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Abstract

Background: Chromosome instability syndromes are a group of inherited conditions associated with chromosomal
instability and breakage, often leading to immunodeficiency, growth retardation and increased risk of malignancy.

Case presentation: We performed exome sequencing on a girl with a suspected chromosome instability syndrome
that manifested as growth retardation, microcephaly, developmental delay, dysmorphic features, poikiloderma, immune
deficiency with pancytopenia, and myelodysplasia. She was homozygous for a previously reported splice variant,
c.4444 + 3A > G in the POLE1 gene, which encodes the catalytic subunit of DNA polymerase E.

Conclusion: This is the second family with POLE1-deficency, with the affected individual demonstrating a more
severe phenotype than previously described.
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Background
Chromosome instability syndromes are a group of inher-
ited conditions associated with chromosomal instability
and breakage which includes LIG4 [1,2], Seckel type 1
[3,4], Bloom syndrome [5], Nijmegen breakage syndrome
[6-8], and Fanconi anemia. These genetic conditions are
characterized by pre and postnatal growth retardation,
microcephaly, dysmorphic features and bone marrow
failure [9-11]. There are other conditions with overlap-
ping phenotypes including microcephaly, such as Rad50
deficiency [12,13], Cernunnos-XLF syndrome [14] and
Warsaw breakage syndrome [15-18] which can compli-
cate molecular diagnosis. FILS syndrome (facial dys-
morphism, immunodeficiency, livedo, and short stature)
is a recently described condition caused by variants in
POLE1, encoding the catalytic subunit of polymerase E.
We describe the second family with a homozygous
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variant in POLE1, and a more severely affected individ-
ual, suggesting a broader phenotypic spectrum for this
condition.
Case presentation
Patient CMH812 is a female infant born to healthy non
consanguineous Palestinian parents, weighing 1745 g
and measuring 38.1 cm at birth. The pregnancy was
complicated by subchorionic bleeding in the first trimes-
ter, fetal abnormalities on ultrasound including intra-
uterine growth restriction, short long bones, suspected
skull abnormalities and oligohydramnios. TORCH titers
were negative. Amniocentesis revealed normal 46,XX
karyotype. She was delivered at 37 weeks gestation by
elective C-section secondary to breech presentation.
Dysmorphic features noted included malar and man-
dibular hypoplasia (Figure 1A, B). Initial clinical suspi-
cion was for primordial dwarfism such as Seckel type 1
syndrome, however her microcephaly was not as severe.
Over several months, lacy reticular pigmentation was
noted of the face and extremities. She had recurrent
pruritic papular eruptions and skin findings progressed
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Figure 1 Clinical characteristics of CMH812. Several congenital abnormalities were found, including (A) microcephaly, facial dysmorphism (small
and bird-like face, malar and mandibular hypoplasia, prominent nasal bridge and columella, downslanting palpebral fissures, small mouth and low
set, posteriorly rotated ears) (B) short stature with shortened long bones but no evidence of dysplasia or craniosynostosis. No major anomalies
were found on imaging of her abdomen, brain, brain vasculature or heart. Genitalia and pubertal development were normal. No malabsorption
or pituitary or thyroid insufficiency was found. (C-D) Skin findings in CMH812, showing one hypo- and three hyperpigmented patches on the skin.
Biopsy of the skin was performed but not diagnostic. Microscopic examination displayed focal parakeratosis and mild spongiosis.

Figure 2 Growth charts of CMH812. The patient is a female with severe intrauterine and postnatal growth retardation head circumference
(A) [<3rd centile]; weight (B) [<2nd centile], length (C) [<2nd centile], based on CDC growth chart for girls, age 0–20 months. Growth remained
poor postnatally and she was briefly started on growth hormone, which was discontinued due to suspicion for a disorder of DNA repair/instability. At
age 15 months she was ~5 SD below the mean for weight and length and ~3-4 SD below the mean for head circumference.
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Table 1 Comparison of clinical features of POLE1 patients and other chromosome instability syndromes

Clinical features TAR
syndrome

Ataxia
telangiectasia

RAD50
deficiency

Fanconi
anemia

Seckel
syndrome

NBS RS/SC
syndrome

Warsaw
syndrome

Cernnos-XLF
syndrome

Bloom
syndrome

LIG4
syndrome2

FILS
syndrome*

CMH812

MIM # 274000 208900 613078 227650 210600 251260 268300
/269000

613398 611291 210900 606593 615139 615139

Microcephaly − ν ν ν ν ν ν ν ν ν ν ν ν

Malar hypoplasia − n.a ν − n.a n.a ν ν − ν n.a ν ν

Sloping head ν − n.a − ν ν ν ν ν − ν ν ν

Palpebral fissures,
upslanting

− − n.a − − ν − ν − − ν ν −

Palpebral fissures,
down-slanting

− − ν − ν − ν ν ν − − ν ν

Epicanthic folds − − ν − − ν ν ν ν − ν ν ν

Micrognathia ν − n.a − ν ν ν ν ν − − ν −

External ear
abnormalities

− − n.a ν ν ν ν ν ν ν − ν ν

Long/Large nose ν − ν − − ν ν ν ν ν ν ν −

Long philtrum − − n.a − − ν ν ν ν − − ν ν

Cleft palate/high
arched palate

− − n.a − ν ν ν ν − − − − −

Polydactily − − n.a ν − ν − − − ν − − −

Clinodactily − − n.a − ν ν ν ν − ν ν − ν

Syndactily

Growth retardation − ν ν ν ν ν ν ν ν ν ν ν ν

Short stature ν ν n.a ν ν ν ν ν ν ν ν ν ν

Bone disease or
anomalies

ν − n.a ν ν − ν n.a ν − − ν ν

Thumb apasia/radial
ray anormalities

ν − n.a ν ν − −/ν n.a − − ν −

Skin abnormalities ν ν ν ν ν ν ν ν ν ν ν ν ν
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Table 1 Comparison of clinical features of POLE1 patients and other chromosome instability syndromes (Continued)

Mental retardation ν ν ν ν ν ν ν ν ν − ν − −

Developemental delay ν ν ν ν ν ν ν ν ν ν ν − ν

Malignancy ν ν − ν ν ν ν n.a ν ν ν − −

Recurrent infections − ν − ν ν ν ν ν ν ν ν ν ν

Genital abnormalities − − − ν ν ν ν n.a − − ν − −

Ataxia − ν ν − ν n.a − n.a − n.a n.a − −

Brain anomalie/
degeneration

CA, CH,
aCC, S

CA, CH,T, S ND ν CA, CH, PG,
S

ND S n.a PG n.a n.a n.a −

Endocrine − AZ, D, DP, HH − HH D, DP POF n.a n.a − AZ, D RF − − −

Immunologic Features

Pancytopenia − n.a n.a ν ν − n.a n.a ν − ν − ν

Thrombocytopenia ν n.a − ν − − n.a n.a − − − − ν

CID − ν − − n.a − n.a n.a ν n.a ν 2/14 ν

SCID − ν − − ν − n.a n.a ν n.a ν n.a -

Neutropenia − n.a n.a ν n.a ν n.a n.a ν N ν n.a -*

B cell lymphocytopenia − ν N ν − − n.a n.a ν − 2/17 ν ν

T cell lymphocytopenia − ν N ν ν ν n.a n.a ν ν N ν ν

IgA n.a ↓ N N ↓ n.a n.a n.a ↓ ↓ ↓ N ↑

IgE n.a ↓ N n.a ↓ n.a n.a n.a n.a N n.a N N

IgG n.a ↓ N ↓ ↓ n.a n.a n.a ↓ ↓ n.a ↓ ↓**

IgM n.a ↓ N ↓ ↓ n.a n.a n.a ↓ ↓ ↓ ↓ ↓

Anti-pseudomonae n.a n.a N n.a ↓ n.a n.a n.a ν n.a n.a ν ν

polysaccaride IgG

Auto-immunity n.a ν − n.a ↓ ν n.a n.a 1/17 n.a 0/17 − -

Sister chromatide n.a − n.a n.a ↑ or N ν ν ν n.a ν n.a N N

DNA breakage studies n.a ν ν ν ν ν ν ν ν ν n.a − N
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Table 1 Comparison of clinical features of POLE1 patients and other chromosome instability syndromes (Continued)

Radiosensitivity n.a ν ν ν ν ν ν ν ν ν ν − n.a.

Gene RBM8A ATM RAD50 FANC ATR NBS1 ESCO2 DDX11 NHEJ1 BLM LIG4 POLE1 POLE1

Mode of Inheritance AR AR AR AR AR AR AR AR AR AR AR AR AR

Legend
n.a; not reported/applicable.
−; negative.
ν; positive.
N; normal range.
↓; decreased.
↑; increased.
NBS: Nijmegen breakage syndrome.
TAR: Thrombocytopenia-absent radius syndrome.
RS: Roberts syndrome.
SC: SC phocomelia syndrome.
aCC; absence of corpus collosum.
AR; autosomal recessive.
AZ; azoospermia.
CA; cerebellar ataxia.
CH; cerebellar hypoplasia.
CID; combined immunodeficiency.
D; diabetes.
DP; delayed puberty.
HH; hypergonadotropic hypogonadism.
NBS; Nijmegen breakage syndrome.
ND; neurodegenerative.
OA; oculomotor apraxia.
PG; polygyria.
POF; primary ovarian failure.
RF; reduced fertility.
S; seizures.
SCID; severe combined immunodeficiency.
T; Tremor.
*consanguineous family reported.
£ Ataxia-telangiectasia-like disorder.
- * Transient pancytopenia associated with CMV infection.
↓** IgG2 and IgG 4 ↓. Total IgG N.
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to include appearance of poikiloderma (Figure 1C, D).
Erupted teeth were found to be small and dysplastic. She
developed a feeding aversion necessitating a gastrostomy
tube. Growth remained poor postnatally (Figure 2). Her
motor milestones were delayed but social development
was normal.
She suffered chronic rhinosinusitis and pulmonary in-

fections with purulent otitis media. At age 20 months
she was admitted to the hospital with pancytopenia,
splenomegaly, hepatitis and acute CMV infection. La-
boratory data showed mild bone marrow myelodyspla-
sia, normal total B, T, and NK cells, low class switched
and non switched memory B cells, and high memory T
cells. She had high IgA, normal total IgG and low IgM,
IgG2 and IgG4. There was no serologic response to
pneumococcal vaccine (Table 1). Lymphocyte response
to mitogens was normal but absent to pertussis and
candida antigens [11]. Hepatitis and pancytopenia
resolved following the CMV infection. Extensive mo-
lecular and cytogenetic testing was negative, including
array-CGH, telomere length studies, chromosome break-
age, and gene sequencing with deletion/duplication
analysis for the following genes: ATM, ATR, BLM,
CENPJ, CEP152, CEP63, ERCC6, ERCC8, LIG4, LMNA,
MRE11A, NBN, PCNT, RBBP8, RECQL4, SHOX, WRN,
and ZMPSTE24.
Trio-exome sequencing was performed on CMH812

and her healthy parents (CMH813 & CMH814) follow-
ing informed consent, and with methods as previously
published [19-22]. Variants were filtered to 1% minor al-
lele frequency, then prioritized by the American College
of Medical Genetics (ACMG) categorization [23,24],
OMIM identity and phenotypic assessment. This individ-
ual was homozygous for a splice-site variant, c.4444 +
3A >G, in intron 34 of the POLE1 [11]. The parents were
both heterozygous carriers (Additional file 1: Table S1).
Homozygosity mapper was used to identify intervals
of homozygosity and identity by descent segments
(Additional file 2: Figure S1) [25].
The c.4444 + 3A > G variant was previously reported in

consanguineous French family with three generations of
affected members [11]. FILS phenotype was variable but
included macrocephaly, recurrent respiratory infections,
livedo and telangiectasia, bone dysplasia, short stature,
and decreased IgM and IgG. The phenotype was consid-
ered similar to that of Bloom syndrome but with normal
sister chromatid exchange. Table 1 compares the clinical
and cellular features of CMH812 to those of individuals
with inherited chromosomal instability and breakage
syndromes, as well as the first reported FILS family. Fea-
tures closely matched those reported in FILS with excep-
tions of microcephaly and intrauterine growth restriction.
Although the POLE1 variant identified in the present
case is the same as previously reported, CMH812
seems to have had more significantly impaired growth
and immunity, raising the hypothesis that rare vari-
ant(s) in other POLƐ subunits or MMR genes may act
as phenotypic modifiers. However, no rare variant were
detected in MMR genes, POLE1 interacting proteins
or other DNA breakage/instability syndrome genes.
The c.4444 + 3A > G POLE1 variant confers abnormal

splicing whereby exon 34 is deleted [11] leading to sig-
nificant decrease in the POLE1 subunit [11]. T- lympho-
cytes from affected individuals showed a proliferation
defect as well as impaired cell cycle progression. The
primary function of polymerase Ɛ1 is to synthesize DNA
at the leading strand during replication [26,27], however,
it is also involved in other cellular processes, including
cell cycle progression and DNA repair/recombination
[26,27]. Exonucleolytic proofreading and the MMR path-
way act to maintain high-fidelity DNA replication and to
protect against mutagenesis [28]. Somatic and germline
heterozygous missense variants in POLƐ1 have been as-
sociated with an increased cancer risk [28-32]. Func-
tional studies in yeast showed that heterozygosity for a
pathogenic allele can cause complete MMR deficiency,
and that subsequent loss of heterozygosity is not re-
quired for the development of POLE-related tumors
[28]. Taken together, these findings suggest that POLE1
carriers are likely to be at increased risk for malignancy
due to MMR deficiency.

Conclusions
In summary, we report a second family with POLE1-re-
lated disease. The clinical and immunologic features of
our patient are reminiscent of LIG4 syndrome, possibly
representing the more severe end of an ill-defined clin-
ical spectrum. For this reason, POLE1 deficiency may be
a more apt description of this disorder. This report illus-
trates the cost-effectiveness of trio-exome sequencing as
a powerful diagnostic method considering that this fam-
ily underwent an extensive diagnostic odyssey, with no
molecular basis identified prior exome.

Consent statement
The project was approved by the research ethics com-
mittee of the Children’s Mercy Hospitals. Written in-
formed consent was obtained from the patient’s legal
guardians for publication of this case report. A copy of
the written consent is available for review by the Editor-
in-Chief of this journal.

Additional files

Additonal file 1: Table S1. Trio-Exome sequencing data.

Additonal file 2: Figure S1. Homozygosity Mapping Analysis.
Homozygosity mapper was used to identify intervals of homozygosity.
The homozygosity scores are plotted against the physical position. Red
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and black bars represent the excess (red) or the shortage (black) of
homozygosity (A) Eighteen loci of > 1 Mb of homozygosity were identified
on seven chromosomes; loci ranged between 1.06 and 6.37 Mb in length.
The length of identical by descent segments in genomes of CMH812
parents suggests that they are not closely related. However, they shared
several relatively small identical segments of genome which is explained by
the shared ancestry broken into pieces by the recombination events and
Mendelian laws of inheritance. POLE1 lies in a 1.1 Mb region of homozygosity
on chromosome 12 (chr12:132635257–133702440), which includes 20 genes
(B). It is reasonable to hypothesize that the POLE1 variant, if not the result of
a combination of recent origin and chance, owes its origin to a founder who
lived several hundred years ago. Consistent with the rarity of the c.4444 +
3A > G variant and the small physical distances between each haplotype
marker in relationship to POLE1 gene (1.1 Mb); the size of the shared
haplotype may have been broken into smaller segments due to genetic drift.
This assumption could explain that the same variant (c.4444 + 3A > G) has
been found in two apparently unrelated FILS families.
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