-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

SOCA (2017) 11:1-31
DOI 10.1007/s11761-016-0203-8

CrossMark

ORIGINAL RESEARCH PAPER

A survey of autonomic computing methods in digital service

ecosystems

Dhaminda B. Abeywickrama! - Eila Ovaska!

Received: 28 January 2016 / Revised: 12 September 2016 / Accepted: 16 November 2016 / Published online: 28 November 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Service engineering of digital service ecosystems
can be associated with several challenges, such as change
and evolution of requirements; gathering of quality require-
ments and assessment; and uncertainty caused by dynamic
nature and unknown deployment environment, composi-
tion and users. Therefore, the complexity and dynamics in
which these digital services are deployed call for solutions
to make them autonomic. Until now there has been no up-
to-date review of the scientific literature on the application
of the autonomic computing initiative in the digital service
ecosystems domain. This article presents a review and com-
parison of autonomic computing methods in digital service
ecosystems from the perspective of service engineering, i.e.,
requirements engineering and architecting of services. The
review is based on systematic queries in four leading sci-
entific databases and Google Scholar, and it is organized in
four thematic research areas. A comparison framework has
been defined which can be used as a guide for comparing
the different methods selected. The goal is to discover which
methods are suitable for the service engineering of digital
service ecosystems with autonomic computing capabilities,
highlight what the shortcomings of the methods are, and iden-
tify which research activities need to be conducted in order to
overcome these shortcomings. The comparison reveals that
none of the existing methods entirely fulfills the requirements
that are defined in the comparison framework.

B<X) Dhaminda B. Abeywickrama
dhaminda.abeywickrama@gmail.com

Eila Ovaska
eila.ovaska@vtt.fi

Service and Information Architectures, VTT Technical
Research Centre of Finland Ltd, Kaitovayld 1, 90570 Oulu,
Finland

Keywords Autonomous systems - Digital ecosystems -
Service engineering - Self-* features - Quality attributes

Abbreviations

AC Autonomic computing

ACE Autonomic communication elements

ANS Autonomic nervous system

BASE Behavior, asynchrony, state and execution

BIONETS BIOlogically inspired autonomic NET-
works and Services

CASCADAS Component-ware for Autonomic Situation-
aware Communications, and Dynamically
Adaptable Services

DAS Dynamically adaptive system

DSE Digital service ecosystem

DSL Domain-specific language

EOA Ecosystem-oriented architecture

ICARE Innovative Cloud Architecture for Real
Entertainment

IvS Intelligent vehicle system

KAOS Keep All Objectives Satisfied

MAPE Monitoring, analyzing, planning and exe-
cution

MDE Model-driven engineering

NIMSAD Normative information model-based sys-
tems analysis and design

QoS Quality of service

REST Representational state transfer

SAPERE Self-aware pervasive service ecosystems

SCC Self-controlled components

SOA Service-oriented architecture

UDDI Universal Description, Discovery and Inte-

gration

@ Springer

https://core.ac.uk/display/81834253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s11761-016-0203-8&domain=pdf

SOCA (2017) 11:1-31

URDAD Use-Case, Responsibility-Driven Analysis

and Design

1 Introduction

A digital service ecosystem (DSE) has been defined as an
open, loosely coupled, domain-clustered, demand-driven,
self-organizing agents’ environment where each entity is
proactive and responsive for its own benefit [1,2]. A DSE
can be seen as a new kind of self-organized environment
that addresses openness and dynamicity, enabling collabora-
tive innovation and co-creation among the members of the
ecosystem [3]. In this context, a digital service can be any
added value/benefit that is delivered digitally [3]. It is auto-
mated entirely and ideally controlled by the customer of the
service.

DSEs are complex and dynamic due to several reasons,
such as increasing number of components, devices and ser-
vices; changes in the technology used; and applications
becoming more difficult to manage. As a result, DSEs are
evolving rapidly without much control. In this context, ser-
vice engineering of DSEs has new challenges, such as change
and evolution of requirements; gathering of quality require-
ments and assessment; and uncertainty caused by dynamic
nature and unknown deployment environment, composi-
tion and users [3]. Another important challenge in digital
ecosystems is co-evolution among ecosystem members and
in customer participation. The complexity and dynamics in
which these digital services are deployed, therefore, call for
solutions to make such services autonomic [4,5], i.e., capa-
ble of dynamically self-adapting their behavior in response
to changing situations. Autonomic computing (AC) initia-
tive can provide strong elements in overcoming the main
challenges and obstacles to the exploitation of DSEs.

The AC initiative’s influence has been present in many
computing domains, e.g., grid computing [6,7], artificial
intelligence [8], robotics [9], control systems [10], service-
oriented architecture (SOA) [11,12], cloud computing [13]
and complex adaptive systems [14]. In recent years, several
methods and techniques have been proposed to exploit the
benefits of the AC initiative in service-oriented ecosystems,
for example, SAPERE [15-20], CASCADAS [21-23] and
BIONETS [24-27]. However, very little work has applied
the AC initiative in the DSEs domain [28-30]. Looking at
the state of the art, none of the methods seems to address in
a generic and adaptive way the service engineering of DSEs,
especially an ecosystem-based method on applying the AC
initiative is missing in the DSE domain. Furthermore, there
is no good systematic review of scientific literature when
it comes to the DSE domain. There are several literature
reviews on the general research area of AC [31-34] and a
few narrow literature reviews focusing on its application in

@ Springer

domains such as grid computing [35] and self-adaptive sys-
tems [36,37]. None of these reviews covers the DSE domain.
A survey article that addresses the following is clearly miss-
ing in the literature: (1) the main requirements of a service
engineering methodology for autonomic DSEs; (2) the short-
comings or gaps in existing AC methods in DSEs; and (3)
the research activities required to overcome the shortcom-
ings. This article aims to set this straight.

This survey article presents a review and comparison of
the AC methods in DSEs from the viewpoint of service engi-
neering, i.e., requirements engineering and architecting of
services. The review is based on systematic queries in four
leading scientific databases and Google Scholar, and it is
organized in four thematic research areas. After the litera-
ture searches and analysis, 12 primary methods have been
selected to be most relevant to our study and a review has
been conducted by the authors to identify the most relevant
aspects of the research. In this regard, 13 research questions
have been used which have been incorporated in a compar-
ison framework. This framework can be used as a guide for
comparing the different scientific methods selected from the
research areas.

This article unfolds as follows. In Sect. 2, we provide back-
ground information and definitions of the terminology that
are frequently used in the context of the methods reviewed
in this survey. Section 3 outlines the research method used
in the literature review. Section 4 introduces our compari-
son framework for comparing the different primary methods
selected from the research areas. In Sect. 5, we present an
overview of each primary method and a comparison of these
methods using the framework defined. Section 6 discusses
the results of our survey, and Sect. 7 concludes the survey.

2 Background and definitions of the main
technology

In this section, we provide background information and def-
initions of the terminology that are often used in the context
of the methods analyzed. To this end, we define terms for AC,
DSEs, digital services and quality attributes for the purposes
of this article and place them in context.

2.1 Autonomic computing initiative

The terms autonomic, autonomy, autonomous and auto-
nomicity have been presented in various domains such as
language, biology and philosophy. In general, the term
autonomic implies occurring involuntarily, unconsciously
or automatically, or resulting spontaneously, from internal
causes such as autonomic reflexes. Meanwhile, the term
autonomous originates from ancient Greek in early nine-
teenth century, and in Greek it means having its own laws.

SOCA (2017) 11:1-31

According to Oxford English Dictionary [38], autonomous
signifies one’s capability of self-governance or having

the freedom to actindependently, also implying self-containment

and self-direction. Autonomicity signifies the state of being
autonomic. Meanwhile, the term autonomic computing has
been named after the human body’s autonomic nervous sys-
tem (ANS). ANS is responsible for the human body to
perceive, adapt to and interact with the world in order to
manage dynamically changing and unpredictable circum-
stances.

The evolution of AC from its inception can be described as
follows. Several initiatives were undertaken by both industry
and academia since early 1990s to develop self-managing and
autonomous systems, thus contributing to the AC initiative.
In this regard, Small Unit Operation Situational Awareness
System is a notable preliminary self-managing project ini-
tiated in 1997 by the Defense Advanced Research Projects
Agency (DARPA) [39]. This project developed technologi-
cal aids that help the army with operational superiority, for
example, providing the soldiers with richer information about
the battle space or environment through improved commu-
nication and electronic sensing capabilities. Later, another
project on self-management was initiated by DARPA called
Dynamic Assembly for Systems Adaptability, Dependabil-
ity, and Assurance. Its objective was to enable mission critical
systems to meet high-assurance, dependability and adapta-
tion requirements. In the late 1990s, NASA made use of the
AC initiative in its space projects, such as the Mars Pathfinder
and Deep Space 1. NASA’s main aim was to make deep
space probes more autonomous so that the probes can speed-
ily adapt to extraordinary situations and space crafts are able
to carry out autonomous operations for longer periods of time
with no human intervention [35].

On March 8, 2011, Dr. Horn, research director at IBM,
presented the importance of AC and its direction during a
keynote speech at Harvard University [40,41]. Soon after-
ward, IBM server group introduced the eLiza project, which
was later known as the AC project, thus beginning the AC
journey at IBM. The AC initiative is a vision introduced by
IBM for creating self-managed systems [4]. It seeks to ren-
der a computing system as self-managed, that is, to enable
computer systems to manage themselves so as to minimize
the need for human intervention [42]. The main goal of AC
is to address the increasing complexity of modern comput-
ing systems by removing demand for skilled administrative
interventions and automating system management [43]. AC
benefits the IT domain in the short term by reducing the
dependence on human involvement and the system total cost
of ownership. Near short-term benefits more specifically are:
improved user experience because of better system quality of
service (QoS); reduced requirements for human intervention;
better user access to services due to more natural human—
machine interaction facilities; lower maintenance costs due

to reduced requirements for human intervention; and lower
usage costs due to better resource management [43].

In 2003, an architectural blueprint to build AC sys-
tems was introduced by IBM in which five building blocks
for an autonomic system have been presented [42]. The
blueprint also identified four self-* characteristics consid-
ered as fundamental for any autonomic system, and as
a consequence, the most cited in the AC domain are:
self-configuration, self-healing, self-optimization and self-
protection [42]. These features are referred in short as
self-chop [42]. Since AC domain’s inception, the list of self-
* features has been continuously growing. However, many
of the latter features can be incorporated in the original
self-chop list. Examples of the other self-* features are: self-
anticipating, self-adapting, self-adjusting, self-aware, self-
critical, self-defining, self-destructing, self-diagnosis, self-
governing, self-installing, self-managing, self-monitoring,
self-organized, self-recovery, self-reflecting, self-simulation,
self-stabilizing. Other than these self-* properties, context-
awareness specifically represents an additional key capabil-
ity of an autonomic system. It means an autonomic system
must be able to detect and adapt to changes in its execution
environment, which can be user behavior, available resources
or interactions with neighboring systems [43].

IBM has proposed five incremental levels of matu-
rity in autonomy in [40,42] where self-management and
autonomicity have been progressively integrated into the
continuously evolving software system. They are basic, man-
aged, predictive, adaptive and autonomic [43]. In another
complementary classification scheme presented in [32], the
autonomy of systems has been adapted to four classes:
support, core, autonomous and autonomic. Today the AC
initiative’s influence has been present in many computing
domains, such as grid computing, artificial intelligence and
multi-agent systems, robotics, control systems, SOA, cloud
computing and complex adaptive systems. However, very
little scientific literature exists on the application of the AC
initiative in the DSEs domain.

2.2 Digital service ecosystems

A service ecosystem is a socio-technical complex system
where service providers can reach shared goals and utilize
the services of other members in the ecosystem to gain added
value [44,45]. A DSE is part of a service ecosystem, but it
only covers the digital part, leaving out the social part. An
example of a DSE is an interactive multi-screen TV services
ecosystem in the Innovative Cloud Architecture for Real
Entertainment (ICARE) project [3,46]. This DSE includes
25 service ecosystem members from Europe providing and
using digital cloud-based services on operating end-to-end
interactive multi-screen TV services. There are two dimen-
sions in a DSE: species and underlying infrastructure and

@ Springer

SOCA (2017) 11:1-31

services support [1]. According to [1], several factors charac-
terize a DSE, for example a strong information infrastructure,
a domain-oriented cluster and rich resources offering cost-
effective digital services.

A DSE contains several elements: ecosystem members,
ecosystem infrastructure, capabilities, and digital services
[3]. The main members of a DSE are service providers, ser-
vice brokers, service consumers and infrastructure providers.
The ecosystem capabilities describe the capability model
that defines the properties of the ecosystem. It also describes
how the properties have been implemented using the ecosys-
tem services provided by the ecosystem infrastructure. The
ecosystem capabilities are implemented by the infrastruc-
ture, which supports the utilization of core competencies
and core assets, flexible business networking and efficient
business decision-making. Independent ecosystem members
provide digital services in a DSE where the members pro-
vide additional value for both service consumers and other
service providers [3].

In this context, a digital service can be any added value that
is delivered digitally [1-3]. It is automated entirely and ide-
ally controlled by the customer of the service [3]. Users can
use digital services to enrich their everyday life, for example,
exploiting services that can aid a person to monitor and guide
in his or her health and well-being issues. An example for a
digital service can be found in [47], which is a situation-aware
safety service for children. In it, sensor and social web tech-
nologies have been exploited in the development of a safety
service to enable proactive and instantaneous assistance and
guidance for children in their daily lives.

2.2.1 Quality attributes

In DSEs, achieving the expected quality of a digital service
is very challenging as the quality goals of all the supporting
services need to be satisfied as well. Therefore, addressing
quality attributes in the earliest possible phases of the soft-
ware lifecycle like requirements engineering and architecture
design is central in DSEs.

Service requirements for DSEs can be categorized as func-
tional, non-functional, business requirements and constraints
[3]. Functional requirements describe the behavior of a ser-
vice that fulfills the tasks of the user. On the other hand,
non-functional requirements describe the qualities of the ser-
vice system, which can be defined as internally and externally
observable properties. Meanwhile, business requirements
help service providers to achieve business goals, and con-
straints are characteristics that limit the development and
use of the service [3].

Quality is a term with multi-dimensional meaning, which
depends on the context it is used. Software quality has been
defined in IEEE 1061 [48] as the degree to which soft-
ware possesses a desired combination of attributes. ISO/IEC

@ Springer

25010 [49] presents a software quality model with six cate-
gories of characteristics (i.e., functionality, reliability, usabil-
ity, efficiency, maintainability and portability), which are
then divided into sub-characteristics. These non-functional
characteristics of a component or system are commonly
known as quality attributes. Quality attributes can be cat-
egorized as execution and evolution quality attributes [50].
Execution qualities (e.g., performance, security, availability,
usability, scalability, reliability, interoperability, adaptabil-
ity) are observable at runtime. In comparison, evolution qual-
ities (e.g., maintainability, flexibility, modifiability, extensi-
bility, portability, reusability, integrability and testability) are
not distinguished at runtime, and as a result, solutions for
evolution qualities are in the static structures of the software
system [50].

Several challenges and limitations can be identified for
ecosystem-based service requirements engineering process,
such as service co-innovation, service value co-creation,
enabling infrastructure and utilization of ecosystem’s assets
[3]. Also, the definition of quality requirements for DSEs
needs further exploration, and special skills are required in
the innovation and requirements analysis, negotiation and
specification phases. However, quality ontologies, quality-
driven methods and tool support for attaching quality prop-
erties for architectural elements as discussed in [51-55] can
aid the quality requirements engineering process.

3 Research method

This section outlines the research method used in this sur-
vey. Our method was motivated by the normative information
model-based systems analysis and design (NIMSAD) frame-
work [56]. NIMSAD focuses on classification and thematic
analysis of scientific literature. It is a general framework for
evaluating any methodology, and it uses the entire problem-
solving process as the basis of evaluation. A main goal of
our survey is to describe and compare each primary method
against the comparison framework (see Sect. 4) defined in
the study. Typically, surveys based on the systematic litera-
ture review (SLR) method [57] focus more on the guidelines
followed, and thematic analysis and detailed comparisons of
the primary methods are not given much emphasis. As in
the SLR method, the current study follows three different
stages: planning, conducting and reporting (see Fig. 1 for
process steps and outcomes). In this section, we provide an
overview of the procedure followed and describe in detail
the research questions and the search strategy followed; the
primary method selection procedure and criteria applied; the
quality of the selected papers; the data elements extracted
from the papers; and the data analysis and synthesis meth-
ods used. The review was conducted by a research Fellow

SOCA (2017) 11:1-31

Process Steps Outcomes
Research |
Questions i . : &

i} i Review Scope | ‘&=
i and Protocol ! %

Search Strategy o

Identify Relevant ~ Retrieved
Research Publications |

- ¢ Relevant
Primary Method ; Primar i
Selection i Y ey
___Methods /£
____________________ =
/Primary Method™, S
] | Propertieson 2
Data Extraction ! Framework 'O
 Characteristics /=
" Descriptive,
Data Analysis Comparfatw‘e
Summaries in
....tables
a0
N jpmmmmm oo - £
Disseminate / This =
Results | Publication | S
,,,,,,,,,,,,,,,,,,,, Q
o

Fig. 1 Overall procedure of the survey

in AC systems, and the results were reviewed by a research
professor in digital systems and services.

3.1 Planning stage

Research questions, search strategy and databases: The most
important activity during planning (Fig. 1) is formulating the
research questions. To this end, we have expressed our objec-
tives in the form of 13 research questions (see Table 1), which
have been defined from a broad perspective. Our objective
was to capture a comprehensively full range of the literature
on AC methods in DSEs.

A search strategy was defined to detect as much of the
relevant literature as possible. That is, it needs to iden-
tify all relevant primary methods that address the research
questions. To this end, literature searches were conducted
from March-May 2015 (updated in January 2016) using
four scientific databases—Scopus, IEEE Xplore, ACM dig-
ital library, Springer link—as well as Google Scholar. The
scientific databases used are the most relevant in the soft-
ware engineering area [57], and with the inclusion of Google
Scholar, an exhaustive list of databases is not necessary. Our
review is based on automatic search process which depends
on the search engines of the scientific databases used. How-
ever, as the general search string (Boolean ANDs and ORs)
has been adapted to each database according to its inter-

nal requirements, we contend that relevant studies have not
been excluded. In each case, the search string “autonomic
computing” AND “service ecosystem” was entered, with no
temporal limitation. The initial results were as follows:

Scopus returned 58 results. Scopus is the largest abstract
and citation database of peer-reviewed literature, indexing
about 20,000 peer-reviewed journals, books and conference
proceedings.

IEEE Xplore returned 2 results. This database covers elec-
trical engineering, computer science and electronics, and
indexes more than 160 journals and 1200 conference pro-
ceedings.

ACM digital library returned 1 result. ACM is the world’s
largest scientific educational computing society.

Springer link returned 26 results. This database con-
tains journals and conference proceedings published by the
Springer publishing house, and indexes over 8.3 million sci-
entific documents.

Google Scholar returned 88 results. Google Scholar pro-
vides a simple way to broadly search for scholarly literature,
allowing search across many disciplines and sources. This is
beneficial in gaining an overall understanding of the results
as it is based on various disciplines and sources.

3.2 Conducting stage

Once the planning stage is completed, the review proper (con-
ducting stage) starts.

Primary method selection procedure and criteria: As an ini-
tial screening, titles and abstracts were read and the following
three main research areas were manually identified:

e AC methods in DSEs
e AC methods in service ecosystems
e quality-driven software engineering methods.

The papers were considered from the perspective or view-
point of service engineering, i.e., requirements engineering
and architecting of services. A research area here represents
an important study area considered for analysis and compar-
ison. The use of solid quality-driven software engineering
methods is essential in the service engineering of DSEs, as
handling and managing quality in an ecosystem is a more
complex and challenging process. In DSEs, service systems
are integrated solutions from several service providers, and
therefore, in order to achieve the intended quality of a digital
service, quality goals of all the supporting services need to
be satisfied too.

As the initial result set and number of research areas
identified were very limited, the scope of the search was
broadened. As stated in Sect. 1, DSEs are characterized by
uncertainty caused by environmental disturbances or evolv-

@ Springer

6 SOCA (2017) 11:1-31
Table 1 Research questions D Research question
RQI1 What is the goal of the method?
RQ2 What are the benefits of using the method by the users (e.g., requirements engineers,
service architects)?
RQ3 Does the method apply top-down approach or bottom-up approach or a combination of
both to engineer services in the ecosystem?
RQ4 Does the method support both collective adaptation and adaptation by subparts, or does
it operate with the guidance of a central controller only?
RQ5 What self-* features have been expressed in the method?
RQ6 Has the method supported expressing a comprehensive level of context-awareness?
RQ7 Has reflexivity been considered in the engineering process?
RQS8 What quality attributes have been expressed in the method?
RQ9 Does the method support evolution of the service ecosystem?
RQI0 Does the service ecosystem infrastructure support service interoperability?
RQI1 Does the component model of the method promote scalability of design (i.e., software
engineering scalability) and execution complexity (i.e., performance scalability)?
RQI12 Has the method matured in several research papers?
RQI13 Has the method been applied at the conceptual level, as a proof of concept in the lab, or

in the development of a large-scale industrial product using a case study?

ing requirements. Although the number of methods that
address uncertainty using self-* features of the AC initia-
tive in the DSE domain is scarce, as evident by the very
limited results returned in the initial search process, valuable
lessons can be learnt and applied through methods in other
related domains like dynamically adaptive systems (DASs).
Therefore, literature search was performed and the follow-
ing search string “autonomic computing” AND “dynamically
adaptive system” was entered with no temporal limitation.
The result of this search is as follows:

“autonomic computing” AND “dynamically adaptive
system”—Scopus: 20, IEEE Xplore: 2, ACM digital library:
35, Springer link: 48, Google Scholar: 69.

The titles and abstracts of the research articles returned
were read and the following research area was manually iden-
tified:

e DASs-based methods that support self-* properties (in
requirements engineering or architecting phases of the
software lifecycle)

Figure 2 shows the research areas identified during the analy-
sis. As shown in Fig. 2, the four research areas are represented
by:

intersection of DSEs and AC

intersection of service ecosystems and AC
intersection of DASs and AC
quality-driven software engineering.

Sl e

Note that, although an overlapping of the quality-driven soft-
ware engineering research area can be identified with other

@ Springer

domains (e.g., AC, service ecosystems, DASs), we consider
quality-driven approaches independently from their applica-
tion domain. Thus, it has been represented independently in
Fig. 2.

After this analysis, as the resulting 349 articles were over-
lapping, articles indexed by two or more databases were
eliminated. In order to handle the inconsistency between the
meta-data format stored in different databases, we used the
RefWorks reference management system. The benefit is it
automates the task of aggregating research papers into a con-
sistent list in a unified format.

The selection criteria are generally used to determine
which studies are included in or excluded from a review. In
this review, both theoretical and empirical studies, and studies
conducted in both industry and in academia were considered
for inclusion. The inclusion and exclusion criteria need to
be based on the research questions, and for this purpose, the
following criteria were used:

Inclusion criteria:

e The primary method is in one of the four main research
areas identified during initial screening.

e The primary method provides evidence of service engi-
neering, i.e., requirements engineering and architecting
of services, which is the perspective considered in this
study.

Exclusion criteria:

e The primary method provides no abstract or full text of
the approach.

SOCA (2017) 11:1-31

Fig. 2 Thematic research areas
identified

Digital
Service 1
Ecosystems
(DSEs)

7
-
Requirements
Engineering
5 Autonomic
Computing 3
(AC)
Architecting
4
Quality-Driven
Software
Engineering

e The primary method is written in a language other than
English.

Finally, 12 primary methods were selected to be most relevant
to our study and a review was conducted by the authors to
identify the most relevant aspects of the research.

Quality of the selected papers: Quality criteria are impor-
tant to assess the quality of the primary methods, which are
aimed at minimizing bias and maximizing internal and exter-
nal validity. To this end, first, quality instruments [57] can be
formed which are checklists of factors that need to be eval-
uated for each primary method. Second, how quality data
are to be used can be specified. However, in this review, no
detailed quality assessment was performed as the goal of
our survey was to identify all the AC methods in DSEs as
much as possible. Existing scientific literature applying the
AC initiative in DSEs is very little, which can be because it is
still a very new research topic. Yet, as mentioned earlier, we
used several general inclusion and exclusion criteria when
selecting the primary methods for analysis.

Data elements extracted from papers: During the data extrac-
tion step (Fig. 1), data extraction forms were used to extract
primary method properties from the primary methods. These
primary method properties correspond and relate to the dif-
ferent characteristics (see Sect. 4) defined in the comparison
framework. The intention was to help address all 13 research
questions in each primary method. Some interpretation of
data was necessary as not all information available was suf-
ficient to answer all the 13 research questions. In addition,
the following items were used during data collection: (1) the
author(s) with their affiliations, the source (e.g., Journal arti-

cle, conference paper, technical report) and year; (2) research
area and scope; (3) the most relevant papers on the primary
method; (4) a summary of the method; and (5) additional
notes.

Data analysis and synthesis methods used: The data analy-
sis step (Fig. 1) is used to synthesize the data so that the
research questions can be answered. This step involved col-
lating and summarizing the results of the primary methods in
tables. Tables were used to organize the data with basic infor-
mation about each study. The synthesis here is descriptive,
exploratory and comparative. It is descriptive as the analysis
is made by defining the research questions and elements of the
comparison framework. Exploratory analysis is performed
by finding out the thematic research areas and mapping the
identified data/methods to them. Comparison analysis is done
by studying and presenting characteristics of each primary
method in the thematic research areas, and summarizing and
analyzing the main findings.

In addition to answering the research questions, we
used the data to identify interesting trends or limitations,
such as how long and who has led the research in the
respective research areas identified, i.e., any specific organi-
zation of researchers, and limitations of the current research
approaches.

3.3 Reporting stage

We will disseminate the results of the review using a Journal
article (this publication, see Fig. 1). The results of this review
are provided in Sect. 5, while a discussion of the results is
provided in Sect. 6.

@ Springer

SOCA (2017) 11:1-31

Goal
Top-down- Approach
Bottom-up- Type
Centralized- :
. Decentralized
Decentralized-
e Lay'é,id_ Control Context
Self-configuration- -
Self-healing- Self-
Self-optimization- Features Z
: Autonomic
Self-protection-
Contents Digital Service Ecosystems User — Benefits
Context- Engineering
Awareness
Reflexivity Method
Validation possssuses
| Legend :
|
. | NIMSAD !
1 . !
et qualty T oo
Scalability- | Attributes ! |
Maturity Case Study : Framework |
| Characteristic :

Fig. 3 Comparison framework taxonomy

4 A comparison framework for autonomic
computing methods in digital service ecosystems

In this section, we introduce our comparison framework
that we use for comparing the different scientific methods
from the four thematic research areas. It incorporates the 13
research questions identified in Table 1, Sect. 3.1. We explain
the different characteristics of the framework and provide
justifications for their inclusion.

As mentioned in Sect. 1, none of the surveyed methods
appears to address in a generic and adaptive way the service
engineering of DSEs. That is, specifically, an ecosystem-
based method on applying the AC initiative is missing in
the DSE domain. Therefore, there is a need for a coherent,
systematic ecosystem-based method and framework to sup-
port the requirements engineering and architecting of digital
services with AC capabilities. This needs to be performed by
adopting a generic and adaptive way to tackle the complex
needs of adaptation behavior of these systems. To this end,
several characteristics are significant, such as top-down vs.
bottom-up approach, decentralized control, self-* features,
context-awareness, reflexivity, quality attributes (e.g., evolv-
ability, interoperability, scalability) and method validation
(see Fig. 3). These characteristics are intended to make the
framework both theoretical and practical, in which method
validation focuses on the practical side of a method while
the other characteristics focus on its theoretical side.

The categories of the comparison framework are based on
the NIMSAD framework [56]. NIMSAD has been used in

@ Springer

the development of a number of comparison frameworks in
software engineering (e.g., [58,59]). NIMSAD defines four
essential elements for evaluating a methodology: method
context, method user, method content and evaluation of
method. A distinctive feature of NIMSAD is its fourth ele-
ment, evaluation, which is missing in many other similar
frameworks [56]. For these reasons, NIMSAD has been
selected in the present survey. The 13 research questions
(RQs) established in Table 1 can be broadly categorized under
these four categories (i.e., context: RQ1, user: RQ2, method:
RQ3-RQ11, evaluation: RQ12-RQ13). First, in the context
category, the analyzed method is examined from the prob-
lem situation point of view (see RQ1, Table 1). Second, in the
user category, the method is examined from the viewpoint of
the intended users of the method (RQ2). Third, the method
contents category focuses on the content of the method itself
(RQ3-RQ11). Finally, in the evaluation category, the val-
idation details of the method are focused (RQ12-RQ13).
Descriptions of each characteristic of the comparison frame-
work are provided next.

Goal and expected benefits: First the goal of the analyzed
method must be clearly defined. Also, the expected benefits
of using the method need to be described.

Top-down versus bottom-up approaches: Autonomic sys-
tems can be characterized by their operating conditions and
by multiple dimensional properties such as top-down and
bottom-up approaches, and centralization and decentraliza-

tion [36].

SOCA (2017) 11:1-31

On the one hand, traditional top-down approaches can be
adopted to engineer systems where specific functionalities or
behavior is achieved by explicit design. On the other hand,
bottom-up approaches (e.g., nature-inspired or bio-inspired
approaches [21]) are used to achieve functionalities via spon-
taneous self-organization [17]. Both these approaches are
beneficial where a top-down approach can be used to engineer
specific local functionalities while the latter can be adopted
to engineer large-scale behaviors. The line between these two
approaches is often not clear, and a method can incorporate
techniques from both alternatives.

Decentralized control: Adaptation logic can be decen-
tralized, centralized or applied in a hybrid manner [37].
A method needs to define models and tools to support
decentralized control so that both collective adaptation and
adaptation by subparts can be provided. Decentralization
(e.g., see [60]) is a feature of cooperative self-adaptive or
self-organizing systems, which function without a central
authority [36]. Decentralized systems are usually bottom-up
and the large numbers of components contained in these sys-
tems interact locally according to simple rules, thus emerging
the global behavior of the overall system. In a centralized
system approach, a central unit controls the system, but this
approach is not suitable for large systems due to its size and
real-time constraints. Meanwhile, a hybrid approach has both
centralized and decentralized elements [37,61]; thus, both
collective adaptation and adaptation by subparts can be pro-
vided.

Self-* features: As described in Sect. 2.1, the four self-*
characteristics (self-chop) considered as fundamental for any
autonomic system, and as a result, most cited in the AC
domain are self-configuration, self-healing, self-optimization
and self-protection [42]. Self-configuration describes the
adjustment of system components in a user independent
manner to achieve overall system behavior according to
higher-level goals. Self-optimizing is achieved when the sys-
tem provides operational efficiency by tuning resources and
balancing workload. Meanwhile, self-healing means that the
system provides resiliency by discovering and preventing
disruptions and recovers from malfunctions. Self-protecting
means that the system secures critical assets and resources
by anticipating, detecting and protecting against any security
risks. Other than these self-chop properties, self-adaptation
[36] is a key characteristic of an autonomic system. It is
realized as a situation-based behavior that takes into consider-
ation the functional and quality properties of the environment
and system itself, and the needs of the users.

Context-awareness: The need for context-awareness (e.g.,
see [62,63]) is a recognized issue in complex adaptive sys-
tems such as DSEs [3]. Although acquiring data in order to
support context-awareness is not an issue, handling signifi-

cant amount of data is very challenging [17]. Also, awareness
can encompass situations occurring not only at the locality of
individual components but also at many different levels of the
system. Therefore, in order to perform autonomous adapta-
tion activities in a collective and coordinated way, they need
to be driven by more comprehensive levels of awareness than
the traditional context-aware computing models.

Reflexivity: Reflexivity is an important characteristic of a
self-managed autonomic system, which means that the sys-
tem must have knowledge of its components, current status,
capabilities, limits, boundaries and interdependencies with
other systems and available resources [64]. It is the capabil-
ity of making intelligent decisions based on self-awareness.
Also, the system must be aware of its possible configurations
and how they affect specific non-functional, quality require-
ments. The knowledge processing is based on rules, machine
learning algorithms and software agents. In the current study,
we consider reflexivity as a technique that can be exploited
to support evolution (evolvability) of the ecosystem.

Although reflexivity is a relatively new term in service
engineering, reflection is a widely known mechanism that can
be used to support reactive or proactive adaptation of soft-
ware systems. Reflection is defined as the ability of software
to examine and modify its structure or behavior at runtime
[65,66]. Reflection can be of two types: introspection and
intercession. Introspection is the observation of an applica-
tion’s own behavior, while intercession is the reaction on
introspection’s results, which can be structural, parameter
or context adaptation [67]. Reflection techniques have been
investigated with self-adaptive systems as an underlying prin-
ciple for self-awareness on different levels of software, e.g.,
architectural reflection [68], behavioral reflection. However,
these methods apply reflection on the software itself, while
we consider reflexive behavior with respect to unanticipated
changes at the larger ecosystem level to support evolution of
the ecosystem, and not at the system level.

Quality attributes: Non-functional requirements describe the
qualities of the system. From service development point of
view, QoS defines a set of quality attributes that a particular
service has to fulfill. As a consequence, quality attributes
defined in the QoS specification of a service system has to
be dealt in each software engineering phase: in requirements
specification, architecture design and implementation.

As discussed in Sect. 2.2.1, quality attributes can be cate-
gorized as execution and evolution quality attributes. While
all these attributes are important, however, in this survey, we
only focus on quality attributes that are significant from the
ecosystem viewpoint of service engineering of digital ser-
vices (e.g., evolvability, interoperability, scalability).

Evolvability: By evolvability we refer to the ability of the
ecosystem to evolve in dynamic situations (for example, see

@ Springer

10

SOCA (2017) 11:1-31

[29]). An ecosystem is dynamic, evolving all the time as new
members, services and value networks emerge [3]. There-
fore, in order to adapt to the needs of the ecosystem, the
ecosystem’s knowledge management model should evolve
too. Additionally, new support services need to emerge as and
when required. As new requirements emerge, requirements
innovation is a continuous process inside the ecosystem.

Interoperability: Interoperability is the ability of software
to exchange information and to provide something new,
which originates from exchanged information [69]. The
main goal of interoperability models and rules is to enable
the loosely coupled services to collaborate. In [53], six
interoperability levels have been defined for smart envi-
ronments, i.e., conceptual, behavioral, dynamic, semantic,
communication and connection. In order to support ecosys-
tem interoperability, four interrelated metamodels have been
proposed in [70], which are domain ontology, methodol-
ogy, domain reference model and knowledge management
metamodels.

In DSEs, proper service engineering techniques are
required to develop digital services that are interoperable,
available and easily consumed by taking into considera-
tion the specific capabilities of the ecosystem [3]. In order
to support service interoperability, two main elements are
required by the ecosystem to engineer services in an ecosys-
tem: ecosystem infrastructure and knowledge repositories
[71]. Ecosystem infrastructure makes services interopera-
ble, available and easily consumed and therefore manages
all service ecosystem operations. Meanwhile, storage of the
collaboration models, service descriptions and ontologies
of service types to support interoperability are provided by
knowledge repositories. Other than service interoperability,
pragmatic interoperability is achieved between ecosystem
members when their intentions, business rules and organiza-
tional policies are compatible [3]. Pragmatic interoperability
deals with context data, which is specified as internal state of
the system [71]. It also deals with the specification of the sys-
tem process that employs the data. For examples and usage
of service and pragmatic interoperability, refer to [71].

Scalability: In general, scalability in software engineering
has been commonly known as the ability of a system, net-
work or process to handle growing amounts of work in
a graceful manner or its ability to be enlarged to accom-
modate that growth. A formal definition of scalability for
digital ecosystems has been provided in [72] as: “to a cer-
tain degree, a digital ecosystem is scalable if its performance
stays effective and efficient while large amount of input data
or large quantities of heterogeneous participating entities are
added.”

The component model for a DSE can potentially include
a very large scale of target scenarios; thus, it must promote

@ Springer

scalability of both design (i.e., software engineering scala-
bility [73,74]) and execution complexity (i.e., performance
scalability [73]). In other words, the component model for
a DSE should be based on sound design principles that can
be practically applied to small systems and to very large sys-
tems, and the component model of the DSE needs to exhibit
scalable performances and QoS.

Method validation: There should be some level of evidence
regarding the maturity of the method, such as the evidence of
its use and applicability. It is important to ascertain whether
the method has concretized in several research papers. Also,
the method should provide a way to validate its results. In
this regard, a method can be applied at the conceptual level,
as a proof of concept in the lab, or in the development of
large-scale industrial product using a case study.

5 Overview and comparison of autonomic
computing methods in digital service ecosystems

This section presents each of the 12 primary methods orga-
nized in the four research areas (see Sect. 3.2, Fig. 2) in
greater detail. To this end, an overview of each primary
method is provided followed by a comparison of the pri-
mary methods against the comparison framework (Tables 2,
3, 4). The four research areas are:

AC methods in DSEs

AC methods in service ecosystems

quality-driven software engineering methods
DASs-based methods that support self-* properties (in
requirements engineering or architecting).

5.1 AC methods in DSEs

This research area includes the articles found explicitly using
the AC initiative in the DSE domain. Digital ecosystems are
not characterized by only one reference model as they cross-
cut different business domains and value chains [72]. As a
consequence, architectures need mechanisms to allow the
participants to publish any model and investigate on models
that are most suitable to their needs. In order to handle these
challenges, the AC initiative has been exploited in three main
studies in the DSE domain, which are:

e self-controlled components [28,75]
e evolving SOAs [29]
e autonomic SOA for DSEs [30,76-78].

See Fig. 4 and Table 2 for a comparison of these three primary
methods against the framework.

SOCA (2017) 11:1-31

Table 2 Comparison summaries of the AC methods in DSEs

Method

Self-controlled components

Evolving SOAs

Autonomic SOA for DSEs

Comparison characteristic
Goal

Benefits

Top-down versus bottom-up
approach

Decentralized control

Self-* features

Context-awareness

Reflexivity
Quality attributes
Evolvability

Interoperability
Scalability

Method validation

Unify concepts of components and
services in cloud applications

Providing strong QoS guarantees
of composed applications

Top-down

MAPE loops at the top global
level, and interactions that occur
through the hierarchical
component model provide a high
level of decentralized control

Self-reconfiguration,
self-adaptation, self-management

Not supported

Not supported

Availability, integrity, time and
capacity

Not supported

Not supported
Not supported

Model applied to a Springoo
application providing online
merchant applications

Allow services recombine and
evolve over time, increasing its
effectiveness for the users

Maintaining self-organizing
evolution of digital ecosystems in
a scalable architecture

Bottom-up

Architecture contains two
optimization levels and a high
level of decentralized control
supported

Self-organization,
self-management

Not supported

Not supported

Evolvability, scalability
(robustness mentioned as a
benefit but not supported)

Self-organizing evolution of digital
ecosystems

Not supported

Push-oriented approach to support
scalable architectures

Simulating an EOA-based digital

Achieve a more adaptive and a
robust architecture for DSEs

Improving usability,
adaptability and robustness of
SOA

Top-down

MAPE-K loops support some
degree of decentralized
control

Self-organization

Basic UML metamodel to
model the architecture with
domain-independent
stereotypes for adaptation
handling

Not supported
None

Not supported

Not supported
Not supported

Work-in-progress prototype of

ecosystem against a traditional the proposed SOA in the
SOA system computation engineering
domain

Self-controlled components

Cloud computing and the future Internet create a new
ecosystem where everything is a service with custom com-
position and dynamic management of resources at runtime.
In this context, in the OpenCloudware project [28,75], the
authors introduce a compositional framework to compose
components as services which can be self-controlled. In self-
controlled components (SCC), self-control mechanisms are
attached to them to enable autonomic application manage-
ment during execution. The objective is to provide strong
QoS guarantees of composed applications.

The authors adopt a top-down approach from architectural
modeling to service implementation, and runtime support
including autonomic contract management. The SCCs are
based on grid component model which the authors have
extended with service-oriented features. Autonomy has been
introduced in the SCCs using feedback control loops with

elements of monitoring, analyzing, planning and execu-
tion of adaptation activities (MAPE loops). A high level
of decentralized control is provided using MAPE loops
defined at the top global level of the composition, and
interactions that occur through the hierarchical component
model. This method supports several self-* properties such as
self-reconfiguration, self-adaptation and self-management.
MAPE loops in an SCC provide self-reconfiguration with
actions to change the component structure or dependen-
cies between the involved components at runtime. Self-
management of resources is supported for each QoS criterion
in the quality model. A significant feature and contribu-
tion in their work is the support for QoS control and
management. For this, each SCC has a QoS control com-
ponent to ensure compliance with the service contract. It
defines four QoS criteria: availability, integrity, time and
capacity.

@ Springer

SOCA (2017) 11:1-31

12

s1oded [e1oass

Ul paInjet J0U Sey POy

£(SOOIAIOS Q1Y) YNIM WASAS
orduues e) syuowrradxe Areurwirorg

payoddns JoN

pauoddns joN

payoddns JoN

payoddns JoN

SUONIUYIP UONBINSHUODI
pue uonem3yuod Jo [9pow JIseq
© 9ZI[BULIO} 0} PAsn SONSLINOY

uoneIN3yuodI-J[os

[01nu0d
POZI[ENUIIP JO 92IT9p QWOS
Surpraoid ye powre sdoo] FdVIA

umop-doj,

uondwnsuod 921osax
[eWIUIW (JIM SJUSUWAISE
[OAQ[-901AI0S FUIAJSTIRS
dooj
Srwouojne ue Suisn uoneInsyuod
syt)snipe A[Sumunuod
0) WA)SAS PISEq-0IAIAS B J[qRUT

Slomourey A)frqouwt
901AI9S © 10} uonejudwedwr
1daou0o-jo-jooid pue uonenuIg

w3rpered

UOEIIUNWWIOD UIALIP-IIIAIIS

190d-0)-190d pozipeoo] pue
orwouoine ue y3noiy) ANIqeress

payioddns joN

S[OAQ] (0IDBWI) WIAISASOID
[eqo[3 pue (o1orur) sjuauodwod
9[3urs je uoneZIUE3IO-J[9S

Uo J[INQ UOTIN[OAT

panoddns JoN

SOOIAIRS QIeme-1Xdju0d Suipraoxd
QIMOAIYOIE Y w0 sjurod
$S900B pUB ‘SOPON-(] ‘SOPON-L
uonoojoid-jjes ‘uonezrwndo-jjos
‘Fureay-jos ‘uoneIn3yuod -J[os
S[OAQ]
wa)sAs009 [8qO[3 pue juouoduwod
Ay} Je 9A[0AD pue Jdepe
0] SOOIAIRS MO[[e 01 parroddng

dn-wonog

w3rpered

uoneduNWWod 193d-03-100d

PZI[BO0] puE dIHIouo)NE

ue elA AJI[IQe[eos SUIAdIYOR pue
K)10ua3019)9Y 9JTAQP FUTWODIIAQ

IOUURW JUIIOLJO
‘uaredsuen) e Ul SPUBWUSP
I9sn SUI[[Y[NJ SIOTAISS OTWOUOINE
JOJ WA1SAS009 IIAIIS B UOISIAOI]

ULIRJ JOAISS PIZI[BNUIIIP
© UO 9Sed 9sn & Sulsn suonenuirs

A®[op UONEOIUNWIWIOD PUB SPLAIY)
‘AIOWAW S YONns ‘SUOISUIWIP
[BISASS UL S[QR[ROS ST AINIINIYIIY

payoddns joN

SHOV 2y}
Jo Tepow-j[as ay) Surwrwreisord
£Q w21sAs009 Ay} Jo AN[IGRA[OAT

payoddns JoN
(1opow-J1os)
SQUIYOBUW Je)s IUL PIPUI)X
JO 39S B se paulap A[QAISud)Xyq
JUOUIOFRUBW-J[IS
‘UONRZIULRTIO-J[OS ‘SSouaIeMe-J[oS
[opow-J[as
Ay u1 pauyap saniiqedes
uoneZIue3Io-J[os M
[0TUOD PIZI[BIIUIIAP JO [9A[-YSIH

dn-wopoq pue umop-doy yrog

SUONORIUI QUITORW-0}-AUIYORW
puE QUIYORW-0)-Uewny
‘uewWNy-0)-uBWNy

10J A[SSO[WEAS SAITAIAS SULIFO
uorneziue3Iio-J[os pue
SSOUAIEME-J[2S SNOIY) UOTIN[OAD
S, WRIsAs09 10§ Jusuodwod

JIWOUOINE UL JO [9POW B 9INPONU]

wnasnw
JTBWS € UT SQOTAIOS 90uepIng
PUE UOIBULIOJUT UO SISBD

osn Sursn pajepIeA aIeMO[PPIA
Sunndwoo
Jriqowr ‘aatsearad ur sisATeue
pue a3e103s BIEP JO SAZUI[[RYD

urew) Jo Auo se pAYIIYSTH

SuonoRIAUI

N0 A1IBD PUE SAOIAIIS

JO INO 9Fpajmouy AZI[BUINXI
Apro11dXe 03 MOY UO WISTUBYIIA

sioydejowr
1mojy Aq payroddns weys£sod9
) JO UONNJOAD PUB ANSIQAI

pawoddns JoN
S901AIQS dAISEAId paynqLisIp
uorsiaoid 03 pesn suroyed
Surziuegio-J[os ‘aandepe jo Ajorrep
juswoSeuBW-J[9S
‘uoneziuegio-jos ‘uonejdepe-jog

SIOIARYQQ PIIBUIPIOOD JO suropned
PozZIue3I0-J[os JO 0UTIOWS
dn-wonoq ay) Aq panqryxyg

dn-wonog

(2IM22)IYOTE QOUIJAI JO JYAU()

SUIISAS009 201AIdS dAISEATAd

paxdsur-arnjeu asodind-[erousd
Sunuowordu pue Jurugeq

SQOIAIOS
aarsealad paynqrsip SuroauISud
10} YI0Mawelj SUIZIue3Io-j[os

‘pandsur-armyeu € asodoig

uonEpIEA POYIRI

Aipqereog

Ayniqeredorojuy

AI[IQeATOAT
sanque Aend)
KNATXOPY

Ssaualeme-1xXaquo))

SQINJLRJ -J[OS

[0TUO0D PIZI[BIUII(

yoeoidde
dn-wopoq sns1oa umop-dog,

sjyouag

[e0D
21S1U2]ODADYD UOSLIDAUIO))

SWAISAS00a
9O1AIRS 10} UONRINSYUO0II-J[OS

SLANOIg

SYAvosvo

HI9dVS

POURN

SWA)SAS099 9IIAIAS UT SpoyIaU Dy Y} Jo sorrewrwins uostredwo) ¢ Aqe],

pringer

Qs

13

SOCA (2017) 11:1-31

J[qeoridde joN

9[qeoridde joN

QAnRNIUT DY) Junagie)
jou se a[qeoridde JoN

J[qeoridde joN
umop-do],

SOOTAIOS SSO[AIE]S “O[qesnal
9oeNSqe Wolj suonouny
J[qUIASSE PUE S)OLIUO0D

QOIAIAS Quofepue)s Juruyog

SI0QUITUQ sjuawasnbax
10J A3o10poyjowr
PAIUSLIO-OJIAIDS
®© 10J s1oALIp A)1Tenb

pue ‘e Ayenb asodoig

payioddns jJoN

Ajure1aoun Jo $92IN0S
[opou 0) S[opow [BO5)

uoneINIYuodI-J[oS

payioddns jJoN
umop-do],

owr u3Isap 18

pojedionueun suonejdepe

9yes SuneIouas pue
‘SSV(JO Junn3yuodal-Jos

sSv{ Jo uawdo[oaap
j10ddns 03 s[00) JO 9yms ®©
pue sse001d € 9qLIdSI(

paytoddns joN

pouoddns jJoN

uoneydepe-J[os Jurpnjout
sanaadoxd .-Jras e s1e31e],

paytoddns joN

umop-do],
Anpiqeidepe
pue AIIqIXap ‘ssouisnqor
J1QIYX9 ey} Suonn[os
QIEM)JOS [EOTOU0Id
donpoid 01 sueaw Furpraoig

sontadoid .-J1os Suniqryxa
arem)jos jo usrsop
Ay 03 uonnjoA? eN3Ip A[ddy

payioddns jJoN

uonnjoad pue uonejdepe
Qrem)jos dwmuni sapraoid
SOA)S [BINOAIYDIE JO O

uoneydepe-jog

QIMOANIYOIE
9} JO [0TUOD PIZI[BIUIIIP
apraoid S9[A3S TeINONIYOIY

umop-do],

waIsAs ay) JumnIe)sal 1o
SuIpeo[aI INOYIIM JWIIUNI
Sunmp Ayreuonouny

s, wRIsAs urduey)

(uoneydepe orureuip)
UOIIN[OAQ IBM)JOS QWIUNI
I0J SO[A1S [eINJOAIYOIE

U0 POYJW B JUIsAIJ

J1 uo Suruosear aanenuenb

pue 2ane)enb pue

[epow [e0S swmnuni & 3uisn

Aq uoneydepe-jjos syroddns
UONOJ[I sjuswaInbay

Kjurerooun

[opouwr 03 o3en3ue] XV T

AU} YIIM PIPUAIXA S[OPOW
juowaInbar pajusLIo-feon)

uoneydepe-jog

pauoddns joN

umop-doj,
Qumuns
Surump sjuowarnbar
a3eurw pue noqe
UOSEBAI ‘TOAODSIP 0] SWAISAS
aandepe-jjos Sunioddng

SUOTIIPUOD [RIUSWIUOIIAUD
Surueyd 03 A[snonunuod

jdepe 0) SwIAISAS aIEM)JOS
Mmo[[e 0) poyjow & 9sodoig

KATX[OY

SSOUAIEMEB-}XIUO))

SQINE9J -J[9S

[0TUOD PIZI[ENUIII

yoeoxdde
dn-woypoq sns1oa umop-dog,

sjjoudg

80D
21J814219D40Yd UOSLIDAUIO))

AV@IN uo paseq ssedoxd
SISA[euR USALIP-AJI[ene)

SpoyIoW JULIAUISUD
QIeM)JOS USALIP-AIITEne)

ssva 1o}
uonendwod Areuonnjoaq

SWwI9ISAS
JIWOUOINE 10J S[OpOW [eIOl
-ABYQQ JO uonnjoad [ensiq

uoneidepe swmuni
10J S9[A)S [BINOIYIIY

uonosapygalr quOEO.ﬁ:UQM

sonaadoid .-jjos 11oddns
Jey) SpoYIoW paseq-sSVJ

POYRIN

BATE OIBISIY

SBAIE oIeasal SurIeauISus aremijos uaALp-Aenb pue soniadoid ,-J[9s Yim SV WOIJ SPOYIaW Jo saurewwins uosuedwo) ¢ Iqe],

pringer

As

SOCA (2017) 11:1-31

14

ASoropoyowr u3Isap pue

SISA[eue POIUILIO-IOTAIIS

e udrsap 03 31 Sursn Aq
PajepITEA AOUDISISUOD [BUIAIU]

payroddns joN

poyoddns joN

paytoddns joN

ssaoo1d pue [opow

Kyrenb yioq 10§ peyroads

SIOALIP pue sjudwarnbax
Ayenb Jo jos aatsuayardwo))

$0130q01 U0 sjuawLIadxd

pUR ‘WA)SAS [OTYIA

JUASI[oIUT Uk UO UOTIE[NWITS
© UO Paseq SI UONepI[eA

payioddns jJoN

payoddns JoN

Qwn ugdisap Je paredionueun
are yorym suoneidepe ofes
9jeroues o) awmnuni je pue

‘SSV(Jo uoneisyuodax
10J own u3Isop je
pasn swipLIo3[e ATeUOnN[OAT

payioddns joN

wo)sAs Jururem

pue SuLIo)luOW pooy

J[qeidepe pue juaSi[eiur UL

puUB WI)SAS UOTIBTIARU JOQOI

SNOWOUOINE **9'T ‘SAIPMYS
9SBD 0M) UO PIseq UONEPI[EA

sonsst AJ[Iqe[eos

renudjod ssaIppe saInjea)

Juowdo[oAp [BIUAWIAIOUT
pue uonoBINSqe [OPOIA

poyoddns JoN

S[opOW [BIOTABYq
Suneroudd 10j pasn poyjouwr
paseq-uonnjoAs [eNsSiq
Anqeidepe “Arqrxey
‘$$QU)SNQOI JIQIYXd
jey) aremijos donpoid ueod
PpoyIow Ay} Jey) PAUOIIUIU
st 31 y3noye payroddns JoN

[oA9] Temydosuoo oy

Je SI yJom 9y} pue payrodar

UQ9q 9ALY UOHEPI[EA
PoYIdW JO S[1eI9p ON

payioddns jJoN

payoddns joN

YIomawey
UOIIEN[BAD JUSWS[Q-INOJ
© 03 30adsar y)im sofA1s
[eInoIyoIR Jo oFueI © £q
UOTIN[OAS QIBMIJOS SWINUNY

Ayniqeidepe orwreuA(q

s1oded yoreosax

[eI0ADS UT paInjew

poyew ‘Ayjiqeradoraiur

QAQIYOE 0} ATEMI[PPIW
JUOSIOW AZISOYIUAS

payoddns joN

Ayniqeradoojur

QAQIYOE 0} ATBMI[PPIW

JUITIOW ZISAYJUAS
0 parjdde poyio|y

QIMOAIYDIR

AU) YIIM UOTIBZIUOTYOULS

pue [apow sjuawairnbar
qy) JO uonNJOAT

pauoddns joN

uoneEpI[EA PO

Aiqereos

Aypiqeredorojuy

Ariqeaoay

sanquye Aend)

21IS1U21ODADYD UOSLIDAUI0))

AV@IN uo paseq ssedoxd
SISA[euR USALIP-AJI[ene)

Spoyjow JULIAUISUD
QIeM)JOS USALIP-AIITEne)

ssva 1o}
uonendwod Areuonnjoaq

SW9ISAS ONUOUOINE IO S[oPOU
[BIOIARBY2q JO UOTIN]OAD [BNITI]

uonejdepe owmnunI
10J S9[A)S [BINONIYIIY

uonoopal syuawAINbay

sanradoid .-j1es 110ddns jey) spoyiowr paseq-sSvVJ

poyionW

DIV YIUDISIY

panunuod § Iqe],

pringer

Qs

SOCA (2017) 11:1-31 15
Goal |Benefits |[Top-down| Decentralized | Self-* Context- |Reflexivity | Evolvability Inter- Scalability | Method
/Bottom- Control Features | Awareness operability Validation
up
T
Self-Controlled
Components
B
Evolving SOAs
. T
Autonomic SOA for
DSEs
Legend
Supported I Top-down T
Not Supported —— Bottom-up B
Partially Supported N

Fig. 4 AC methods in digital service ecosystems compared against the framework characteristics

The authors apply a use case called Springoo to show
how the adoption of SCCs helps the service composi-
tion to provide a guarantee of QoS. Springoo is a web
application providing online merchant applications using
Apache/Jonas/MySQL components. The architecture has
been partially validated using the grid component model/Pro-
Active middleware to provide the monitors, QoS control
and MAPE components. While QoS guarantees have been
comprehensively provided in their work, a detailed context-
awareness model to support autonomous adaptation activ-
ities is missing. Also, reflexivity and quality attributes of
evolvability, interoperability and scalability of the ecosys-
tem have not been addressed in [28,75].

Evolving SOAs

Briscoe and De Wilde [29] have presented a largely bottom-
up method called an ecosystem-oriented architecture (EOA)
of digital ecosystems by extending SOA with distributed evo-
lutionary computing, thus allowing services to recombine
and evolve over time and increasing its effectiveness for the
users. Here, the word ecosystem is more than just a metaphor.
Digital ecosystems, which are digital counterparts of biolog-
ical ecosystems, have been defined as software systems that
exploit the properties of biological ecosystems. They can
automatically solve dynamic and complex problems, such as
robustness, scalability and self-organization.

The architecture of the digital ecosystem provides a
two-level optimization scheme, and there a high level of
decentralized control has been supported. The underlying
tier of distributed agents consists of a decentralized peer-
to-peer network. The second optimization level is based on
an evolutionary, genetic algorithm that operates locally on
single habitats (peers). The self-* properties supported are
self-organization and self-management (see Table 2). The
digital ecosystem here is a multi-agent system, which uses
distributed evolutionary computing to combine appropriate
agents so that user requests for applications are satisfied. In
this architecture, each service is a habitat and the network
of habitats creates the digital ecosystem. The continuous
changing requirements and their complexity in contextual,

adaptive environments are the driving force for the evolu-
tion and self-organization of agents. The authors consider
two main models from several variants of distributed evolu-
tionary computing: the coarse-grained island model and the
fine-grained diffusion neighborhood model. However, they
propose to use a reconfigurable network topology so that
habitat connectivity can be dynamically adapted based on
the observed migration paths of the agents in the habitat net-
work.

One of the key features and benefits of authors’ work is
the support for scalable architectures in order to meet user
requests for applications. This has been fulfilled by apply-
ing a fundamental paradigm shift where a push-oriented
approach has been used instead of a pull-oriented one. In
a push-oriented approach, the digital ecosystem composes
applications preemptively and upon request. On the other
hand, a pull-oriented approach generates applications only
upon request in SOAs. This method has been validated using
a simulation of an EOA-based digital ecosystem. This EOA-
based simulation has been compared against a simple SOA
with a distributed UDDI (Universal Description, Discovery
and Integration) service registry. The results indicate that
with the increasing number of services, the digital ecosystem
outperformed the traditional SOA system. Maintaining the
self-organizing evolution of digital ecosystems in a scalable
architecture is a main benefit in the authors’ method. How-
ever, Briscoe and De Wilde [29] have not considered context-
awareness, reflexivity and interoperability in their method.

Autonomic SOA for DSEs

In [30,76-78], following a top-down approach, the SOA has
been extended with the AC initiative (autonomic SOA) to
achieve a more adaptive and a robust architecture for DSEs.
This is to keep up with the dynamic changes of requirements
and environment. The authors elaborate on the design and
implementation model of an autonomic SOA using a case
study in computational engineering. Compared to traditional
SOA, the autonomic SOA technique includes an autonomic
manager and a knowledge base, which provides the ability
to adapt to changes.

@ Springer

16

SOCA (2017) 11:1-31

Goal | Benefits | Top-down | Decentralized | Self-* Context- Reflexivity | Evolvability |Inter-| Scalability | Method
Bottom-up| Control Features | Awareness %plera Validation
ility
SAPERE B w
CASCADAS T8
BIONETS B
Self-reconfiguration T] 4
for Service \\\\\\: \\\\\
Ecosystems k y N

Legend

Supported “I” Top-down T
Not Supported —— Bottom-up B
Partially Supported

Fig. 5 AC methods in service ecosystems compared against the framework

The proposed architecture of the autonomic, self-organi-
zing SOA contains three layers: presentation layer, process
layer and service/resource layer. The presentation layer,
which is the top-most layer of the architecture, provides
an interface for various users. The processing layer, which
is the middle layer, performs and coordinates autonomic
functionality. The bottom resource layer provides utiliza-
tion of the distributed resources using web services. It is
provided as a typical SOA framework that contains a ser-
vice registry and service providers. The service registry’s
functionality has been extended by introducing a knowledge
base for the autonomic processes. The actual autonomic con-
cept has been provided by an autonomic manager in the
processing layer. The autonomic manager performs the auto-
nomic cycle of monitoring, analysis, planning and execution
over the knowledge base (MAPE-K loop), and this provides
some degree of decentralized control. The authors have used
Unified Modeling Language (UML)-based metamodeling
concept to model the proposed architecture as a UML class
diagram (basic metamodel for context-awareness). There
several domain-independent stereotypes have been used to
specify the relationships (e.g., request, call, instance, publish,
find and bind) between the components (e.g., user, autonomic
manager, composer, brokers, service registry and service
provider) in the architecture. Also, a sequence diagram has
been derived of the service architecture.

The method has been validated using a case study in
computational engineering [76], and an implementation of
a work-in-progress prototype of the proposed SOA has
been presented. However, reflexivity and quality attributes
(e.g., evolvability, interoperability, scalability) have not been
addressed in the method.

5.2 AC methods in service ecosystems

In the following, we discuss four primary methods that
apply the AC initiative in the domain of service ecosystems.

@ Springer

As mentioned in Sect. 2.2, service ecosystems are socio-
technical complex systems where service providers can reach
shared goals and utilize the services of other members in the
ecosystem to gain added value [44,45]. Service ecosystems
are closely related to the research areas of Internet of Services
(IoS) and service value networks. IoS considers the Internet
as a global platform for retrieving, combining and utilizing
interoperable services. Meanwhile, service value networks
[79] provide business value through agile and market-based
composition of complex services. This is from a pool of ser-
vice modules by the use of a universally accessible network
orchestration platform. The reviewed four primary methods
are:

SAPERE [15-20]

CASCADAS [21-23]

BIONETS [24-27]

service reconfiguration for service ecosystems [80].

Figure 5 and Table 3 provide a comparison of these four
primary methods.

SAPERE

In [15-20], the authors propose a nature-inspired reference
architecture called SAPERE (Self-Aware Pervasive Service
Ecosystems), which can be a useful guide in the design and
implementation of self-adaptive pervasive service ecosys-
tems. They identify several research challenges emerging
from the convergence of cyber-physical worlds, such as
comprehensive situation-awareness, top-down vs. bottom-up
design, power of masses, decentralized control, and diversity
and evolvability [19].

The authors explain how the SAPERE middleware infra-
structure supports the SAPERE model and framework.
SAPERE middleware has followed a bottom-up approach
getting inspiration from natural systems. Decentralized
control is exhibited by the bottom-up emergence of self-
organized patterns of coordinated behaviors. The self-*

SOCA (2017) 11:1-31

17

properties supported are self-adaptation, self-organization
and self-management (see Table 3). In the SAPERE frame-
work, pervasive services are modeled and deployed as
autonomous individuals in an ecosystem of other services
and devices. All of these interact according to a limited set of
self-organizing, self-adaptive coordination laws called eco-
laws. The provisioning of distributed pervasive services is
realized by a variety of adaptive, self-organizing patterns
(context-awareness support). The authors survey and ana-
lyze a number of natural metaphors that can be adopted in
the modeling and architecting of innovative pervasive ser-
vice ecosystems. This is to support spatiality, adaptability,
openness and long-lasting evolvability of the ecosystem. The
key metaphors introduced are physical, chemical, biological
and social, and the key differences between them are the
way the species, space and eco-laws are modeled and imple-
mented. They have discussed how diversity and evolution
of the ecosystem can be supported by these four metaphors.
On interoperability, this has only been partially addressed in
[20] where they explain on a mechanism on how to explicitly
externalize knowledge out of services and use it to carry out
interactions. The authors highlight scalability as one of the
main challenges of data storage and analysis in pervasive and
mobile computing [17].

The authors’ method has matured and evolved in many
research papers [15-20]. The middleware implemented has
been validated in the context of exemplary use cases on
information and guidance services in a smart museum.
Although the need for interoperability and scalability has
been highlighted as important characteristics in the reference
architecture, it is not clear how the implemented middleware
infrastructure supports these qualities. Also, reflexivity has
not been supported in their method.

CASCADAS

In the EU project CASCADAS (Component-ware for Auto-
nomic Situation-aware Communications, and Dynamically
Adaptable Services) [21-23], the authors introduce a model
of an autonomic component to support the evolution of
the ecosystem through self-awareness and self-organization.
The architecture of the ecosystem is based on distributed
autonomic components called autonomic communication
elements (ACE). The internal behavior of ACE is described
by means of a declarative representation called the self-
model.

CASCADAS has elements of both fop-down and bottom-
up approaches where autonomic mechanisms have been
included using a top-down approach while bio-inspired
mechanisms are provided through a bottom-up approach.
A high level of decentralized control is supported as self-
organization capabilities are part of the ACE autonomic
behavior defined within the self-model. The self-* prop-
erties supported are self-awareness, self-organization and

self-management. Their work supports a detailed level of
context-awareness with its self-model, which is defined as
a set of extended finite state machines. These state machines
include rules for modifying them to adapt ACE behavior
to the changes of internal and environmental conditions.
Explicit support for quality attributes has not been mentioned
in [21-23], but evolvability of the ecosystem is provided
by programming the self-model of the ACEs. Using exper-
iments, the authors have shown that the ACE architecture
is scalable in several dimensions, such as memory, threads
and communication delay. Thus, the applicability of the ACE
model in large autonomic communication scenarios is clear.

The CASCADAS method has been experimentally vali-
dated using simulations of a use case concerning a decen-
tralized server farm, as part of a complex service ecosystem.
But reflexivity and interoperability have not been supported
in CASCADAS [21-23].

BIONETS

The BIONETS (BIOlogically inspired autonomic NETworks
and Services) project [24-27], which is a European Commis-
sion FET (Future and Emerging Technologies) initiative on
Situated and Autonomic Communications, aims at enabling
autonomic pervasive computing environments through the
introduction of biologically inspired approaches. The project
uses evolutionary techniques embedded in the system com-
ponents as means to achieve full autonomic behavior.
BIONETS looks at how nature and biology in particular (e.g.,
chemical computing, artificial embryogenies and evolution-
ary games) can be used to achieve self-chop features through
open-ended evolution [24]. The authors describe four main
challenges stemming from Future Internet scenarios: scale,
heterogeneity, complexity and dynamicity [24]. The overall
goal of BIONETS is provisioning of a service ecosystem for
autonomic services. This service ecosystem needs to be able
to fulfill user demands and needs in a transparent, efficient
manner by exploiting the unique features of pervasive com-
puting and communication environments.

Like the SAPERE method, BIONETS also follows largely
a bottom-up approach where it gets inspiration from nature
to build a distributed autonomic system based on local inter-
actions. Decentralized control has been provided to allow
services to adapt and evolve at the component level and global
ecosystem level. BIONET places greater emphasis on four
specific AC initiative properties, which are self- configura-
tion, self-healing, self-optimization and self-protection [24]
(see Table 3). There are three main actors in BIONET net-
works with respect to devices: T-Nodes, U-Nodes and access
points [25]. T-Nodes gather data from the environment and
are read by U-Nodes, which are complex, powerful devices
passing by the T-Nodes. U-Nodes use T-Nodes to inter-
act with the environment and gather information to run the
context-aware services (context-awareness support). Access

@ Springer

18

SOCA (2017) 11:1-31

points are complex powerful devices that act as proxies
between BIONETS networks and IP networks. The BIONET
project is built on two main pillars of networks and services,
which converge to provide a full autonomic environment
for network services. The latter is provided by self-evolving
services, which is a bio-inspired platform, centered on the
notion of evolution. Evolution here builds on the notion of
self-organization, and it has been considered at two levels:
single components (micro) and global ecosystem (macro). At
the single component level, each service is able to design and
build its own protocol stack and its own network. On the other
hand, at the global ecosystem level, the interactions among
service entities provide the means for rapid service evolu-
tion at the same time maintaining global stability properties.
BIONETS achieves scalability through an autonomic and
localized peer-to-peer service-driven communication para-
digm [25].

Lahti et al. [26] present a validation of the BIONETS
concepts as a simulation case and proof-of-concept imple-
mentation for a service mobility framework. However, like
CASCADAS, reflexivity and interoperability have not been
defined in their framework (see Table 3).

Self-reconfiguration for service ecosystems

Lietal. [80] propose an AC method to enable a service-based
system to continue adjusting its configuration by means of
an autonomic loop of monitoring, analyzing, planning and
executing actions. Their top-down approach shows how AC
initiative can be implemented to perform self-reconfiguration
for service-based systems to satisfy two common metrics of
non-functional requirements, i.e., response time of services
and the system resource consumption. The focus of recon-
figuration here is to satisfy non-functional requirements, and
support for functional requirements, business requirements,
constraints and quality attributes have not been mentioned.
Their method focuses on the geometry configuration of
service-based systems as opposed to dynamic reconfigura-
tion exploited in traditional, distributed systems. The authors
have used heuristics [80] to formalize a basic model of config-
uration and reconfiguration definitions (context-awareness
support).

The main AC functions implemented to support self-
reconfiguration of a service-based system include the fol-
lowing MAPE feedback loop activities: monitor to initiate
reconfiguration; analyze to diagnose the configuration; plan
to select reconfiguration; and execute for implementing
reconfiguration. In addition, knowledge has been presented
as a configuration of service-based systems described using
architecture description standards, goals or policies. These
MAPE loops provide some degree of decentralized control
of the service-based system.

The authors have used preliminary experiments to eval-
uate their method. The method has been demonstrated

@ Springer

using a service ecosystem, which provides mechanisms to
dynamically change the location of services on machines
while executing service requests. The service ecosystem here
is a resilient service-operating environment in which the
deployed services (e.g., grid services or web services) can
be dynamically migrated in response to changing demand on
resources to guarantee service-level agreements and to opti-
mize resource utilization. However, their method [80] does
not support reflexivity and any quality attributes (e.g., evolv-
ability, interoperability, scalability). Also, it has not matured
in several research papers, and therefore, it is difficult to
establish the applicability of their method more clearly (see
Table 3).

5.3 DASs-based methods that support self-* properties

In the following, we discuss four primary methods selected
for comparison from the DASs-based methods that support
self-* properties research area. These are selected to be most
relevant to our study, or these provide valuable lessons that
can be learnt and applied from the DASs domain to the
present context. The methods are from the perspective of
service engineering, and these can be from requirements
engineering and architecting phases of the software lifecycle
(see Fig. 2). The four primary methods are:

requirements reflection [81-84]

architectural styles for runtime adaptation [85,86]
digital evolution of behavioral models for autonomic sys-
tems [87-91]

evolutionary computation for DASs [92,93].

DAS:s continuously monitor their environment and adapt
behavior in response to changing environmental conditions
[94]. In these systems, reconfiguration of software may
need to be performed at runtime (e.g., software uploaded or
removed) in order to handle new environmental conditions.
Example domains that apply DASs include automotive sys-
tems, telecommunication systems, power grid management
systems and ubiquitous systems.

Requirement reflection method supports runtime repre-
sentation of requirements for DASs. Although there are
several existing methods on requirements specification of
DASSs [94-96], the requirements reflection method supports
the synchronization between requirements and architecture
from which the current study can learn and draw parallels
to the notion of reflexivity introduced here for DSEs. Thus,
it has been selected for comparison here. In the same man-
ner, at the architectural level, architectural styles for runtime
adaptation method has comprehensive support for context-
awareness modeling with their architectural styles for DASs.

Recently, there has been considerable interest within the
software engineering research community (e.g., [§7-93]) to

SOCA (2017) 11:1-31 19
Goal |Benefits|Top-down| Decentralized | Self-* Context- |Reflexivity| Evolvability Inter- Scalability| Method
Bottom- Control Features | Awareness operability Validation
up
T
Requirements Reflection \\\\ \\\\
Architectural Styles for T %
Runtime Adaptation
Digital Evolution of T

Behavioral Models for

Autonomic Systems

Evolutionary T
Computation for DASs

| DN

Quality-driven Analysis T

Process based on URDAD

Legend i
Supported “I” Not Applicable %3
Not Supported —— Top-down T

Partially Supported \QE Bottom-up B

Fig. 6 DAS-based methods and quality-driven software engineering methods compared against the framework

apply evolutionary computation techniques for handling the
threat of uncertainty [97] on adaptation capabilities of DASs.
In [97], a taxonomy of potential sources of uncertainty from
the DASs perspective has been presented with techniques
for mitigating them. Evolutionary computation is a subfield
of computer science which applies the basic principles of
genetic evolution to problem-solving [91]. Digital evolution
[98] is a branch or form of evolutionary computation. In
digital evolution, self-replicating computer programs exist
in a user-defined computational environment and are sub-
ject to mutations and natural selection. In this context, we
analyze two primary methods, (1) digital evolution of behav-
ioral models for autonomic systems and (2) evolutionary
computation for DAS. Compared to other related methods
in evolutionary computation, these methods support self-*
properties and, more importantly, they have matured in sev-
eral research papers.

See Fig. 6 and Table 4 for a comparison of these four
primary methods against the framework.

Requirements reflection

In [81-84], the authors following a top-down approach intro-
duce a method for requirements reflection, which means
making requirements available as runtime objects. Require-
ments reflection is important as future software systems will
be self-managing and these systems need to adapt continu-
ously to changing environmental conditions. Requirements
reflection can support such self-adaptive systems by making
requirements first-class runtime entities, allowing software
systems to reason about, understand, explain and modify
requirements at runtime. It supports self-adaptation by using
aruntime goal model and qualitative and quantitative reason-
ing about how the goal model’s organization changes over
time.

Bencomo [81] classifies uncertainty and adaptations that
a self-adaptive system has to face as foreseen, foreseeable

and unforeseen. Several research challenges on requirements
engineering of self-adaptive systems have been identified,
such as dealing with uncertainty, runtime representation of
requirements, evolution of the requirements model and syn-
chronization with the architecture, and dynamic generation of
software [81-84]. In order to deal with uncertainty, they use
and extend goal-oriented requirements modeling (context-
awareness support) with the RELAX language [99,100],
which has been developed to support modeling and reasoning
about uncertainty in design time and runtime models. Run-
time representation of requirements has been achieved by
providing language support for representing, navigating and
manipulating instances of a metamodel for goal modeling
such as the KAOS metamodel [101]. In order to facili-
tate requirements reflection and synchronization between
the goals and the architecture, the authors propose a two-
layer model, that is, a base layer that consists of runtime
requirements objects and a metalayer that allows the dynamic
manipulation of requirements objects. This results in two
layers—one for requirements and one for architecture—and
each has a casually connected base layer and a metalayer. For
the dynamic generation of software, they recommend the use
of generation and transformational techniques in software
engineering.

The authors’ research has matured in many research
papers. In [84], their method has been applied to synthe-
size emergent middleware to achieve interoperability in the
context of the CONNECT project [102]. In emergent middle-
ware, mediators are synthesized from runtime models, which
provide support to reason about interoperability issues. How-
ever, the authors do not mention on decentralized control and
any scalability features of the architecture (see Table 4).

Architectural styles for runtime adaptation

Taylor, Medvidovic and Oreizy [85,86] present a top-down
method on architectural styles for runtime software evolu-

@ Springer

20

SOCA (2017) 11:1-31

tion. Runtime software evolution or dynamic adaptation is the
ability of a software system’s functionality to be changed dur-
ing runtime without reloading or restarting the system [85].
Architectural styles are “named collections of architectural
design decisions that (1) are applicable in a given develop-
ment context, (2) constrain architectural design decisions that
are specific to a particular system within that context, and
(3) elicit beneficial qualities in each resulting system” [85].
The architectural styles considered in [85] are REST (repre-
sentational state transfer), event-based, service-oriented and
peer-to-peer, and these styles can be used to provide decen-
tralized control of the architecture.

The main targeted self-* property is self-adaptation while
architectural styles can be used to provide comprehensive
level of context-awareness modeling. They assess a range
of styles with respect to a four-element evaluation frame-
work called BASE introduced previously in [86]. The BASE
framework provides means for evaluating, comparing and
combining techniques for runtime adaptation. The BASE
framework can be applied to differentiate techniques based
on the system model they operate on and on how the four
key aspects of runtime change are confronted, i.e., behav-
ior, asynchrony, state and execution context. Architectural
styles provide a technique for representing quality properties
in architectural models and supporting quality-aware archi-
tecture modeling process. Architectural styles and patterns
promote different quality attributes, and in [85], the quality
attribute—dynamic adaptability—has been supported.

The authors do not specify any details of validating
their method [85]. The authors’ work [85] does not sup-
port reflexivity, interoperability and scalability features of
the framework. There are several other existing methods
that leverage architectural styles to enable dynamic adapta-
tion, such as the Rainbow framework [103], and Kramer and
Magee’s layered reference architecture for self-adaptation
[104] which includes mechanisms to swap out components
and/or connectors at runtime.

Digital evolution of behavioral models for autonomic sys-
tems

By leveraging the Darwinian evolution, in [87-91] the
authors propose a software development methodology capa-
ble of producing self-* software. They investigate the appli-
cation of digital evolution to the design of software that
exhibit self-* properties. In their method, a population of
computer programs can be found in a user-defined com-
putational environment, and it is subject to mutations and
natural selection. Applying digital evolution in DASs pro-
vides means to produce economical software solutions that
exhibit robustness, flexibility and adaptability.

The authors’ method has been applied to generate behav-
ioral models that capture autonomic system behavior. Their
model-driven engineering process for DASs follows a top-

@ Springer

down approach using several phases, such as goals, require-
ments, design models and implementation. A digital evolu-
tion-based tool called Avida-MDE (Avida for model-driven
development) has been developed for generating behavioral
models, which satisfy requirements specified as scenarios
and properties. The authors propose a development model
with three stages: cultivation, evaluation and deployment
[87]. The Avida-MDE tool extends the Avida digital evo-
lution platform in three ways to support state diagram
generation. They are: first, defining search space by provid-
ing instinctual knowledge, which is information available to
an organism at birth; second, generating behavioral mod-
els using this instinctual knowledge; and third, evaluating
an organism based upon how well its generated behavioral
model satisfies the requirements using model checking tools.
The authors highlight two scalability challenges and present
how their method will scale when used with larger appli-
cations. The two challenges are, first, allowing organisms to
evolve large and increasingly complex diagrams, and second,
model checking of the diagrams to verify that the functional
properties are satisfied [88]. These potential scalability chal-
lenges have been addressed through the model abstraction
and incremental development features of their method [88].

The method has been validated using two main case stud-
ies. First, it has been applied to generate behavioral models,
describing the navigation behavior of an autonomous robot
navigation system [87,89,91]. Second, in [90], the method
has been validated by applying it to an adaptive flood warning
system. Their work has matured in several research papers.
However, decentralized control, context-awareness, reflexiv-
ity and interoperability issues have not been defined in their
method (see Table 4).

Evolutionary computation for DASs

In a related method to the preceding method, in [92,93] the
authors describe a process and a suite of tools to support the
development of DASs. Their top-down approach starts with
requirements and moves through reconfigurable designs at
runtime. They exploit the power of evolutionary computation
into model-based development and runtime support of high-
assurance DASs.

The authors have defined uncertainty that can arise in three
different aspects of cyber-physical systems: physical envi-
ronment, cyber environment and components themselves.
The sources of uncertainty in these aspects can happen
at runtime, design time and requirements, and the authors
try to address uncertainty with three enabling technolo-
gies: model-based development, assurance and dynamic
adaptation. They highlight several evolutionary computation
methods, such as genetic algorithms, genetic programming,
artificial life and digital evolution, and evolved artificial
neural networks [92,93]. Novel evolutionary algorithms have
been harnessed at both design and runtime. For example,

SOCA (2017) 11:1-31

21

their method has been applied to evolve collective commu-
nication algorithms for a variety of distributed behaviors
that include synchronization, quorum sensing, construct-
ing networks, responding to attacks and reaching consensus
[92,93]. At design time, evolutionary algorithms have been
used to better explore possible conditions requiring a DAS
to self-reconfigure. At runtime they have been applied
to generate safe adaptations, which are unanticipated at
design time. The authors use OLYMPUS [92] for handling
environmental uncertainty in a DAS where a goal model
(context-awareness) is defined as a point of reference at run-
time.

The authors have devised a case study to demonstrate how
a goal model supports the modeling, monitoring and recon-
figuring an intelligent vehicle system (IVS), which needs to
perform adaptive cruise control, lane keeping and avoid col-
lisions [92]. A simulation has been built using the Webots
simulation platform to demonstrate a version of the IVS
application. Additionally, their work has been validated using
experiments conducted in the context of robotics [93]. How-
ever, decentralized control, reflexivity, interoperability and
scalability features are missing in their method [92,93].

5.4 Quality-driven software engineering methods

In DSEs, service systems and applications are integrated
solutions from several service providers. Therefore, in order
to achieve the intended quality of a digital service, qual-
ity goals of all the supporting services need to be satisfied
too. Therefore, dealing quality in an ecosystem is a com-
plex process which stresses the need for solid quality-driven
software engineering methods.

Quality-driven software engineering methods (e.g., [105—
114]) emphasize the importance of addressing quality attri-
butes in the earliest possible phases of the software lifecycle
like requirements engineering and architecture design. In
Sect. 2.2.1, we defined quality and quality attributes and clas-
sified quality attributes as execution and evolution qualities.
Quality attributes are gathered, categorized and documented
as at least equally important requirements as functional
requirements. The gained knowledge is used in requirements
engineering and software architecture design phases. In
[106], authors describe five key industrial software architec-
ture design methods and compare how they address quality
requirements in architecture design. The compared methods
are Attribute-Driven Design [107], Siemens’ 4 Views (S4V)
[108], Rational United Process 4+1 Views [109], Business
Architecture Process and Organization [110], and Architec-
tural Separation of Concerns [111]. The goal of this research
area is not to provide an exhaustive analysis of scientific liter-
ature on quality-driven software engineering methods, which
is out of scope here. Yet, we analyze a key method, quality-
driven analysis process based on URDAD, which has been

selected for comparison as it provides comprehensive support
for quality attributes from a service engineering perspective
(i.e., a service-oriented methodology used by requirement
engineers). Also, the classification of different stakeholders
with quality requirements for both process and quality model
can provide valuable insights on how quality can be similarly
classified in an ecosystem-based method which has many
users.

Table 4 (see also Fig. 6) presents a comparison of this
method against the framework.

Quality-driven analysis process based on URDAD

Solms et al. [105] propose a fop-down, quality-driven
analysis and design process based on URDAD (Use-Case,
Responsibility-Driven Analysis and Design). URDAD is a
service-oriented methodology used by requirements engi-
neers to design services. This method provides comprehen-
sive support for quality attributes where the authors provide
a set of quality requirements and drivers specified for both
quality model and process. Quality drivers are activities
that improve one or more process or model quality criteria
[105]. URDAD is used to generate the computation indepen-
dent models of the model-driven architecture with sufficient
details so that it can be used directly as platform-independent
models. The authors have defined a domain-specific language
for URDAD, called URDAD-DSL, which can be used to
specify syntactically correct URDAD models. They iden-
tify the stakeholders and their quality requirements for both
process and model quality. Then, for each quality crite-
rion a set of quality drivers have been provided, and how
quality drivers are embedded within the URDAD methodol-
ogy has been demonstrated. The authors identify the main
stakeholders for the model as requirement engineers, archi-
tects, developers, quality assurance staff, project managers
and clients. The corresponding quality requirements for the
requirements model are simplicity, completeness, modifi-
ability, consistency, decoupling, cohesion, reusability and
traceability. Meanwhile, stakeholders defined for process
are project managers, requirements engineers and clients,
and their quality requirements are low cost, repeatability,
estimatability, trainable, measurability, consistency and iso-
lation.

The authors validate the internal consistency of their
method by using it to design a service-oriented analysis
and design methodology, which generates its own URDAD
metamodel and process. Their work is not targeting the
AC initiative; thus, support for decentralized control, self-*
properties, context-awareness and reflexivity is not applica-
ble. Although a comprehensive set of quality requirements
and drivers have been specified for both quality model and
process, quality attributes of evolvability, interoperability
and scalability have not been mentioned in their method [105]
(see Table 4).

@ Springer

22

SOCA (2017) 11:1-31

4. validation

Quality
Attributes

Case Study

Fig. 7 Dependencies between the framework characteristics

6 Results of the survey

Given the characterization of the state of research, several
observations can be made. In the following, these obser-
vations are summarized and discussed. In this process, we
identify some open problems and insights to future work.
Table 5 provides a summary of the results of this survey.

6.1 Main findings, open problems and future work

The comparison framework (Sect. 4) defined several char-
acteristics which have been used to analyze and review the
methods, i.e., top-down or bottom-up approach, decentral-
ized control, self-* features, context-awareness, reflexivity,
quality attributes (e.g., evolvability, interoperability, scala-
bility) and method validation. We can identify dependencies
between these different characteristics (see Fig. 7). This will
assistin structuring the scientific literature and identifying the
status of state of the art in the research areas with respect to
the framework characteristics, that is, what has been achieved
so far and what is missing. More importantly, this can serve as
an effective starting point for defining a road map for service
engineering digital service ecosystems with AC capabilities.

As discussed in Sect. 4, we have used the NIMSAD frame-
work to examine a method from four different points of view
sequentially: context, user, method content and evaluation.
Here, we can identify a sequential dependency order between
these categories (see Fig. 7). When we examine the indi-
vidual characteristics within the method content category,
top-down vs bottom-up approach and decentralized control
precede all other characteristics, as these characteristics are

@ Springer

reviewed from a higher level. Two characteristics are fun-
damentally important for reflexivity: self-awareness (self-*
features) and context-awareness. Reflexivity is the capabil-
ity of making intelligent decisions based on self-awareness
(Sect. 4). We only consider quality attributes that are sig-
nificant from the ecosystem viewpoint, such as evolvability,
interoperability and scalability. Reflexivity can be identified
as a technique that can be exploited to support evolvability
of the DSE. Therefore, as shown in Fig. 7, the dependency
between reflexivity and quality attributes can be described.

e The goal (from context) and benefits (from user) char-
acteristics are specific to a particular method. These are
only used to describe the purpose and advantages of using
a method, and not directly used to analyze the results of
the primary methods.

e In DSEs, both fop-down and bottom-up approaches can
be beneficial where a top-down approach can be used
to engineer specific local functionalities while the latter
can be adopted to engineer large-scale behaviors. Most
analyzed primary methods (eight) have been top-down
approaches, which achieve specific functionalities or
behavior through explicit design. From the reviewed pri-
mary methods, evolving SOAs, SAPERE and BIONETS
follow largely a bottom-up approach.

Sometimes the line between these two approaches is not
clear and a method can incorporate techniques from both
alternatives, and this has been exhibited by the CASCADAS
method.

SOCA (2017) 11:1-31

23

e As mentioned in Sect. 4, adaptation logic can be applied
in a decentralized, centralized or hybrid manner [37].
A method needs to define models and tools to support
decentralized control so that both collective adaptation
and adaptation by its subparts can be provided. In general,
decentralized systems are bottom-up and the components
contained in them interact locally according to simple
rules, thus emerging the global behavior of the over-
all system. A hybrid system has both centralized and
decentralized elements within it. As a result, both collec-
tive adaptation and adaptation by subparts are provided.
We note that all the methods in the DSE and service
ecosystem domains provide some level of decentralized
control. To this end, some popular techniques that have
been applied are MAPE loops (e.g., self-controlled com-
ponents, autonomic SOA for DSEs), or techniques getting
inspiration from natural (e.g., SAPERE) or bio-inspired
mechanisms (e.g., CASCADAS). However, except for
the architectural styles for runtime adaptation method,
decentralized control is largely missing in the primary
methods reviewed from the DASs domain where the level
of attention it has received is far less compared to the ser-
vice ecosystem and DSE domains.

e Self-configuration, self-healing, self-optimization and
self-protection are four self-* features considered as fun-
damental for any autonomic system [42]. The BIONETS
project supports all these four characteristics, and self-
adaptation and self-management have been the most
supported self-* properties in the reviewed primary meth-
ods. Quality-driven analysis process based on URDAD
method does not target the AC initiative, so support for
self-* properties is not applicable there (see Table 5).

An open issue and challenge when applying the AC initia-
tive to DSEs can be the open-loop structure of an ecosystem.
Problems can be created by the open-loop structure of DSEs
when incorporating autonomic software systems that have
a closed-loop system. Typically an autonomic system con-
sists of a closed-loop system. This means due to continuous
changes of the system, it modifies itself at runtime using
feedback. Software systems that incorporate closed-loop
mechanisms allow them to adapt themselves to changing
conditions, thus reducing human effort in the computer inter-
action. However, due to the open-loop structure of DSEs,
there is a need for continuous human supervision, which is a
challenge.

e The need for context-awareness is significant in com-
plex adaptive systems such as DSEs [3]. There needs
to be more comprehensive levels of awareness than the
traditional context-aware computing models to support
and drive the autonomous adaptation activities. Given
the prominent place of context-awareness in complex

adaptive systems, more efforts need to be directed at
designing and developing these models in DSEs. This
is because it is virtually absent from the literature except
for the autonomic SOA for DSEs method, which defines a
basic UML metamodel for adaptation handling. In con-
trast, support for context-awareness has received more
attention in the service ecosystems domain. To this end,
CASCADAS method defines a comprehensive context-
awareness model called a self-model, which is defined
as a set of extended finite state machines. In addi-
tion, SAPERE method defines a variety of adaptive and
self-organizing patterns to provision distributed perva-
sive services. However, their work targets middleware
infrastructures of pervasive services ecosystems.

e We see the opportunity and potential in combining
the notions of self-awareness and context-awareness to
obtain a further understanding of the situation in the con-
text of reflexivity introduced for DSEs in the current study.
In Sect. 4, we introduced the notion of reflexivity and com-
pared it with existing reflection techniques. Reflexivity is
an important characteristic of an autonomic self-managed
system, which means that the system must have knowl-
edge of its components to make intelligent decisions
based on self-awareness [64]. For this, two character-
istics are fundamental, which are self-awareness and
context-awareness. One of the major deficiencies of the
surveyed methods is that they did not commit to support-
ing reflexivity except for one work at the requirements
level—requirements reflection. However, in there reflex-
ivity has been applied to synchronize requirements model
with architecture while in DSEs this needs to be applied
at the larger ecosystem level to support the evolution of
the ecosystem.

e With respect to support for quality attributes, the method
—quality-driven analysis process based on URDAD—
provides comprehensive support from a service engineer-
ing perspective where the authors describe a set of quality
requirements and drivers specified for both quality model
and process. The different stakeholders identified there
can provide valuable insights on how quality can be sim-
ilarly classified in an ecosystem-based method such as in
the DSE domain which has many users.

Quality attributes can be categorized as execution and evo-
lution quality attributes (Sect. 2.2.1). One challenge is to
extend this characterization of quality criteria and properties
to provide some metrics to measure them targeting the DSEs
domain. Some of these quality attributes may be more easily
guaranteed at runtime than at design time. In [115], authors
discuss several adaptation properties defined as assurance
criteria on the adaptation process, and mapped to quality
attributes measurable at runtime for both the target system
and the adaptation mechanism. However, it is targeting self-

@ Springer

SOCA (2017) 11:1-31

X

X

X

q°L » o

[98°¢8]

uoneydepe

awmunt

10J $9[K1S
[BIN0IYOIY

[+8-18l
uonovpaI
syuawIINbay

[08] sSwIsLs009

QOIAISS 10

uoneINSYuoox
RICN

[Lz-v]
SLANOId

[eT-12]
Svavosvo

[oz-=¢1]
HIAdVS

[8,-9L0¢]
s4Sd 10}

VYOS druouoiny
l62]

SYOS SurAjoag
[cL8c]
syuouodwod

Po[[ONU0D-J[2S

sonradoxd
+-J19s 1oddns
ey} spoylour

paseq-sSva

SWAISAS099
QOIATSS
ur spoyjowt

saSA
ur spoyjew Qv

Anqiqereos Aypiqeradorojuy AJITIqRATOAT

uonepIeA
poyION

sanquye Kend)

KIATXQPY

ssouaIeMB
-JXa)u0))

saInyeay
PRICN

[01U0D
PozZIEnuddJ

dn-wopoq
SNSIOA
umop-doy, sigeueg 1))

SONSLIAdRIeYD JIomawel

poyiow Arewtid

BAIE YOIBISIY

24

Krewrwns synsay S [qeL,

pringer

Qs

25

yoroidde dn-wonoq g ‘yoeordde umop-doy J, ‘ojqeorjdde jou ., ‘parioddns A[rented e ‘pajioddns jou X ‘partoddns /N

[cor1] spoyiau
AV uo paseq Surnoourua
ssaooi1d sisATeue QIBM)JOS
* * ® L Vas as uoAlIp-Areng) uaALIp-A1end)

[¢6°Tolssva
10§ uonendwod

Vas s X L Vas Vas Areuonnjoag

[16-L8] swishs
JIIouO)Ne I0J

S[opou [BIOTABYSq

Aniqereos Aypiqeredorojuy

X N X L » /> Jo uonnjoas [ensiq
dn-wopoq
ssauarleme salnjea) 1013U0d SNSISA
BhGililg) 1S POZIENU(umop-doy, sjyoueg [e0H
SOTSLIOOBIBYD YIOMIUWILL] poylewr Arewinig BAIE YOIBISOY

SOCA (2017) 11:1-31

peonunuod g dqex,

pringer

As

26

SOCA (2017) 11:1-31

adaptive systems and not the DSE domain. In this survey, we
have focused on quality attributes that are important from
the ecosystem viewpoint of service engineering of digital
services like evolvability, interoperability and scalability.

e An ecosystem is dynamic and it evolves all the time as
new members, services and value networks emerge [3].
Therefore, the service engineering methods need to sup-
port the evolution of the ecosystem. However, except for
the evolving SOAs, CASCADAS, BIONETS and SAPERE,
the other methods analyzed here do not support evo-
lution from the ecosystem’s perspective but from other
viewpoints (e.g., individual system level). For example,
evolving SOAs method introduces an ecosystem-oriented
architecture of digital ecosystems; and there, evolu-
tionary, genetic algorithms have been used to combine
appropriate agents so user requests for applications are
satisfied. In CASCADAS, evolvability of the ecosystem is
programmed by the self-model of the ACEs. Meanwhile,
in BIONETS, evolution builds on the notion of self-
organization, where it has been considered at the single
components level and global ecosystem level. However,
amethod that explores and combines reflexivity as a tech-
nique to support evolution of the ecosystem is completely
missing in the literature. In the DASs domain, the primary
methods do not support evolution from an ecosystem per-
spective; thus, this has been shown as partial satisfaction
of that characteristic (see Table 5).

e One noteworthy quality attribute that is almost com-
pletely absent in the analyzed primary methods is inter-
operability, which can be of two types—service interop-
erability and pragmatic interoperability (see Sect. 4). In
DSE:s, proper service engineering techniques are required
to develop digital services that are interoperable, avail-
able and easily consumed by considering specific capa-
bilities of the ecosystem [3]. In requirements reflection,
the authors have applied their method to dynamically syn-
thesize emergent middleware that ensures interoperation
between heterogeneous networked systems. However, in
that method, interoperability has been considered from
the network systems viewpoint (partial satisfaction of cri-
teria, Table 5). Meanwhile, pragmatic interoperability
has not been considered in any of the analyzed primary
methods.

e A component model for a DSE can potentially include
a very large scale of target scenarios. As a result, it
must promote scalability of both design and execution
complexity with software engineering scalability and
performance scalability, respectively. The evolving SOAs
method follows a push-oriented approach to support
scalable architectures to meet user requests for appli-
cations. In BIONETS, scalability is achieved through
an autonomic and localized, peer-to-peer service-driven

@ Springer

communication paradigm. In SAPERE, authors have
highlighted scalability as one of the main challenges
of data storage and analysis in pervasive and mobile
computing. However, it is not clear how it has been
supported in the implemented middleware infrastructure
[15]. While software engineering scalability has been
addressed in some methods as mentioned above, per-
formance scalability is absent in the analyzed primary
methods.

e With respect to method validation, in most cases, the
validation of the method is empirically based. One com-
mon aspect in all the primary methods is that they do
not present well-designed quantitative or qualitative eval-
uations, but mainly focus on their own experience in
the use of ad hoc methods or informal case studies. In
this context, one of the main shortcomings and challenge
we note is the lack of actual industrial case studies and
scenarios on ecosystem-based digital services. The case
studies need to exhibit situations for frequently evolving
requirements; dynamic nature of the ecosystem; and dig-
ital services developed by several partners. An example
of an industrial case study is the ICARE project [3,46]
mentioned in Sect. 2.2. Yet, scenarios that identify afore
mentioned complex situations in DSEs are completely
missing in scientific literature. Also, there is a lack of pub-
lications covering some of the reviewed methods (e.g.,
self-reconfiguration for service ecosystems), and as a
result, the applicability of those methods could not be
clearly established.

In this manner, first identifying the dependencies between
the framework characteristics and then analyzing what has
been achieved so far and what is missing on the framework
characteristics can provide an effective starting point for
defining a road map for service engineering digital service
ecosystems with AC capabilities.

As given in Table 5, it is clear that none of the ana-
lyzed primary methods entirely fulfills the requirements
defined in the comparison framework. The goal is to com-
pare the primary methods and not the projects. There are
three main reasons for a method not fulfilling a particu-
lar characteristic of the comparison framework. They are:
(1) the application domain—ecosystem-based service engi-
neering is a natural progress of networking and pervasive
computing, and therefore, the primary methods—SAPERE,
CASCADAS and BIONETS—cover most of the charac-
teristics of the framework; (2) the purpose of the method
is more focused and naturally covers only one part of the
framework topics. Thus, the intended usage context of the
method is narrower than the comparison framework; and
(3) the timing—newer publications are more relevant and
consider the changes of the ecosystems, at least partially.
According to the framework, the most suitable methods are

SOCA (2017) 11:1-31

27

CASCADAS and requirements reflection. CASCADAS satis-
fies all the requirements of the framework except reflexivity
and interoperability, and requirements reflection specifically
supports reflexivity. In order to advance the findings of this
survey, the use of solid modeling languages, techniques,
tools and practices are highly desirable. Toward this end,
models@runtime or runtime models [115] can be a key
technique which can be explored toward addressing the short-
comings of the existing primary methods. The requirements
reflection method has explored models @runtime to support
synchronization between goal-based requirements and the
architecture (evolution) and dynamically generate software
artefacts at execution time. In the DSEs’ context, future stud-
ies are needed to investigate on how models @runtime could
be employed to mitigate uncertainty through runtime adap-
tation and evolution, and to the provision of digital services
with autonomic capabilities.

Models @runtime are up-to-date abstractions of the run-
ning system [115]. They constitute a core concept for
enabling adaptation and tackling uncertainty by reflecting the
system and its context at runtime. Runtime models provide
reflective capability as they are casually connected to the sys-
tem being modeled. They can be utilized for two purposes:
(1) supporting reasoning about uncertainty and leveraging
self-adaptation and (2) supporting the generation of software
artifacts themselves, using model-driven engineering at exe-
cution time [84]. Both runtime adaptation and evolution are
necessary to address the frequent changes imposed by DSEs.
Runtime adaptation and runtime evolution are two interwo-
ven activities that influence each other [86]. Evolution can
be understood as a longer sequence of modifications to a
software system over its lifetime [116]. On the other hand,
adaptations can be seen as modifications of the software sys-
tem performed in an automated way.

7 Conclusions

This survey article presented a review of the scientific liter-
ature on AC methods in DSEs. Based on systematic queries
in four leading scientific databases and Google Scholar, 349
articles were analyzed, out of which 12 primary methods
were selected to be most relevant to our study from a ser-
vice engineering perspective, which were then clustered,
succinctly described and compared.

A comparison framework was defined as a contribu-
tion, which can be used as a guide for comparing the
different scientific methods selected. To this end, the frame-
work proposed several characteristics, such as top-down vs.
bottom-up approach, decentralized control, self-* features,
context-awareness, reflexivity, quality attributes (e.g., evolv-
ability, interoperability, scalability) and method validation.
The main contribution of this article is the comparison of the

primary methods selected from the four thematic research
areas. The comparison process using the framework was
straightforward and uncomplicated. The framework is a valu-
able tool for searching for an applicable method on service
engineering of digital service ecosystems with AC capa-
bilities. It is evident from the comparison that none of the
analyzed methods supports all the requirements of the frame-
work. Furthermore, looking at the state of the art, none of the
methods addresses in a generic and adaptive way the service
engineering of DSEs, especially an ecosystem-based method
on applying the AC initiative is missing in the DSE domain.
This survey also introduced a technique called reflexivity for
DSEs which can be further explored to address uncertainty
and frequent changes imposed by DSEs.

We note two main perspectives for future research: (1)
investigate how models @runtime can be employed as a tech-
nique to mitigate uncertainty through runtime adaptation
and evolution in DSEs, and to provision digital services
with autonomic capabilities. The reflective capability of run-
time models can be explored to address the uncertainty and
frequent changes imposed by DSEs at different lifecycle
phases such as requirements, architecture design and run-
time; (2) develop real industrial case studies and scenarios
that exhibit situations for evolving requirements in DSEs,
dynamic nature of DSEs and digital services developed by
ecosystem members.

Acknowledgements This work was carried out during the tenure of
an ERCIM “Alain Bensoussan” Fellowship Programme. This research
has also been supported by a grant from Tekes—the Finnish funding
agency for technology and innovation, and VTT as part of the Digital
Health Revolution Programme.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Chang E, West M, Hadzic M (2006) A digital ecosystem for
extended logistics enterprises. In: Gaudes A (ed) Proceedings of
the 11th international workshop on telework, August 28, Interna-
tional Telework, Academy, Fredericton, Canada, pp 32—40

2. Boley H, Chang E (2007) Digital ecosystems: principles and
semantics. In: Proceedings of the international conference on dig-
ital ecosystems and technologies (DEST ’07), 21-23 February,
Cairns, Australia. IEEE, pp 398-403

3. Immonen A, Ovaska E, Kalaoja J, Pakkala D (2015) A service
requirements engineering method for a digital service ecosystem.
Serv Oriented Comput Appl 10(2):151-172

4. Kephart JO, Chess DM (2003) The vision of autonomic comput-
ing. Computer 36(1):41-50

5. Kephart JO (2005) Research challenges of autonomic computing.
In: Proceedings of the 27th international conference on software
engineering (ICSE 2005), 15-21 May. IEEE, pp 15-22

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

28

SOCA (2017) 11:1-31

10.

11.

12.

13.

14.

15.

17.

18.

20.

21.

22.

. Parashar M, Hariri S (2004) Autonomic grid computing. In: Pro-

ceedings of the international conference on autonomic computing
(ICAC’04), 17-18 May, New York. IEEE, pp xiv—xiv

. Agarwal M, Bhat V, Liu H, Matossian V, Putty V, Schmidt C et al

(2003) AutoMate: enabling autonomic applications on the grid.
In: Proceedings of the autonomic computing workshop, 25 June.
IEEE, pp 48-57

. Rolén M, Martinez E (2012) Agent-based modeling and simula-

tion of an autonomic manufacturing execution system. Comput
Ind 63(1):53-78

. McKee G, Varghese B (2012) Robotic ecologies for deep space

outposts. In: Petrovic I, Korondi P (eds) Proceedings of 10th IFAC
symposium on robot control, 5—7 September, Dubrovnik, Croatia.
International Federation of Automatic, Control, pp 455-460
Golnaraghi F, Kuo BC (2010) Automatic control systems, 9th edn.
Wiley, London

Wirsing M, Holzl M, Tribastone M, Zambonelli F (2013)
ASCENS: engineering autonomic service-component ensembles.
In: Beckert B, Damiani F, de Boer FS, Bonsangue MM (eds) For-
mal methods for components and objects. Springer, Berlin, pp
1-24

Abeywickrama DB, Bicocchi N, Zambonelli F (2012) SOTA:
towards a general model for self-adaptive systems. In: Proceed-
ings of the 2012 IEEE 21st international workshop on enabling
technologies: infrastructure for collaborative enterprises (WET-
ICE’12), 25-27 June, Toulouse, France. IEEE, pp 48-53

Mayer P, Klarl A, Hennicker R, Puviani M, Tiezzi F, Pugliese
R et al (2013) The autonomic cloud: a vision of voluntary, peer-
2-peer cloud computing. In: Proceedings of the 2013 IEEE 7th
international conference on self-adaptation and self-organizing
systems workshops, 9-13 September, Philadelphia, USA. IEEE,
pp 89-94

Amoretti M (2010) Towards fully autonomic peer-to-peer sys-
tems. Proc Comput Sci 1(1):2639-2648

Castelli G, Mamei M, Rosi A, Zambonelli F (2015) Engineering
pervasive service ecosystems: the SAPERE approach. ACM Trans
Auton Adapt Syst 10(1):1:1-1:27

. Viroli M, Pianini D, Montagna S, Stevenson G, Zambonelli F

(2015) A coordination model of pervasive service ecosystems.
Sci Comput Program 110:3-22

Conti M, Das SK, Bisdikian C, Kumar M, Ni LM, Passarella A etal
(2012) Looking ahead in pervasive computing: challenges and
opportunities in the era of cyber-physical convergence. Pervasive
Mob Comput 8(1):2-21

Zambonelli F, Viroli M (2011) A survey on nature-inspired
metaphors for pervasive service ecosystems. Int J Pervasive Com-
put Commun 7(3):186-204

. Zambonelli F, Mirko V (2010) From service-oriented architec-

tures to nature-inspired pervasive service ecosystems. In: Omicini
A, Viroli M (eds) Proceedings of the 11th national workshop from
objects to agents (WOA 2010), 5-7 September, Rimini, Italy.
CEUR-WS.org

Quitadamo R, Zambonelli F, Cabri G (2007) The service ecosys-
tem: dynamic self-aggregation of pervasive communication ser-
vices. In: Proceedings of the first international workshop on soft-
ware engineering for pervasive computing applications, systems,
and environments (SEPCASE °07), 20-26 May, Minneapolis,
USA. IEEE

Manzalini A, Brgulja N, Moiso C, Minerva R (2012) Autonomic
nature-inspired eco-systems. In: Gavrilova M, Tan CJK, Phan C
(eds) Transactions on computational science XV. Springer, Berlin,
pp 158-191

Manzalini A, Brgulja N, Minerva R, Moiso C (2012) Specifica-
tion, development, and verification of CASCADAS autonomic
computing and networking toolkit. In: Cong-Vinh P (ed) Formal

@ Springer

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

and practical aspects of autonomic computing and networking:
specification, development, and verification, pp 65-96

Baresi L, Di FA, Manzalini A, Zambonelli F (2009) The CAS-
CADAS framework for autonomic communications. In: Vasilakos
AV, Parashar M, Karnouskos S, Pedrycz W (eds) Autonomic com-
munication. Springer, Berlin, pp 147-168

Miorandi D, Carreras I, Altman E, Yamamoto L, Chlamtac I
(2008) Bio-inspired approaches for autonomic pervasive comput-
ing systems. In: Lio P, Yoneki E, Crowcroft J, Verma DC (eds)
Bio-inspired computing and communication. Springer, Berlin, pp
217-228

Simon V, Bacsardi L, Szabo S, Miorandi D (2007) BIONETS:
a new vision of opportunistic networks. In: Proceedings of the
IEEE wireless rural and emergency communications conference
(WRECOM’07), 1-2 October, Rome, Italy. IEEE

Lahti J, Rivas H, Huusko J, Kénonen V (2010) simulation and
implementation of the autonomic service mobility framework. In:
Altman E, Carrera I, El-Azouzi R, Hart E, Hayel Y (eds) Bioin-
spired models of network, information, and computing systems.
Springer, Berlin, pp 65-76

De Pellegrini F, Miorandi D, Linner D, Bacsardi L, Moiso
C (2007) BIONETS architecture: from networks to SerWorks.
In: Proceedings of the 2nd bio-inspired models of network,
information and computing systems (BIONETICS 2007), 10-12
December, Budapest. IEEE, pp 255-262

Aubonnet T, Henrio L, Kessal S, Kulankhina O, Lemoine F, Made-
laine E et al (2015) Management of service composition based on
self-controlled components. J Internet Serv Appl 6(1):15. doi:10.
1186/513174-015-0031-7

Briscoe G, De Wilde P (2006) Digital ecosystems: evolving
service-orientated architectures. In: Proceedings of the 1st bio-
inspired models of network, information and computing systems
conference (BIONETICS 2006), 11-13 December, Madonna di
Campiglio. IEEE, pp 1-6

Bhakti MAC, Abdullah AB, Jung LT (2010) Autonomic, self-
organizing service-oriented architecture in service ecosystem. In:
Proceedings of the 2010 4th IEEE international conference on dig-
ital ecosystems and technologies (DEST), 13—-16 April, Dubai.
IEEE, pp 153-158

Nami MR, Bertels K (2007) A survey of autonomic comput-
ing systems. In: Proceedings of the 3rd international conference
on autonomic and autonomous systems (ICAS’07), 19-25 June,
Athens. IEEE

Huebscher MC, McCann JA (2008) A survey of autonomic
computing—degrees, models, and applications. ACM Comput
Surv 40(3):7:1-7:28

Khalid A, Haye MA, Khan MJ, Shamail S (2009) Survey of
frameworks, architectures and techniques in autonomic com-
puting. In: Proceedings of the fifth international conference on
autonomic and autonomous systems (ICAS’09), 20-25 April,
Valencia. IEEE, pp 220-225

Zhao Z, Gao C, Duan F (2009) A survey on autonomic comput-
ing research. In: Proceedings of the Asia-Pacific conference on
computational intelligence and industrial applications (PACIIA
2009), 28-29 November, Wuhan, pp 288-291

Rahman M, Ranjan R, Buyya R, Benatallah B (2011) A tax-
onomy and survey on autonomic management of applications
in grid computing environments. Concurr Comput Pract Exp
23(16):1990-2019

Macias-Escriva FD, Haber R, del Toro R, Hernandez V (2013)
Self-adaptive systems: a survey of current approaches, research
challenges and applications. Expert Syst Appl 40(18):7267-7279
Krupitzer C, Roth FM, VanSyckel S, Schiele G, Becker C (2015)
A survey on engineering approaches for self-adaptive systems.
Pervasive Mobile Comput 17:184-206

http://dx.doi.org/10.1186/s13174-015-0031-7
http://dx.doi.org/10.1186/s13174-015-0031-7

SOCA (2017) 11:1-31

29

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

Stevenson A (2010) Oxford dictionary of English, 3rd edn. Oxford
University Press, Oxford

Randall AL, Walter RC (2003) Overview of the small unit oper-
ations situational awareness system. In: Proceedings of the mili-
tary communications conference (MILCOM’03), 13—16 October,
Boston, USA, vol 1. IEEE, pp 169-173

Ganek AG, Corbi TA (2003) The dawning of the autonomic com-
puting era. IBM Syst J 42(1):5-18

Horn P (2016) Autonomic computing: IBM’s perspective on the
state of information technology. 2001. http://people.scs.carleton.
ca/~soma/biosec/readings/autonomic_computing.pdf. Accessed
9/12

IBM (2016) An architectural blueprint for autonomic computing
[white paper]. 2005. http://www-03.ibm.com/autonomic/pdfs/
AC%20Blueprint%20White%20Paper%20V7.pdf. Accessed
9/12

Lalanda P, McCann JA, Diaconescu A (2013) Autonomic com-
puting: principles, design and implementation. Springer, Berlin
Ruokolainen T (2013) A model-driven approach to service
ecosystem engineering [Doctoral dissertation]. University of
Helsinki, Helsinki, Finland

Ruokolainen T, Ruohomaa S, Kutvonen L (2011) Solving ser-
vice ecosystem governance. In: Proceedings of the 15th IEEE
international enterprise distributed object computing conference
workshops (EDOCW), 29 August-2 September, Helsinki, Fin-
land. IEEE, pp 18-25

ICARE (2016) Innovative Cloud Architecture for Real Entertain-
ment project. 2015. https://itea3.org/project/icare.html. Accessed
9/12

Pantsar-Syvéniemi S, Ervasti M, Karppinen K, Viitanen A, Oks-
man V, Kuure E (2015) A situation-aware safety service for
children via participatory design.] Ambient Intell Humaniz Com-
put 6(2):279-293

IEEE (1993) IEEE standard for a software quality metrics method-
ology. IEEE Std 1061-1992

ISO/IEC 25010 (2011) Systems and software engineering—
systems and software quality requirements and evaluation
(SQuaRE)—system and software quality models. ISO/IEC
25010:2011

Matinlassi M, Niemel4 E (2003) The impact of maintainability on
component-based software systems. In: Proceedings of the 29th
euromicro conference, 1-6 September, Belek, Turkey. IEEE, pp
25-32

Ovaska E, Kuusijarvi J (2014) Piecemeal development of intelli-
gent applications for smart spaces. IEEE Access 2:199-214
Ovaska E, Evesti A, Henttonen K, Palviainen M, Aho P (2010)
Knowledge based quality-driven architecture design and evalua-
tion. Inf Softw Technol 52(6):577-601

Pantsar-Syviniemi S, Purhonen A, Ovaska E, Kuusijirvi J, Evesti
A (2012) Situation-based and self-adaptive applications for the
smart environment.] Ambient Intell Smart Environ 4(6):491-516
Evesti A, Suomalainen J, Ovaska E (2013) Architecture and
knowledge-driven self-adaptive security in smart space. Comput-
ers 2(1):34-66

Immonen A, Palviainen M, Ovaska E (2014) Requirements of an
open data based business ecosystem. IEEE Access 2:88—103
Jayaratna N (1994) Understanding and evaluating methodologies:
NIMSAD, a systematic framework. McGraw-Hill, Inc, New York
Kitchenham B, Charters S (2007) Guidelines for performing
systematic literature reviews in software engineering. Keele Uni-
versity and University of Durham joint report, Technical report
no. EBSE-2007-01

Stol K, Ali Babar M (2010) A comparison framework for open
source software evaluation methods. In: Agerfalk P, Boldyreff C,
Gonzalez-Barahona JM, Madey GR, Noll J, editors. Open Source

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Software: New Horizons: 6th International IFIP WG 2.13 Con-
ference on Open Source Systems. Springer, Berlin, pp 389-394
Matinlassi M (2004) Comparison of software product line archi-
tecture design methods: COPA, FAST, FORM, KobrA and
QADA. In: Proceedings of the 26th international conference on
software engineering (ICSE’04), pp 127-136

Weyns D, Schmerl B, Grassi V, Malek S, Mirandola R, Prehofer C
et al (2013) On patterns for decentralized control in self-adaptive
systems. In: de Lemos R, Giese H, Miiller HA, Shaw M (eds)
Software engineering for self-adaptive systems II: international
seminar, Dagstuhl Castle, Germany, 24—29 October, 2010 Revised
selected and invited papers, Springer, Berlin, pp 76-107
Abeywickrama DB, Hoch N, Zambonelli F (2014) Engineering
and implementing software architectural patterns based on feed-
back loops. Scalable Comput Pract Exp 15(4):291

Abowd GD, Dey AK, Brown PJ, Davies N, Smith M, Steggles
P (1999) Towards a better understanding of context and context-
awareness. In: Proceedings of the Ist international symposium
on handheld and ubiquitous computing, Karlsruhe, Germany.
Springer-Verlag, London, UK, pp 304-307

Hong J, Suh E, Kim S (2009) Context-aware systems: a literature
review and classification. Expert Syst Appl 36(4):8509-8522
Miiller HA, O’Brien L, Klein M, Wood B (2006) Autonomic com-
puting. Carnegie Mellon University, USA. Report No.: CMU/SEI-
2006-TN-006

Malenfant J, Jacques M, Demers FN (1996) A tutorial on behav-
ioral reflection and its implementation. In: Proceedings of the
reflection conference (Reflection’96), April, San Francisco, USA,
pp 1-20

Bobrow DG, Gabriel RP, White JL. (1993) CLOS in context—
the CLOS in context—the shape of the design. In: Paepcke A (ed)
Object-oriented programming: the CLOS perspective. MIT Press,
Cambridge, pp 29-61

McKinley PK, Sadjadi SM, Kasten EP, Cheng BHC (2004) Com-
posing adaptive software. Computer 37(7):56-64

Tisato F, Savigni A, Cazzola W, Sosio A (2001) Architectural
reflection realising software architectures via reflective activities.
In: Emmerich W, Tai S (eds) Engineering distributed objects.
Springer, Berlin, pp 102-115

Henttonen K, Matinlassi M, Niemeli E, Kanstrén T (2007) Inte-
grability and extensibility evaluation from software architectural
models—a case study. Open Softw Eng J 1(1):1-20
Ruokolainen T, Kutvonen L (2009) Managing interoperability
knowledge in open service ecosystems. In: Proceedings of the
13th enterprise distributed object computing conference work-
shops (EDOCW 2009), 1-4 September, Auckland, New Zealand.
IEEE, pp 203-211

Liu X, Li Y (2011) Advanced design approaches to emerging
software systems: principles, methodology and tools. IGI Global,
Hershey

Li W, Badr Y, Biennier F (2012) Digital ecosystems: challenges
and prospects. In: Proceedings of the international conference on
management of emergent digital ecosystems (MEDES’12), 28—
31 October, Addis Ababa, Ethiopia. ACM, New York, USA, pp
117-122

Quitadamo R, Zambonelli F (2008) Autonomic communication
services: a new challenge for software agents. Auton Agents
Multi-Agent Syst 17(3):457-475

Dill S, Kumar R, Mccurley KS, Rajagopalan S, Sivakumar D,
Tomkins A (2002) Self-similarity in the Web. ACM Trans Internet
Technol 2(3):205-223

Aubonnet T, Simoni N (2014) Self-control cloud services. In: Pro-
ceedings of the IEEE 13th international symposium on network
computing and applications, 21-23 August, Cambridge, USA.
IEEE, pp 282-286

@ Springer

http://people.scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf
http://people.scs.carleton.ca/~soma/biosec/readings/autonomic_computing.pdf
http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
http://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
https://itea3.org/project/icare.html

30

SOCA (2017) 11:1-31

76.

71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Bhakti MAC, Abdullah AB (2010) Design of an autonomic ser-
vices oriented architecture. In: Proceedings of the international
symposium in information technology (ITSim 2010), 15-17 June,
Kuala Lumpur, Malaysia. IEEE, pp 805-810

Bhakti MAC, Abdullah AB (2009) Towards self-organizing ser-
vice oriented architecture. In: Proceedings of the innovative tech-
nologies in intelligent systems and industrial applications confer-
ence (CITISIA 2009), 25-26 July, Kuala Lumpur, Malaysia, pp
458-461

Bhakti MAC, Abdullah AB (2009) Nature-inspired self-
organizing service oriented architecture: a proposal. In: Proceed-
ings of the international conference on information technology
in Asia (CITA 2009),6-9 July, Kuching, Sarawak, Malaysia, pp
276-279

Blau B, Kramer J, Conte T, van Dinther C (2009) Service value
networks. In: Proceedings of the IEEE conference on commerce
and enterprise computing (CEC ’09), 20-23 July, Vienna. IEEE,
pp 194-201

LiY, Sun K, QiuJ, Chen Y (2005) Self-reconfiguration of service-
based systems: a case study for service level agreements and
resource optimization. In: Proceedings of the IEEE international
conference on web services ICWS 2005), 11-15 July, Orlando,
Florida, USA, vol 1. IEEE, pp 266-273

Bencomo N (2013) Requirements for self-adaptation. In: Limmel
R, Saraiva J, Visser J (eds) Generative and transformational tech-
niques in software engineering IV. Springer, Berlin, pp 271-296
Bencomo N, Whittle J, Sawyer P, Finkelstein A, Letier E (2010)
Requirements reflection: requirements as runtime entities. In: Pro-
ceedings of the 32nd ACM/IEEE international conference on
software engineering, 2—-8 May, Cape Town, South Africa. IEEE,
pp 199-202

Sawyer P, Bencomo N, Whittle J, Letier E, Finkelstein A (2010)
Requirements-aware systems: a research agenda for RE for
self-adaptive systems. In: Proceedings of the 18th IEEE interna-
tional requirements engineering (RE) conference, 27 September—
1 October, Sydney, Australia. IEEE, pp 95-103

Bencomo N, Bennaceur A, Grace P, Blair G, Issarny V (2013) The
role of models @run.time in supporting on-the-fly interoperability.
Computing 95(3):167-190

Taylor RN, Medvidovic N, Oreizy P (2009) Architectural styles
for runtime software adaptation. In: Proceedings of the joint
working IEEE/IFIP conference on software architecture 2009 and
European conference on software architecture 2009, 14—17 Sep-
tember, Cambridge, UK. IEEE, pp 171-180

Oreizy P, Medvidovic N, Taylor RN (2008) Runtime software
adaptation: framework, approaches, and styles. In: Proceedings
of the 30th international conference on software engineering
(ICSE’08), 10-18 May, Leipzig, Germany. ACM, New York,
USA, pp 899-910

Beckmann BE, Grabowski LM, McKinley PK, Ofria C (2008)
Autonomic software development methodology based on Dar-
winian evolution. In: Proceedings of the international conference
on autonomic computing (ICAC ’08), 2—-6 June, Chicago, USA.
IEEE, pp 203-204

Goldsby HJ, Cheng BHC, McKinley PK, Knoester DB, Ofria
CA (2008) Digital evolution of behavioral models for autonomic
systems. In: Proceedings of the international conference on auto-
nomic computing (ICAC ’08), 2-6 June, Chicago, USA. IEEE,
pp 87-96

Goldsby HJ, Cheng BHC (2008) Avida-MDE: a digital evolution
approach to generating models of adaptive software behavior. In:
Keijzer M (ed) Proceedings of the 10th annual conference on
genetic and evolutionary computation, 12—16 July, Atlanta, USA.
ACM, New York, USA, pp 1751-1758

Goldsby H, Cheng BC (2008) Automatically generating behav-
ioral models of adaptive systems to address uncertainty. In:

@ Springer

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

Czarnecki K, Ober I, Bruel J, Uhl A, Volter M (eds) Model driven
engineering languages and systems. Springer, Berlin, pp 568-583
McKinley P, Cheng BHC, Ofria C, Knoester D, Beckmann
B, Goldsby H (2008) Harnessing digital evolution. Computer
41(1):54-63

Cheng BHC, Ramirez A, McKinley PK (2013) Harnessing evo-
lutionary computation to enable dynamically adaptive systems
to manage uncertainty. In: Proceedings of the Ist international
workshop on combining modelling and search-based software
engineering (CMSBSE), 20-23 May, San Francisco, USA. IEEE,
pp 1-6

McKinley PK, Cheng BHC, Ramirez AJ, Jensen AC (2012)
Applying evolutionary computation to mitigate uncertainty in
dynamically-adaptive, high-assurance middleware. J Internet
Serv Appl 3(1):51-58

Cheng BC, Sawyer P, Bencomo N, Whittle J (2009) A goal-based
modeling approach to develop requirements of an adaptive system
with environmental uncertainty. In: Schiirr A, Selic B (eds) Model
driven engineering languages and systems. Springer, Berlin, pp
468-483

Goldsby HJ, Sawyer P, Bencomo N, Cheng BHC, Hughes D
(2008) Goal-based modeling of dynamically adaptive system
requirements. In: Proceedings of the 15th annual IEEE interna-
tional conference and workshop on the engineering of computer
based systems (ECBS 2008), 31 March—4 April, Belfast, Northern
Ireland. IEEE, pp 3645

Ramirez A, Cheng BC (2011) Automatic derivation of utility func-
tions for monitoring software requirements. In: Whittle J, Clark T,
Kiihne T (eds) Model driven engineering languages and systems.
Springer, Berlin, pp 501-516

Ramirez AJ, Jensen AC, Cheng BHC (2012) A taxonomy of
uncertainty for dynamically adaptive systems. In: Proceedings
of the 7th international symposium on software engineering for
adaptive and self-managing systems (SEAMS’12), 4-5 June,
Zurich, Switzerland. IEEE, pp 99-108

Ofria C, Wilke CO (2004) Avida: a software platform for research
in computational evolutionary biology. Artif Life 10(2):191-229
Whittle J, Sawyer P, Bencomo N, Cheng BHC, Bruel J (2010)
RELAX: a language to address uncertainty in self-adaptive sys-
tems requirement. Requir Eng 15(2):177-196

Whittle J, Sawyer P, Bencomo N, Cheng BHC, Bruel J (2009)
RELAX: incorporating uncertainty into the specification of self-
adaptive systems. In: Proceedings of the 17th IEEE interna-
tional requirements engineering conference (RE’09), 31 August—
4 September, Atlanta, USA. IEEE, pp 79-88

Van Lamsweerde A, Darimont R, Letier E (1998) Managing con-
flicts in goal-driven requirements engineering. IEEE Trans Softw
Eng 24(11):908-926

CONNECT Project (2013) https://www.connect-forever.eu/.
Accessed 9/12, 2016

Garlan D, Cheng Shang-Wen, Huang An-Cheng, B Schmerl,
Steenkiste P (2004) Rainbow: architecture-based self-adaptation
with reusable infrastructure. Computer 37(10):46-54

Kramer J, Magee J (2007) Self-managed systems: an architectural
challenge. In: Proceedings of the future of software engineering
(FOSE ’07) special track at the ICSE’07 Conference, 23-25 May,
Minneapolis, USA. IEEE, pp 259-268

Solms F, Gruner S, Edwards C (2011) URDAD as a quality-driven
analysis and design process. In: Fujita H, Gavrilova T (eds) New
trends in software methodologies, tools and techniques: Proceed-
ings of the 9th international conference on new trends in software
methodology tools, and techniques (SoMeT 2011. IOS Press, pp
141-158

Hofmeister C, Kruchten P, Nord RL, Obbink H, Ran A, America
P (2007) A general model of software architecture design derived
from five industrial approaches. J Syst Softw 80(1):106-126

https://www.connect-forever.eu/

SOCA (2017) 11:1-31

31

107.

108.

109.

110.

111.

112.

Bass L, Clements P, Kazman R (2003) Software architecture in
practice, 2nd edn. Addison-Wesley Longman Publishing Co., Inc,
Boston

Hofmeister C, Nord R, Soni D (2000) Applied software archi-
tecture. Addison-Wesley Longman Publishing Co., Inc, Boston,
USA

Kruchten PB (1995) The 4+1 view model of architecture. IEEE
Softw 12(6):42-50

America P, Rommes E, Obbink H (2004) Multi-view variation
modeling for scenario analysis. In: van der Linden F (ed) Software
product-family engineering. Springer, Berlin, pp 44-65

Ran A (2000) ARES conceptual framework for software archi-
tecture. In: Jazayeri M, Ran A, van der Linden F (eds) Software
architecture for product families principles and practice. Addison-
Wesley, Boston

Evesti A, Niemela E, Henttonen K, Palviainen M (2008) A tool
chain for quality-driven software architecting. In: Proceedings of
the 12th international software product line conference (SPLC
’08), 8-12 September, Limerick, Ireland. IEEE, pp 360-360

113.

114.

115.

116.

BoschJ (2000) Design and use of software architectures: adopting
and evolving a product-line approach. Addison-Wesley, New York
de Bruin H, van Vliet H (2003) Quality-driven software architec-
ture composition. J Syst Softw 66(3):269-284

Cheng BC, Eder K, Gogolla M, Grunske L, Litoiu M, Miiller H
etal (2014) Using models at runtime to address assurance for self-
adaptive systems. In: Bencomo N, France R, Cheng BC, Alimann
U (eds) Models@run.time. Springer, Berlin, pp 101-136
Heinrich R, Jung R, Schmieders E, Hasselbring W, Metzger A,
Pohl K, et al (2015) Run-time architecture models for dynamic
adaptation and evolution of cloud applications. Kiel University,
Kiel, Germany. Technical report no. 1503

@ Springer

	A survey of autonomic computing methods in digital service ecosystems
	Abstract
	1 Introduction
	2 Background and definitions of the main technology
	2.1 Autonomic computing initiative
	2.2 Digital service ecosystems
	2.2.1 Quality attributes

	3 Research method
	3.1 Planning stage
	3.2 Conducting stage
	3.3 Reporting stage

	4 A comparison framework for autonomic computing methods in digital service ecosystems
	5 Overview and comparison of autonomic computing methods in digital service ecosystems
	5.1 AC methods in DSEs
	5.2 AC methods in service ecosystems
	5.3 DASs-based methods that support self-* properties
	5.4 Quality-driven software engineering methods

	6 Results of the survey
	6.1 Main findings, open problems and future work

	7 Conclusions
	Acknowledgements
	References

