscular junction

The neuromuscular system is comprised of individual motor
units, with the neuromuscular junction serving as the com-
munication bridge between the nerve terminal and the mus-
cle fibers they innervate. While the motor neuron and its
behavior are the “final common pathway” for all motor
commands, each motor neuron typically has 50,000 synap-
ses to convey these commands [86] and can thus be influ-
enced by numerous factors. It is well known that motor unit
recruitment is primarily regulated on a biophysical basis
with low-threshold motoneurons being recruited first [87].
However, in addition to the size principle of recruitment,
discharge patterns of motor neurons are influenced by both
the characteristics of their presynaptic input and their intrin-
sic properties. For instance, the discharge properties of
motor neurons can be influenced by their prominent post-
spike after hyperpolarization [88], their “bistable” behavior
[89], as well as persistent inward currents. This phenome-
non is thought to be explained from dendrite properties
known as the persistent inward currents that act to amplify
synaptic input [89, 90]. Motor units demonstrate numerous
age-related adaptations, including changes in morphology,
behavior, and electrophysiology. With regards to changes in
morphology, advancing age is thought to result in a reduced
motor unit number as well as an increased number of fibers
per motor unit (increased innervation ratio) due to the com-
pensatory collateral sprouting by surviving neurons [91–94].
Aging also elicits remodeling of the neuromuscular junctions
endplate. Specifically, aged neuromuscular junctions exhibit
elevations in presynaptic nerve terminal branching, and in
the post-synaptic distribution of receptor sites for neurotrans-
mitter [95–100]. Interestingly, recent evidence indicates that
disuse further compounds these age-associated changes as
muscle unloading was observed to result in significant
remodeling of aged rats neuromuscular junction, but not in
those of young, healthy rats [99]. Accordingly, these findings
may indicate that the combination of aging and disuse, at
least among aged rats, results in partial denervation leading
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to morphological remodeling of the neuromuscular junction
[101].

Aging has also been shown to result in changes in spinal
excitability. For example, Kido and colleagues reported that
both the maximum soleus H-reflex (H-max, a measure of
global spinal excitability) and the maximum soleus M-wave
(M-max, also known as the compound muscle action poten-
tial or CMAP) decrease gradually with age, with the de-
crease in the H-max being more pronounced (reduced H-
max to M-ma ratio; Fig. 2). The H-reflex only provides a
global measure of spinal excitability, as it can be modulated
by a number of potential factors (e.g., presynaptic inhibi-
tion, variation in the amount of neurotransmitter released by
the Ia terminal, fluctuations in the membrane potential
arising, alterations in the intrinsic properties in the moto-
neurons, etc.). As such, the aforementioned findings suggest
that overall spinal excitability is depressed in older adults.
However, others have observed that heteronymous facilita-
tion [102] and oligosynaptic reflexes [2] also decrease with
age, which provides collective evidence that there is a
general decrease in the excitability of spinal reflexes
with age.

The end result of the morphological and physiological
adaptations in motor units with aging is alterations in the
behavioral discharge properties of motor units. For instance,
older adults have been reported to exhibit mean motor unit
firing rates of the tibialis anterior across a variety of con-
traction intensities that are ∼30–35% lower than young
adults [103], and the maximum motor unit firing rate of an
intrinsic hand muscle is also comparably reduced [103].
These lower firing rates appear to be largely inter-related
to the longer twitch contraction durations in older muscle,

which further illustrates the critical integrative control pro-
cesses involved between the nervous and muscular systems
as it relates to overall neuromuscular function. More recent
evidence suggests that more subtle age-related differences
exist in motor unit behavior. Specifically, older adults have
been reported to exhibit a greater variability in motor unit
discharge rates that appears to largely influence their ability
to maintain steady forces [104], and the occurrence of
motor unit doublet discharges is lower in older adults
(Fig. 3) [105].

Collectively, these findings suggest that aging results in
morphological changes in motor units, including an actual
reduction in functional motor units. A change of this nature
(i.e., loss of motor units resulting in some muscle fibers not
undergoing re-innervation) would theoretically result in a
reduction in muscle quality. Additionally, age-related changes
in spinal properties and the neuromuscular junction, such as
decreased spinal excitability and a reduction in maximal mo-
tor unit discharge rates, may contribute to impairments in
voluntary activation capacity (and thus reduced muscle
quality).

2.2 Muscular contributors to force generation

In this section, we will discuss age-related changes in mus-
cular properties as it relates to muscle size and composition,
excitation–contraction coupling, and crossbridge function
and energetics.

2.2.1 Age-related changes in muscle size and composition

Much atrophy undoubtedly occurs with advancing age. In
fact, data from the Health, Aging, and Body Composition
(Health ABC) Study—which followed 1,678 older adults
between 70 and 79 years of age longitudinally over a 5-year
period—indicate that, on average, older men lose approxi-
mately 1% of their thigh muscle area per year and older
women lose approximately 0.65% of their thigh muscle area
per year [10]. With this stated, it should be noted that there
is a large between-subject variability in the degree of atro-
phy observed with aging, and some older adults appear to
exhibit no or nominal losses in muscle mass [10]. To study
the effects of increasing age on human skeletal muscle size
and composition, Lexell et al. examined 15-μm cross sec-
tions of autopsied whole vastus lateralis muscle from 43
previously physically healthy men between 15 and 83 years
of age [106]. They reported that age-related muscle atrophy
begins during the third decade of life and accelerates there-
after. The observed atrophy appeared to be primarily caused
by a loss of fibers, with no predominant effect on any fiber
type, and to a lesser extent by a reduction in fiber size—
predominantly type II fibers. This finding was later corrob-
orated by Lee and colleagues who reported that aging

Fig. 2 Age-related decline in the human soleus muscles H-max to
M-max ratio suggesting that advancing age results in a decrease in
global spinal excitability. Data were obtained during standing while
the muscle was activated at an intensity equal to 15% of its maximum
voluntary contraction. Reprinted with permission from [234]
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resulted in a decreased fiber area percentage, fiber number
percentage, and mean fiber area of type IIA and IIB muscle
fibers, but that type I fibers increased in area and number but
not in size [107]. Moreover, the type II fibers appeared mor-
phologically smaller and flatter, which is consistent with other
reports suggesting pathological abnormalities in aged human
muscle fibers such as central nuclei, ring fibers, fiber splitting,
scattered highly atrophic fibers, moth-eaten fibers, and even
vacuoles [108]. Hence, as both the size and structure of a
muscle deteriorate, the force-generating capacity is influenced.

There are many interacting factors leading to muscle
wasting in older adults, and they often present themselves
concurrently (for review, see [109]). Changes in muscle
protein metabolism have been proposed as an explanatory
factor in muscle wasting in older adults, as the balance
between protein synthesis and degradation is largely respon-
sible for the maintenance of lean mass [110]. However,
recent findings suggest that basal muscle protein synthesis
rates do not differ between young and old adults [111–116],
and today, it is generally accepted that the difference in
fasted rates of muscle protein synthesis or breakdown are
not altered in healthy older adults [110]. Current hypotheses
related to causative factors affecting muscle protein turnover
surround the concept of older adults being resistant to ana-
bolic stimuli, such as that associated with feeding, insulin,
or physical activity. For example, while the ingestion or
infusion of large quantities of amino acids/protein (∼30–
40 g) yields similar increases in muscle protein synthesis
in both young and older individuals [114, 117–122], recent
studies indicate that older adults exhibit a diminished accre-
tion of muscle proteins after the ingestion of smaller
amounts of essential amino acids (6–15 g) [112, 113]. Sim-
ilarly, several recent studies have reported a blunted muscle
protein synthesis response following an acute bout of resis-
tance exercise in older subjects [123–125]. These effects are
likely due to deficits in the mammalian target of rapamycin
signaling pathway [111, 126], extracellular-related kinase
1/2 signaling pathway [127], and/or upregulation of the
ubiquitin proteasome pathway in the elderly [128].

In addition, an increasing number of investigations report
an age-related decline in autophagy (for recent reviews, c.f.
[129, 130]). Sometimes referred to as “cell death type II,”
autophagy is a process of cell and organelle degradation
similar to, but distinct from, apoptosis [131, 132]. Although
it can contribute to cell death in a number of situations (e.g.,
starvation, growth factor deprivation), autophagy also
serves valuable housekeeping functions in normal, healthy
cells by removing damaged or dysfunctional organelles
[132]. This latter function is often referred to as macro-
autophagy, and recent evidence suggests that this process
is lost or impaired in aging muscles. It is hypothesized that
impaired autophagy leads to the accumulation of dysfunc-
tional, damaged proteins, lipids, and nucleic acids that func-
tion at a suboptimal level. Dysfunctional contractile
proteins, for example, might produce less force than normal
ones and, thus, could contribute to impaired muscle quality.
Moreover, the accumulation of these damaged cellular com-
ponents may initiate cellular apoptosis, leading to a loss of
muscle mass, thus contributing to sarcopenia. In support of
this hypothesis, caloric restriction has been shown to restore
markers of autophagy in skeletal muscle [132] and preserve
muscle size and function [133, 134].

In addition to muscle size and anatomical structure, aged
muscle also appears to differ in other compositional man-
ners. For instance, over the past decade, numerous studies
have reported that aging increases the adipocyte content
between muscle groups (intermuscular adipose tissue) and
between muscle fascicles (intramuscular adipose tissue) [10,
92, 93, 135, 136]. The earliest of these studies suggested
that greater muscle fat content was associated with reduced
muscle strength [135], suggesting a potential mechanistic
link between increases in fat infiltration in muscle and
muscle weakness. Indeed, cytokine production from adipose
tissue has been linked to depressed muscle force production
[94, 137], thus providing a theoretical basis to this assertion.
However, more recent longitudinal data have failed to ob-
serve a direct relationship between increased levels of inter-
muscular adipose tissue and strength loss with age [10].

Fig. 3 Percentage of motor unit
trains in which doublets were
observed in young (black) and
older (white) individuals at
three rates of force production.
There were no significant
differences among rates of force
production, but significant
differences between groups
were found, indicating that the
young subjects tended to
display more doublet
discharges. Reprinted with
permission from [105]
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2.2.2 Age-related changes in contractile filaments

As noted, age-related declines in muscular force production
were considered to be solely a function of reduced muscle
mass for some time. It is no surprise then, that substantial
attention has been devoted to age-related changes in the
contractile proteins actin and myosin, which make up the
majority of the volume of a skeletal muscle cell. Although
sarcomeric actin seems to be quite uniform across muscle
cells, myosin, in particular the myosin heavy chain (MHC),
is not. In fact, muscle cells (fibers) are frequently differen-
tiated by which isoform(s) of myosin they express. These
different myosin isoforms are associated with different lev-
els of ATP consumption—type I (i.e., slow) consume less
ATP than type II (i.e., fast) isoforms at maximum levels of
contractile activation [138–142]. Studies suggest that meta-
bolic cost of type I < type IIa < type IIx < type IIb fibers.
While humans do not express type IIb myosin, this pattern
appears to hold for the three principal isoforms expressed in
human muscle. Aging is associated with a loss of skeletal
muscle mass (sarcopenia), and since actin and myosin are
the predominant proteins in skeletal muscle, an overall loss
in these proteins is observed with aging [143–146].

Some investigators have reported an age-related decline
in the myosin/actin ratio in rat muscles [146], which might
be expected to alter force production, as has been sug-
gested in studies of disuse and microgravity [147, 148].
Of note, this change occurred in the semimembranosus,
but not the soleus muscle, and was observed only in very
old, but not old animals [146]. Our own data from aging,
but not very old, rats indicate no significant changes in
this ratio in any of the principal plantar flexor muscles
(Fig. 4), further suggesting that this change may be muscle
specific.

In addition to loss of muscle mass, aging is also generally
associated with a shift in fiber type. Although not universal,
most studies of aging muscle reflect a shift in overall muscle
phenotype from faster to slower MHC, such that a larger
proportion of the remaining contractile mass is composed of
slower MHC isoforms [149, 150]. Consistent with a slower
overall muscle phenotype are observations of reduced po-
tentiation in aged skeletal muscle [151–153]. This shift is
believed to be the result of both greater atrophy of type II
fibers as well as a relatively small loss of fast, type II fibers
[106, 154, 155]. Such a shift may inherently alter muscle
quality, as the specific tension of type II fibers is greater than
that of type I fibers [156, 157]. Although the underlying
mechanisms are not entirely clear, apoptotic loss of the α-
motor neurons has been implicated [91, 158, 159]. A decline
in overall habitual physical activity has been shown to occur
with increasing age, but MHC changes due to disuse and
detraining are typically observed to be the opposite of those
seen with aging (i.e., from slower to faster isoforms).

In addition to the absolute amount of contractile protein,
some investigators have reported age-related functional
impairments of these proteins within single fibers [160]
and even at the level of isolated myosin molecules [161,
162]. Lowe and colleagues demonstrated a reduction in the
number of strongly bound crossbridges in maximally acti-
vated fibers of aged vs. young rats using electron paramag-
netic resonance [97, 163, 164]. These functional deficits
may be the result of a reduced mixed muscle protein and
MHC turnover [165–168], which could in turn contribute to
the accumulation of post-translational modifications that
impair crossbridge function. These findings are also consis-
tent with the role of age-related impairments of autophagy
described earlier in this paper.

Finally, the thin filaments also contain tropomyosin and
the troponin isoforms. Although these regulatory proteins
are not part of the actin–myosin crossbridge, they are critical
in opening up the myosin binding site on actin, which makes

Fig. 4 Lack of difference in myosin/actin ratio between adult (6–
8 months) and old (24 months) muscles. a Representative Coomassie-
stained gel. Lane 1, molecular weight markers; lane 2, myofibrillar
fraction from a previous experiment for positive control; lanes 11 and
14, actin standards of 2.0 and 1.0 μg, respectively; lanes 12 and 13, BSA
standards of 2.5 and 5 μg, respectively; lanes 3 and 4, adult and old
soleus; lanes 5 and 6, adult and old plantaris; lanes 7 and 8, adult and old
medial gastrocnemius; lanes 9 and 10, adult and old lateral gastrocnemius.
b Mean (±SE) myosin/actin ratio for adult and old muscles (n08/group).
Unpublished data from Russ Laboratory
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crossbridge formation possible. If either tropomyosin or
troponin are not functioning properly, it is possible that
fewer crossbridges will form (in effect reducing the calcium
sensitivity of the muscle), generating less force which would
result in reduced muscle quality [169]. Recent proteomics
studies have suggested that increased age is associated with
reduced expression of these proteins and increased post-
translational modifications (e.g., nitration) [170–172], either
of which could impair protein function. These proteins have
received much less attention in the aging literature than the
contractile proteins, and this area clearly needs more study
in the future.

2.2.3 Age-related changes in muscular force transmission

Although actin and myosin are proteins responsible for the
generation of muscular force (via the crossbridge cycle),
functional force needs to be effectively transmitted to pro-
duce optimal function. Much force transmission in skeletal
muscle takes place through a complex array of cytoskeletal
proteins, and it is possible that deficiencies in these cyto-
skeletal proteins could reduce muscle quality by impairing
force transmission. This topic has been largely unexplored,
despite evidence from knockout animals that loss of at least
one cytoskeletal protein, desmin, is associated with reduced
muscle quality [173–176]. However, the few existing stud-
ies indicate that, if anything, desmin is increased with aging
[145, 177, 178]. Interestingly, one group [179] has reported
increased specific force in muscles from desmin knockout
mice, speculating that desmin acts a “viscous element that
dissipates mechanical energy.” If this is the case, then an
age-associated increase in desmin could indeed contribute to
impaired muscle quality with aging. Clearly, much further
work needs to be done to explore the potential role of
cytoskeletal changes in aging muscle function.

2.2.4 Age-related changes in excitation–contraction coupling

Excitation–contraction coupling (E−CC) converts the neural
signal for muscle activation (muscle action potential) into
muscle contraction and force development through a series
of biophysical steps (Fig. 5). Briefly, the action potential
spreads throughout the muscle via the t-tubular system,
activating the voltage-sensitive dihydropyridine receptors
(DHPRs), which subsequently open the ryanodine receptors
(RYRs; Ca2+ release channels). This releases Ca2+ from its
membranous storage area known (the sarcoplasmic reticu-
lum (SR)). The newly released Ca2+ binds to troponin C
which promotes crossbridge formation and force produc-
tion. The Ca2+ is then returned to the SR by the sarcoplas-
mic reticulum Ca2+ pump (SR-ATPase) [180].

Reuptake of Ca2+, in and of itself, contributes more to
force relaxation than force generation. Thus, age-associated

impairments of reuptake, if present, are more likely to play a
significant role in phenomena such as task performance (i.e.,
motor coordination) and muscle fatigue than in weakness.
However, impaired Ca2+ reuptake could lead to unwanted
elevations of intramyocellular Ca2+ that could activate spe-
cific proteases (e.g., calpains). Although the main myofi-
brillar proteins actin and myosin are not believed to be
substrates for calpains, many of the cytoskeletal elements
that anchor the myofibrillar proteins are. Thus, increased
calpain activity could disrupt myofibrillar integrity of the
myofibrils, making them susceptible to degradation by the
ubiquitin–proteasome system (for recent reviews, c.f. [181,
182]). In addition, elevated Ca2+ could activate several cell
signaling pathways that could contribute to weakness by
inducing muscle cell apoptosis [181]. Several investigators
have reported reduced SR Ca2+ reuptake with aging [13,
183, 184], although if SR Ca2+ release declines with age as
well (see below), this may not be a major issue, as there may
be no net increase in calcium. The rest of this section will
focus on SR Ca2+ release, as this is the aspect of E–CC most
directly related to force production, and thus weakness.

The description of E–CC above outlines the predominant
mechanism of Ca2+ release in skeletal muscle, also referred
to as voltage-induced calcium release (VICR) and does not
require transmembrane movement of extracellular calcium
[185]. However, Ca2+-induced calcium release (CICR),
which predominates in cardiac muscle, has also been shown
to occur in skeletal muscle [186–188]. In this process, direct
entry of extracellular Ca2+ into the myoplasm via activation
of DHPRs that are not associated with RyRs occurs and
triggers further mobilization of intracellular Ca2+ stores by
activating RyRs. It has been suggested that this CICR may
amplify the effects of VICR [189]. Finally, store-operated
calcium entry (SOCE) is thought to serve to renew depleted
Ca2+ in the SR via the opening of plasma membrane-located
store-operated Ca2+ channels [190]. This allows extracellu-
lar Ca2+ to accumulate in the cytoplasm in order replenish
SR Ca2+ [191]. Theoretically, disruption at any point in the
E–CC process can prevent optimal activation of muscle
mass and thus reduce muscle quality.

Impairments in SR Ca2+ release have been suggested to
explain deficits of muscle quality in aged muscle [192–195],
and in this regard, the role of Osvaldo Delbono must be
acknowledged. Arguably, the idea that changes in E–CC
were contributing to age-related weakness began with his
reports of “excitation-calcium release uncoupling” in single
fibers from aged human muscles [196]. Perhaps the most
obvious mechanism for “uncoupling” of E–CC to account
for loss of force production would be a reduction in the
expression of the principal proteins in VICR. Although
some early work indicated that RYR expression might be
reduced with age, at least in fast muscles [194], a number of
studies have not supported this hypothesis [184, 197–199].
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There is more support for the age-related loss of DHPR
(particularly the α-1s subunit), such that a greater number
of RYRs are not associated with DHPR, causing the uncou-
pling and disrupting the VICR process [199–201]. More
recently, attention has been focused on the β-1a subunit of
the DHPR. This subunit has roles in chaperoning the α-1s
subunit to the t-tubule membrane and regulating Ca2+ current
[202–204]. It also interacts directly with RyR [205] and may
impair E–CC by binding to charged residues on RyR [206].
Taylor et al. determined that DHPR-β1a increases significantly
with age in fast, slow, andmixedmurine muscle fibers and that
overexpression of the subunit results in a decrease in α-1s
subunits and a decline in specific force [207]. Finally, Payne
et al. found that RNA inhibition of DHPR-β1a expression in
FDB muscles of young and old mice caused a significant
reduction of charge movement in young mice, but restored
charge movement to young control levels in old mice [208].

Although the case for alterations of DHPR contributing
to the age-related decline in muscle quality is compelling,
other processes may be impaired as well. Data from our

laboratory [13] and others [184] suggest that aging may
impair SR calcium release, independent of DHPR function.
In these experiments, the RYR was stimulated directly
through pharmacological means in an SR vesicle prepara-
tion. Thus, SR function was compromised. Interestingly, we
found that the older muscles also exhibited a reduced RYR–
FKBP binding [13]. FKBP is a small immunophilin known
to associate with the RYR, and reduced RYR–FKBP inter-
action has been linked to reduced muscle quality and im-
paired calcium release in models of aging, heart failure, and
exhaustion [209–211]. While the cause of the reduced pro-
tein–protein interaction has not been definitively identified,
data suggest that an age-related increase in RYR oxidation
may be at work [209, 210]. Such a modification may be the
result of reduced protein turnover with increasing age,
allowing for greater accumulation of post-translational
modifications such as oxidation [212]. Again, impaired
autophagy may contribute to the problem, as oxidized
RYR may not be removed and thus dysfunctional RYR will
accumulate. Given that normal turnover of RYR is more

Fig. 5 Graphical illustration of the excitation–contraction coupling
process. VICR voltage-induced calcium release, CICR calcium-
induced calcium release, SOCE store-operated calcium entry, RYR

ryanodine receptor, DHPR dihydropyridine receptor, SERCA sarco-
plasmic/endoplasmic reticulum calcium ATPase, JP juntophilin

J Cachexia Sarcopenia Muscle (2012) 3:95–109 103



rapid than that of myosin [212, 213], it could be that im-
paired autophagy may affect RYR earlier in the aging pro-
cess than it does myosin.

Investigators have also begun examining a potential role
for SR-related proteins that are not directly involved in SR
Ca2+ release, with much attention given to junctophilin and
mitsugumin 29 (MG29). These proteins are both associated
with the triadic junctions between the t-tubules and terminal
cisternae, and both appear necessary for normal triad orga-
nization and optimal E–CC [214–218]. Interestingly, MG29
has been linked to SOCE and has been shown to decline
with aging [191, 195], and may contribute to the fragmen-
tation of the SR, resulting in fragments of Ca2+-containing
SR disconnected from the t-tubule membranes [219]. It has
been hypothesized that this fragmentation occurs in a sub-
population of fibers that became at least partially dependent
on extracellular Ca2+ for SR Ca2+. This phenomenon essen-
tially shifts the E–CC mechanism from VICR to CICR
[220]. Muscles containing higher percentages of such fibers
dependent on SOCE would be at a force-generating disadvan-
tage compared to normal skeletal muscle fibers that are not
dependent upon the influx of Ca2+ from the t-tubule, particu-
larly if the SR were depleted of Ca2+. The role for an age-
associated decline in SOCE in impaired muscle quality
remains unclear, however, as others have not found that age
adversely affects either SOCE or calcium stores [208], and the
conditions under which impairments in SOCEmay affect force
(i.e., prolonged, high-rate stimulation with long-duration
pulses) may not occur during normal muscle function [221].

Because of the role of E–CC in linking neural signals to
muscular responses, it is not surprising that a direct biochem-
ical interaction between muscle and nerve may influence E–
CC. There is evidence to suggest that muscle-specific IGF-1
may act in a paracrine, retrograde manner to preserve motor
neuron function [222, 223]. This in turn is thought to lead to
the preservation of E–CC and muscle quality [223, 224],
possibly through the regulation of DHPR expression
[225]. However, questions regarding the exact mechanisms
and outcomes of IGF-1 overexpression remain [201].

Finally, it is worth noting that age-related changes in
membrane composition of the SR itself may occur. While
much attention has been focused on the age-related alter-
ations of the proteins associated with the SR, it is well
known that the function of integral membrane proteins is
affected by the composition of the membranes in which they
are situated [226–229]. Investigation along these lines has
been quite limited. However, age-related changes in the SR
phospholipid and fatty acid composition have been demon-
strated [230, 231]. The contribution of such alterations in
membrane composition on age-related changes in muscle
function has not been characterized, but at least one group
has observed an increased susceptibility to heat inactivation
of SERCA function in the SR of aging rats [230].

2.3 Future directions

Muscle weakness is undoubtedly a debilitating and life-
threatening condition in the elderly as it is highly associated
with both mortality and physical disability. As argued in this
article, voluntary muscle force production is not solely
dependent upon muscle size, but rather results from a com-
bination of neurologic and skeletal muscle factors, and that
biologic properties of both of these systems are altered with
aging. The scientific and medical communities have made
substantial progress in recent years on developing a better
understanding of the clinical significance of muscle weak-
ness in older adults and the physiological mechanisms in-
volved in muscle weakness; however, there is still substantial
progress that needs to be made. For example, virtually all
studies conducted to date examining age-related mechanisms
of muscle weakness have used cross-sectional study designs.
Unfortunately, delineating the true cause and effect relation-
ships with designs of this nature—and thus determining the
mechanistic underpinnings of muscle weakness in older
adults—is difficult. Accordingly, longitudinal studies are
needed, or at a minimum, case–control studies whereby
healthy older adults are compared to older adults with low
levels of muscle strength are needed. Experiments of this
nature would help determine the relative contribution of the
various segmental components of the neuromuscular system
associated with muscle weakness and thereby identify
potential therapeutic targets.
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