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1 Introduction

The BPS states provide the useful laboratory for investigation the dynamics of the stable

defects of different codimensions. Their classification is governed by the corresponding

central charges in the SUSY algebra which in four dimensions involves particles, strings and

domain walls. In the paper [1] (see also [2, 3]) we have classified the central charges in the Ω-

deformed N = 2 SYM theory. These involve all types of defects and corresponding central

charges. When tensions of the corresponding objects tend to infinity they provide the

corresponding boundary conditions and become non-dynamical [4]. In this paper we clarify

a few subtle points from the previous analysis and focus at the particular configuration

corresponding to the monopole localized at the domain wall. This is an example of the line

operator at the domain wall considered in [5] in the AGT-like [6] framework however the

explicit operator corresponding to this composite state at the Liouville side has not been

constructed.

In the second part of the paper we use the physical realization of the torus knots as the

’t-Hooft loops in the Ω-deformed theory. The domain wall in this composite solution has the
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S3
b worldvolume hence we get the conventional geometrical framework for knot invariants.

The trajectory of the monopole at ε1
ε2

= p
q in the Euclidean space is identified with the

torus knot. This picture fits with the approach when the knot invariants and homologies

can be derived from the counting of the solutions to the particular BPS equations in

4d supersymmetric gauge theory on the interval [8, 9] which is the generalization of the

realization of the knot invariants in terms of the Wilson loops in CS theory. The knot

in terms of 4d gauge theory is localized at the boundary of the interval providing the

particular boundary conditions and is introduced by hands. Contrary in this paper the

form of the knot is selected dynamically. Remark that some other recent interesting results

concerning the torus knots can be found in [10–12].

The relation between the torus knot invariants and the particular integrable systems

of Calogero type at rational coupling constant allows to interpret the knot data in terms of

the auxiliary quiver gauge 2d theory or 3d theory with nontrivial boundary conditions in

the internal space. This auxiliary gauge theory has nothing to do with original Ω-deformed

abelian gauge theory in R4. In fact we have in mind the AGT-like picture which has been

elaborated for the hyperbolic knots in 3d/3d case [13, 14]. In that case the geometry of the

knot complements provides the information about the matter content and superpotentials

in the dual “physical” SUSY 3d quiver gauge theory in the “coordinate space”. However

in the torus knot case considered in this paper the logic is a bit different. First, the torus

knots are not hyperbolic and secondly the knot now is located in the “physical” space hence

its invariants encode the information about the internal “momentum space”. Usually the

interpretation is opposite although the meaning of “coordinate” and “momentum” spaces

in this context is a bit arbitrary.

It turns out that the relation between the torus knot invariants and the quantum

integrable Calogero systems [15, 16] is useful to get the AGT-like dual representation for

the knot invariants. To this aim the brane picture behind the trigonometric Ruijsenaars-

Schneider (RS) model developed in [18] can be used. The rational quantum Calogero

model can be considered as the particular degeneration of RS model and is described via

the 2d quiver gauge theory or 3d gauge theory on the interval in the internal space. It

is crucial that the number of the particles coincides with parameter of the knot q. The

classical rational Calogero system is dual to the quantum Gaudin model [19–21] hence we

could look how the interpretation of the knot invariants in terms of the quantum Calogero

model gets translated into the quantum Gaudin side. To this aim we have to consider

the generalization of the quantum-classical (QC) correspondence between the pair of the

integrable systems to the quantum-quantum (QQ) correspondence.

The meaning of rational coupling constant in Calogero model needs some care. The

point is that when both dual systems are quantum we have two different Planck constants

for the Calogero and Gaudin models, say ~Cal and ~Gaud. It was shown in [21] that ~Gaud

equals to the coupling constant in the classical Calogero model. Since in the quantum

Calogero Hamiltonian the classical coupling enters in the product with the inverse ~Cal

we could say that either ~Cal = 1 and the coupling is rational or both Planck constants

are integers,

~Cal = p, ~Gaud = q. (1.1)
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One could also multiply the right-hand side of these equations by some common parameter

since only their ratio matters here. It will be argued that under the bispectrality trans-

formation two Planck constants get interchanged ~Cal ↔ ~Gaud. Note that physically the

Planck constant corresponds to the flux of the B field in the phase space of the Hamiltonian

model. We shall argue that the integers (p, q) are equal to the numbers of branes hence

they could be considered as the sources of the effective B field.

The key observation is the identification of the Dunkl operator for the quantum

Calogero model with the quantum KZ equation for the Gaudin model [23–27].Using the

QQ correspondence for the Calogero-Gaudin pair we can suggest the counting problem for

the torus knot invariants at the quantum Gaudin side. Let us emphasize that Gaudin sys-

tem considered in this paper in terms of the gauge theory in the internal space in different

from the Gaudin model discussed in [9] in the physical space in the context of the calcula-

tion of the knot invariants. The third realization of the knot invariants concerns the dual

Gaudin model obtained via the bispectrality transformation when the inhomogeneities get

substituted by the twists [28–31]. Now the counting problem is formulated in terms of the

dual KZ equation with respect to the twists.

The paper is organized as follows. In section 2 we reconsider the central charges

in the deformed theory and clarify some issues missed in [1]. To complete the previous

analysis, we discuss the stringy central charges and argue that they can be unified in

some sense. The stringy central charge which has been used to define the ε-string in [1]

and can not exist without the deformation can be unified with the central charge found

long time ago in the context of N = 1 SYM theory [37]. In section 3 we consider the

particular configurations involving the BPS states in the Ω-background. It is shown that

in the “rational” Ω-background the monopole localized at the domain wall evolves along

the torus knot. In section 4 we make some comments concerning the similar picture in the

theory with fundamental matter. In section 5 we present some arguments along the AGT

logic how the torus knot can be represented by the conformal block involving the degenerate

operators in the Liouville theory with particular value of the central charge. In section 6 we

discuss dualities between the Calogero system and another integrable systems and gauge

theories to suggest possible frameworks for consideration of torus knot invariants. Finally,

a list of open questions can be found in the last section.

2 Central charges in N = 2 gauge theory

We discuss N = 2 super Yang-Mills theory in presence of Ω-background in four Euclidean

dimensions. The field content of the theory is the gauge field Am, the complex scalar ϕ, ϕ̄

and Weyl fermions ΛIα, Λ̄
I
α̇ in the adjoint of the U(N) group. Here m = 1, . . . , 4, I = 1, 2

are SU(2)I R-symmetry index, α, α̇ are the SU(2)L × SU(2)R spinor indices. To introduce

Ω-background one can consider a nontrivial fibration of R4 over a torus T 2 [32, 33]. The

six-dimensional metric is:

ds2 = 2dzdz̄ +
(
dxm + Ωmdz̄ + Ω̄mdz

)2
, (2.1)
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where (z, z̄) are the complex coordinates on the torus and the four-dimensional vector Ωm

is defined as:

Ωm = Ωmnxn, Ωmn =
1

2
√

2


0 iε1 0 0

−iε1 0 0 0

0 0 0 −iε2
0 0 iε2 0

 . (2.2)

In general if Ωmn is not (anti-)self-dual the supersymmetry in the deformed theory is

broken. However one can insert R-symmetry Wilson loops to restore supersymmetry [33]:

AIJ = −1

2
Ωmn (σ̄mn)IJ dz̄ −

1

2
Ω̄mn (σ̄mn)IJ dz. (2.3)

The most compact way to write down the supersymmetry transformations and the

lagrangian for the Ω-deformed theory is to introduce ‘long’ scalars [40]:

Φ = ϕ+ iΩmDm, Φ̄ = ϕ̄+ iΩ̄mDm, (2.4)

Here Dm are operators of covariant derivatives. This substitution reflects the fact that

the scalars ϕ, ϕ̄ originate from the components of the six-dimensional gauge connection

along a two-dimensional torus. The metric (2.1) makes us add the rotation operators to

the gauge connection, which are inherited by the complex scalars in four dimensions.

Then the deformed Lagrangian reads as:

LΩ =
1

4
FmnF

mn +DmΦDmΦ̄ + ΛσmDmΛ̄− i√
2

Λ
[
Φ̄,Λ

]
+

i√
2

Λ̄
[
Φ, Λ̄

]
+

1

2

[
Φ, Φ̄

]2
, (2.5)

where the R-symmetry, spinor and gauge indices are suppressed. Here and in what follows

we adopt Euclidean notation of [34] for the sigma-matrices:

σαα̇ = (1,−i~τ)αα̇, σ̄α̇α = (1, i~τ)α̇α. (2.6)

The supersymmetry algebra reads:

δΦ = −
√

2ζΛ, (2.7)

δΦ̄ = −
√

2ζ̄Λ̄, (2.8)

δAm = −ζσmΛ̄ + ζ̄σ̄mΛ, (2.9)

δΛ̄ =
√

2σ̄mζDmΦ̄− i
[
Φ, Φ̄

]
ζ̄ + σ̄mnζ̄Fmn, (2.10)

δΛ = −i
[
Φ, Φ̄

]
ζ + σnkζFnk +

√
2σmζ̄DmΦ. (2.11)

where ζIα, ζ̄Iα̇ are the supersymmetric variation parameters.

The N = 2 superalgebra in four dimensions admits three types of central charges

which correspond one-, two- and three-dimensional defects, namely monopoles, strings and

domain walls [34]: {
QIα, Q̄Jα̇

}
= 2Pαα̇δ

I
J + 2(Zstring)αα̇δ

I
J , (2.12){

QIα, Q
J
β

}
= εαβε

IJZmon + (Zdomain wall)
IJ
αβ. (2.13)
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Our current purpose is to identify these three central charges and write the BPS equa-

tions for them. The first step is to compute the Nöther current for the supersymmetry

transformation. Taking the supersymmetric variation of the Lagrangian we find:

δL = ∂mκ
m,

κm = ζ̄σ̄nΛFmn −
√

2ζΛDmΦ̄ + ζσnΛ̄F̃mn − ζσmΛ̄i
[
Φ, Φ̄

]
− 2
√

2ζ̄σ̄nmΛ̄DnΦ. (2.14)

Then the anti-holomorphic part of the supercurrent reads as:

J̄m = σ̄nΛ
(
Fmn + F̃mn

)
+ σ̄mΛi

[
Φ, Φ̄

]
−
√

2Λ̄DmΦ + 2
√

2σ̄nmΛ̄DnΦ, (2.15)

or, after restoration of the spinor indices [34],

J̄α̇ββ̇ =
(
−δα̇β̇i

[
Φ, Φ̄

]
+ σ̄nk

α̇β̇
Fnk

)
Λβ +

√
2σ̄n

ββ̇
DnΦΛ̄α̇. (2.16)

To find the bosonic part of the central charges we take the supersymmetric variation

of (2.16) with parameters ζ̄α̇, ζβ. The supervariation responsible for monopoles and domain

walls reads as:

δ̄α̇J̄α̇ββ̇√
2

=

(
−ηnki[Φ, Φ̄] +

1

2

(
Fnk + F̃nk

))
σn
ββ̇
DkΦ. (2.17)

while the supervariation responsible for strings is:

δβ J̄α̇ββ̇√
2

= σ̄mn
α̇β̇
Fmni[Φ, Φ̄] + σmnεmnklD

kΦDlΦ̄ + δα̇β̇L. (2.18)

The existence of the second term in (2.18) was mentioned in [37] for the N = 1 theory.

To derive the Bogomolny equations for the solitons we add the central charges to the

Lagrangian to build a complete square.

In most cases to find the tension of the defect we integrate the time component of the

supervariation because the defect is assumed to be static and hence stretched along time

direction. But as we will see in the following the non-trivial Ω-background acts effectively

as an external field which affects the motion of the defect. Hence the static configuration

is not realized. We assume the worldvolume of the defect to be curved and introduce unit

vectors tn tangential to the worldvolume and nn normal to the worldvolume. The fields

which solve the BPS equation are considered to be independent of the directions along

the worldvolume,

tnDnϕ = 0. (2.19)

Then the tension of the defect is the component of the supervariation along the worldvolume

integrated over the directions normal to the worldvolume. Namely, the tension of the string

reads as:

Ts =

∫
δβJ̄α̇ββ̇σ̄

ij

α̇β̇
dxidxj

=
i√
2

∫ (
−1

2

[
Φ, Φ̄

] (
Fmn + F̃mn

)
+ εmnklDkΦDlΦ̄

)
dxmdxn, (2.20)

– 5 –



J
H
E
P
0
4
(
2
0
1
4
)
1
6
4

and the BPS equation which describes string is the following system:
(Fmn + F̃mn)nm1 n

n
2 = i

[
Φ, Φ̄

]
,

DwΦ = 0,

DzΦ = 0.

(2.21)

Here z, w are the complex coordinates on C2 ' R4, z = x1 + ix2, w = x3 + ix4. The

second and the third equations follow from the second term in the integrand of (2.20). This

object is invariant under half supersymmetries (2.11). Note that the vectors n1, n2 in the

first equation can be substituted by t1, t2 since the combination (Fmn + F̃mn) is self-dual.

The tension (or mass) of the monopole can be obtained in the same fashion:

Tm =

∫
δ̄α̇J̄α̇ββ̇

(
σ̄iσj σ̄k

)
β̇β
dxidxjdxk

= 2
√

2

∫ (
εijkli

[
Φ, Φ̄

]
DlΦ +

(
F ij + F̃ ij

)
DkΦ

)
dxidxjdxk, (2.22)

and the BPS equation is much alike the domain wall case:

DmΦ = − 1√
2
i[Φ, Φ̄]tm +

1

2
√

2

(
Fmn + F̃mn

)
tn. (2.23)

The term [Φ, Φ̄] is not seen for the static monopole hence the equation (2.23) implies

the usual Bogomolny equation for the monopole. The tension of the domain wall can also

be read from the supervariation (2.17):

Tw =

∫
δ̄α̇J̄α̇ββ̇σ̄

i
β̇β
dxi = 2

√
2

∫ (
−ηmni

[
Φ, Φ̄

]
+

1

2

(
Fmn + F̃mn

))
DmΦdxn. (2.24)

The domain wall is the defect of codimension one, hence the scalar field which builds

the wall depends only on one coordinate, Φ = Φ(y). That means that the second term

in (2.24) drops out because Fmn is skew symmetric and the tension has the following form:

Tw = −2i
√

2

∫ [
Φ, Φ̄

]
DyΦdy. (2.25)

The BPS equation reads as:

DyΦ = − 1√
2
i[Φ, Φ̄]. (2.26)

Before proceeding further let us discuss different types of the half-BPS boundary con-

ditions in the four-dimensional theory.

2.1 Dirichlet and Neumann boundary conditions

Let us consider the theory on a product of a three-dimensional space and a half-line. We

interpret the boundary of this space as a three-dimensional defect or a domain wall. Let

x0, x1, x2 be the coordinates along the three-dimensional defect and x3 the coordinate along

the half-line. If we impose the invariance under half of the superalgebra we are left with

two possibilities [43, 44]:
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Dirichlet boundary conditions. The Dirichlet boundary conditions imply the vanish-

ing of the components of Fµν , µ, ν = 0, 1, 2 parallel to the domain wall, F |∂ = 0. We can

realize a theory with these boundary conditions as a D3 brane ending on a D5 brane. The

scalar fields satisfy the Nahm equations of the type (2.26), where y = x3. The domain wall

we described in the previous section provides the Dirichlet boundary conditions.

In the presence of Ω-deformation the N = 2 theory acquires a superpotential. This

means that the r.h.s. of the (2.26) contains an additional term ∂W
∂Φ . The vev of the scalar

a can jump on the domain wall and the dual variable aD remains constant. The domain

wall supports monopoles with mass aD on its worldsheet. The condition F |∂ = 0 implies

that the worldline of the monopole is a circle in a plane normal to the field Fµ3.

Neumann boundary conditions. The Neumann boundary conditions are S-dual to

the Dirichlet ones and imply the vanishing of the other six components of Fµν , namely

?F |∂ = 0. They correspond to a theory on a D3 brane ending on an NS5 brane. The

scalar vev a remains constant across the domain wall, but the mass of the monopole aD

can jump. The charged particles on the domain wall move along circles normal to the

?Fµ3 vector.

Of course there can be mixed boundary conditions in presence of the external gauge

field whose components satisfy the following relation:

? F |∂ + γF |∂ = 0. (2.27)

If γ is rational, γ = n/m, the domain wall providing this boundary condition supports

(m,n) dyons in its worldvolume.

3 Supersymmetric solitons in Ω-background

3.1 Monopoles

Now our goal is to find the solutions to the BPS equations for the defects of different

type. The Ω-background in a sense acts as external gauge field. The one-loop part of the

Nekrasov partition function is derived from a Schwinger-like computation for the particle

creation in the external field [33]. We argue that the monopoles in the Ω-background move

in the same fashion as in external magnetic and electric fields.

Consider the BPS equation for the monopole (2.23). Substituting the definition of the

‘long’ scalar (2.4) we have:

Dmϕ+ iΩnFmn = − i√
2

[ϕ, ϕ̄] tm

+
i√
2

(
ΩnDnϕ̄− Ω̄nDnϕ

)
tm +

1

2
√

2

(
Fmn + F̃mn

)
tn, (3.1)

Suppose that [ϕ, ϕ̄] = 0. Assuming ε1,2 real and hence Ωn imaginary, and multiply-

ing (2.23) by tm we get

√
2FmnΩntm = ΩnDn (ϕ̄+ ϕ) , (3.2)

– 7 –
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and multiplying instead by Ωn we get:

1√
2

(Fmn + F̃mn)Ωmtn =
(

1− i
√

2Ωmtm
)

ΩnDn (ϕ̄+ ϕ) . (3.3)

From (2.19), (3.2), (3.3) it is clear that tangential vector tn to the worldline of the

ε-deformed monopole is:

tn =
i2
√

2

R
Ωn, R2 = 8ΩnΩ̄n = ε21(x2

1 + x2
2) + ε22(x2

3 + x2
4) = ε21r

2
1 + ε22r

2
2. (3.4)

When the ratio ε1/ε2 is a rational number this worldline is a torus knot Tp,q embed-

ded in a squashed 3-sphere S3
b . The winding number and the squashing parameter are

defined as:
p

q
=
ε1
ε2
, b2 =

ε1
ε2
. (3.5)

This configuration is quite familiar to us, namely it is the worldline of the charged particle

in the presence of both electric and magnetic fields.

Let us remind the calculation of the trajectory of a charge in external gauge field to

see that this is indeed the case. Suppose a charged particle of spin σ moves in presence of

parallel electric and magentic fields along say x1 axis. In the Euclidean signature the Dirac

operator splits into two parts and the particle moves simultaneously in two circles lying in

(x0, x1) and (x2, x3) planes. This means that the worldline of the particle is a Tp,q torus

knot if it makes p rotations in one plane and q rotations in the other. The action relevant

for the process is the following:

S =

∫
Aµdx

µ +

∫
mds+ πiσ (p+ q)

= pEπr2
1 + qBπr2

2 − 2πm
√
p2r2

1 + q2r2
2 + 2πiσ (p+ q) . (3.6)

Extremizing (3.6) w.r.t. radii of the circles we obtain:

p

q
=
E

B
, E2r2

1 +B2r2
2 = m2, (3.7)

i.e. the ratio of winding numbers of the torus knot is defined from the external field, and the

knot itself is embedded in a squashed three-sphere with the squashing parameter defined

also by the ratio of the external fields like in (3.5).

3.2 Strings

The BPS system (2.21) after the substitution of the ‘long’ scalar (2.4) is:

1

2

(
Fmn + F̃mn

)
tm1 t

n
2 = i

(
ΩnDnϕ̄− Ω̄nDnϕ

)
,

wDw(ε̄1ϕ) = −1

2
|ε1|2r2

1F21,

zDz(ε̄2ϕ) = −1

2
|ε2|2r2

2F34,

(3.8)
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where

z = x1 + ix2, w = x3 + ix4. (3.9)

It is convenient here to switch to the complex coordinates:

ΩnDn = −ε1 (zDz − z̄Dz̄) + ε2 (wDw − w̄Dw̄) . (3.10)

and in the absence of external gauge fields the system (3.8) is:
(ε1z̄Dz̄ − ε2w̄Dw̄) ϕ̄− (ε̄1zDz − ε̄2wDw)ϕ = 0,

wDwϕ = 0,

zDzϕ = 0.

(3.11)

The system (3.11) has a very natural solution, namely:

ϕ = ϕ(zε̄2w−ε̄1). (3.12)

The surface in C2 given by the equation:

zpwq = const, (3.13)

is called the Seifert surface for a (p, q) torus knot. The Seifert surface of a knot is by defini-

tion the surface which has a given knot as its boundary. In the realization by embedding in

C2 (3.13) we need to intersect this two-dimensional surface with a three-dimensional sphere

to get the torus knot. We know that in SQED case there are abelian strings which typically

end on monopoles lying on the domain walls [34]. If the trajectory of a monopole becomes

a torus knot then it is natural for the corresponding abelian string to be a Seifert surface.

Of course we do not state that the Seifert surface is the only possibility for the

string worldsheet. The condition of invariance under the transformations generated by Ω-

background also admits strings parallel to the z and w planes, like the ones considered in [1].

But these strings cannot end on a monopole solution (3.4) for obvious geometric reason.

In the next subsection we find that the spherical shape of the domain wall is indeed

consistent with the Ω-background. Hence we can argue that the composite defects contain-

ing strings intersecting domain walls along monopoles are present in the deformed theory

as well as in the undeformed one.

3.3 Domain walls

Now let us consider the BPS equation for the domain wall (2.26), generally speaking, in

presence of the superpotential:

√
ε1ε2Dyϕ+ iΩmFmy =

√
2ΩnDnϕ+

∂W

∂ϕ
, ϕ = ϕ(y). (3.14)

Here ϕ is real, ϕ = ϕ̄. This condition is quite weak: it implies that the Ωn vector is parallel

to the domain wall worldvolume. This means that the monopole lies on the domain wall.

The natural suggestion for the shape of the domain wall worldvolume is a squashed three-

sphere with y parameter equal to the squashed radius:

y =
√
ε21r

2
1 + ε22r

2
2. (3.15)
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We can realize torus knot as an intersection of (3.13) with the hypersurface y = const. This

means that the string intersects the domain wall along the monopole worldline. Indeed,

substituting (3.15) into (3.14) we get:

Dyϕ+ (ε1Eε
2
1r

2
1 + ε2Bε

2
2r

2
2) =

∂W

∂ϕ
. (3.16)

The E and B fields are external gauge fields which are F12 and F34 components of

the strength tensor. For the equation (3.16) to depend only on y we should impose the

condition on the gauge fields:

ε1E = ε2B, (3.17)

which is exactly the condition that the monopole worldline is affected by the gauge

fields and by the Ω-background in the same way. In the absence of the external fields,

the supersymmetric configuration is described by the usual equation for the domain wall

Dyϕ = ∂W/∂ϕ.

The pure N = 2 theory does not contain dynamical supersymmetric solitons apart

from monopoles, but the theory with fundamental matter does. Let us consider SQED

in presence of Ω-deformation and see that the worldvolumes of the defects of different

dimensions change shape in the same fashion as in the pure case.

4 Theory with fundamental matter

Now we add the fundamental matter to the theory. In absence of the Ω-background the

theory supports monopoles, abelian strings and domain walls. Let us see that the presence

of supersymmetric solitons is consistent with Ω-deformation if the worldvolumes of the

defects are curved.

For the sake of simplicity let us consider Nf = 2. The bosonic part of the La-

grangian reads:

LmΩ =
1

4g2
F 2
mn +

1

g2
|DmΦ|2 + |Dmq|2 + |Dmq̃|2 +

1

2

∣∣∣(Φ +
√

2mi

)
qi

∣∣∣2 (4.1)

+
1

2

∣∣∣(Φ +
√

2m̃i

)
q̃i

∣∣∣2 +
g2

2
|q̃iqi −Nξ|2 +

g2

8

(
|q|2 − |q̃|2

)2
+ 2g2|[q, q̃]|2

+
1

2g2

∣∣[Φ, Φ̄] + g2 [q̄, q] + g2 [¯̃q, q̃]
∣∣2 .

Here ξ is the coefficient in front of the Fayet-Iliopoulos D-term, mi is the mass parameter,

and i = 1, 2. The masses are assumed to satisfy:

∆m = m1 −m2 � g
√
ξ. (4.2)

First of all the BPS equations for the monopole are not changed by the presence of

the matter, hence the discussion in the previous section remains relevant. The issue of the

strings in the Ω-deformed theory with the fundamental matter was discussed in [1]. The

– 10 –



J
H
E
P
0
4
(
2
0
1
4
)
1
6
4

string BPS equations read as:
(
Fmn + F̃mn

)
tm1 t

n
2 + g

(
|q|2 − ξ

)
=
[
Φ, Φ̄

]
,

Dzq = Dwq = 0,

DzΦ = DwΦ = 0.

(4.3)

We see that the SQED case also admits strings whose worldsheet is the Seifert surface,

zε̄2w−ε̄1 = const . (4.4)

Consider the domain walls and first remind the construction in the undeformed theory.

It has two vacua [34–36], the first one is:

ϕ = −
√

2m1, q1 =
√
ξ, q2 = 0, (4.5)

and the second one is:

ϕ = −
√

2m2, q1 = 0, q2 =
√
ξ. (4.6)

The theory admits the three-dimensional defect which separates these two vacua. The

tension of the domain wall is:

Tw = ξ∆m. (4.7)

The transition domain between the two vacua (4.5), (4.6) can be described as follows. The

scalar field ϕ interpolates between the vacuum values in the ‘thick’ part of the wall of the

range R ∼ ∆m,

ϕ = −
√

2

(
m−∆m

z − z0

R

)
, |z − z0| < R. (4.8)

In the narrow areas of width O
((
g
√
ξ
)−1
)
� R near the edges of the wall z − z0 = ±R/2

the dependence of the scalar field ϕ on z ceases to be linear and comes to a plateau. The

quark fields inside the narrow areas interpolate between the vacua. In the thick region

inside the wall the quark field is almost given by its vacuum value and depends on z

exponentially. Say the q1 field interpolates on the left edge of the domain wall,

q1 =
√
ξ exp

(
−g

2ξ

8

(
z − z0 −

R

2

)2
)
. (4.9)

Then the second quark field interpolates on the right edge of the wall and generally

speaking the phase of the exponential may be different from (4.9),

q2 =
√
ξ exp

(
−g

2ξ

8

(
z − z0 +

R

2

)2

+ iσ

)
. (4.10)

If we switch on the Ω-deformation then the BPS equation for the domain wall becomes:

√
ε1ε2Dyq =

1√
2

(
Φ +
√

2m
)
q, (4.11)

√
ε1ε2DyΦ =

g

2
√

2

(
|q|2 − ξ

)
. (4.12)
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If we assume that the domain wall is spherical like in the pure case and y =
√
ε21r

2
1 + ε22r

2
2

then ‘long’ scalar acts only by multiplication and the domain wall solution is similar to

the undeformed case. The tension of the wall and the qualitative structure of the fields

interpolating between the vacuum values is unaffected by the non-trivial Ω-background.

The only difference is the spherical geometry of the wall and the fact that now the wall

can in principle interact with the gauge field.

5 AGT conjecture for surface operators wrapping the Seifert surface

In the previous sections the N = 2 theory with matter was observed to admit defects of

dimensions 1, 2 and 3, the geometry of which is in one or another way connected with

torus knots with winding numbers defined by the ratio of the equivariant parameters,

p/q = ε1/ε2. The AGT conjecture suggests that there is a set of corresponding operators

in the Liouville theory. Although we do not provide the reader with this set of operators, we

attempt to construct an operator corresponding to the two-dimensional Seifert surface and

discuss, how the polynomial knot invariants can be extracted from the AGT-dual rational

Liouville theory.

Let us remind the basic ingredients of the AGT correspondence [6, 7]. The Ω-deformed

four-dimensional N = 2 gauge theory with gauge group
∏Nf−3
i=1 SU(2) with Nf hypermulti-

plets of masses mi appears to be dual to a Liouville theory on a sphere with Nf punctures

in the sense that the correlator of Nf primary fields with Liouville momenta mi is equal

to an integral of the full partition function squared,

〈Vα0(∞)Vm0(1)Vαn+1(0)

Nf−3∏
i=1

Vmi(q1 . . . qi)〉 =

cf(α0)f (αn+1)

Nf−3∏
i=1

f(mi)

∫ Nf−3∏
i=1

(a2
i dai)

∣∣∣Zm0m1...mn
α0α1...αn+1

(qi)
∣∣∣2 , (5.1)

where αi = Q/2 + ai, i = 1, . . . , n, and α0, αn+1,mi are linear combinations of the back-

ground charge Q and masses of the hypermultiplets.

The central charge of the Liouville theory is defined by the deformation parameters,

c = 1− 6Q2, Q = b+ 1/b, b2 = ε1/ε2. (5.2)

The insertion of the surface operator in the four-dimensional gauge theory results in

insertion of the degenerate field in the Liouville correlator [7]. Namely, if ε1,2 parameters

correspond to rotations in z1,2 planes (where z1 = x1 + ix2, z2 = x3 + ix4), then the

surface operator along the z1 plane corresponds to insertion of V1,2(z) field and the surface

operator along the z2 plane corresponds to V2,1(z) field. How to construct the operator

corresponding to Seifert surface? Although we do not know the full answer to this question,

we could try to suggest a construction using the theory of knot polynomials.

The HOMFLY polynomial for a given (p, q) torus knot can be calculated using the

Calogero integrable system [15]. Consider a system of q Calogero particles with coupling
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constant equal to ν = p/q,

H =
1

2

q∑
i=1

∂2

∂x2
i

+
∑
i 6=j

ν(ν − 1)

(xi − xj)2 . (5.3)

The Calogero Hamiltonian (5.3) can be written as a square of the Dunkl operator,

Di = ∂i + ν
∑
i 6=j

sij − 1

xi − xj
. (5.4)

where sij is the permutation operator. The model possesses an sl2 symmetry, generated

by operators (H,K,D):

H =
∑
i

D2
i , K =

1

2

∑
i

(Dixi + xiDi), D =
∑
i

x2
i , (5.5)

where K is the dilation generator, D is the conformal boost. This sl2 is a subalgebra of

the rational Cherednik algebra [24].

The HOMFLY polynomial can be computed from the action of the Cherednik algebra

on the factor of the polynomial ring over the kernel of the Dunkl operator (cf. A),

Diψ = 0, i = 1, . . . , q. (5.6)

The solutions to the equation (5.6) and consequently to the equation Hψ = 0 are poly-

nomials in xi. But the Calogero system admits also eigenfunctions which are rational func-

tions of xi. Hence we can write the Calogero Hamiltonian as a square of another operator,

D̃i = ∂i + (1− ν)
∑
i 6=j

sij − 1

xi − xj
. (5.7)

Then the equation (5.6) can be solved by functions having negative powers of xi.

We can interpret the conditions Hψ = 0 and D̃iψ = 0 as BPZ and KZ conditions on

Liouville correlators. The BPZ equation [45] for a correlator of fields ϕi with dimensions

hi reads as:− 3

2(2h+ 1)

∂2

∂x2
i

+
N∑
j 6=i

(
1

xi − xj
∂

∂xj
+

hi
(xi − xj)2

) 〈ϕ1 . . . ϕN 〉 = 0. (5.8)

To obtain the Calogero Hamiltonian (5.3) we consider the set of BPZ operators on the

q-point correlation function of V1,2 operators. The dimension of V1,2 operator is

h = −3b2

4
− 1

2
. (5.9)

The BPZ equations for this correlator look as follows:b−2∂2
i +

∑
j 6=i

∂j
xj − xi

+
∑
j 6=i

−3b2

4 −
1
2

(xi − xj)2

 〈V1,2(x1) . . . V1,2 (xq)〉 = 0. (5.10)
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Making a substitution (which amounts to decoupling from a correlator a factor of∏
i 6=j(zi − zj)

(
b2

2

)
):

∂i → ∂i −
b2

2

∑
j 6=i

1

xi − xj
, (5.11)

and summing all the equations in the system (5.10) we arrive exactly to the equation on

the Calogero wavefunction with zero energy: q∑
i

∂2

∂x2
i

−
q∑
i 6=j

b2(b2 + 1)

(xi − xj)2

 〈V1,2(x1) . . . V1,2(xq)〉 = 0. (5.12)

Instead of this product, we could consider a product of p V2,1 operators and arrive to

the same answer with b ↔ b−1. The similar relation between the conformal blocks in

the conformal theory and the Calogero wave functions with different energies has been

found in [17].

The operator
∏
V1,2(xi) can be considered as a partial answer to the question about

the Liouville counterpart of the surface operator lying along a Seifert surface. Indeed,

we want to construct from operators V1,2(z2) which corresponds to a plane along z1 and

V2,1(z1) which corresponds to a plane along z2 an operator corresponding to a surface:

zq1 = zp2 , p/q = b2. (5.13)

From a brane construction of the two-dimensional defects it is natural to suggest

that the Liouville counterpart of this surface operator contain q copies of V1,2 operator

or equivalently p copies of V2,1 operator. Hence we can make a conjecture that the AGT

correspondence maps a two-dimensional defect along the Seifert surface into a product of

degenerate fields, and the description of the torus knot invariants in terms of Calogero

eigenstates proposed in [15, 16] arises from a consideration of the expectation value of the

corresponding Liouville operator.

The equation D̃iψ = 0 can be considered as a Knizhnik-Zamolodchikov equation [46]

in a corresponding WZW model. Indeed, in [47] it was stated that the Liouville correlators

with insertion of a degenerate fields V1,2 or V2,1 are equal to certain correlators in SU(2)-

WZNW model.

The relation between KZ operator and Dunkl operator with integer coupling constant

ν ∈ Z was noted in [25]. We can consider a KZ equation for an n-point correlator,

∂iψ =

ν∑
j 6=i

sij

xi − xj
+ λi

ψ (5.14)

where Ψ takes values in the tensor product V ⊗n and λi is the operator acting as λ on i-th

factor and identically on the others. If dimV = n, then we can decompose ψ as a sum over

permutations of indices,

ψ =
∑
σ∈Sn

Φσeσ, eσ = eσ(1) ⊗ . . .⊗ eσ(n), (5.15)
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4dΩ theory

p/q = ε1/ε2
Seifert surface

oo AGT //

OO

GORS
��

Liouville theory

b2 = p/q

BPZ equation

q–point function
OO

FZ

��

;;
∼

{{
quantum Calogero

q particles

ν = p/q

Dunkl representation

oo // KZ equation oo // Gaudin model

Figure 1. AGT-like construction for torus knot invariants. Here GORS stands for the tech-

nique developed in [16] for computing the torus knots invariants in terms of the Calogero model

(see also appendix A), AGT stands for AGT mapping which presumably relates Seifert surface on

the four-dimensional side with a q-point correlator of degenerate Liouville fields, FZ for Fateev-

Zamolodchikov [47] correspondence, ∼ denotes formal coincidence of the BPZ equations with quan-

tum Calogero system. The composition of two horizontal arrows in the second line is interpreted

as a manifestation of the quantum-quantum correspondence.

The operator sij can be written as a certain linear operator on the space of vectors

Φσ and can be considered as a tensor product of SU(2) generators ta ⊗ tb entering the KZ

equation. Certain combinations of Φσ,

ΨCal
ν =

∑
σ∈Sn

Φσ, ΨCal
ν+1 =

∑
σ∈Sn

sign(σ)Φσ, (5.16)

are the eigenfunctions of Calogero with coupling constants ν and ν+ 1 respectively. There

is an analogous construction for a case of general rational coupling [26, 27].

6 Quantum-classical duality in integrable systems

6.1 QC duality between Gaudin and Calogero models

In the section 3 we argued that the worldlines of monopoles in Ω-background form torus

knots, and that Ω-background generically admits two-dimensional defects forming a Seifert

surface. In the section 5 we conjectured that the torus knot invariants can be extracted from

certain correlators in the Liouville theory which are related to surface operators in four-

dimensional theory by the AGT correspondence. The polynomial invariants are computed

through the Calogero model arising from the BPZ set of equations on the correlation

function. The key step in the computation is the expression of the original Calogero

problem in terms of Dunkl operators. The eigenvalue problem for Dunkl operators formally

coincides with the eigenvalue problem for the quantum Gaudin system.

The classical Calogero model is known to be dual in a certain sense to the quantum

Gaudin model [21]. Conjecturally, this duality can be lifted to quantum-quantum level.

The elements of this quantum-quantum correspondence have been considered in [23–27]. In
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Figure 2. The Bethe ansatz equation for the Gaudin model (6.6) is written for the quiver which

contains a flavor group only in the first node. See also section 6.2.

this section we shall make some preliminary work concerning this issue postponing detailed

discussion for the separate study.

We follow the explicit construction of the classical Calogero-quantum Gaudin QC du-

ality provided by [21]. Consider the Calogero Lax operator,

LCal
ij = δij ẋi + ν

1− δij
xi − xj

, i, j = 1, . . . , N. (6.1)

To get the Bethe ansatz equations for the Gaudin model, we consider the intersection of

two Lagrangian submanifolds in the Calogero phase space, namely we fix the spectrum of

the Lax operator and all coordinates. If we identify the classical Calogero coupling with

the Gaudin Planck constant,

ν = ~Gaud, (6.2)

the velocities of the Calogero model are equal to the Gaudin Hamiltonians evaluated at

the solutions to the Bethe equations,

ẋj =
1

~
HG
j

(
xN , µ

1
N1
, . . . , µq−1

Nq−1

)
, j = 1, · · · , q, (6.3)

where integers q is the number of sites and Ni are the number of Bethe roots at the i-th

level of nesting,

N ≥ N1 ≥ N2 ≥ . . . ≥ Np−1 ≥ 0, (6.4)

The spectrum of the Calogero Lax operator consists of n different eigenvalues,

SpecLCal(ẋN ,xN , ν) = (v1, . . . , v1︸ ︷︷ ︸
N −N1

, v2, . . . , v2︸ ︷︷ ︸
N1 −N2

, . . . , vp, . . . , vp︸ ︷︷ ︸
Np−1

). (6.5)

The nested Bethe ansatz equations for the Gaudin system are the following:

vb − vb+1 + δ1b

q∑
k=1

~Gaud

µbβ − xk
= −

Nb−1∑
γ=1

~Gaud

µbβ − µ
b−1
γ

+ 2

Nb∑
γ 6=β

~Gaud

µbβ − µbγ
−
Nb+1∑
γ=1

~Gaud

µbβ − µ
b+1
γ

. (6.6)

where µ variables correspond to the Bethe roots and v variables to the twists. The equa-

tion (6.6) fixes all the impurities to be on the first level of nesting, see figure 2 for the brane

picture. We see that the relation (6.3) is the classical limit of the Dunkl equation (5.6).

The same construction is valid for the Ruijsenaars-XXX chain correspondence.
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0 1 2 3 4 5 6 7 8 9

D3 × × × ×
NS5 × × × × × ×
D5 × × × × × ×

Table 1. Brane construction of the 3d quiver theory.

The equation (5.6) is equivalent to the KZ equation for the SL(p) q-point conformal

block in Liouville system and to the KZ equation involving Gaudin Hamiltonians [26, 27].

Here the coupling of the quantum Calogero system is identified with the b parameter in

the Liouville theory, ν = b2. In the paper [26, 27] it was explicitly demonstrated how the

finite-dimensional representation of the Cherednik algebra can be constructed in terms of

the solution to KZ equation. Hence the torus knot invariants can be expressed in terms of

characters of the Cherednik algebra realized on the conformal blocks in the rational models.

6.2 QC duality via branes

To get link with the previous physical realization of the torus knots it is useful to consider

the brane picture behind the Calogero system and spin chain. Remarkably the duality

between them has been was identified as the correspondence between the quiver 3d N = 2∗

gauge theory and N = 2∗ 4d gauge theory on the interval [18]. The integrable data are

encoded in the structure of quiver in the 3d theory and in the boundary condition for the

4d gauge theory with N = 2 SUSY with R2 × S1 × L geometry. It is assumed that there

are different boundary conditions at the ends of the interval.

Consider M parallel NS5 branes extended in (012456), Ni D3 branes extended in

(0123) between i-th and (i + 1)-th NS5 branes, and Mi D5 branes extended in (012789)

between i-th and (i + 1)-th NS5 branes (see table 1). From this brane configuration we

obtain the
∏M
i U(Ni) gauge group on the D3 branes worldvolume with Mi fundamentals

for the i-th gauge group. The distances between the i-th and (i+ 1)-th NS5 branes yield

the complexified gauge coupling for U(Ni) gauge group while the coordinates of the D5

branes in the (45) plane correspond to the masses of fundamentals. The positions of the D3

branes on (45) plane correspond to the coordinates on the Coulomb branch in the quiver

theory. The additional Ω deformation reduces the theory with N = 4 SUSY to the N = 2∗

theory. It is identified as 3d gauge theory when the distance between NS5 is assumed to

be small enough. In what follows we assume that one coordinate is compact that is the

theory lives on R2 × S1.

The other way to look on this construction is to consider four-dimensional theory on

the interval between two domain walls of the Neumann/Dirichlet type as in the section 2.1.

Performing Hanany-Witten transformations [48] (see figure 3) we can place all the D5

branes to the left of the NS5 branes. Hence now we have a U(Q) four-dimensional gauge

theory placed between Neumann boundary conditions provided by M NS5 branes and
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Figure 3. Hanany-Witten transformation. Here vertical lines are NS5 branes, horizontal lines are

D3 branes, and circles are D5 branes. When a D5 brane is moved through a sequence of NS5

branes the linking number between them is conserved hence additional D3 branes appear.

Dirichlet boundary conditions provided by N =
∑

jMi D5 branes

Q =

p∑
j=1

jMj . (6.7)

The information about the 3d quiver is now encoded in the boundary conditions in the 4d

theory via embedding SU(2)→ U(Q) at the left and right boundaries [40, 43, 44].

The mapping of the gauge theory data into the integrability framework goes as follows.

In the NS limit of the Ω-deformation the twisted superpotential in 3d gauge theory on the

D3 branes gets mapped into the Yang-Yang function for the XXZ chain [38, 39]. The min-

imization of the superpotential yields the equations describing the supersymmetric vacua

and in the same time they are the Bethe ansatz equations for the XXZ spin chain. That is

D3 branes are identified with the Bethe roots which are distributed according to the ranks

of the gauge groups at each of the p steps of nesting
∏p
i U(Ni). Generically the number

of the Bethe roots at the different levels of nesting is different. The distances between the

NS5 branes define the twists at the different levels of nesting while the positions of the

D5 branes in the (45) plane correspond to the inhomogeneities in the XXZ spin chain.

To complete the dictionary recall that the anisotropy of the XXZ chain is defined by the

radius of the compact dimensions while the parameter of the Ω deformation plays the role

of the Planck constant in the XXZ spin chain.

The interpretation of quantum-classical duality we are interested in goes as follows [18].

We interpret it as the duality between the 3d quiver theory and the 4d theory on the in-

terval. The moduli of the vacua in the N = 2∗ 4d U(Q) gauge theory are known to be

parameterized by the U(Q) flat connections on the torus with one marked point with par-

ticular holonomy determined by the deformation parameter. This is exactly the description

of phase space of the trigonometric RS model with Q particles [42]. Now the boundary

conditions fix the two Lagrangian submanifolds in this space. The Dirichlet boundary fixes

the coordinates while the Neumann boundary fixes the eigenvalues of the Lax operator. We

arrive at the picture of intersection of two Lagrangian submanifolds in the trRS model we

worked with. This picture has been developed for the first time in [41]. For the application

to the torus knot invariants we shall need the non-relativistic limit of this correspondence,

namely Calogero-Gaudin correspondence corresponding to the small radius of the circle.

Hence we arrive just to the picture described in the section 6.1.
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Figure 4. A sequence of Hanany-Witten moves can transform the brane configuration describing

4d theory on the interval (left) to the brane configuration consisting only of NS5 and D5 branes

(right) if admissibility is satisfied. Here on the picture p = 3, q = 4,M1 = 4,M2 = 1.

The Hanany-Witten transformation allows to simplify the combinatorial problem of

enumerating all the configurations consisting only of NS5 branes and D3 branes in the

following way. Let us use the notation of the section 6.1. Then we are considering the

quiver defined by p NS5 branes and q D5 branes, where p ≤ q. The rank of the gauge

group at b-th node of the quiver is given by Nb and the rank of the flavor group by Mb,

b = 1, . . . , p − 1,
∑
Mb = q. We also assume N0 = Np = 0. The system in section 6.1

corresponds to the case M2 = M3 = . . . = 0.

Following [43] we impose on the set of numbers (Nb,Mb) a certain restriction which we

will call the admissibility condition which ensures a nice RG flow for the theory in the IR,

2Nb ≤ Nb−1 +Nb+1 +Mb. (6.8)

Remarkably the same inequality arises in [22] when the nested Bethe ansatz equations

for an elliptic system are studied. This inequality turns into equation in the elliptic case

and is a certain property of zeroes of sigma-function. When the limit to trigonometric or

rational case is taken, the equation degenerates to (6.8) with Nb = 0.

If we want to enumerate all the configurations of D3 branes satisfying the admissibil-

ity then we can adopt the Hanany-Witten move to simplify this combinatorial problem.

Suppose that what we consider is q D5 branes distributed somehow between p NS5 branes

or to the left of them. There are no D3 branes present. Hence this configuration is al-

ways admissible. Suppose that we make a Hanany-Witten transformation and place all

the D5 branes to the right of the NS5 branes (see figure 4). Then we have only D3

branes left between the NS5 branes. However the configuration is still admissible since

the Hanany-Witten move respects the (6.8) condition.

Now the claim is the following: every admissible configuration consisting of D3 branes

distributed between p NS5 branes and with q D5 branes to the right of them can be

transformed by a chain of Hanany-Witten moves to the configuration containing no D3

branes and q D5 branes distributed between p NS5 branes. This is really simple: one can

easily show that in the latter configuration the number of these D5 branes at b-th node Kb

is given by:

Kb = Nb−1 +Nb+1 − 2Nb. (6.9)

If we want this to be positive we impose admissibility. Hence the problem of finding

all the admissible configurations consisting of D3 branes is reduced to the problem of

distributing D5 branes between and to the left of the NS5 branes. From (6.9) it follows
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classical Calogero

ν = p

q particles

oo QC //

Gaudin

~ = p

p levels of nesting

q inhomogeneities

trigonometric

Ruijsenaars

R→ 0

ε→ 0

OO

oo QC //

OO

��

XXZ spin chain

R→ 0

ε→ 0

OO

OO

NS
��

4d theory on interval

pNS5 branes

q D5 branes

oo HW move //
3d quiver

pNS5 branes

q D5 branes

Figure 5. Various dualities between quantum and classical integrable systems and gauge theories.

The quantum-quantum version of this correspondence can presumably describe polynomial knot

invariants. QC stands for quantum-classical duality, NS for Nekrasov-Shatashvili correspondence,

HW for Hanany-Witten transformation.

immediately that the number of the D5 branes lying to the left of the b-th node is Nb−Nb+1.

This means that the degeneration of the spectrum of the Calogero Lax operator counts the

number of the D5 branes located to the left of each NS5 brane. Of course we can draw the

condition (6.4) as an p × q Young diagram and then we are left with counting the Young

diagrams satisfying admissibility. Perhaps the problem of the calculating of the torus knot

invariants can be reduced to sum over the brane configurations with some weight. This

problem deserves separate consideration.

6.3 Torus knots in various frameworks

Hence we arrive at the following picture. The torus knot in the 4d Euclidean space is

represented by the trajectory of the monopole in the Ω-background localized at the domain

wall. The invariants of the knot are described in terms of the quantum Calogero model,

which at first glance is consistent with the AGT conjecture. The classical Calogero model

is connected with a quantum Gaudin model, which can be interpreted as a classical limit

of the Dunkl representation for the Calogero model. Hence we propose the question about

the meaning of knot invariants in various integrable models.

The Calogero model with rational coupling ν = p/q describes the vacuum manifold for

the particular gauge theory. This theory can be considered as the limit of SU(q) 4d gauge

theory on R2 × S1 × I at small radius of the circle and nontrivial boundary conditions

imposed by the q D5 and p NS5 branes.

This gauge theory can be related via the HW move to the quiver 3d gauge theory at

small radius which can be effectively considered as the quiver 2d theory. The Hilbert space
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of this theory can be described by the twisted SL(p) Gaudin spin chain at q sites. The way

to extract the torus knot invariants deals now with the solutions to the KZ equation with

respect to the inhomogeneities. The Planck constant in the Gaudin model is identified

with the number of NS5 branes while the Kac-Moody level involving the KZ equation is

identified with the ratio p/q. This fits with the similar interpretation of the parameters of

Ω-background in the AGT correspondence.

The third way to consider the same problem appears upon the application of the

bispectrality at the Gaudin side [28–31]. Indeed in this case one considers the SL(q) Gaudin

model on p sites when inhomogeneities attributed to D5 branes and twists attributed to

NS5 get interchanged. The KZ equation with respect to the position of the marked points

gets substituted by the dual KZ with respect to the twists.

The knot invariants have different interpretation in all these cases. In the Calogero

system they count the finite-dimensional part of the spectrum with respect to two grad-

ings. One grading corresponds to the Cartan in the sl2 while the second accounts for the

representation of the symmetric group. At the Gaudin side we consider the KZ equa-

tion and take into account the emergence of the finite dimensional representation of the

Cherednik algebra at the rational Kac-Moody level [26, 27]. Recall that sl2 above is just

subgroup of Cherednik algebra. Then roughly speaking we consider the character of this

finite-dimensional representation in terms of solution of KZ. The bispectrality can be ap-

plied to this KZ equation as well so we can consider the similar counting problem for the

inverse Kac-Moody level. From the point of view of the torus knots, the bispectrality acts

as the mirror reflection p ↔ q. If we restore the Planck constant at the Calogero site the

bispectrality interchange the Planck constants of quantum Calogero and quantum Gaudin

models.

Let us emphasize that the identification of the torus knot invariants in terms of the

Hilbert space of the Calogero model is relatively clear from the different viewpoints. On the

other hand the dualities between the integrable systems discussed above suggest the new

realization of the knot invariants in terms of the Hilbert space of the pair of the Gaudin

models related by bispectrality. We have not present the precise realization of the torus

knot invariants at the Gaudin side and hope to discuss this issue elsewhere. This problem is

actually closely related with the representation of the string wrapped on the Seifert surface

at the Liouville side of the AGT correspondence discussed at section 5.

7 Discussion

In this paper the exact solutions describing the particular composite supersymmetric soli-

tons in the Ω-deformed N = 2 theory were found. In presence of the Ω-background the

particle-like half-BPS solitons move along along a torus knot embedded in a squashed three-

sphere. For the monopoles the parameter of the squashing and the ratio of the winding

numbers of the knot are connected with the ratio of the deformation parameters ε1/ε2. The

monopole is bound to the worldsheet of the domain wall and presumably can be interpreted

as the end of the solitonic string.
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Given the physical realization of the torus knot we have discussed the realization of its

HOMFLY invariants in the different frameworks. In particular we shall exploit the relation

between the torus knots and quantum Calogero model at rational coupling to formulate

the meaning of the knot invariants purely in terms of the integrable model. The dualities

between the integrable models imply several interesting realizations of the knot invariants,

for instance in terms of the KZ equations at rational level corresponding to the minimal

models. In this case the quantum-quantum duality between Calogero and Gaudin models

plays the key role. The brane setup behind the integrable models of Calogero and spin

chain type helps to clarify some geometrical aspects.

It is clear that there are many issues to be answered and we list a few below.

• It would be very interesting to clarify the relation of our picture with other repre-

sentations of the torus knot invariants. One approach concerns their realization as

the integral of the proper observables over the abelian instanton moduli space in

the sector with fixed instanton number [49]. The second realization concerns their

interpretation as the partition function of the surface operator carrying the mag-

netic flux [50]. This partition function is saturated by the instantons trapped by the

surface operator.

• The described approach hints that the torus knot invariants can be obtained by means

of enumeration of the solutions to the BAE or equivalently of enumeration of some

brane configurations. It would be interesting to clarify this connection and the role

of brane moves on the knot side of the correspondence.

• Another interesting problem is to perform the summation over instanton number

within the framework of [49] where a (p, q) torus knot superpolynomial is represented

as some integral over the q-instanton moduli space.

• It is natural to generalize the present analysis to the RS model and try to formulate

the torus knot superpolynomial through the spectrum of the quantum RS model.

The identification of the knot homologies purely in terms of the Hilbert space of

Hamiltonian system is expected as well.

• It is interesting to look for the possible relation between the algebraic sector in the

quasiexactly solvable models and torus knots. Presumably it can be interpreted in

terms of the spectral curves of the corresponding Hamiltonian systems.

• There are some additional structures which appear in the stable limit p, q → ∞ of

the torus knot. This limit has different interpretations in all approaches mentioned.

In the initial 4D gauge theory it corresponds to the strong external fields. In the

Calogero model the number of particles tends to infinity simultaneously with the

coupling. This limit is usually described in terms of the collective field theory. At

the Gaudin side the number of sites tends to infinity therefore one has to discuss

the thermodynamical limit. Finally, in the brane picture it is the limit where the

number of NS5 branes and/or the number of D5 brane tends to infinity. It would be

interesting to match these pictures.
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• The torus knot represented by the composite BPS state is the Euclidean configuration

possessing a negative mode. Such Euclidean bounce-like configurations are respon-

sible for some tunneling process, say, monopole-antimonopole pair production. The

information concerning the torus knot invariants is stored in this Euclidean configu-

ration before the analytic continuation to the Minkowski space. Could we recognize

the knot invariants upon tunneling in the Minkowski space? We plan to discuss this

point in the separate publication.
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A HOMFLY polynomial and theory on the string worldsheet

In this section we briefly remind how to compute the HOMFLY polynomial using the

action of the Cherednik algebra on the symmetric polynomials [15, 16]. Let x(z), y(z) be

polynomials describing embedding of an (m,n) (we change (p, q) → (n,m) in appendix)

Seifert surface into C2:

xm(z) = yn(z)⇔ (1 + u2z
2 + . . .+ unz

n)
m
n = 1 + v2z

2 + . . .+ vmz
m. (A.1)

Here we can think of z ∈ C as of the worldsheet coordinate of the open topological

string with the Seifert surface in the target space in the spirit of [51]. Let Jm/n denote

an ideal in C[u2, . . . , un] generated by the coefficients in the Taylor expansion of (1 +

u2z
2 + . . . + unz

n)
m
n from (m + 1)’th to (m + n − 1)’th. Let us introduce the space

Mm,n = C[u2, . . . , un]/Jm/n and differential forms on this space Ω•(Mm,n).

Example. For T2k+1,2 knots the construction above gives:

J(2k+1)/2 = 〈uk+1
2 〉. (A.2)

The space Ω•(Mm,n) is generated by forms (1, u2, . . . , u
k
2, du2, . . . , u

k−1
2 du2).

The HOMFLY polynomial can be represented as a graded trace over the space

Ω•(Mm,n):

Pm,n(a, q) = a(n−1)(m−1)
n−1∑
i=0

(−a2)i Tr(qK ; Ωi(Mm,n)). (A.3)

Here K is the dilatation operator from (5.5). The Dunkl operators acts on ui as

following: we identify xi in (5.4) with the inverse roots of the x(z) polynomial,

x(z) =

n∏
i=1

(1− xiz). (A.4)

Then ui are symmetric polynomial in xi.
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Example. For T2k+1,2 knots

u2 = x1x2, du2 = x1dx2 + x2dx1. (A.5)

The other way to say the same thing is the following: consider the polynomials

C [x1, · · · , xn] on which the Dunkl operator (5.4) acts. Let the center of mass of the

n-particle system be at zero and consider the polynomials P (x1, · · · , xn) which do not

depend on the center of mass coordinate:

n∑
i=1

DiP = 0. (A.6)

Consider the polynomials which are annihilated by the Dunkl operator and the ideal

Im/n generated by these polynomials. Then the HOMFLY polynomial (A.3) can be com-

puted from the action of the dilation operator on the space Lm/n = C[x1, · · · , xn]/Im/n.

One grading counts the degree of the polynomial and the other reflects the representation

of the permutation group in which acts on the polynomial [16],

Pm,n(a, q) = a(m−1)(n−1)
n−1∑
i=1

(−a2)i dimq HomSn

(
Λih, Lm/n

)
, (A.7)

where h is a space spanned on the Dunkl operators, h = 〈D1, . . . ,Dn〉, and Λi is the i-th

exterior power.

Example. Let us once again turn to example of T2k+1,2 torus knots. Under the condition

x1 + x2 = 0 the space we are considering becomes the space of the polynomials depending

on one variable C[x]. The Dunkl operators annihilate x2k+1, hence

I(2k+1)/2 = 〈x2k+1〉, L(2k+1)/2 = (1, x, . . . , x2k). (A.8)

The permutation group S2 has a symmetric and an anti-symmetric representations,

hence the a-grading distinguishes odd powers from even ones.

The expressions (A.3), (A.7) give the HOMFLY polynomial in the normalization where

the skein relation is the following:

aP+(a, q)− a−1P−(a, q) = (q1/2 − q−1/2)P 0(a, q), (A.9)

where P+ denotes the HOMFLY polynomial for a knot with an “undercrossing”, P− is

the polynomial for the knot with an “overcrossing”, and P 0 is the polynomial for the knot

without that crossing. The HOMFLY polynomial for a T2k+1,2 torus knot is:

P2k+1,2 = a2
k∑
i=0

q2i −
k−1∑
i=0

q2i+1, (A.10)

as can be verified from (A.3), (A.7) using the (A.2), (A.5), (A.8) expressions.
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This form of the polynomial for the T2k+1,2 torus knots suggests an interpretation in

terms of a modification of the Witten index for some quantum-mechanical system. Indeed,

for the polynomials of one variable we can write the Dunkl operators as follows:

D =
∂

∂x
+

2k + 1

2

(−1)P − 1

x
, (A.11)

where P is the parity operator. The polynomials in the factor C[x]/〈x2k+1〉 can be formally

distinguished into “fermions” and “bosons” which have eigenvalues −1 or 1 under the

parity transformation. The operators (x,D,K = xD+Dx) form an sl2 algebra (note that

this algebra is different from (5.5)) which can be understood as algebra of supercharges

Q,Q†, H = QQ† in a supersymmetric quantum mechanics. The “raising” and “lowering”

operators (x,D) map between “bosons” and “fermions”. Note that here H is not the

Calogero Hamiltonian, but is a Hamiltonian in some auxiliary quantum problem. The

HOMFLY polynomial appears to be a one-parametric modification of the Witten index:

W =
∑

C[x]/〈x2k+1〉

(−1)F qH −→ P2k+1,2 = −a
∑

C[x]/〈x2k+1〉

(−a)F qH . (A.12)

The “spectrum” is bounded by the condition Dψ = 0 which is solved by a constant and

a x2k+1 monomial. This hints that the HOMFLY polynomial in principle can be considered

as some invariant of generic supersymmetric quantum mechanical or quasiexactly solvable

system. We hope to discuss this issue elsewhere.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] K. Bulycheva, H.-Y. Chen, A. Gorsky and P. Koroteev, BPS states in Ω background and

integrability, JHEP 10 (2012) 116 [arXiv:1207.0460] [INSPIRE].

[2] K. Ito, S. Kamoshita and S. Sasaki, BPS monopole equation in Ω-background, JHEP 04

(2011) 023 [arXiv:1103.2589] [INSPIRE].

[3] S. Hellerman, D. Orlando and S. Reffert, BPS states in the duality web of the Ω deformation,

JHEP 06 (2013) 047 [arXiv:1210.7805] [INSPIRE].

[4] S. Gukov and E. Witten, Gauge theory, ramification, and the geometric Langlands program,

hep-th/0612073 [INSPIRE].

[5] N. Drukker, D. Gaiotto and J. Gomis, The virtue of defects in 4D gauge theories and 2D

CFTs, JHEP 06 (2011) 025 [arXiv:1003.1112] [INSPIRE].

[6] L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from

four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219]

[INSPIRE].

[7] L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators

in N = 2 gauge theory and Liouville modular geometry, JHEP 01 (2010) 113

[arXiv:0909.0945] [INSPIRE].

– 25 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/JHEP10(2012)116
http://arxiv.org/abs/1207.0460
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0460
http://dx.doi.org/10.1007/JHEP04(2011)023
http://dx.doi.org/10.1007/JHEP04(2011)023
http://arxiv.org/abs/1103.2589
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.2589
http://dx.doi.org/10.1007/JHEP06(2013)047
http://arxiv.org/abs/1210.7805
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.7805
http://arxiv.org/abs/hep-th/0612073
http://inspirehep.net/search?p=find+EPRINT+hep-th/0612073
http://dx.doi.org/10.1007/JHEP06(2011)025
http://arxiv.org/abs/1003.1112
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.1112
http://dx.doi.org/10.1007/s11005-010-0369-5
http://arxiv.org/abs/0906.3219
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.3219
http://dx.doi.org/10.1007/JHEP01(2010)113
http://arxiv.org/abs/0909.0945
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0945


J
H
E
P
0
4
(
2
0
1
4
)
1
6
4

[8] E. Witten, Fivebranes and knots, arXiv:1101.3216 [INSPIRE].

[9] D. Gaiotto and E. Witten, Knot invariants from four-dimensional gauge theory, Adv. Theor.

Math. Phys. 16 (2012) 935 [arXiv:1106.4789] [INSPIRE].

[10] A. Brini, B. Eynard and M. Mariño, Torus knots and mirror symmetry, Annales Henri
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