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Abstract: We revisit the gauging of rigid symmetries in two-dimensional bosonic sigma
models with a Wess-Zumino term in the action. Such a term is related to a background
closed 3-form H on the target space. More exactly, the sigma-model Feynman ampli-
tudes of classical fields are associated to a bundle gerbe with connection of curvature H
over the target space. Under conditions that were unraveled more than twenty years ago,
the classical amplitudes may be coupled to the topologically trivial gauge fields of the
symmetry group in a way which assures infinitesimal gauge invariance. We show that
the resulting gauged Wess-Zumino amplitudes may, nevertheless, exhibit global gauge
anomalies that we fully classify. The general results are illustrated on the example of the
WZW and the coset models of conformal field theory. The latter are shown to be incon-
sistent in the presence of global anomalies. We introduce a notion of equivariant gerbes
that allow an anomaly-free coupling of the Wess-Zumino amplitudes to all gauge fields,
including the ones in non-trivial principal bundles. Obstructions to the existence of equi-
variant gerbes and their classification are discussed. The choice of different equivariant
structures on the same bundle gerbe gives rise to a new type of discrete-torsion ambi-
guities in the gauged amplitudes. An explicit construction of gerbes equivariant with
respect to the adjoint symmetries over compact simply connected simple Lie groups is
given.
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1. Introduction

Gauge invariance constitutes one of the basic principles underlying the theoretical
description of physical reality. The occurrence of its violations, called gauge anomalies
[3], in certain models of quantum field theory with chiral fermions yields a powerful
selection principle for the model building in high energy physics [56]. Gauge anoma-
lies may describe violations of infinitesimal gauge invariance, or, if the latter holds, the
breakdown of invariance under large gauge transformations not homotopic to identity
[58]. The second type goes under the name of global gauge anomalies. Anomalies sim-
ilar to the ones in theories with chiral fermions occur also in effective bosonic models
describing the low energy sector [51]. Such effective theories contain Wess-Zumino
(WZ) terms in the action [57], see, e.g., the review [46]. The emergence of global gauge
anomalies in bosonic theories with WZ terms on the Euclidean space-time compactified
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to the four-dimensional sphere was extensively analyzed following the work [58], see
[11].

Starting with Witten’s paper [59] on non-Abelian bosonization, the two-dimensional
Wess-Zumino actions for bosonic sigma models with Lie-group targets were studied
quite thoroughly in the context of the Wess-Zumino-Witten (WZW) models of confor-
mal field theory (CFT). In the latter setting, the problem how to gauge rigid symmetries
was solved, at least in the simplest cases, almost from the very start [8]. Nevertheless,
the general question about the coupling of two-dimensional Wess-Zumino actions to
gauge fields in a way invariant under infinitesimal gauge transformations was posed and
answered only a few years later in [37] and in [36]. Besides, this was done only for
topologically trivial gauge fields described by global 1-forms on the worldsheet. The
conditions that permit such gauging and the obstructions to their fulfillment were sub-
sequently interpreted in [13,14] in terms of equivariant cohomology, as first indicated
in [60], see also [61]. The issue of general gauge invariance of gauged two-dimensional
WZ actions was addressed only very briefly at the end of [13] and, in the context of the
T -duality, in [34,35]. We make it the main topic of the present study.

A convenient tool to treat topological intricacies of Wess-Zumino actions [1,17] on
closed two-dimensional worldsheets is provided by the theory of bundle gerbes with
connection [43,44]. For topologically trivial gauge fields, we identify the global gauge
anomalies of gauged WZ actions as the isomorphism classes of certain flat gerbes over
the product of the symmetry group � and the target space M . Such isomorphism classes
correspond to the classes in the cohomology group H2(�× M,U (1)) that may often be
calculated explicitly. In particular, we show how to do it in the case of WZW models.
This permits us to prove that, after the gauging of an adjoint symmetry, some of bulk
WZW models with non-simply connected target groups exhibit global gauge anomalies.
The latter lead to the inconsistency of the corresponding coset models of CFT [29,30]
realized as gauged WZW models with the gauge fields integrated out [2,21,22,40]. This
is the main surprise resulting from our study.

We also address the problem of the coupling of WZ actions to topologically non-trivial
gauge fields given by connections in non-trivial principal bundles of the symmetry group.
It was indicated in [33] that such a coupling plays an important role in the construction
of consistent coset theories. It seems also important in the T -duality [34]. We show
that the existence of certain equivariant structures on gerbes, considered already before
for discrete symmetry groups in [27], enables a non-anomalous coupling to all gauge
fields and we analyze in a cohomological language the obstructions to the existence of
such structures and their classification. An explicit construction of all non-equivalent
equivariant structures relative to the adjoint symmetries on gerbes relevant for the WZW
models with compact simply connected target groups is given. Different choices of the
equivariant structure lead to the amplitudes with topologically non-trivial gauge fields
that differ by phases that are given by characters of (a subgroup of) the fundamental
group of the (connected) symmetry group. The appearance of such discrete-torsion-
like phases in the coset model sectors with topologically non-trivial gauge fields was
envisaged in [33]. We discuss its implication on the resolution of the field-identification
problem [16] in general coset models.

The paper is organized as follows. In Sect. 2, we recall the role of bundle gerbes
in the definition of the Feynman amplitudes of two-dimensional sigma models with a
WZ action (in Sect. 2.1) and we characterize rigid symmetries of such amplitudes (in
Sect. 2.2). Section 3 is devoted to the coupling of WZ actions to topologically trivial
gauge fields. In Sect. 3.1, we recall the old result of Jack-Jones-Mohammedi-Osborn
[37] and Hull-Spence [36] describing the coupling of a WZ action to the gauge fields
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of its symmetry group. In Sect. 3.2, we review the interpretation, due to Witten [60]
and Figueroa-O’Farrill-Stanciu [13,14], of the conditions that permit such gauging in
terms of the Cartan model of equivariant cohomology, and, in Sect. 3.3, we study fur-
ther implications of those conditions. Section 4 is devoted to global gauge anomalies
in theories with a WZ action coupled to topologically trivial gauge fields. Section 4.1
derives the transformation law of the Feynman amplitudes under general gauge transfor-
mations and identifies, in cohomological terms, the obstruction to the invariance of the
amplitudes under large gauge transformations not homotopic to identity. The general
discussion is illustrated in Sect. 4.2 by the example of WZW models with non-simply
connected target groups and gauged adjoint symmetry. In this case, the presence or the
absence of global gauge anomalies is decided by a simple condition stated in Proposi-
tion 4.8. In Sect. 4.3, we show that our results are consistent with the known solution
for the partition functions of WZW models and in Sect. 4.4, we examine the toroidal
partition functions of the coset models in the presence of global anomalies, pointing to
the inconsistency of such models. Section 5 is devoted to the coupling of WZ actions
to topologically non-trivial gauge fields. In Sect. 5.1, we define gerbes with equivariant
structure. In Sect. 5.2, we describe how to use such structures to define WZ amplitudes
coupled to gauge fields with arbitrary topology. The general gauge invariance of such
amplitudes is proven in Sect. 5.3. In Sect. 6, we study subsequently the obstructions
to the existence of the three layers of an equivariant structure on gerbes (in Sects. 6.1,
6.3 and 6.4). We use the local-data description of gerbes that is recalled in Sect. 6.2.
The classification of equivariant gerbes is discussed in Sect. 6.5. Sect. 6.6 examines the
change of the WZ amplitudes induced by a change of the equivariant structure of the
gerbe and Sect. 6.7 studies the reflection of such changes in the coset toroidal partition
functions. Next Sect. 7 contains an explicit construction of equivariant structures rela-
tive to the adjoint symmetry on gerbes and relevant for the WZW models with compact
simple and simply connected target groups. In Sect. 7.1, we recall the construction of
the corresponding gerbes over the target groups and in Sects. 7.2, 7.3 and 7.4, we build
the different layers of the equivariant structure. Finally, Sect. 8 summarizes our results
and discusses directions for future work. More technical proofs are collected in nine
Appendices.

When the present work was finished we learnt that a similar concept of equivariant
gerbes was recently discussed in [45] and a different one, earlier, in [31].

2. Wess-Zumino Feynman Amplitudes

2.1. 2D Wess-Zumino action and gerbes. Let M be a smooth manifold and H a closed
3-form on M . 2-forms B such that d B = H provide the background Kalb-Ramond fields
for the two-dimensional sigma model with target space M . We shall be mostly interested
in situations when H is not an exact form so that the 2-forms B exist only locally. The
classical fields of the sigma model are smooth maps ϕ : � �� M , where �, called
the worldsheet, is a compact surface, not necessarily connected, that will be assumed
closed and oriented here. The Kalb-Ramond field contributes to the sigma-model action
functional and to the Feynman amplitude of the field configuration ϕ the Wess-Zumino
terms which, for the global 2-form B, are equal to

SWZ (ϕ) :=
∫
�

ϕ∗ B and AWZ (ϕ) := exp(ι̇ SWZ (ϕ)) = exp

(
ι̇

∫
�

ϕ∗ B

)
,

(2.1)
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respectively, in the units where the Planck constant � = 1. The contribution to the Feyn-
man amplitudes may be defined more generally if, instead of a global 2-form B, one is
given a bundle gerbe with unitary connection G over M , called simply gerbe below, with
curvature equal to the closed 3-form H [43]. Such gerbes are precisely the geometric
objects that allow to define a U (1)-valued holonomy HolG(ϕ) of maps ϕ : � �� M ,
and one sets

AWZ (ϕ) := HolG(ϕ). (2.2)

In particular, if H = d B for a global 2-form on M , there exists a gerbe IB with curvature
H , canonically associated to B, such that

HolIB (ϕ) = exp

(
ι̇

∫
�

ϕ∗ B

)
. (2.3)

Gerbes with curvature H exist if and only if the periods of the closed 3-form H are in
2πZ. In particular, H is not required to be an exact form.

The basic property of the holonomy of a gerbe G with curvature H is that it is a
(Cheeger-Simons) differential character. This means that if �̃ is a compact oriented
3-manifold with boundary ∂�̃ = �, and if ϕ̃ : �̃ �� M , then, for ϕ = ϕ̃|� ,

HolG(ϕ) = exp

(
ι̇

∫
�̃

ϕ̃∗ H

)
. (2.4)

Consequently, the gerbe holonomy is fully determined for the boundary values of fields
ϕ̃ by the gerbe curvature H . On the other hand, taking a 3-dimensional ball for �̃ ones
infers easily that the gerbe holonomy determines the gerbe curvature H . The converse
is true only if the homology group H2(M) is trivial.

The (bundle) gerbes (with unitary connection) G over M form a 2-category Grb∇(M)

with 1-morphisms between gerbes and 2-morphisms between 1-morphisms [50]. Below,
we shall denote by Id as well the identity maps between spaces as the identity
1-isomorphisms between gerbes and the identity 2-isomorphisms between 1-isomor-
phisms, with the meaning of the symbol that should be clear from the context. Gerbes G
possess duals G∗ with opposite curvature and inverse holonomy, tensor products G1 ⊗G2
with added curvatures and multiplied holonomies, and pullbacks f ∗G under smooth
maps f of the underlying base manifolds with curvatures related by the pullback of
3-forms and the same holonomies of maps ϕ related by the composition with f . Up
to 1-isomorphisms, gerbes are classified by their holonomy. Indeed, two gerbes with
the same curvature differ, up to a 1-isomorphism, by a tensor factor that is a flat gerbe
(i.e. has vanishing curvature). Their holonomies differ by the flat gerbe holonomy factor
that determines a cohomology class in H2(M,U (1)) = Hom(H2(M),U (1)). All the
elements of H2(M,U (1)) may be obtained this way.

2.2. Rigid symmetries of Wess-Zumino amplitudes. Rigid symmetries of sigma models
are induced by transformations of the target space. Let � be a Lie group that, in gen-
eral, will not be assumed to be connected or simply connected. Suppose now that M is a
�-space, i.e. that we are given a smooth action 
 : �×M �� M of� on M . We shall var-
iably write 
(γ,m) := 
γ (m) := rm(γ ) := γm. The infinitesimal action of the Lie alge-
bra g of� on M is induced by the vector fields X̄ for X ∈ g, where X̄(m) = d

dt |t=0 e−t X m.
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The assignment preserves the commutators: [X̄ , Ȳ ] = [X,Y ]. We would like to deter-
mine when the WZ Feynman amplitudes are invariant under this action. Below, ιX will
denote the contraction with the vector field X , and LX = d ιX + ιX d the Lie derivative
with respect to it.

Lemma 2.1. The variation of the gerbe holonomy of maps ϕ : � �� M under the
infinitesimal action of X ∈ g is given by the formula

d

dt

∣∣∣∣
t=0

HolG(e
−t Xϕ) =

(
ι̇

∫
�

ϕ∗ιX̄ H

)
HolG(ϕ). (2.5)

Proof. The relation (2.4) implies that

HolG(e
−t Xϕ)

= exp

(
ι̇

∫
[0,1]×�

ϕ̃∗
t H

)
HolG(ϕ) = exp

(
ι̇

∫
[0,1]×�

ψ̃∗
t pr∗

2 H

)
HolG(ϕ)

(2.6)

for ϕ̃t (s, x) = e−st Xϕ(x), ψ̃t (s, x) = (s, ϕ̃t (s, x)) and pr2(s,m) = m. Differentiation
of the right hand side with respect to t gives

d

dt

∣∣∣∣
t=0

HolG(e
−t Xϕ)

=
(
ι̇

∫
[0,1]×�

ψ̃∗
0 LX̃ pr∗

2 H

)
HolG(ϕ) =

(
ι̇

∫
[0,1]×�

d ψ̃∗
0 ιX̃ pr∗

2 H

)
HolG(ϕ),

(2.7)

where X̃ is the vector field on [0, 1] × M such that X̃(s,m) = d
dt

∣∣
t=0 (s, e−st X m) =

s X̄(m). The Stokes formula applied to the last integral results in the claim. ��
Lemma 2.1 implies that the left hand side of Eq. (2.5) vanishes if and only if∫

�

ϕ∗ιX̄ H = 0. (2.8)

This holds for all ϕ if and only if ιX̄ H is an exact form. We obtain this way

Corollary 2.2. The Feynman amplitudes AWZ (ϕ) are invariant under the infinitesimal
action of the Lie algebra g (or, equivalently, of the connected component of unity�0 ⊂ �)

if and only if the 2-forms ιX̄ H are exact for all X ∈ g.

Note that the exactness of ιX̄ H implies, in particular, that LX̄ H = 0, i.e. that the
curvature 3-form H is invariant under the infinitesimal action of g. Observe also that if
H = d B for a global g-invariant 2-form B, then ιX̄ H = −d(ιX̄ B) so that the 2-forms
ιX̄ H are exact.

If the group � is not connected, i.e. � 	= �0, then the condition for the �-invariance
of the WZ Feynman amplitudes is more stringent. Since

HolG(γ ϕ) = Hol
∗
γ G(ϕ) (2.9)

for γ ∈ �, it follows that AWZ (γ ϕ) = AWZ (ϕ) for all ϕ if and only if the gerbes 
∗
γ G

and G have the same holonomy. In particular, they have to have the same curvature:

∗
γ H = H . Since the holonomy determines the 1-isomorphism class of a gerbe, we

obtain
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Corollary 2.3. The Feynman amplitudes AWZ (ϕ) are invariant under the action of � if
and only if the gerbes 
∗

γ G and G are 1-isomorphic for all γ ∈ �.

Remark 2.4. In most applications, the sigma-model target manifold M is equipped with
a Riemannian metric gM and the Feynman amplitudes contain also a factor with the
standard sigma-model action S(ϕ) = ‖dϕ‖2

L2 defined with the help of gM and of a
Riemannian metric g� on the worldsheet. In that situation a group � of rigid sym-
metries that leaves the total amplitudes unchanged for arbitrary Riemann surfaces as
worldsheets has to preserve additionally the target metric gM so that, in particular, X̄
(for X ∈ g) are Killing vector fields.

3. Coupling to Topologically Trivial Gauge Fields

A natural question arises whether g-invariant Feynman amplitudes AWZ (ϕ) may be
gauged, i.e. coupled to gauge fields in a gauge-invariant way. First, we shall discuss
the case of topologically trivial gauge fields given by global g-valued 1-forms A on
the worldsheet �. Such forms may be viewed as connections on the trivial principal
�-bundle � × � for group � with Lie algebra g.

3.1. Gauging prescription. In the particular instance when the WZ Feynman amplitudes
are determined by a global g-invariant 2-form B with d B = H , one may realize the
gauging by replacing B with its minimally coupled version BA which is a 2-form on
� × M :

BA := exp(−ι Ā) B = B − ι Ā B + 1
2 ι

2
Ā

B. (3.1)

Above, for X ∈ g and α a differential form, we define ιX̄⊗α = α ιX̄ (omitting the wedge
sign for the exterior product of differential forms). The gauged Wess-Zumino action has
then the form

SWZ (ϕ, A) :=
∫
�

φ∗ BA = SWZ (ϕ) +
∫
�

φ∗ (−ι Ā B + 1
2 ι

2
Ā

B
)
, (3.2)

where φ = (Id, ϕ) : � �� �× M . It is well known that the minimal coupling gives an
action that is invariant under infinitesimal gauge transformations induced by the maps
� : � �� g. This means that

d
dt

SWZ (e
−t�ϕ, e−t� A) = 0, (3.3)

where, for x ∈ �,

(
e−t�ϕ

)
(x) = e−t�(x)ϕ(x),

(
e−t� A

)
(x) = Ade−t�(x) A(x) + e−t�(x)d e t�(x).

(3.4)

The invariance (3.3) will also follow from the considerations below.
In the more general case when the Feynman amplitudes AWZ (ϕ) are given by the

gerbe holonomy, see Eq. (2.2), one may still postulate that the coupling to the gauge
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fields is realized by terms linear and quadratic in A, resulting in the replacement of
AWZ (ϕ) by

AWZ (ϕ, A) := exp

(
ι̇

∫
�

φ∗ (−v(A) + 1
2 u(A2)

))
AWZ (ϕ), (3.5)

where v(X) are 1-forms on M depending linearly on X ∈ g, u(X ∧ Y ) are functions on
M depending linearly on X ∧ Y ∈ g ∧ g and, for a form α on �, v(X ⊗ α) := v(X)α

and u((X ∧ Y ) ⊗ α) := u(X ∧ Y ) α denote the induced forms on � × M . Necessary
conditions for the consistency of such a coupling were found in [37] and [36]. They are
summarized in

Proposition 3.1. The amplitudes AWZ (ϕ, A) defined in (3.5) are invariant under infin-
itesimal gauge transformations if and only if the 1-forms v(X) satisfy the relations

ιX̄ H = dv(X), LX̄v(Y ) = v([X,Y ]), ιX̄v(Y ) = −ιȲ v(X) (3.6)

for all X,Y ∈ g, with the functions u given by

u(X ∧ Y ) = ιX̄v(Y ). (3.7)

For completeness, we give in Appendix 1 a proof of this result by arguments close
to the original ones of [37] and [36].

Remark 3.2. 1. The 1-forms v(X) satisfying Eqs. (3.6) may be modified by 1-forms
w(X) (also linear in X ) satisfying the homogeneous version of these equations.

2. To make contact with refs. [37] and [36] more explicitly, let us introduce a basis (ta)of
the Lie algebra g with [ta, tb] = f abctc (the summation convention!), v(ta) =: va ,
and u(ta ∧ tb) =: uab. Denoting by ιa and La the contraction with and the Lie
derivative w.r.t. the vector field t̄ a , the relations (3.6) and (3.7) may be rewritten as

ιa H = dva, Lavb = f abcvc, ιavb = −ιbva = uab. (3.8)

In view of Proposition 3.1, it will be convenient to introduce a 2-form ρA on the
product manifold � × M and a gerbe GA over the same space by the formulae

ρA = −v(A) + 1
2 ι Āv(A) and GA = IρA ⊗ G2. (3.9)

Equation (3.5), together with the conditions (3.6) and (3.7) on its entries, may then be
summarized in the following

Definition 3.3. Let G be a gerbe with curvature H over a �-space M, and let v(X)

be 1-forms on M, depending linearly on X ∈ g, satisfying conditions (3.6). The Wess-
Zumino contribution of a field ϕ : � �� M to the Feynman amplitude coupled to a
gauge field 1-form A on � is defined as

AWZ (ϕ, A) = exp

(
ι̇

∫
�

φ∗ρA

)
AWZ (ϕ) = HolGA(φ), (3.10)

where, as before, φ = (Id, ϕ).

Remark 3.4. If the gerbe G is equal to IB for a g-invariant 2-form B such that d B = H ,
then one may take v(X) = −ιX̄ B. In this case, Eq. (3.10) agrees with the minimal
coupling (3.2) of the Wess-Zumino action.
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Proposition 3.1 implies immediately

Corollary 3.5. Equation (3.10) defines amplitudes that are invariant under infinitesimal
gauge transformations.

Below, we shall need two easy implications of relations (3.6) whose straightforward
proof is left to the reader. They will be employed repeatedly below.

Lemma 3.6. Relations (3.6) imply that

ιX̄ ιȲ H = v([X,Y ]) − dιX̄v(Y ), (3.11)

ιX̄ ιȲ ιZ̄ H = ιX̄v([Y, Z ]) + ιZ̄v([X,Y ]) + ιȲ v([Z , X ]). (3.12)

3.2. Equivariant-cohomology interpretation. In refs. [13,14], see also [60] and [61],
relations (3.6) were interpreted in terms of equivariant cohomology. Let �(M) denote
the space of differential forms on M . Recall that the Cartan complex for equivariant
cohomology is formed of polynomial maps

g � X � �� ω̂(X) ∈ �(M) (3.13)

which satisfy

LX̄ ω̂(Y ) = d

dt

∣∣∣∣
t=0

ω̂(Adet X Y ) for X,Y ∈ g. (3.14)

We shall call such maps g-equivariant forms. Note that relation (3.14) holds if and only
if


∗
γ ω̂(Y ) = ω̂(Adγ−1 Y ) (3.15)

for γ in the connected component�0 of 1 in�. We shall say that a form ω̂ is�-equivariant
if the relation (3.15) is satisfied for all γ ∈ �. Of course, the two notions of equivariance
coincide if the group � is connected. The g-equivariant (�-equivariant) forms make
up the complex �•

g(M) (�•
�(M)) with the Z-grading that adds twice the degree of the

polynomial to the degree of the form and with the differential of degree 1 given by the
formula

(d̂ ω̂)(X) = d ω̂(X) − ιX̄ ω̂(X). (3.16)

The following result was obtained in [13,14]:

Proposition 3.7. A g-equivariantly closed 3-form Ĥ = H + v(X) extends the closed
g-invariant 3-form H if and only if the 1-forms v(X) satisfy conditions (3.6).

Proof. The g-equivariance of Ĥ is the relation

LX̄ Ĥ(Y ) = LX̄ (H + v(Y )) = v([X,Y ]) (3.17)

that, in view of the g-invariance of H , reproduces the middle equality in (3.6). On the
other hand, the form Ĥ is g-equivariantly closed when

(d̂ Ĥ)(X) = d H + dv(X) − ιX̄ H − ιX̄v(X) = 0 (3.18)

which, using that d H = 0, is equivalent to the left and the right equalities of (3.6). ��
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Remark 3.8. The freedom of choice of v(X) mentioned in Remark 3.2(1) consists of the
addition of a 1-form w(X) that is g-equivariantly closed.

The g-equivariantly closed 3-form Ĥ = H + v(X) may be related directly to the
curvature of the gerbe GA of Eq. (3.9) which is equal to the 3-form

HA = H + dρA (3.19)

on � × M .

Lemma 3.9.

HA = exp(−ι Ā) (H + v(F)) , (3.20)

where F = d A + 1
2 [A, A] is the gauge-field strength 2-form.

Proof. Writing A = ta Aa and F = ta Fa with Fa = d Aa + 1
2 f bca Ab Ac, we obtain,

using the left one of relations (3.6):

HA = H + dρA = H + d
(
−va Aa + 1

2 (ι
avb)Aa Ab

)

= H − ιa H Aa + vad Aa + 1
2 d(ιavb)Aa Ab. (3.21)

Equation (3.11) permits to transform the last term on the right-hand side and to show
that

HA = H − ιa H Aa + vad Aa + 1
2 f abcvc Aa Ab − 1

2 (ι
aιb H)Aa Ab

= H − ι Ā H + v(F) + 1
2 ι

2
Ā

H = exp(−ι Ā) (H + v(F)) . (3.22)

��
Remark 3.10. The minimal coupling operator exp(−ι Ā) may be naturally interpreted
within equivariant cohomology, see [38]. Let us only mention here that it satisfies the
relation

exp(ι Ā) d exp(−ι Ā) = d − ιF̄ + L Ā (3.23)

for L Ā = AaLa .

3.3. More equivariance properties. We shall assume below that the 3-form H extends to
the�-equivariantly closed 3-form Ĥ (X) = H +v(X). This means, along with conditions
(3.6), that


∗
γ H = H and 
∗

γ v(X) = v(Adγ−1 X) (3.24)

for all γ ∈ � and all X ∈ g, see Eq. (3.15). In this section, we shall calculate the pull-
back 
∗ H of the 3-form H along the action map 
 : � × M �� M . The result provides
another way to express equivariance properties of H that will be used in the sequel.

More generally, we shall discuss below forms and gerbes over the product spaces
� p−1 × M that will be considered as �-spaces with the adjoint action of � on the factors
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in � p−1 and the original one on M . For a sequence of indices 1 ≤ i1 < · · · ik1 < ik1+1 <

· · · < ik2 < · · · < ikq ≤ p, we shall denote by 
i1...ik1 ,ik1+1...ik2 ,...,ikq−1+1...ikq
the maps

� p−1 × M � (γ1, . . . , γp−1,m)

� ��

{
(γi1 · · · γik1

, γik1+1 · · · γik2
, . . . , γikq−1+1 · · · γikq

) ∈ �q if ikq < p,

(γi1 · · · γik1
, γik1+1 · · · γik2

, . . . , γikq−1+1 · · · γikq −1 m) ∈ �q−1 × M if ikq = p,

(3.25)

e.g., 
2(γ,m) = m, 
12(γ,m) = γm, 
12(γ1, γ2,m) = γ1γ2, or 
2,3(γ1, γ2,m) =
(γ2,m). All these maps commute with the action of �. Finally, we shall abbreviate

∗

i1...ik p H := Hi1...ik p. Similar self-explanatory shorthand notations will be employed
for other forms, gerbes and gerbe 1- and 2-morphisms, also living on other product
spaces.

Let us start by considering the pullback H12 = 
∗ H of the 3-form H to � × M . The
1-forms v(X) on M define a 2-form

ρ := −v(�) + 1
2 (ι�̄v)(�) (3.26)

on � × M , where � = ta�a = γ−1dγ is the g-valued Maurer-Cartan 1-form on �. As
before, we use the notations ιX̄⊗α := αιX̄ and v(X ⊗ α) := v(X) α for X ∈ g and α

a form, dropping the exterior product sign. Note the similarity to formula (3.9) for the
2-form ρA.

Lemma 3.11. H12 = dρ + H2.

Proof. In order to find an explicit expression for H12, a useful tool is the observation
that, for a form ω ∈ �(M),

(
∗ω)(γ,m) =
(

exp[−ι�̄(γ )] 
∗
γ ω

)
(m). (3.27)

Equation (3.27) makes explicit the contributions to 
∗ω with differentials along � and
along M . Application of identity (3.27) to ω = H gives

(
∗ H)(γ,m) =
(

exp[−ι�̄(γ )]
∗
γ H

)
(m) =

(
exp[−ι�̄(γ )] H

)
(m)

= H(m) − �a(γ )(ιa H)(m) − 1
2 (�

a�b)(γ )(ιaιb H)(m)

+ 1
6 (�

a�b�c)(γ )(ιaιbιc H)(m)

= H(m) − �a(g)(dva)(m) − 1
2 f abc(�a�b)(γ )vc(m)

+ 1
2 (�

a�b)(γ )(dιavb)(m) + 1
2 f bcd(�a�b�c)(γ )(ιavd)(m)

= H(m) +
[
d
(
�ava + 1

2 �
a�bιavb

)]
(γ,m), (3.28)

where the last but one equality was obtained by employing relations (3.6) and Lemma 3.6,
and the last equality follows from the structure equation d�c = − 1

2 f abc�a�b for the
Maurer-Cartan forms. The result is the claimed identity. ��
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Remark 3.12. 1. Similarly one may prove the relation

Ĥ12 = d̂ρ + Ĥ2 (3.29)

which gives an equivariant extension of Lemma 3.11.
2. Lemma 3.11 implies that if w(X) is a 1-form depending linearly on X that is

�-equivariantly closed, then the 2-form

σ = −w(�) + 1
2 ι�̄w(�) (3.30)

on �× M is closed, see Remark 3.8. This is still true if w(X) is only g-equivariantly
closed.

Lemma 3.13. The 2-form ρ defined in Eq. (3.26) has the following properties:

1. ρ is a �-invariant form on � × M.
2. As forms on �2 × M,

ρ12,3 = ρ1,23 + ρ2,3. (3.31)

A proof of Lemma 3.13 may be found in Appendix 2.

4. Global Gauge Anomalies

4.1. General gauge transformations. As we have seen, conditions (3.6) assure the infin-
itesimal gauge invariance of the Feynman amplitudes (3.10). In the present section, we
shall examine the behavior of the amplitudes under general gauge transformations gen-
erated by �-valued smooth maps h : � �� �. Such maps act on the space � × M
by

(x,m)
� Lh �� (x, h(x)m), (4.1)

on the sigma-model fields ϕ : � �� M by

ϕ
� �� hϕ, (4.2)

where (hϕ)(x) = h(x)ϕ(x), and on the gauge fields according to the formulae

A � �� h A := Adh(A) + (h−1)∗�, F � �� hF = Adh(F). (4.3)

The infinitesimal gauge transformations are then generated by taking h = e−t� for
� : � �� g and expanding to the 1st order in t . Let us start by establishing the trans-
formation rule of the curvature 3-form HA of gerbe GA over � × M under maps (4.1).

Lemma 4.1. The 3-form HA defined in (3.19) transforms covariantly under the general
gauge transformations h : � �� �:

L∗
h HA = Hh−1 A. (4.4)
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Proof. By virtue of the formula (3.27), Lemma 3.9, the identity

ιAd
γ−1 X 
∗

γ = 
∗
γ ιX̄ (4.5)

that holds on M , and relations (3.24), we have:

(
L∗

h HA
)
(x,m) = HA(x, h(x)m) =

[
exp[−ι(h∗�)(x)] 
∗

h(x)HA(x, ·)
]
(m)

=
[
exp[−ι(h∗�)(x)] 
∗

h(x) exp[−ι Ā(x)] (H + v(F(x)))
]
(m)

=
[
exp[−ι(h∗�)(x)] exp[−ι(Adh−1 (A))(x))]

(
H +v((Adh−1(F))(x))

)]
(m)

=
[
exp[−ι(h∗�+Adh−1 (A))(x)]

(
H + v((Adh−1(F))(x))

)]
(m)

= Hh−1 A(x,m), (4.6)

where the last equality follows from relations (4.3). ��
We shall need below a few simple facts from the theory of gerbes. First, the pullback

and the tensor product of gerbes commute. Second, the pullback of the gerbe IB associ-
ated to a 2-form B is a similar gerbe associated to the pullback 2-form. Third, the tensor
product of gerbes IB1 ⊗IB2 for 2-forms Bi on the same space may be identified with the
gerbe IB1+B2 . Fourth, the tensor product G ⊗ G∗ of a gerbe with its dual is canonically
isomorphic to the trivial gerbe I0 which provides the unity of the tensor product. Fifth,
if two gerbes are 1-isomorphic then so are their tensor products by a third gerbe and
their pullbacks by the same map.

To find out the transformation rules of the Feynman amplitudes under general gauge
transformations, we have to compare the amplitudes AWZ (hϕ, h A) and AWZ (ϕ, A).
Since

AWZ (hϕ, h A) = HolGh A(Lh ◦ φ) = Hol L∗
hGh A

(φ) and AWZ (ϕ, A) = HolGA (φ)

(4.7)

for φ = (I d, ϕ), it will be enough to compare the gerbes L∗
hGh A and GA whose cur-

vatures, equal to L∗
h Hh A and HA, respectively, coincide by Lemma 4.1. From the latter

property, it follows that those two gerbes are related up to 1-isomorphism by tensoring
with a flat gerbe which we shall identify now. Consider the gerbe

F = G12 ⊗ G∗
2 ⊗ I−ρ (4.8)

over � × M . It follows from Lemma 3.11 that F is flat.

Proposition 4.2. The gerbes L∗
h Gh A and GA⊗(h× Id)∗F over�×M are 1-isomorphic.

��
A proof of Proposition 4.2 by a chain of relations, based on the properties of gerbes

listed above, may be found in Appendix 3.
Taking into account relations (4.7) and the identities Hol(h×Id)∗F (φ) = HolF ((h ×

Id) ◦ φ) = HolF ((h, ϕ)), Proposition 4.2 implies immediately the following transfor-
mation property of the Wess-Zumino amplitudes:
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Theorem 4.3. Under the gauge transformation induced by a map h : � �� �,

AWZ (hϕ, h A) = AWZ (ϕ, A)HolF ((h, ϕ)). (4.9)

��
One can be more specific. Note that from Eq. (4.8) it follows that

HolF ((h, ϕ)) = HolG(hϕ) HolG(ϕ)
−1 exp

(
−ι̇

∫
�

(h, ϕ)∗ρ
)
. (4.10)

In particular, taking h = 1, we infer that HolF ((1, ϕ)) = 1. Indeed, the 2-form (1, ϕ)∗ρ
on � vanishes because the 2-form ρ is composed of terms of degree ≤ 1 in the direction
of M . More generally, since the flat-gerbe holonomies of homotopic fields coincide by
virtue of the holonomy property (2.4), HolF ((h, ϕ)) = 1 if h is homotopic to 1.

Corollary 4.4. The Feynman amplitudes (3.10) are invariant under gauge transforma-
tions homotopic to 1.

The gauge transformations homotopic to 1 are often called small. The remaining issue
is the invariance of the amplitudes (3.10) under large gauge transformations that are not
homotopic to 1. The holonomy of the flat gerbe F on �× M defines a cohomology class
[F] ∈ H2(� × M,U (1)) which is trivial if and only if the flat gerbe F is 1-isomorphic
to the trivial gerbe I0. By virtue of definition (4.8), the latter holds if and only if the
gerbes G12 and Iρ ⊗ G2 over � × M are 1-isomorphic. Consequently,

Corollary 4.5. The amplitudes (3.10) are invariant under all gauge transformations if
and only if the gerbes G12 and Iρ ⊗ G2 over � × M are 1-isomorphic.

The class [F], that will be more carefully studied in Sect. 6, is the obstruction to the
invariance of the Feynman amplitudes (3.10) under large gauge transformations. In
other words, a non-triviality of the class [F] leads to a global gauge anomaly in the
two-dimensional sigma model with the Wess Zumino term corresponding to the gerbe
G and coupled to topologically trivial gauge fields.

In the above analysis, we kept fixed the �-equivariant extension Ĥ + v(X) of the
curvature H of the gerbe G. A natural question arises whether one may use the freedom
in the choice of v(X) to annihilate the global gauge anomaly. Clearly, the answer is that
this may be done if and only if there exists a 1-form w(X) that is �-equivariantly closed
for which [F] = [σ ], where [σ ] denotes the cohomology class in H2(� × M,U (1))
induced by the closed 2-form σ of Eq. (3.30). In many contexts, however, e.g., in appli-
cations to WZW and coset models of conformal field theory, that we shall discuss below,
v(X) is a part of the structure tied to the symmetries of the theories and should not be
changed.

Similarly, one may ask whether it is possible to annihilate the global gauge anomaly by
an appropriate choice of gerbe G, keeping the curvature form fixed. Since this involves
tensoring G with flat gerbes whose 1-isomorphism classes belong to H2(M,U (1)),
the answer is that this is possible if and only if [F] = [b]12 − [b]2 for some class
[b] ∈ H2(M,U (1)). A change of G to another non 1-isomorphic gerbe, however, implies
a non-trivial change of the Feynman amplitudes of the ungauged sigma model, i.e. of
the model itself.
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4.2. Global gauge anomalies in WZW amplitudes. As an example, let us consider the
case when M = G, where G is a connected compact semi-simple Lie group, not neces-
sarily simply connected. One has: G = G̃/Z , where G̃ = ×l G̃l is the covering group
of G that decomposes into the product of simple factors, and Z is a subgroup of the
center Z̃ = ×l Z̃l of G̃. The factors Z̃l are cyclic except for those equal to Z

2
2 corre-

sponding to G̃l = Spin(4r). The Lie algebra g of G̃ decomposes as ⊕lgl into the direct
sum of simple factors. Let h be a Lie subalgebra of g corresponding to a connected
but not necessarily simply connected closed subgroup H̃ ⊂ G̃ that maps onto a closed
connected subgroup � of G̃/Z̃ . Clearly, h is also the Lie algebra of � and � = H̃/Z�

with Z� = H̃ ∩ Z̃ . We shall consider G with the adjoint action of �.

Definition 4.6. Below, we shall call a �-space M = G as above the one of the coset-
model context.

In the simplest case, h = g and � = G̃/Z̃ . In what follows, the reader may think about
this example.

Over the group G = G̃/Z , we shall consider gerbes Gk with the curvature 3-forms

Hk = 1
12π ktr �3, (4.11)

where � = g−1dg is the g-valued Maurer-Cartan 1-form on G and k trXY :=∑
kl trl XlY l stands for the ad-invariant negative-definite bilinear form on g given by

the sum of such forms on gl . We assume that the latter are normalized so that, if G = G̃,
then the form Hk has periods in 2πZ if and only if the level k = (kl) is composed of
integers. For non-simply connected groups G, k has to satisfy more stringent selection
rules to assure the integrality of periods of 1

2π H [15,24,41]. The holonomy of gerbes Gk
provides the Wess-Zumino part of amplitudes for the WZW sigma models of conformal
field theory [59], see the next section.

Definition 4.7. We shall call Gk a WZW gerbe.

There may be several non-1-isomorphic WZW gerbes Gk over G (their 1-isomor-
phism classes are counted by elements of H2(Z ,U (1)) in the discrete group Z cohomol-
ogy [4]). The adjoint action of group G̃/Z̃ leaves the 3-forms Hk invariant. For X ∈ g, the
vector field X̄ on G induced by the infinitesimal adjoint action: X̄(g) = d

dt |t=0 Ade−t X (g)
satisfies the relation ιX̄�(g) = X − Adg−1(X). Hence,

ιX̄ Hk = 1
8π k tr X (1 − Adg)([�(g),�(g)]) = − 1

4π d k tr X (1 + Adg)(�(g))

(4.12)

so that, upon setting

vk(X) = − 1
4π k tr X (1 + Adg)(�(g)), (4.13)

the left one of conditions (3.6) is satisfied. The 1-forms vk(X) satisfy also the other
conditions of (3.6). Indeed,

ιX̄vk(Y ) = − 1
4π k trY

(−Adg−1(X) + Adg(X)
)

= 1
4π trX

(−Adg−1(Y ) + Adg(Y )
) = −ιȲ vk(X), (4.14)
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LX̄vk(Y ) = − d
dt

∣∣∣
t=0

1
4π k trY Ad ∗

e−t X

(
(1 + Adg)(�(g))

)

= − d
dt

∣∣∣
t=0

1
4π k trY Ade−t X

(
(1 + Adg)(�(g))

)

= − d
dt

∣∣∣
t=0

1
4π k tr Adet X (Y ) (1 + Adg)(�(g)) = vk([X,Y ]). (4.15)

Of course, we may restrict X,Y above to take values in the subalgebra h ⊂ g. The
2-form ρk,A on � × � defined by Eq. (3.9) and the 2-form ρk on � × G defined by
Eq. (3.26) are given now by the formulae

ρk,A = 1
4π k tr

(
(1 + Adg)(�(g)) + Adg−1(A)

)
A, (4.16)

ρk = 1
4π k tr

(
(1 + Adg)(�(g)) + Adg−1(�(γ ))

)
�(γ ), (4.17)

where �(γ ) = γ−1dγ is the Maurer-Cartan form on �. The 2-form ρk,A enters the cou-
pling, described in Definition 3.3, of the Wess-Zumino action to the h-valued 1-form A
on �.

Let us compute the holonomy of the flat gerbe Fk = (Gk)12⊗(Gk)
∗
2⊗I−ρk over�×G,

see Eq. (4.8). Recall that the non-triviality of such holonomy obstructs the invariance of
the Wess-Zumino amplitudes of Definition 3.3 under large gauge transformations. By
Eq. (4.10), for h : � �� � and ϕ : � �� G,

HolFk ((h, ϕ)) = HolGk (Adh(ϕ)) HolGk (ϕ)
−1 exp

(
−ι̇

∫
�

(h, ϕ)∗ρk

)
=: ch,ϕ.

(4.18)

Since Fk is flat, the above holonomy depends only on the homotopy classes [h] and [ϕ]
of the maps h and ϕ. Besides it does not depend on whether we treat h as a map with
values in � or in G̃/Z̃ . In the latter case, the homotopy classes of the maps h are in
one-to-one relation with the elements of Z2ω

� , where ω is the genus of �. The element
(z̃1, z̃2, . . . , z̃2ω−1, z̃2ω) corresponding to [h] is given by the windings of h described
by the holonomies

z̃2 j−1 = P exp

(∫
a j

h∗�
)
, z̃2 j = P exp

(∫
b j

h∗�
)
, (4.19)

of the non-Abelian flat gauge field h∗(�) on �. Above, P stands for the path-ordering
(from left to right) along paths a j , b j , j = 1, . . . , ω, that generate a fixed marking of
the surface �, the latter assumed here to be connected, see Fig. 1. Similarly for elements
(z1, . . . , z2ω) describing the windings of ϕ belonging to Z2ω. By pinching off the han-
dles of the surface the same way as in Sec. III of [25], one notes, using the commutativity
of the fundamental groups of G̃/Z̃ and of G, that

ch,ϕ ≡ c(z̃1,...,z̃2ω),(z1,...,z2ω) =
ω∏

j=1

c(z̃2 j−1,z̃2 j ),(z2 j−1,z2 j ). (4.20)
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Fig. 1. Genus 3 surface with a marking; crossed broken lines (red online) indicate the contours of its version
with pinched handles

Hence, the calculation of ch,ϕ reduces to the genus 1 case with � = S1 × S1. Let us
choose the Cartan subalgebras th ⊂ h and tg ⊂ g so that th ⊂ tg. On � = S1 × S1, one
may take h = h p̃∨

1 , p̃∨
2

and ϕ = ϕp∨
1 .p∨

2
with

h p̃∨
1 , p̃∨

2
(e ι̇σ1 , e ι̇σ2) = e ι̇(σ1 p̃∨

1 +σ2 p̃∨
2 ), ϕp∨

1 ,p∨
2
(e ι̇σ1 , e ι̇σ2) = e ι̇(σ1 p∨

1 +σ2 p∨
2 ),

(4.21)

where p̃∨
i ∈ ι̇th and p∨

i ∈ ι̇tg are such that the windings z̃i = e 2πι̇ p̃∨
i ∈ Z� and

zi = e 2πι̇p∨
i ∈ Z . Note that p̃∨

i and p∨
i have to belong to the coweight lattice P∨

g com-

posed of elements p∨ ∈ ι̇tg such that e 2πι̇p∨ ∈ Z̃ . Since Adh p̃∨
1 , p̃∨

2
(ϕp∨

1 ,p∨
2
) = ϕp∨

1 ,p∨
2

,

the formula (4.18) gives

c(z̃1,z̃2),(z1,z2) = exp

(
−i

∫
S1×S1

(h p̃∨
1 , p̃∨

2
, ϕp∨

1 ,p∨
2
)∗ρk

)

= exp

(
i

2π

∫ 2π

0

∫ 2π

0
k tr (dσ1 p∨

1 + dσ2 p∨
2 )(dσ1 p̃∨

1 + dσ2 p̃∨
2 )

)

= exp
(
2π i k tr (p∨

1 p̃∨
2 − p̃∨

1 p∨
2 )
)
. (4.22)

That the right hand side depends only on the windings is assured by the integrality of the
level k. The holonomy of the flat gerbe Fk is trivial if and only if the above expression is
always equal to 1 for the windings restricted as above (compare to a similar discussion
in [25]). From Corollary 4.3, we obtain

Proposition 4.8. For the �-space M = G in the coset-model context, see Definition 4.6,
the WZ Feynman amplitudes (3.10) are invariant under all gauge transformations if and
only if the phases (4.22) are trivial. ��
When G = G̃, one may take p∨

i = 0 so that the phases (4.22) are trivial. We obtain this
way

Corollary 4.9. For the simply connected �-space M = G̃ in the coset-model context,
the WZ Feynman amplitudes (3.10) are invariant under all gauge transformations.

For non-simply connected groups G = G̃/Z , examples where the phases (4.22) are
non-trivial are numerous. They include G = � = G̃/Z̃ for G̃ = SU (r + 1) with r even
and k = 1 or with r ≥ 3 odd and k = 2. Another example is G = � = Spin(2r)/Z2

2
with r divisible by 4 and k = 1. In all those cases (and many others), the amplitudes
(3.10) of Definition 3.3 exhibit a global gauge anomaly.
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The best known case with a non-simple group G̃ is G̃ = SU (2)×SU (2). The restric-
tions on the level k = (k1, k2) imposed by the existence of the gerbe Gk with curvature
Hk on G = G̃/Z depend on Z ⊂ Z̃ = Z2 × Z2.

k1 ∈ Z, k2 ∈ Z if Z = 0,
k1 ∈ 2Z, k2 ∈ Z if Z = Z2 ⊕ 0,
k1 ∈ Z, k2 ∈ 2Z if Z = 0 ⊕ Z2,

k1 ∈ Z, k2 ∈ Z, k1 + k2 ∈ 2Z if Z = diag Z2,

k1 ∈ 2Z, k2 ∈ 2Z if Z = Z2 ⊕ Z2.

For � = G̃/Z̃ = SO(3) × SO(3), with the adjoint action on G and p̃i , p̃′
i , pi , p′

i ∈ Z,

c
(((−1) p̃1 ,(−1)

p̃′
1 ),((−1) p̃2 ,(−1)

p̃′
2 )),(((−1)p1 ,(−1)

p′
1 ),((−1)p2 ,(−1)

p′
2 ))

= (−1)k1(p1 p̃2− p̃1 p2)+k2(p′
1 p̃′

2− p̃′
1 p′

2). (4.23)

We infer from this expression that the only case with a global anomaly of the gauged
WZ amplitudes (3.10) of Definition 3.3 is the one with G = (SU (2)× SU (2))/diag Z2
with odd k1, k2. If one restricts, however, the group � to the diagonal SO(3) subgroup of
SO(3)×SO(3) then the global gauge anomaly disappears. Another anomalous example
with a non-simple group is G = (SU (3) × SU (3))/(Z3 × Z3) at level k = (1, 1) with
the adjoint action of � = diag(SU (3)/Z3).

The non-anomalous gauging of the adjoint action of the diagonal SO(3) subgroup
in the WZW model with groups (SU (2) × SU (2))/Z is used in the coset model con-
struction [30] of the unitary minimal models of conformal field theory [18,22,33]. Other
coset theories involve other versions of gauged WZW amplitudes and may suffer from
global anomalies, as will be discussed below.

4.3. Anomalies and WZW partition functions. The results of the calculation of the
global-gauge-anomaly phases in the last section are consistent with the exact solution
for the toroidal partition functions of the WZW models of conformal field theory in an
external gauge field.

Let us start by considering the level k WZW sigma model on a closed Riemann sur-
face � with the Lie group G = G̃/Z as the target manifold. The Feynman amplitude
of a field ϕ : � �� G in the background of the external gauge field described by a
g-valued 1-form A on � is given by the formula

AW Z W (ϕ, A) = exp

(
i

4π

∫
�

k tr (ϕ−1∂Aϕ)(ϕ
−1∂̄Aϕ)

)
AW Z (ϕ, A), (4.24)

where ∂A = ∂ + adA10 and ∂̄A = ∂̄ + adA01 are the minimally coupled Dolbeault differ-
entials relative to the complex structure of �, for A = A10 + A01. The WZ amplitude
AW Z (ϕ, A) is related to the holonomy of the WZW gerbe Gk on G, with the adjoint
action of the group � = G̃/Z̃ gauged as described previously.

Let � = Tτ := C/(2πZ + 2πτZ) be the complex torus with the modular parameter
τ = τ1 +iτ2, where the imaginary part τ2 > 0. The toroidal partition function is formally
defined by the functional integral over the space of maps ϕ : Tτ

�� G

ZG(τ, A) =
∫

Map(Tτ ,G)

AW Z W (ϕ, A)Dϕ. (4.25)
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Its exact form may be found from (formal) symmetry properties of the functional integral.
The result has a specially simple form for the gauge fields

Au = ū dw−u dw̄
2τ2

(4.26)

with u in the complexified Cartan algebra tC
g of g and w the coordinate on the complex

plane (for other gauge fields, it is then determined by chiral gauge transformations [19]).
When the group G is simply connected, i.e. G = G̃, one has

Z G̃(τ, Au) =
∑

�∈P+
k (g)

|χ ĝ
k,�(τ, u)|2 exp

[
πk tr(u−ū)2

2τ2

]
, (4.27)

where χ
ĝ
k,� are the affine characters,

χ
ĝ
k,�(τ, u) = tr

V ĝ
k,�

exp

(
2π i

[
τ

(
L ĝ

0 − cĝ
k

24

)
+ u

])
, (4.28)

of the unitary highest-weight modules V ĝ
k,� of level k and highest weight � of the affine

algebra ĝ associated to the Lie algebra g [28,39]. L ĝ
0 stands for the corresponding Sugaw-

ara-Virasoro generator and cĝ
k for the Virasoro central charge. The admissible highest

weights � form a finite set P+
k (g). We consider weights as elements of itg, identifying

the latter space with its dual by means of the bilinear form tr.
For non-simply connected groups G = G̃/Z , the toroidal partition functions take a

more complicated form [15]. The space of (regular) maps from Tτ to G has different
connected components that may be labeled by the windings:

Map(Tτ , G) = �
(z1,z2)∈Z2

Mapz1,z2
(Tτ , G̃), (4.29)

where for zi = e 2πι̇p∨
i , Mapz1,z2

contains the maps homotopic to ϕp∨
1 ,p∨

2
of Eq. (4.21)

(viewed as a map on Tτ via the parametrization of the complex plane by w = σ1 + τσ2).
Let

ZG
z1,z2

(τ, A) =
∫

Mapz1,z2
(Tτ ,G)

AW Z W (ϕ, A)Dϕ (4.30)

so that

ZG(τ, A) =
∑

(z1,z2)∈Z2

ZG
z1,z2

(τ, A). (4.31)

By writing ϕ = ϕp∨
1 ,p∨

2
ϕ̃, where ϕ̃ has trivial windings and may be lifted to a map from

Tτ to G̃, one may relate the functional integral for ZG
z1,z2

(τ, A) to the one for Z G̃(τ, A)

using the chiral Ward identities [19]. One obtains this way the formula

ZG
z1,z2

(τ, Au) = 1
|Z |

∑
�∈P+

k (g)

HolGk (ϕp∨
1 ,p∨

2
) exp

[−ik tr p∨
1 (p∨

2 − τp∨
1 ) − 2πι̇ktr up∨

1

]

· χ ĝ
k,�(τ, u + p∨

2 − τp∨
1 ) χ

ĝ
k,�(τ, u) exp

[
πk tr(u−ū)2

2τ2

]
, (4.32)
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where |Z | stands for the cardinality of Z and the values of HolGk (ϕp∨
1 ,p∨

2
) may be found

in Sec. IV of [25]. There exists a spectral flow �
� �� z� on P+

k (g) (and on the set of
the corresponding highest-weight modules of ĝ) induced by the elements z of the center
Z̃ of G̃ [15]. The highest weight z� is uniquely fixed by the property that

e 2πι̇ k−1z� = z Adwz (e
2πι̇ k−1�) (4.33)

for some wz in the normalizer of the Cartan subgroup of G̃. The characters of the
ĝ-modules with the highest weights connected by the spectral flow satisfy the relation

exp
[−πι̇ k tr(p∨

2 − τp∨
1 )p∨

1 − 2πι̇k tr up∨
1

]
χ

ĝ
k,�(τ, u + p∨

2 − τp∨
1 )

= exp
[
2πι̇ tr p∨

2 � − πι̇ k tr p∨
1 p∨

2

]
χ

ĝ
k,z−1

1 �
(τ, u) (4.34)

for any p∨
1 and p∨

2 in the coweight lattice P
∨
g . As a result, Eq. (4.32) may be rewritten

in the form

ZG
z1,z2

(τ, Au)

= 1
|Z |

∑
�∈P+

k (g)

εz1,z2
(�) χ

ĝ
k,z−1

1 �
(τ, u) χ

ĝ
k,�(τ, u) exp

[
πk tr(u−ū)2

2τ2

]
, (4.35)

where

εz1,z2
(�) = HolGk (ϕp∨

1 ,p∨
2
) exp

[
2πι̇ tr p∨

2 � − πι̇ k tr p∨
1 p∨

2

]
(4.36)

defines a character on Z through its dependence on z2. Let, for z ∈ Z ,

Cz := {
� ∈ P+

k (g) | εz,z2(�) = 1 for all z2 ∈ Z
}
. (4.37)

Summing both sides of Eq. (4.35) over z1 and z2, one obtains the following formula for
the complete partition function of the group G WZW model at level k:

ZG(τ, Au) =
∑
z∈Z

∑
�∈P+

k (g)∩Cz

χ
ĝ
k,z−1�

(τ, u) χ
ĝ
k,�(τ, u) exp

[
πk tr(u−ū)2

2τ2

]
. (4.38)

Note that, for non-trivial Z , the affine characters and their complex conjugates are com-
bined non-diagonally in the latter expression, in contrast with the formula (4.27). The
space of states of the model that can be read off from Eq. (4.38) has the form [15,41]

H
G = ⊕

z∈Z

(
⊕

�∈P+
k (g)∩Cz

V ĝ
k,z−1�

⊗ V ĝ
k,�

)
. (4.39)

The transformation properties of the WZW partition function (4.35) under large gauge
transformations h p̃∨

1 , p̃∨
2

of Eq. (4.21) are determined by the equality

h p̃∨
1 , p̃∨

2
Au = Au− p̃∨

2 +τ p̃∨
1
, (4.40)
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and by identity (4.34) for the affine characters. With the help of these relations, one
obtains

ZG
z1,z2

(τ, h p̃∨
1 , p̃∨

2
Au) = ZG

z1,z2
(τ, Au− p̃∨

2 +τ p̃∨
1
)

= 1
|Z |

∑
�∈P+

k (g)

εz1,z2
(�) exp

[
−2π i tr p̃∨

2 (z−1
1 � − �)

]

· χ ĝ
k,z̃1z−1

1 �
(τ, u) χ ĝ

k,z̃1�
(τ, u) exp

[
πk tr(u−ū)2

2τ2

]
, (4.41)

where, as before, z̃i = e 2πι̇ p̃∨
i . It is easy to see, using Eq. (4.33), that

exp
[
−2π i tr p̃∨

2 (z̃−1
1 � − �)

]
= exp

(
2π i k tr p̃∨

1 p̃∨
2

)
(4.42)

for any � ∈ P+
k (g). Replacing � by z̃−1

1 � on the right-hand side of Eq. (4.41) and using
the relation

εz1,z2
(z̃−1

1 �) = exp
[−2πι̇ k tr p̃∨

1 p∨
2

]
εz1,z2

(�) (4.43)

that follows from Eq. (4.42), one obtains

Proposition 4.10. The transformation law of the toroidal partition function (4.35) under
large gauge transformations is described by the identity

ZG
z1,z2

(τ, h p̃∨
1 , p̃∨

2
Au) = c(z̃1,z̃2),(z1,z2) ZG

z1,z2
(τ, Au), (4.44)

where the phases c(z̃1,z̃2),(z1,z2) are given by Eq. (4.22). ��
If we assume the gauge invariance Dϕ = D(hϕ) of the formal functional integral

measure, then the above anomalous transformation property follows from the functional
integral expression (4.30) and the relation

AW Z W (h p̃∨
1 , p̃∨

2
ϕ, h p̃∨

1 , p̃∨
2

A) = c(z̃1,z̃2),(z1,z2) AW Z W (ϕ, A) (4.45)

for ϕ ∈ Mapz1,z2
(Tτ , G) which is a consequence of Eq. (4.9) (the minimally coupled

term of the WZW action (4.24) is invariant under all gauge transformations).
As an example, let us consider the simplest gauged WZW model that exhibits a global

gauge anomaly, namely the one with the target group G = SU (3)/Z3 at level k = 1
and the gauged adjoint action of � = G. For the simple coweights of su(3) (identified
with the simple weights), we may take

λ∨
1 = diag[ 2

3 ,−
1
3 ,−

1
3 ] = λ1, λ∨

2 = diag[ 1
3 ,

1
3 ,−

2
3 ] = λ2. (4.46)

The element z = e 2πι̇λ∨
1 = diag[e 4πι̇

3 , e− 2πι̇
3 , e− 2πι̇

3 ] generates the center Z3 of SU (3).
The set P+

1 (su(3)) contains three weights � = r1λ1 +r2λ2 with (r1, r2) = (0, 0), (1, 0),
(0, 1). We shall denote the corresponding level 1 affine characters by χ̂(r1,r2). The toroi-

dal partition functions Z̃G(τ, u) := ZG(τ, u) exp
[
− πk tr(u−ū)2

2τ2

]
with fixed windings are,

according to Eq. (4.35),

Z̃G
1,1 = 1

3

(
|χ̂(0,0)|2 + |χ̂(1,0)|2 + |χ̂(0,1)|2

)
,
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Z̃G
1,z = 1

3

(
|χ̂(0,0)|2 + e

4πι̇
3 |χ̂(1,0)|2 + e

2πι̇
3 |χ̂(0,1)|2

)
,

Z̃G
1,z2 = 1

3

(
|χ̂(0,0)|2 + e

2πι̇
3 |χ̂(1,0)|2 + e

4πι̇
3 |χ̂(0,1)|2

)
,

Z̃G
z,1 = 1

3

(
χ̂(0,1)χ̂(0,0) + χ̂(0,0)χ̂(1,0) + χ̂(1,0)χ̂(0,1)

)
,

Z̃G
z,z = 1

3

(
e

4πι̇
3 χ̂(0,1)χ̂(0,0) + e

2πι̇
3 χ̂(0,0)χ̂(1,0) + χ̂(1,0)χ̂(0,1)

)
,

Z̃G
z,z2 = 1

3

(
e

2πι̇
3 χ̂(0,1)χ̂(0,0) + e

4πι̇
3 χ̂(0,0)χ̂(1,0) + χ̂(1,0)χ̂(0,1)

)
,

Z̃G
z2,1 = 1

3

(
χ̂(1,0)χ̂(0,0) + χ̂(0,1)χ̂(1,0) + χ̂(0,0)χ̂(0,1)

)
,

Z̃G
z2,z = 1

3

(
e

2πι̇
3 χ̂(1,0)χ̂(0,0) + χ̂(0,1)χ̂(1,0) + e

4πι̇
3 χ̂(0,0)χ̂(0,1)

)
,

Z̃G
z2,z2 = 1

3

(
e

4πι̇
3 χ̂(1,0)χ̂(0,0) + χ̂(0,1)χ̂(1,0) + e

2πι̇
3 χ̂(0,0)χ̂(0,1)

)
.

Since

c(z p̃1 ,z p̃2 ),(z p1 ,z p2 ) = exp
(

4π i
3 (p1 p̃2 − p̃1 p2)

)
, (4.47)

the transformation rule (4.44) implies that all the sectors with non-trivial windings suffer
from global gauge anomalies. Summing over the windings, one obtains the total partition
function of the level 1 WZW theory for the target group G = SU (3)/Z3:

Z̃G = |χ̂(0,0)|2 + χ̂(1,0)χ̂(0,1) + χ̂(0,1)χ̂(1,0). (4.48)

It should be contrasted with the anomaly-free level 1 partition function for the covering
group G̃ = SU (3):

Z̃ G̃ = |χ̂(0,0)|2 + |χ̂(1,0)|2 + |χ̂(0,1)|2. (4.49)

4.4. Implications for coset models. Consider now the group � = H̃/Z� , where H̃ is a
connected closed subgroup of G̃ with Lie algebra h ⊂ g and Z� = H̃ ∩ Z̃ . � = �̃/Z̃� ,
where, �̃ is the covering group of � (and of H̃ ) and Z̃� is the subgroup of its center
composed of elements that project to Z� ⊂ H̃ . Of course, one has to distinguish between
Z̃� and Z� only if the subgroup H̃ is not simply connected. The so-called G/� coset
model of the conformal field theory is obtained by gauging the adjoint action of � on
G = G̃/Z in the group G level k WZW model and by integrating out the gauge fields in
the functional integral [2,22,33,40]. In particular, the contribution of the topologically
trivial gauge fields to the toroidal partition function of the G/� coset model is formally
given by

ZG/�(τ ) =
∫

ZG(τ, A)D A, (4.50)
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where A are 1-forms on Tτ with values in the Lie algebra h. Clearly, due to the decom-
position (4.31),

ZG/�(τ ) =
∑

(z1,z2)∈Z2

ZG/�
z1,z2

(τ ) with ZG/�
z1,z2

(τ ) =
∫

ZG
z1,z2

(τ, A)D A. (4.51)

The functional integral (4.50) may be computed by an appropriate parametrization of
the gauge fields A [22]. In particular, when h is semi-simple, the result is [22,33]

ZG/�
z1,z2

(τ ) = 1

|Z̃� ||Z |
∑

�∈P+
k (g)

∑
λ∈P+

k̃
(h)

εz1,z2
(�) b ĝ,ĥ

k,z−1
1 �,λ

(τ ) b ĝ,ĥ
k,�,λ(τ ), (4.52)

where b ĝ,ĥ
k,�,λ(τ ) are the branching functions that are the characters of the coset Virasoro

modules V ĝ,ĥ
k,�,λ. The latter appear in the decomposition [29]

V ĝ
k,� = ⊕

λ∈P+
k̃
(ĥ)

V ĝ,ĥ
k,�,λ ⊗ V ĥ

k̃,λ
(4.53)

of the level k unitary highest-weight modules of the affine algebra ĝ into similar modules
of the affine subalgebra ĥ ⊂ ĝ at the level k̃ induced by restricting the bilinear form k tr
on g to h. By definition,

b ĝ,ĥ
k,�,λ(τ ) = tr

V ĝ,ĥ
k,�,λ

exp

(
2π i τ

(
L ĝ

0 − L ĥ
0 − cĝ

k −cĥ
k̃

24

))
. (4.54)

The decomposition (4.53) implies the one for the characters:

χ
ĝ
k,�(τ, u) =

∑
λ∈P+

k̃
(h)

b ĝ,ĥ
k,�,λ(τ ) χ ĥ

k̃,λ
(τ, u) (4.55)

for u in the complexified Cartan algebra tC
h of h.

From the gauge transformation rule (4.44), we should expect that the sectors with
fixed windings (z1, z2) of the group G WZW theory which transform in the anomalous
way under the large gauge transformations h p̃∨

1 , p̃∨
2

: Tτ
�� � give vanishing contribu-

tions to the partition function of the coset theory. This is, indeed, the case.

Proposition 4.11. If c(z̃1,z̃2),(z1,z2) 	= 1 for some (z̃1, z̃2) ∈ Z2
� then the partition function

ZG/�
z1,z2

given by Eq. (4.52) vanishes.

Proof. Denote by P
∨
� the subset of the set P

∨
h ⊂ ι̇th ⊂ ι̇tg of coweights of h composed

of such p̃∨ that z̃ = e 2πι̇ p̃∨ ∈ Z̃� when viewed as elements of �̃ (or that z̃ ∈ Z� when
viewed as elements of H̃ ⊂ G̃). Clearly P

∨
� ⊂ P

∨
g . The vanishing result is a consequence

of the following well known properties of the branching functions [16]:

b ĝ,ĥ
k,�,λ = 0 if exp[2πι̇ tr p̃∨�] 	= exp[2πι̇ tr p̃∨λ] for some p̃∨ ∈ P

∨
� , (4.56)
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b ĝ,ĥ
k,z̃�,z̃λ = b ĝ,ĥ

k,�,λ for z̃ = e 2πι̇ p̃∨
and p̃∨ ∈ P

∨
� . (4.57)

The first of these relations follows from the fact that the central elements e2πι̇ p̃∨
act

by multiplication by the same scalars in the modules V ĝ
k,� and V ĥ

k̃,λ
appearing in the

decomposition (4.53). The second one is a consequence of the isomorphism between

the coset Virasoro modules V ĝ,ĥ
k,�,λ with the weights related by the spectral flows under

elements e 2πι̇ p̃∨
. Note that both relations are consistent with the fact that the identity

(4.34) is satisfied by the characters of both affine algebras ĝ and ĥ.
If c(z̃1,z̃2),(z1,z2) 	= 1, then either exp[2πι̇k tr p∨

1 p̃∨
2 ] 	= 1 or exp[−2πι̇k tr p̃∨

1 p∨
2 ] 	= 1

for some p̃∨
i ∈ P

∨
� , see Eq. (4.22). Relation (4.56) implies that if exp[2πι̇ k tr p∨

1 p̃∨
2 ] =

exp[−2πι̇ tr p̃∨
2 (z−1

1 � − �)] 	= 1 for some p̃∨
2 ∈ P

∨
� , then, for each pair (�, λ), either

b ĝ,ĥ
k,z−1

1 �,λ
= 0 or b ĝ,ĥ

k,�,λ = 0 so that ZG/�
z1,z2

vanishes. Similarly, using relation (4.57) and

Eq. (4.43), we infer that if exp[−2πι̇ k tr p̃∨
1 p∨

2 ] 	= 1 for some p̃∨
1 ∈ P

∨
� , then ZG/�

z1,z2
vanishes too. ��

As we see, global gauge anomalies in the WZW model lead to selection rules for the
contributions to the partition functions of the G/� coset model.

Let Z ′ ⊂ Z be the non-anomalous subgroup that is composed of the elements z =
e 2πι̇p∨ ∈ Z such that exp[2πι̇ k tr p∨ p̃∨] = 1 for all p̃∨ ∈ P

∨
� , and let G ′ = G̃/Z ′ be

the corresponding quotient of G̃. Proposition 4.11 and Eqs. (4.52) imply that

ZG/�(τ ) = |Z ′ |
|Z | ZG ′/�(τ ). (4.58)

Upon summation over windings in (Z ′)2, the partition function on the right-hand side
may be rewritten in the form

ZG ′/�(τ ) = 1

|Z̃� |
∑
z∈Z ′

∑
�∈P+

k (g)∩C ′
z

∑
λ∈P+

k̃
(h)

b ĝ,ĥ
k,z−1�,λ

(τ ) b ĝ,ĥ
k,�,λ(τ ), (4.59)

where C ′
z is defined as in (4.37) but with the subgroup Z replaced by Z ′. Due to rela-

tion (4.56), we may restrict the sum on the right-hand side to pairs (�, λ) such that the

elements of e 2πι̇ p̃∨
for p̃∨ ∈ P

∨
� act by multiplication by the same scalar in V ĝ

k,� and

in V ĥ
k̃,λ

. Then, also the pairs (z−1�,λ) for z ∈ Z ′ and (z̃�, z̃λ) for z̃ = e 2πι̇ p̃∨
will

have this property due to Eq. (4.42). Besides, it follows from Eq. (4.43) that if � ∈ C ′
z

then z̃� ∈ C ′
z for all z̃ ∈ Z� (unlike for Cz if Z ′ is strictly smaller than Z ). As a result

of this observation and of relation (4.57), one may rewrite the sum over weights on the
right-hand side of Eq. (4.59) as a sum over orbits [�,λ] of the diagonal spectral flow of
Z̃� . Denoting by Pz the space of such orbits with � ∈ C ′

z , we infer that

ZG ′/�(τ ) =
∑
z∈Z ′

∑
[�,λ]∈Pz

1
|S[�,λ]| b ĝ,ĥ

k,z−1�,λ
(τ ) b ĝ,ĥ

k,�,λ(τ ), (4.60)

where S[�,λ] ⊂ Z̃� denotes the stabilizer subgroup of the elements of the orbit [�,λ].
If S[�,λ] is trivial for all orbits [�,λ] then the last expression for the partition function
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ZG ′/�(τ ) is consistent with the following form of the space of states:

H
G ′/� = ⊕

z∈Z ′

(
⊕

[�,λ]∈Pz

V ĝ,ĥ
k,z−1�,λ

⊗ V ĝ,ĥ
k,�,λ

)
(4.61)

Identity (4.58) now implies that, on the contrary, barring further identifications of the
coset Virasoro representations [9], the partition function Z G/�(τ ) lacks a Hilbert-space
interpretation if the group Z ′ is strictly smaller than Z , i.e. if the group G WZW model
suffers from global gauge anomalies relative to the adjoint action of �. This points to
the inconsistency of the G/� coset model in that case. On the level of the partition func-
tion, this inconsistency is of a mild nature since one may turn the inconsistent partition
function ZG/� into the consistent one ZG ′/� by changing the normalization.

In the case when G = SU (3)/Z3 = �, the G/� coset theory is topological and its
partition function is τ -independent. The branching functions vanish if � 	= λ and are
equal to 1 otherwise. At level 1, all coset partition functions with non-trivial windings
vanish and

ZG/� = ZG/�
1,1 = 1

3 . (4.62)

In a consistent two-dimensional topological field theory, the partition function is equal
to the dimension of the space of states and cannot take a fractional value, confirming the
inconsistency of the level 1 G/� coset model for G = SU (3)/Z3 = �. On the other
hand, the non-anomalous subgroup Z ′ ⊂ Z = Z3 is trivial so that G ′ = G̃ = SU (3) in
that case, and for the anomaly-free level 1 G̃/� coset theory,

Z G̃/� = 1, (4.63)

corresponding to a 1-dimensional space of states.
It was pointed out in [47] (for the diagonal coset models corresponding to simply

connected groups G = G̃ = G ′) that, in the presence of fixed points (�0, λ0) of the diag-
onal spectral flow of Z̃� , there is a further problem with the Hilbert space interpretation
of the partition function (4.60) because of the appearance of the fraction 1

|S[�0,λ0]| . It was

shown in [16] within an algebraic approach how to resolve such fixed points to repair
this defect. Somewhat earlier, in [33], it was argued that the problem may be resolved
on the Lagrangian level by adding to the partition function (4.60) contributions from the
sectors with gauge fields in the topologically non-trivial principal �-bundles P over Tτ

(it was also shown that such contributions vanish if there are no fixed points (�0, λ0) of
the diagonal spectral flow of Z̃�). For the sectors with topologically non-trivial gauge
fields, the WZW sigma model fields are sections of the associated bundle P ×� G with
respect to the adjoint action of �, and the globally gauge invariant WZW amplitudes in
the gauge field background may be defined with the help of a �-equivariant structure on
the WZW gerbe Gk over G, as will be explained in the following section.

5. Coupling to General Gauge Fields

5.1. Equivariant gerbes. We showed in Sect. 3 that the invariance of the Feynman ampli-
tudes (3.10) under all gauge transformations requires the existence of a 1-isomorphism
between the gerbes G12 ≡ 
∗G and Iρ ⊗ G2 over � × M . Here, we shall strengthen this
property by introducing the notion of �-equivariant gerbes in the way that will subse-
quently assure the gauge invariance of the Feynman amplitudes coupled to topologically
non-trivial gauge fields.
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Definition 5.1. A gerbe G with the curvature H possessing a �-equivariantly closed
extension Ĥ(X) = H +v(X) will be called �-equivariant relative to the 2-form ρ given
by Eq. (3.26) if it is equipped with a pair (α, β), called a �-equivariant structure, such
that

(i) α : G12 �� Iρ ⊗ G2 is a 1-isomorphism of gerbes over � × M ;
(ii) β : (Id ⊗α2,3)◦α1,23

�� α12,3 is a 2-isomorphism of 1-isomorphisms of gerbes
over �2 × M ;

(iii) the following diagram of 2-isomorphisms between 1-isomorphisms of gerbes over
�3 × M is commutative:

(Id ⊗ α3,4) ◦ (Id ⊗ α2,34) ◦ α1,234

(Id⊗β2,3,4)◦Id

�� ��
��

��
��

��
��

��
��

��
��

��
��

Id◦β1,2,34

��
��

��
��

��
��

��

��
��

��
��

��
��

(Id ⊗ α23,4) ◦ α1,234

β1,23,4

��
��

��
��

��
��

��

��
��

��
��

��
��

(Id ⊗ α3,4) ◦ α12,34

β12,3,4

�� ��
��

��
��

��
��

��
��

��
��

��
��

α123,4

(5.1)

�-equivariant gerbes over M form a 2-category Grb∇(M)G . A 1-isomorphism
between two �-equivariant gerbes,

(χ, η) : (Ga, αa, βa) �� (Gb, αb, βb), (5.2)

is a 1-isomorphism χ : Ga �� Gb and a 2-isomorphism η : (Id ⊗χ2)◦ αa �� αb ◦χ12
between 1-isomorphisms of gerbes over � × M , such that the diagram

(Id ⊗ χ3) ◦ (Id ⊗ αa
2,3) ◦ αa

1,23

Id◦βa

�������������������

�����������������

(Id⊗η2,3)◦Id

�� �����������������

�����������������

(Id ⊗ (αb
2,3 ◦ χ23)) ◦ αa

1,23

Id◦η1,23

		
		

		
		

		
		

	

		
		

		
		

		
	

(Id ⊗ χ3) ◦ αa
12,3

η12,3



 







































(Id ⊗ αb
2,3) ◦ αb

1,23 ◦ χ123
βb◦Id

�� αb
12,3 ◦ χ123

(5.3)

of 2-isomorphisms between 1-isomorphisms of gerbes over �2 × M is commutative.
1-isomorphic �-equivariant gerbes necessarily correspond to the same curvature H and
to the same 2-form ρ and, consequently, to the same �-equivariantly closed extension
Ĥ . The identity 1-isomorphism of �-equivariant gerbes is given by the pair (χ, η) =
(Id, Id) for which the diagram (5.3) reduces to a trivially commutative one. Finally, a
�-equivariant 2-isomorphism

ε : (χ, η) �� (χ ′, η′) (5.4)
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is a 2-isomorphism ε : χ �� χ ′ such that the diagram

(Id ⊗ χ2) ◦ αa

(Id⊗ε2)◦Id
��

η �� αb ◦ χ12

Id◦ε12

��
(Id ⊗ χ ′

2) ◦ αa
η′

�� αb ◦ χ ′
12

(5.5)

is commutative, which is trivially the case for the identity 2-isomorphism Id : χ �� χ
when also η′ = η.

Remark 5.2. 1. We shall say that two �-equivariant structures (αa, βa) and (αb, βb)

on the gerbe G are isomorphic if the �-equivariant gerbes (G, αa, βa) and (G, αb,

βb) are 1-isomorphic.
2. If (Ga, αa, βa) is a �-equivariant gerbe, then for each 1-isomorphism of gerbes

δ : Ga �� Gb there exists a �-equivariant structure (αb, βb) on Gb such that the
�-equivariant gerbes (Ga, αa, βa) and (Gb, αb, βb) are 1-isomorphic.

3. �-equivariant gerbes (G, α, β) over a �-space M may be pulled back to �-equi-
variant gerbes ( f ∗G, f ∗

2 α, f ∗
3 β) over another �-space N along �-equivariant maps

f : N �� M . Similarly, their 1- and 2-isomorphisms may be pulled back.
4. For any subgroup �′ ⊂ �, the restriction induces a �′-equivariant gerbe from a

�-equivariant gerbe (G, α, β).
5. The concept of equivariant (bundle) gerbes (with connection) introduced here is dif-

ferent, although not unrelated, to the one discussed in [42]. For discrete groups �,
the above definitions of �-equivariant gerbes and their 1-isomorphisms and 2-iso-
morphisms are equivalent to those introduced in [26] (where the actions of � that
change the sign of the curvature 3-form H were also considered).

There is a sub-2-category Grb∇(M)G
0 composed of those �-equivariant gerbes G

whose curvature H is �-equivariantly closed and the 2-form ρ = 0. Below, we shall
need the following result, a particular consequence of the general descent theory for
gerbes:

Theorem 5.3. Suppose that � acts on M in such a way that M ′ = M/� is a smooth
manifold and M forms a smooth (left) principal �-bundle ω : M �� M ′. Then, there
exists a canonical equivalence

Grb∇(M)�0
∼= Grb∇(M ′). (5.6)

In particular, a gerbe G over M that is �-equivariant relative to the zero 2-form
descends to a gerbe G′ over M ′ whose pullback by ω is 1-isomorphic to G. The equiva-
lence of Theorem 5.3 commutes with the pullback functors: f ∗ of Grb∇(M)�0 induced
by a �-equivariant map f : N �� M and f ′∗ of Grb∇(M ′) induced by the projected
map f ′ : N ′ �� M ′.

We give a proof of Theorem 5.3 in Appendix 4, employing results of [50].

5.2. WZ amplitudes with topologically non-trivial gauge fields. In Sect. 3, we discussed
only topologically trivial two-dimensional gauge fields, i.e. connections in the trivial
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principal �-bundle over the worldsheet �. Here, we shall consider connections in a gen-
eral principal �-bundle π : P �� �. Such connections correspond to g-valued 1-forms
A on P with the following defining property:

(r∗A)(p, γ−1) = Adγ (A(p) − �(γ )) , (5.7)

where r : P × � �� P is the right action of � on P . For a �-equivariantly closed
3-form Ĥ(X) = H + v(X), consider the 2-form ρ̃A on M̃ := P × M given by the
formula

ρ̃A := −v(A) + 1
2 ιĀv(A), (5.8)

compare to the first of Eqs. (3.9). Below, the map 
̃ : � × M̃ �� M̃ will denote the left
action of � on M̃ :


̃ (γ, (p,m)) :=
(

r(p, γ−1), 
(γ,m)
)

= (pγ−1, γm). (5.9)

For maps and forms on the product spaces �n × M̃ , we shall use the notation from the
beginning of Sect. 3.3, marking the subscript indices with a tilde. The subscript indices
without a tilde will be reserved for the factors in the expanded expression �n × P × M
for the same spaces. One has the following counterpart of Eq. (3.31):

Lemma 5.4. As forms on � × M̃ = � × P × M,

(ρ̃A)1̃2̃ = (ρ̃A)2,3 − ρ1,3 = (ρ̃A)2̃ − ρ1,3. (5.10)

A proof of Lemma 5.4 is given in Appendix 5.
Let G be a gerbe over M with the curvature H which extends to the �-equivariantly

closed form Ĥ = H + v(X). Define a gerbe G̃A over M̃ = P × M by setting

G̃A := Iρ̃A ⊗ G2. (5.11)

Note that the curvature of G̃A is given by the closed 3-form

H̃A := dρ̃A + H2. (5.12)

For the pullback of H̃A under the action 
̃ of � on M̃ , we obtain from Lemmas 5.4 and
3.11:

(H̃A)1̃2̃ = d(ρ̃A)1̃2̃ + (
∗ H)1,3 = d(ρ̃A)2̃ − dρ1,3 + dρ1,3 + H3 = (H̃A)2̃.

(5.13)

It follows that H̃A (without any further extension) is a �-equivariantly closed form
on M̃ .

Proposition 5.5. Let (G, α, β) be a �-equivariant gerbe over M in the sense of Defini-
tion 5.1 and let P be a principal �-bundle over the surface � with connection A. Then
the gerbe G̃A over M̃ = P × M may be canonically equipped with the structure of a
�-equivariant gerbe relative to the zero 2-form.
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Proof. First, we have to construct a 1-isomorphism α̃A of gerbes over � × M̃ :

α̃A : (G̃A)1̃2̃
�� (G̃A)2̃. (5.14)

It is obtained as the composition

(G̃A)1̃2̃ =I(ρ̃A)1̃2̃
⊗ G13

I d⊗α1,3 �� I(ρ̃A)1̃2̃
⊗ Iρ1,3 ⊗ G3 =I(ρ̃A)2̃

⊗ G3 =(G̃A)2̃,

(5.15)

where we used Lemma 5.4. Hence, α̃A is the tensor product of the identity 1-isomor-
phism of the gerbe I(ρ̃A)1̃2̃

with the 1-isomorphism α1,3.

Next, we have to construct a 2-isomorphism β̃A between 1-isomorphisms of gerbes
(G̃A)1̃2̃3̃ and (G̃A)3̃ over �2 × M̃ ,

β̃A : (α̃A)2̃,3̃ ◦ (α̃A)1̃,2̃3̃
�� (α̃A)1̃2̃,3̃. (5.16)

Note that (α̃A)1̃,2̃3̃ is the 1-isomorphism

(G̃A)1̃2̃3̃ = I(ρ̃A)1̃2̃3̃
⊗ G124

Id⊗α1,24 �� I(ρ̃A)1̃2̃3̃
⊗ Iρ1,24 ⊗ G24

= I(ρ̃A)2̃3̃
⊗ G24 = (G̃A)2̃3̃, (5.17)

since Lemma 5.4 implies that (ρ̃A)1̃2̃3̃ + ρ1,24 = (ρ̃A)2̃3̃. Similarly, (α̃A)2̃,3̃ is the
1-isomorphism

(G̃A)2̃3̃ = I(ρ̃A)2̃3̃
⊗ G24

Id⊗α2,4 �� I(ρ̃A)2̃3̃
⊗ Iρ2,4 ⊗ G4

= C I(ρ̃A)3̃
⊗ G4 = (G̃A)3̃, (5.18)

where we used the relation (ρ̃A)2̃3̃ + ρ2,4 = (ρ̃A)3̃, again following from Lemma 5.4.
Hence, (α̃A)2̃,3̃ ◦ (α̃A)1̃,2̃3̃ is the 1-isomorphism

I(ρ̃A)1̃2̃3̃
⊗ G124

Id⊗α1,24 �� I(ρ̃A)1̃2̃3̃
⊗ Iρ1,24 ⊗ G24

Id⊗α2,4 �� I(ρ̃A)1̃2̃3̃
⊗ Iρ1,24 ⊗ Iρ2,4 ⊗ G4 = I(ρ̃A)3 ⊗ G4, (5.19)

that is the tensor product of the identity 1-isomorphism of the gerbe I(ρ̃A)1̃2̃3̃
with the

1-isomorphism (Id ⊗ α2,4) ◦ α1,24. On the other hand, (α̃A)1̃2̃,3̃ is the 1-isomorphism
given by

(G̃A)1̃2̃3̃ = I(ρ̃A)1̃2̃3̃
⊗ G124

Id⊗α12,4 �� I(ρ̃A)1̃2̃3̃
⊗ Iρ12,4 ⊗ G4

= I(ρA)3̃
⊗ G4 = (G̃A)3̃ (5.20)

because (ρ̃A)1̃2̃3̃ + ρ12,4 = (ρ̃A)3̃, once again by virtue of Lemma 5.4. Comparison
between (5.19) and (5.20), and Definition 5.1 (ii) show that we may take for β̃A the
2-isomorphism obtained by tensoring the identity 2-isomorphism between the identity
1-isomorphisms of the gerbe I(ρ̃A)1̃2̃3̃

with the 2-isomorphism β1,2,4:

β̃A := Id ⊗ β1,2,4. (5.21)
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We have to check that the 1-isomorphism α̃A and 2-isomorphism β̃A make the diagram

(α̃A)3̃,4̃ ◦ (α̃A)2̃,3̃4̃ ◦ (α̃A)1̃,2̃3̃4̃

(β̃A)2̃,3̃,4̃◦Id

�� �������������

�������������

Id◦(β̃A)1̃,2̃,3̃4̃

��
��

��
��

��
��

�

��
��

��
��

��
��

�

(α̃A)2̃3̃,4̃ ◦ (α̃A)1̃,2̃3̃4̃

(β̃A)1̃,2̃3̃,4̃
��


(α̃A)3̃,4̃ ◦ (α̃A)1̃2̃,3̃4̃

(β̃A)1̃2̃,3̃,4̃
�� ��

��
��

��
��

��
�

��
��

��
��

��
��

�

(α̃A)1̃2̃3̃,4̃

(5.22)

commutative. It is easy to see that the above diagram may be identified with the tensor
product of the identity 2-isomorphism between the identity 1-isomorphisms of the gerbe
I(ρ̃A)1̃2̃3̃4̃

by the pullback of diagram (5.1) along the projection from �3 × P × M to

�3 × M . This assures its commutativity, completing the proof of Proposition 5.5. ��
The action (5.9) of � on M̃ is free and the quotient space M̃/� = P ×� M =: PM

is the associated bundle over � with the typical fiber M . The space M̃ may be viewed
as a (left) principal �-bundle ω̃ : M̃ �� PM . Theorem 5.3 and Proposition 5.5 have as
the immediate consequence

Corollary 5.6. The gerbe G̃A on M̃ descends to a gerbe GA on PM whose pullback
along ω̃ is 1-isomorphic to G̃A. In particular, the curvature of GA is equal to the closed
3-form HA on PM whose pullback to M̃ coincides with H̃A.

In order to couple the sigma model with target M to a gauge field A in the principal
�-bundle π : P �� �, one has to modify also the sigma-model fields. In the gauged
model, they become global sections � : � �� PM of the associated bundle rather than
maps from � to M .

Definition 5.7. Let (G, α, β) be a �-equivariant gerbe over M and P a principal �-bun-
dle with connection A over a closed oriented surface �. The Wess-Zumino contribution
of a field � : � �� PM to the gauged Feynman amplitude is defined by

AWZ (�,A) := HolGA(�). (5.23)

Remark 5.8. The above constructions are functorial with respect to isomorphisms of
principal bundles P . If P is trivial, i.e. P = � × �, then the gauge fields A may be
related to g-valued 1-forms A on M by the formula A(x, γ−1) = Adγ (A(x) − �(γ )).
In this case, the associated bundle PM may be naturally identified with � × M , and the
gerbe GA with the gerbe GA defined by relation (3.9). One recovers this way the coupling
to the topologically trivial gauge fields discussed previously, see Definition 3.3.

5.3. General gauge invariance. For the general case of gauge fields A corresponding
to connections in a principal �-bundle π : P �� �, the general gauge transformations
h are defined as sections of the associated bundle Ad(P) = P ×Ad �. The latter is
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composed of the orbits {(pγ ′−1, Ad ′
γ (γ )) | γ ′ ∈ �} := [(p, γ )] of the action of � on

P × �. Orbits [(p, γ1)] and [(p, γ2)] may be multiplied to [(p, γ1γ2)] so that Ad(P)

is a bundle of groups. Consequently, sections of Ad(P) may be multiplied point-wise,
forming the group of gauge transformations. An orbit [(p, γ )] acts (from the left) on the
fiber π−1(π(p)) ⊂ P by the mapping

pγ ′ � �� pγ γ ′ =: [(p, γ )] · pγ ′. (5.24)

This action induces a left action of gauge transformations h on P by principal �-bundle
automorphisms λh given by

P � p � λh �� h(x) · p. (5.25)

Gauge transformations of the gauge field A are defined as

A � �� hA := λ ∗
h−1A. (5.26)

Note that the maps

L̃h := λh × Id (5.27)

from M̃ = P × M into itself are �-equivariant, i.e. they commute with the action (5.9)
of � on M̃ . Consequently, they descend to automorphisms Lh of the associated bundle
PM = P ×� M . Gauge transformations of sections � of PM are defined by the formula

�
� �� Lh ◦ � =: h�. (5.28)

In the case of the trivial bundle P , the associated bundle Ad(P) is also trivial and the
sections h of Ad(P) reduce to maps from � to �. Their action on gauge fields A agrees
with the action (4.3) on the 1-forms A related to A as in Remark 5.8. Similarly, their
action on sections � of the trivial associated bundle agrees with the one considered in
Eq. (4.2). The invariance of the amplitudes AWZ (�,A) from Definition 5.7 in the case
of the trivial bundle P is assured by the assumption of the �-equivariance of the gerbe
G. Indeed, as follows from Corollary 4.5, only property (i) of Definition 5.1 is needed in
that case to guarantee the gauge invariance under general gauge transformations. Here,
we shall prove for a general principal �-bundles P ,

Theorem 5.9. The amplitudes AWZ (�,A) of Definition 5.7 are invariant under all
gauge transformations, i.e.

AWZ (h�, hA) = AWZ (�,A) (5.29)

for all sections h of the bundle Ad(P).

Proof. We have to show that

HolGhA(Lh ◦ �) = Hol L∗
hGhA(�) = HolGA(�) (5.30)

for all h,� and A. This follows if there exists a 1-isomorphism between gerbes
L∗

hGhA and GA. Recall that gerbe GA over PM descended from the �-equivariant
gerbe (G̃A, α̃A, β̃A) over M̃ , see Proposition 5.5 and Corollary 5.6. Since maps L̃h
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of M̃ are �-equivariant, gerbe L∗
hGA descends, in turn, from the �-equivariant gerbe

(L̃∗
h G̃A, (L̃h)

∗
2̃
α̃A, (L̃h)

∗
3̃
β̃A), see Theorem 5.3. We claim that the two gerbes

(L̃∗
h G̃A, (L̃h)

∗
2̃
α̃A, (L̃h)

∗
3̃
β̃A) and (G̃h−1A, α̃h−1A, β̃h−1A)

coincide. The claim implies, by virtue of Theorem 5.3, that the descended gerbes L∗
hGA

and Gh−1A over PM coincide as well and, hence, so do L∗
hGhA and GA.

It remains to prove the above claim. From definitions (5.8) of the form ρ̃A, (5.26) of
hA and (5.27) of the action L̃h on M̃ , using, in particular, the fact that L̃h acts trivially
on the factor M in P × M , it follows immediately that

L̃∗
h ρ̃A = ρ̃h−1A. (5.31)

This, in conjunction with definition (5.11), implies, in turn, the equality of gerbes

L̃∗
h G̃A = G̃h−1A. (5.32)

Recall from the proof of Proposition 5.5 that α̃A is the tensor product of the identity
1-isomorphism of the gerbe I(ρ̃A)1̃2̃

with the 1-isomorphism α1,3. Now, the map (L̃h)2̃

of � × M̃ = � × P × M acts only on the factor P . Besides,

(L̃h)
∗
2̃
(ρ̃A)1̃2̃ = (L̃∗

h ρ̃A)1̃2̃ = (ρ̃h−1A)1̃2̃. (5.33)

We infer this way that the 1-isomorphism (L̃h)
∗
2̃
α̃A is the tensor product of the identity

1-isomorphism of the gerbe Iρ̃h−1A with the 1-isomorphism α1,3 so that

(L̃h)
∗
2̃
α̃A = α̃h−1A. (5.34)

Additionally, equalities (5.32) and (5.34) allow to relate the 2-isomorphisms (L̃h)
∗
3̃
β̃A

and β̃h−1A. Indeed, both are tensor products of the identity 2-isomorphism between the
identity 1-isomorphisms of the gerbe (L̃h)

∗
3̃
I(ρ̃A)1̃2̃3̃

= I(ρ̃h−1A)1̃2̃3̃
with the 2-isomor-

phism β1,2,4, see Eq. (5.21). Hence,

(L̃h)
∗
3̃
β̃A = β̃h−1A, (5.35)

and the claim is established. ��

6. Obstructions and Classification of Equivariant Structures

In this section, we shall treat the obstructions to the existence and the classification of
equivariant structures on gerbe G over a�-space, see Definition 5.1. We shall start by dis-
cussing subsequently the obstructions to the three parts of the structure: 1-isomorphism
α, 2-isomorphism β, and the commutative diagram (5.1).



Global Gauge Anomalies in 2-D Bosonic Sigma Models 545

6.1. Obstructions to 1-isomorphisms α. The first obstruction concerns the existence
of 1-isomorphism α : G12 �� Iρ ⊗ G2 or, equivalently, the triviality of 1-isomor-
phism class [F] ∈ H2(� × M,U (1)) of the flat gerbe F = G12 ⊗ G∗

2 ⊗ I−ρ over
� × M . It coincides with the obstruction to the general gauge invariance of the WZ
amplitudes (3.10) coupled to topologically trivial gauge fields, see Corollary 4.5. By the
Universal Coefficient Theorem, H2(� × M,U (1)) = Hom(H2(� × M),U (1)). In the
latter presentation, class [F] is given by the holonomy of the flat gerbe F along maps
(h, ϕ) : � �� � × M defining singular 2-cycles, and its triviality is equivalent to the
triviality of the holonomy. By the Künneth Theorem,

H2(� × M) = H2(�) ⊗ H0(M) ⊕ H1(�) ⊗ H1(M) ⊕ H0(�) ⊗ H2(M). (6.1)

Subgroup H2(�) ⊗ H0(M) ∼= H2(�)π0(M) is generated by the singular 2-cycles corre-
sponding to maps (h, ϕ) with ϕ taking a constant value in one of the connected com-
ponents of M (π0(M) is the set of such components). Similarly for H0(�) ⊗ H2(M) ∼=
H2(M)π0(�). Subgroup H1(�) ⊗ H1(M) is generated by the maps

S1 × S1 � (e iσ1 , e iσ2)
� ��

(
h(e iσ1), ϕ(e iσ2)

)
∈ � × M (6.2)

with h and ϕ giving rise to singular 1-cycles in � and M , respectively. Thus,

H2(� × M,U (1))

= Hom(H2(�)π0(M),U (1)) ⊕ Hom(H1(�) ⊗ H1(M),U (1))

⊕Hom(H2(M)π0(�),U (1))

= H2(�,U (1))π0(M) ⊕ Hom(H1(�) ⊗ H1(M),U (1)) ⊕ H2(M,U (1))π0(�).

(6.3)

Accordingly, we obtain

Proposition 6.1. Class [F] ∈ H2(� × M,U (1)) that obstructs the existence of 1-iso-
morphism α of Definition 5.1 decomposes as

[F] = [F]20 + [F]11 + [F]02, (6.4)

with the summands [F]20 ∈ H2(�,U (1))π0(M), [F]11 ∈ Hom(H1(�)⊗H1(M),U (1))
and [F]02 ∈ H2(M,U (1))π0(�). ��

Components of [F]20 are the 1-isomorphism classes of flat gerbes r∗
mG⊗I−ρm over �

for fixed points m in different connected components of M with rm(γ ) = γm = 
γ (m)

and ρm = 1
2 (ι

avb)(m)�a�b. Components of [F]02 are the 1-isomorphism classes of
flat gerbes 
∗

γ G ⊗G∗ for fixed points γ in different connected components of �. Finally,
the bihomomorphism [F]11 ∈ Hom(H1(�) ⊗ H1(M),U (1)) is given by the gerbe F
holonomy of the maps (6.2).

Corollary 6.2. If the connected components of M and � are 2-connected, then there is
no obstruction to the existence of 1-isomorphism α of Definition 5.1.

This applies to the case, studied in [26,27], of �-equivariant structures on the WZW
gerbe Gk over G̃ for � = Z ⊂ Z̃ acting on G̃ by multiplication.
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For the �-space M = G in the coset-model context, see Definition 4.6, and with a
WZW gerbe Gk over G, the flat gerbe F was denoted Fk , see Sect. 4.2. In decomposi-
tion (6.4) of cohomology class [Fk] ∈ H2(� × G,U (1)), terms [Fk]20 and [Fk]02 are
trivial as determined by the Fk-holonomy of the maps (h p̃∨

1 , p̃∨
2
, ϕp∨

1 ,p∨
2
) of Eqs. (4.21)

with p∨
1 = p∨

2 = 0 or p̃∨
1 = p̃∨

2 = 0, respectively, whereas the bihomomorphism
[Fk]11 ∈ Hom(Z̃� ⊗ Z ,U (1)) is determined by the holonomy with p̃∨

2 = p∨
1 = 0, i.e.

by

bz̃1,z2 = exp
[−2π i k tr p̃∨

1 p∨
2

]
, (6.5)

see Eq. (4.22), and may be non-trivial.

6.2. Local description of gerbes. In order to discuss further obstructions to the existence
of a �-equivariant structure on gerbe G over �-space M , it will be convenient to use
local data for gerbes and their 1- and 2-isomorphisms. We shall follow the discussion in
the first part of Sec. VII of [25]. The local data live in the Deligne complex D(2)

0 �� A0(O)
D0 �� A1(O)

D1 �� A2(O)
D2 �� A3(O) (6.6)

associated to an open covering O of M . With U standing for the sheaf of smooth U (1)-
valued functions and �n for the sheaf of n-forms, the groups of the Deligne complex
are

A0(O) = C0(O,U) ,
(6.7)

A1(O) = C0(O,�1) ⊕ C1(O,U) ,

A2(O) = C0(O,�2) ⊕ C1(O,�1) ⊕ C2(O,U) ,
(6.8)

A3(O) = C1(O,�2) ⊕ C2(O,�1) ⊕ C3(O,U) ,

where C
(O,S) denotes the 
th Čech cochain group of the open cover O, with values
in a sheaf S of Abelian groups. The differentials are

D0( fi ) = (−i f −1
i d fi , f −1

j fi ), D1(�i , χi j )

= (d�i , −iχ−1
i j dχi j + � j − �i , χ−1

jk χikχ
−1
i j ), (6.9)

D2(Bi , Ai j , gi jk)

= (d Ai j − B j + Bi , −ig−1
i jkdgi jk + A jk − Aik + Ai j , g−1

jkl gikl g
−1
i jl gi jk). (6.10)

A refinement r : O′ �� O of covering O induces a restriction map on complexes (6.6).
Local data for gerbe G over M form a cocycle c ∈ A2(O), D2c = 0, for a sufficiently
fine covering O of M . Local data for 1-isomorphism α : G1 �� G2 of gerbes with the
respective local data ci ∈ A2(Oi ) are given by a cochain b ∈ A1(O) for O a com-
mon refinement of O1 and O2 such that, upon restricting the ci to it, c2 = c1 + D1b
(we use the additive notation for the Abelian group law in all An(O)). Finally, local
data for 2-isomorphism β : α1 �� α2 are given by a cochain a ∈ A0(O) for a suffi-
ciently fine covering O such that, given local data bi for 1-isomorphisms αi restricted
to O, b2 = b1 + D0a. For sufficiently fine O, the cohomology of the complex (6.6) is

H
2(O,D(2)) = ker D2

Im D1
, H

1(O,D(2)) = ker D1

Im D0

∼= H1(M,U (1)), (6.11)

H
0(O,D(2)) = ker D0 ∼= H0(M,U (1)). (6.12)
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These groups may be identified, respectively, with the group of 1-isomorphism classes
of gerbes, the group of isomorphism classes of flat line bundles, and the group of locally
constant U (1)-valued functions on M .

In the following, we want to consider local data for gerbes and their 1- and
2-isomorphisms over the spaces � p × M that form a simplicial manifold with face
maps �

p
q : � p × M �� � p−1 × M for all p ≥ 1 and 0 ≤ q ≤ p given by

�
p
q (γ1, . . . , γp,m) :=

⎧⎨
⎩

(γ2, . . . , γp,m) for q = 0,

(γ1, . . . , γqγq+1, . . . , γp,m) for 1 ≤ q < p,

(γ1, . . . , γp−1, γpm) for q = p.

(6.13)

The face maps satisfy the simplicial relations

�
p−1
r ◦ �

p
q = �

p−1
q−1 ◦ �

p
r (6.14)

for all r < q. We shall use simplicial sequences {O p}of open coveringsO p = {
O p

i

}
i∈I p

of the spaces � p × M such that there are face maps �
p
q : I p �� I p−1 of the index sets

satisfying (6.14), and such that

�
p
q (O p

i ) ⊂ O p−1
�

p
q (i)

(6.15)

for all p ≥ 1, all 0 ≤ q ≤ p and all i ∈ I p. A construction of Ref. [52], reviewed in
the Appendix of [25], permits to build a simplicial sequence {O p} whose coverings O p

refine the coverings of any given sequence of coverings of � p × M . Given a simplicial
sequence {O p} of coverings of � p × M , one has induced cochain maps

(�
p
q )

∗ : C
(O p−1,S) �� C
(O p,S) defined by
(
(�

p
q )

∗ f
)

i = (�
p
q )

∗( f�p
q (i)

),

(6.16)

satisfying the co-simplicial relations

(�
p
q )

∗ ◦ (�
p−1
r )∗ = (�

p
r )

∗ ◦ (�
p−1
q−1)

∗ (6.17)

for r < q. On the groups An(O p), besides the Deligne differentials

Dn,p : An(O p) �� An+1(O p), (6.18)

one has the simplicial operators

�n,p : An(O p) �� An(O p+1) with �n,p :=
p+1∑
q=0

(−1)q(�
p+1
q )∗ (6.19)

whose definition uses the lift (6.16) of the face maps to groups An(O p). Due to the
co-simplicial relations (6.17), we have �n,p+1 ◦�n,p = 0. The differentials Dn,p com-
mute with pullbacks, and thus also with operators �n,p. This endows the family K =
(An(O p)) of Abelian groups with the structure of a double complex.
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6.3. Obstructions to 2-isomorphism β. If cocycle c ∈ A2(O0) describes local data for
gerbe G over M then −(�2,0c + ρ) ∈ A2(O1), where ρ is identified with the cochain
(ρ|O1

i
, 0, 1) for i ∈ I 1, represents local data for the flat gerbe F = G12 ⊗G∗

2 ⊗I−ρ . The
triviality of 1-isomorphism class [F], discussed in Sect. 6.1, means that, for a sufficiently
fine simplicial sequence of coverings {O p},

�2,0c + ρ = D1,1b (6.20)

for some b ∈ A1(O1). The cochain b provides local data for a 1-isomorphism α :
G12 �� Iρ ⊗ G2, see Definition 5.1. It is defined modulo the addition b � �� b + b′,
where D1,1b′ = 0. This freedom corresponds to the freedom of choice of α and of
local data for it. The cochains (�2

0)
∗b, (�2

1)
∗b and (�2

2)
∗b provide, in turn, local data

for 1-isomorphisms α2,3, α12,3 and α1,23, respectively. The existence of 2-isomorphism
β : (Id ⊗ α2,3) ◦ α1,23

�� α12,3 is equivalent to the requirement that, for sufficiently
fine {O p},

�1,1b = −D0,2a (6.21)

with a ∈ A0(O2) representing local data for β. Let us first note that

D1,2�1,1b = �2,1 D1,1b = �2,1�2,0c + �2,1ρ = 0, (6.22)

where the last equality is a consequence of relations �2,1 ◦ �2,0 = 0 and �2,1ρ =(
(ρ2,3 − ρ12,3 + ρ1,23)|O2

i
, 0, 0

)
, and of Eq. (3.31) of Lemma 3.13. It follows that �1,1b

defines a cohomology class

[�1,1b] ∈ ker D1,2

Im D0,2

∼= H1(�2 × M,U (1)) (6.23)

that obstructs the solution of Eq. (6.21). However, since b was defined up to D1,1-co-
cycles b′ ∈ A1(O1), the class [�1,1b] is defined modulo the image H1,2 of the map
[�1,1] : H1(�×M,U (1)) �� H1(�2×M,U (1)) that sends class [b′] to class [�1,1b′].
We obtain this way

Proposition 6.3. Let α : G12 �� Iρ ⊗ G2 be a 1-isomorphism with local data b ∈
A1(O1) for a sufficiently fine family of coverings {O p}. Then there exists 2-isomorphism
β for a, possibly modified, choice of 1-isomorphism α if and only if the obstruction class

[�1,1b] + H1,2 ∈ H1(�2 × M,U (1))
/
H1,2 (6.24)

vanishes. ��
In the particular case with simply connected components of � and M , groups
H1(� p × M,U (1)) are trivial and we obtain

Corollary 6.4. If the connected components of � and M are simply connected then the
class (6.24) obstructing the existence of 2-isomorphism β is trivial.
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This applies to the case of Z -equivariant structures on gerbes Gk over groups G̃
discussed in [26,27].

In the general situation, a more precise description of spaces H1(�2 × M,U (1)) ⊃
H1,2 may be provided with the help of the Universal Coefficient and Künneth Theorems.
One has

H1(� × M,U (1)) ∼= H1(�,U (1))π0(M) ⊕ H1(M,U (1))π0(�). (6.25)

The element [b′] ∈ H1(� × M,U (1)) is represented by the sequences with elements

[b′]1([m]) := (ι1m)∗[b′] ∈ H1(�,U (1)), [b′]2([γ ]) := (ι2γ )
∗[b′] ∈ H1(M,U (1)),

(6.26)

where m, resp. γ , are chosen points in the connected components [m] ∈ π0(M), resp.
[γ ] ∈ π0(�), and ι1m : � �� � × M , resp. ι2γ : M �� � × M , are the injections with
ι1m(γ ) = ι2γ (m) = (γ,m). Similarly,

H1(�2 × M,U (1))

∼= H1(�,U (1))π0(�)×π0(M) ⊕ H1(�,U (1))π0(�)×π0(M) ⊕ H1(M,U (1))π0(�)2
.

(6.27)

An element [d] ∈ H1(�2 × M,U (1)) is represented by the sequences with elements

[d]1([γ2], [m]) := (ι1γ2,m)∗[d] ∈ H1(�,U (1)), (6.28)

[d]2([γ1], [m]) := (ι2γ1,m)∗[d] ∈ H1(�,U (1)), (6.29)

[d]3([γ1], [γ2]) := (ι3γ1,γ2
)∗[d] ∈ H1(M,U (1)), (6.30)

where ι1γ2,m, ι2γ1,m : � �� �2 × M and ι3γ1,γ2
: M �� �2 × M are the injections with

ι1γ2,m(γ1) = ι2γ1,m(γ2) = ι3γ1,γ2
(m) = (γ1, γ2,m). Compositions of the above injections

with simplicial maps �2
q are

�2
0 ◦ ι1γ2,m(γ1) = �2

0 ◦ ι2γ1,m(γ2) = �2
0 ◦ ι3γ1,γ2

(m) = (γ2,m), (6.31)

�2
1 ◦ ι1γ2,m(γ1) = �2

1 ◦ ι2γ1,m(γ2) = �2
1 ◦ ι3γ1,γ2

(m) = (γ1γ2,m), (6.32)

�2
2 ◦ ι1γ2,m(γ1) = �2

2 ◦ ι2γ1,m(γ2) = �2
2 ◦ ι3γ1,γ2

(m) = (γ1, γ2m). (6.33)

Since �1,1 = (�2
0)

∗ − (�2
1)

∗ + (�2
2)

∗, it follows that

[�1,1b]1([γ2], [m]) = [−R∗
γ2
(ι1m)∗b + (ι1γ2m)∗b], (6.34)

[�1,1b]2([γ1], [m]) = [(ι1m)∗b − L∗
γ1
(ι1m)∗b + (ι2γ1

◦ rm)∗b], (6.35)

[�1,1b]3([γ1], [γ2]) = [(ι2γ2
)∗b − (ι2γ1γ2

)∗b + 
∗
γ2
(ι2γ1

)∗b], (6.36)

where Lγ , Rγ : � �� � denote, respectively, the left and the right multiplication by
γ, rm(γ ) = γm (as before), and we used the fact that the class in H1(�,U (1)) of the
pullback of A1(O1) along a constant map is trivial. When the group � is connected, we
may choose its identity element as its special point and the above equations reduce to

[�1,1b]1([1], [m]) = 0, [�1,1b]2([1], [m]) = [(ι21 ◦ rm)∗b],
[�1,1b]3([1], [1]) = [(ι21)∗b]. (6.37)
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In the case of a �-space M = G in the coset-model context of Definition 4.6, we
may take m = 1 ∈ G in the last formulae which reduce then further to the relations

[�1,1b]1([1], [1]) = 0, [�1,1b]2([1], [1]) = 0, [�1,1b]3([1], [1]) = [(ι21)∗b],
(6.38)

because ι21 ◦ r1 is a constant map. In particular, for b = b′ with D1,1b′ = 0,

[�1,1b′]1([1], [1]) = 0, [�1,1b′]2([1], [1]) = 0, [�1,1b′]3([1], [1]) = [b′]2([1]).
(6.39)

Since [b′]2([1]) runs through arbitrary elements of H1(M,U (1)), it follows that the
obstruction class (6.24) vanishes and, for an appropriate choice of b′ with D1,1b′ = 0,
one has [�1,1(b + b′)] = 0 so that �1,1(b + b′) = −D0,2a for some a ∈ A0(O2). We
obtain this way

Corollary 6.5. For the �-space M = G in the coset-model context, an appropriate
choice of 1-isomorphism α of Definition 5.1 assures the existence of 2-isomorphism β.

6.4. Obstructions to the commutativity of diagram (5.1). By Proposition 6.3, the vanish-
ing of obstruction (6.24) guarantees in the general case that 2-isomorphism β exists for a
suitable choice of 1-isomorphism α. In terms of local data, the condition [�1,1b] ∈ H1,2

assures that after a modification of local data b by an appropriate D1,1-cocycle b′, deter-
mined up to the change b′ � �� b′ − D0,1a′′, there exists a ∈ A0(O2) such that

�1,1(b + b′) = −D0,2a. (6.40)

In view of the freedom of choice of b′, the cochain a is determined up to the replacement
a � �� a + �0,1a′′ + a′′′ for a′′ ∈ A0(O1) and a′′′ ∈ ker D0,2 ∼= H0(�2 × M,U (1)).
Cocycle a′′′ describes the possible choices of 2-isomorphism β. The commutativity of
the diagram (5.1) of 2-isomorphisms of gerbes over �3 × M is now equivalent to the
condition that, after the restriction to a sufficiently fine simplicial sequence of coverings,

�0,2a = 0. (6.41)

Note that, in any case,

D0,3�0,2a = �1,2 D0,2a = −�1,2�1,1(b + b′) = 0 (6.42)

so that �0,2a ∈ ker D0,3 ∼= H0(�3 × M,U (1)). Let us denote by H0,3 the image of
the map [�0,2] : H0(�2 × M,U (1)) �� H0(�3 × M,U (1)) that sends a′′′ to �0,2a′′′.
Using the freedom in the choice of the cochain a and the relation

�0,2(a + �0,1a′′ + a′′′) = �0,2a + �0,2a′′′, (6.43)

we infer

Proposition 6.6. 2-isomorphism β may be chosen so that the diagram (5.1) of Definition
5.1 is commutative if and only if the obstruction class

�0,2a + H0,3 ∈ H0(�3 × M,U (1))
/
H0,3 (6.44)

vanishes. ��
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Elements f p ∈ H0(� p × M,U (1)) are locally constant U (1)-valued functions on
� p × M . One may identify them with p-chains v p on the group π0(�) with values in
the π0(�)-module U (1)π0(M) ∼= H0(M,U (1)) of U (1)-valued functions on π0(M),
where the action of π0(�) on U (1)π0(M) is induced from the action of � on M . If the
identification is done by the formula

f p(γ1, . . . , γp,m) = v
p

[γ−1
p ],...,[γ−1

1 ]([m]), (6.45)

then the induced maps [�0,p] : H0(� p × M,U (1)) �� H0(� p+1 × M,U (1)) become
the coboundary operators δ p of the group π0(�) cohomology:

(�0,p f p)(γ1, . . . , γp, γp+1,m) = (−1)p+1(δ pv p)[γ−1
p+1],[γ−1

p ],...,[γ−1
1 ]([m]). (6.46)

Corollary 6.7. Under identification (6.45), the cochain �0,2a generates a 3-cocycle v3

of the group π0(�) taking values in U (1)π0(M) and the obstruction coset (6.44) is the
cohomology class [v3] ∈ H3(π0(�),U (1)π0(M)).

In particular, when � is discrete and M is connected, then [v3] ∈ H3(�,U (1)).
That is the situation for the Z -equivariant structures on gerbes Gk over groups G̃ dis-
cussed in [26,27] and mentioned already above. The obstruction cohomology classes
[v3] ∈ H3(Z ,U (1)) were computed for these cases and simple G̃ in [24].

Since the cohomology groups H p(π0(�),U (1)π0(M)) for p > 1 are trivial if π0(�)

is a trivial group, we obtain

Corollary 6.8. If the symmetry group � is connected and 2-isomorphism β of Definition
5.1 exists, then it may always be chosen so that the diagram (5.1) commutes.

Putting together Proposition 4.8 and Corollaries 6.5 and 6.8, we summarize the results
for the situation discussed in Sect. 4.2:

Theorem 6.9. For a �-space M = G in the coset-model context of Definition 4.6, a
�-equivariant structure on the WZW gerbe Gk over G exists if and only if the global-
anomaly phases (4.22) are trivial, as, e.g., for G = G̃. ��

6.5. Classification of equivariant structures. Suppose now that we are given two equi-
variant structures (αi , βi ), i = 1, 2, on gerbe G with local data c ∈ A2(O0), D2,0c = 0,
for a sufficiently fine simplicial sequence of coverings {O p}. Their local data are (bi , ai ),
with bi ∈ A1(O1) and ai ∈ A0(O2), that satisfy

�2,0c + ρ = D1,1bi , �1,1bi = −D0,2ai , �0,2ai = 0. (6.47)

The difference (b′, a′) = (b2 −b1, a2 −a1) gives local data for a �-equivariant structure
on the trivial gerbe I0 (relative to ρ = 0). It satisfies the homogeneous equations

D1,1b′ = 0, �1,1b′ = −D0,2a′, �0,2a′ = 0. (6.48)

There is an isomorphism (χ, η) between the equivariant structures (αi , βi ) if there exist:
a cocycle e ∈ A1(O0), D1,0e = 0 (providing local data for 1-isomorphismχ : G �� G)
and a cochain f ∈ A0(O1) (giving local data for 2-isomorphism η) such that

b′ = �1,0e + D0,1 f, a′ = −�0,1 f. (6.49)
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These identities represent the definition of η and the commutativity of diagram (5.3),
respectively. They imply Eqs. (6.48). Classes of solutions to Eqs. (6.48) modulo
solutions to Eqs. (6.49) form the 2nd hypercohomology group H

2(J ) of the double
complex J

0 �� A0(O0)

�0,0

��

D0,0 �� kerD1,0

�1,0

��
0 �� A0(O1)

�0,1

��

D0,1 �� kerD1,1

�1,1

��
0 �� A0(O2)

�0,2

��

D0,2 �� kerD1,2

�1,2

��
0 �� A0(O3)

D0,3 �� kerD1,3

(6.50)

obtained from the double complex K = (An(O p)). H
2(J ) is the group of isomorphism

classes of �-equivariant structures on the trivial gerbe I0. It acts freely and transitively
on the set of isomorphism classes of �-equivariant structures on gerbe G. In other words,

Proposition 6.10. The set of isomorphisms classes of �-equivariant structures on gerbe
G is a torsor for the Abelian group H

2(J ). ��
Denote by H1,1 the image of the map [�1,0] : H1(M,U (1)) �� H1(�× M,U (1))

that sends class [e] to class [�1,0e]. In terms of the decomposition (6.25) and (6.26),

[�1,0e]1([m]) = −[r∗
me], [�1,0e]2([γ ]) = [e] − [
∗

γ e]. (6.51)

Since b′ is a D1,1-cocycle, one may consider the map

(b′, a′) � �� [b′] + H1,1 ∈ H1(� × M,U (1))
/
H1,1. (6.52)

Since [b′] ∈ H1,1 for (b′, a′) of the form (6.49), the map (6.52) induces a homomorphism

κ : H
2(J ) �� H1(� × M,U (1))

/
H1,1 (6.53)

of Abelian groups. To describe the image and the kernel of κ , we shall do some tracing
of diagrams.

If [b′′] + H1,1 is in the image of κ , then b′′ = b′ + �1,0e + D0,1 f for some (b′, a′)
as above, some e ∈ A1(O0) with D1,0e = 0, and some f ∈ A0(O1). Consequently,
�1,1b′′ = −D0,2a′ +�1,1 D0,1 f = −D0,2(a′ −�0,1 f ) so that [�1,1][b′′] = 0. For any
[b′′] that satisfies the latter equation, i.e. such that �1,1b′′ = −D0,2a′′ for some a′′ ∈
A0(O2), we have D0,3�0,2a′′ = �1,2 D0,2a′′ = 0, hence �0,2a′′ ∈ H0(�3 × M,U (1))
and it generates, via Eq. (6.45), a 3-cocycle v3 on group π0(�) with values in U (1)π0(M).
If [b′′]+H1,1 is in the image of κ , then, for a′′′ := a′ −�0,1 f −a′′, we have D0,2a′′′ = 0
so that a′′′ ∈ H0(�2×M,U (1)) generates, again via Eq. (6.45), a 2-cochain u2 onπ0(�)

with values in U (1)π0(M). The relation �0,2a′′′ = −�0,2a′′ implies then that δ2u2 = v3

so that the cohomology class of [v3] ∈ H3(π0(�),U (1)π0(M)) vanishes. Conversely, if
this is the case, then �0,2a′′ = −�0,2a′′′ for some a′′′ ∈ H0(�2 × M,U (1)) so that,
for a′ = a′′ + a′′′, one has �1,1b′′ = −D0,2a′ and �0,2a′ = 0. We have proven this way
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Lemma 6.11. [b′′] + H1,1 is in the image of κ if and only if

1. [�1,1][b′′] = 0 so that �1,1b′′ = −D0,2a′′,
2. the cohomology class [v3] ∈ H3(π0(�),U (1)π0(M)) of the 3-cocycle v3 correspond-

ing, via Eq. (6.45), to �0,2a′′ ∈ H0(�3 × M,U (1)) vanishes. ��
Now, let us study the kernel of κ . If [b′] ∈ H1,1, i.e. b′ = �1,0e + D0,1 f ′ for e ∈

A1(O0) with D1,0e = 0 and f ′ ∈ A0(O1), then �1,1b′ = �1,1 D0,1 f ′ = D0,2�0,1 f ′
so that

a′ + �0,1 f ′ ∈ ker D0,2 ∼= H0(�2 × M,U (1)). (6.54)

Since �0,2(a′ + �0,1 f ′) = 0, the cochain a′ + �0,1 f ′ may be identified, by means of
Eq. (6.45), with a 2-cocycle v2 on group π0(�) with values in U (1)π0(M). All 2-cocycles
v2 may be obtained this way by changing a′ to a′ + a′′ with D0,2a′′ = 0 = �0,2a′′.
Since f ′ is defined modulo f ′′ ∈ ker D0,1 ∼= H0(�× M,U (1)), 2-cocycle v2 is defined
modulo coboundaries of the 1-cochains u1 corresponding to f ′′ so that the cohomology
class [v2] ∈ H2(π0(�),U (1)π0(M)) is well defined by the pair (b′, a′) with [b′] ∈ H1,1.
The class [v2] vanishes if and only if (b′, a′) is of the form (6.49). This shows

Lemma 6.12. The kernel of the map κ of (6.53) may be identified with the cohomology
group H2(π0(�),U (1)π0(M)). ��

Let us look at some special cases. First, if H1(�,U (1)) = {0} = H1(M,U (1)), then
the homomorphism κ vanishes and we obtain from Lemma 6.12:

Corollary 6.13. In the case when the connected components of � and M are simply
connected, H

2(J ) ∼= H2(π0(�),U (1)π0(M)).

This is the result that gives, e.g., the classification of Z -equivariant structures on
gerbe Gk over G̃ for Z ⊂ Z̃ acting by multiplication, see [24,26,27].

Suppose now that � is connected so that � = �̃/Z̃� , where �̃ is a simply connected
Lie group and Z̃� is a subgroup of the center of �̃. One has H1(�) ∼= π1(�) ∼= Z̃� .
Lemma 6.12 implies in that case that κ is injective onto its image which, by Lemma 6.11
and Eq. (6.37), is composed of the cosets [b′′] + H1,1 such that [b′′]2([1]) = 0 in the
decomposition (6.25) and (6.26). From the explicit form (6.51) of H1,1, we then infer

Corollary 6.14. If the group � and manifold M are connected, then

H
2(J ) ∼= H1(�,U (1))

/[r∗
m](H1(M,U (1))) ∼= Z∗

M , (6.55)

where Z∗
M is the group of characters of the kernel Z M of the homomorphism from H1(�)

to H1(M) induced by the map γ
rm� �� γm.

In particular, we have

Corollary 6.15. For the �-space M = G in the coset-model context, see Definition 4.6,
Z M = Z̃� so that

H
2(J ) ∼= H1(�,U (1)) ∼= Z̃

∗
� (6.56)

and the �-equivariant structures on the WZW gerbes Gk over G are classified by the
group of characters of H1(�) ∼= π1(�) ∼= Z̃� .
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Let us analyze closer the case when the �-space M is a (left) principal �-bundle
ω : M �� M ′. By the descent Theorem 5.3, each �-equivariant structure on the trivial
gerbe I0 relative to the vanishing 2-form descends to a flat gerbe on M ′ whose pullback
to M is 1-isomorphic to I0. Passing to isomorphism classes, one obtains the canonical
injective homomorphism

ν : H
2(J ) �� H2(M ′,U (1)) (6.57)

that maps into the kernel of the pullback map [ω∗] : H2(M ′,U (1)) �� H2(M,U (1)).
Now, suppose that we are given a flat gerbe on M ′ whose class is in the kernel of [ω∗]. It
is easy to see, using Theorem 5.3 and Remark 5.2(2), that such a gerbe is 1-isomorphic
to a gerbe that descends from the trivial gerbe I0 equipped with a �-equivariant structure
(relative to ρ = 0). This shows that ν maps onto the kernel of [ω∗]. We obtain this way

Corollary 6.16. In the case when M is a principal �-bundle, there is an exact sequence
of Abelian groups

0 �� H
2(J )

ν �� H2(M ′,U (1))
[ω∗] �� H2(M,U (1)) (6.58)

that induces an isomorphism between H
2(J ) and the kernel of [ω∗] in H2(M ′,U (1)).

If � and M are connected, then the exact sequence (6.58) is induced, by virtue of
Corollary 6.14, by the cohomology exact sequence for the �-bundle ω : M �� M ′
[10,49]

H1(M,U (1))
[r∗

m ]
�� H1(�,U (1))

τ �� H2(M ′,U (1))
[ω∗] �� H2(M,U (1)).

(6.59)

The middle arrow τ may be easily described in terms of the classifying space B� of
group�. The transgression map H2(B�,U (1)) �� H1(�,U (1)) is an isomorphism for
connected �. Its composition with τ is given by the pullback map from H2(B�,U (1))
to H2(M ′,U (1)) along the classifying map fω : M ′ �� B� for the principal bundle
ω : M �� M ′. In Appendix 6, we describe an equivalent construction of homomor-
phism τ . That construction, carried out in terms of line bundles and gerbes, will be used
below.

6.6. Ambiguity of gauged amplitudes. Let us recall from Sect. 5.2 how the WZ ampli-
tudes coupled to a topologically non-trivial gauge field A in the principal �-bundle P
over the worldsheet � were defined. They were given by the holonomy of gerbe GA over
the associated bundle PM = P ×� M , see Definition 5.7. That gerbe was obtained via
Theorem 5.3 from gerbe G̃A = Iρ̃A ⊗G2 over M̃ = P × M equipped with a �-equivari-
ant structure (relative to ρ = 0) induced from that of G. Let us use the subscript M or M̃
to distinguish between the two cases of �-spaces. If we change the isomorphism class
of a �-equivariant structure on G by a class K ∈ H

2(JM ), then a quick inspection of the
proof of Proposition 5.5 shows that the isomorphism class of the induced �-equivariant
structure on G̃A changes by the class K2 ∈ H

2(JM̃ ) obtained by the pullbacks along the
projection pr2 of P × M on the second factor. The isomorphism class of the descended
gerbe GA changes then, according to the discussion from Sect. 6.5, by

νM̃ (K2) ∈ H2(PM ,U (1)) ∼= Hom(H2(PM ),U (1)). (6.60)



Global Gauge Anomalies in 2-D Bosonic Sigma Models 555

Viewed as a character of H2(PM ), class νM̃ (K2) describes the change of the holonomy
of the gerbe GA. We obtain this way

Corollary 6.17. Under the change of the isomorphism class of a �-equivariant struc-
ture on gerbe G over M by a class K ∈ H

2(JM ), the WZ amplitude (5.23) of a section
� : � �� PM of the associated bundle is multiplied by the U (1) phase

〈[�], νM̃ (K2)
〉
,

where [�] denotes the homology class of �.

Remark 6.18. The dependence of the gauged WZ amplitudes on the choice of an equi-
variant structure is another manifestation of the phenomenon of “discrete torsion” [53].

In the particular situation where manifolds �, M and � are connected, Corollary 6.14
implies that

H
2(JM ) ∼= Z∗

M , H
2(JM̃ ) ∼= Z∗

M̃
. (6.61)

We shall denote by χK the character of Z M corresponding to K ∈ H
2(JM ) and by

χK̃ the one of Z M̃ corresponding to K̃ ∈ H
2(JM̃ ). The relation pr2 ◦ r(p,m) = rm for

(p,m) ∈ M̃ implies the inclusion Z M̃ ⊂ Z M . The map Z∗
M � χK

� �� χK2 ∈ Z∗
M̃

is
now given by the restriction of the characters, whereas the homomorphism νM̃ is induced
by the map τM̃ : H1(�,U (1)) �� H2(PM ,U (1)) of the exact sequence (6.59). The
problem of ambiguities of the gauged WZ amplitudes may be completely settled in this
case employing a construction of homomorphism τM̃ along the lines of Appendix 6 and
an explicit description of principal �-bundles over � [33].

Up to isomorphism, such bundles may be obtained by gluing D ×� and (�\Ḋ)×�,
where D is a closed unit disc embedded into � and Ḋ its interior, via the identification

D × � � (e ι̇σ , γ (e ι̇σ )γ ) = (e ι̇σ , γ ) ∈ (�\Ḋ) × � (6.62)

for a transition loop S1 � e ι̇σ � �� γ (e ι̇σ ) ∈ � that we assume based at the unit ele-
ment: γ (1) = 1. The �-bundle P depends, up to isomorphism, only on the element
zP ∈ Z̃�

∼= π1(�) corresponding to the homotopy class of the transition loop. The
associated bundle PM is then obtained by gluing D × M and (�\Ḋ) × M via the
identification

D × M � (e ι̇σ , γ (e ι̇σ )m) = (e ι̇σ ,m) ∈ (�\Ḋ) × M. (6.63)

A global section � : � �� PM is given by two maps

D � x � �� φ1(x) ∈ M and (�\Ḋ) � x � �� φ2(x) ∈ M (6.64)

such that

φ1(e
ι̇σ ) = γ (e ι̇σ )φ2(e

ι̇σ ). (6.65)

According to Appendix 6, the homomorphism τM̃ , mapping H1(�,U (1)) ∼= Z̃
∗
� to

H2(PM ,U (1)), associates to a character χ ∈ Z̃
∗
� the 1-isomorphism class of a flat gerbe

Gχ on PM . Consequently, the phase
〈[�], νM̃ (K2)

〉
is equal to the holonomy HolGχ

(�)

for a character χ of Z̃� extending χK . The flat gerbe Gχ may be trivialized over D × M
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and (�\Ḋ) × M . It is then given by a transition line bundle [32] over S1 × M obtained
by pulling back the flat line bundle Lχ over �, described in Appendix 6, along the map

S1 × M � (e ι̇σ ,m)
� �� γ (e ι̇σ ) ∈ �. (6.66)

Using such a presentation of gerbe Gχ , it is easy to see from the geometric definition
of the holonomy of gerbes, see, e.g., [23], that the phase HolGχ

(�) is given by the
holonomy of the loop e ι̇σ � �� γ (e ι̇σ ) in the line bundle Lχ over �. The latter is equal
to the value of the character χ on the element zP ∈ Z̃� .

The above phase should be independent of the extension χ of the character χK from
the subgroup Z M to Z̃� . This does not seem evident. Here is the resolution of the puzzle.
Let φi be the maps representing section � of PM . As a boundary value of a map from
the disc to M , the 1-cycle

S1 � e ι̇σ � �� φ2(e
ι̇σ ) ∈ M (6.67)

is homologous to a constant 1-cycle. Hence the 1-cycle

S1 � e ι̇σ � �� φ1(e
ι̇σ ) = γ (e ι̇σ )φ2(e

ι̇σ ), (6.68)

which is a boundary value of a map from �\Ḋ to M and, as such, has a trivial class in
H1(M), is homologous to

S1 � e ι̇σ � �� γ (e ι̇σ )m (6.69)

for any point m ∈ M . But the triviality of the class in H1(M) of the latter 1-cycle is
just the condition that zP ∈ Z M . Note that in the coset context, there always exists a
section � ≡ 1 of the associated bundle given by φi ≡ 1. In that case zP always belongs
to Z M = Z̃� , see Corollary 6.15. We may summarize the above discussion in

Theorem 6.19. Let �, M, and � be connected and P be the principal �-bundle over �

associated to zP ∈ π1(�). Then

1. if zP 	∈ Z M then there are no global sections � of the associated bundle PM ;
2. for any global section � : � �� PM ,

〈[�], νM̃ (K2)
〉 = χK (zP ) ∈ U (1). (6.70)

��
Corollary 6.20. Under the same assumptions, a change of the isomorphism class of a
�-equivariant structure on gerbe G over M by a class K ∈ H

2(JM ) identified with a
character χK ∈ Z∗

M multiplies the WZ amplitude (5.23) of a section � : � �� PM by
χK (zP ).

In particular, if P is trivializable then zP = 1 and the gauged WZ amplitudes are
independent of the choice of a �-equivariant structure (and may be defined in more
general circumstances discussed in the first part of the paper).
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6.7. Fixed-point resolved coset partition functions. In [33], K. Hori studied an exam-
ple of the coset theory based on the WZW model with simply connected group G̃ =
SU (2) × SU (2) at level (k, 2) and with gauged adjoint action of � = diag(SU (2))/
diag(Z2). Let b( j1, j2), j ′(τ ) denote the corresponding branching functions for spins
j1 = 0, 1

2 , . . . ,
k
2 , j2 = 0, 1

2 , 1, and j ′ = 0, 1
2 , . . . ,

k
2 +1. As a consequence of Eqs. (4.56)

and (4.57), functions b( j1, j2), j ′(τ ) vanish if j1+ j2− j ′ is not an integer and are unchanged
by the joint spectral flow

( j1, j2, j ′) � �� (
k
2 − j1, 1 − j2,

k+2
2 − j ′). (6.71)

It follows from Eq. (4.60) for G ′ = G̃ that the contribution to the coset partition function
of the sector with topologically trivial gauge fields is equal to

Ztr iv =
∑

[( j1, j2), j ′]

1
|S[( j1, j2), j ′]| |b( j1, j2), j (τ )|2, (6.72)

where [( j1, j2), j ′] runs through the orbits of the spectral flow (6.71) and S[( j1, j2), j ′]
denotes the corresponding stabilizer subgroups of Z̃� . |S[( j1, j2), j ′]| = 1 for the two-
point orbits and |S[( j1, j2), j ′]| = 2 for the one-point ones composed of fixed points of
the spectral flow. For k odd, one always has |S[( j1, j2), j ′]| = 1. In that case, the contri-
bution Zntriv(τ ) of the sector with topologically non-trivial gauge fields to the partition
function vanishes [33]. For k even, however, there is one fixed point orbit [( k

4 ,
1
2 ),

k+2
4 ]

with |S[( j1, j2), j ′]| = 2. Using the supersymmetry present in the above coset model, Hori
showed the decomposition

b
( k

4 ,
1
2 ),

k+2
4
(τ ) = b+(τ ) + b−(τ ) with b+(τ ) − b−(τ ) = 1, (6.73)

where b±(τ ) collects the contribution to b
( k

4 ,
1
2 ),

k+2
4
(τ ) of states with (−1)F = ±1 for

F the fermion number. In the terminology of [16], decomposition (6.73) gives the res-
olution of the fixed-point branching function. Further analysis in [33] established that
Zntriv(τ ) is τ -independent and postulated the equality Zntriv = 1

2 . In that case, the sum
of the fixed point contribution to Ztr iv(τ ) and of Zntriv gives

1
2 |b+(τ ) + b−(τ )|2 + 1

2 = |b+(τ )|2 + |b−(τ )|2, (6.74)

which is the diagonal sum of the resolved fixed-point branching functions, as proposed
in [16]. On the other hand, Hori argued that a different θ -vacuum of the coset theory
should lead to Zntriv = − 1

2 . In the latter case, one obtains

1
2 |b+(τ ) + b−(τ )|2 − 1

2 = b+(τ )b−(τ ) + b−(τ )b+(τ ), (6.75)

i.e. a non-diagonal combination of the resolved fixed-point branching functions. The
latter choice was not discussed in [16]. Since Z̃� = Z2 = Z M in the present case, it
follows from Corollary 6.20 that the sign ambiguity of Zntriv is due to the freedom of
choice of an SO(3)-equivariant structure on gerbe G(k,2) over SU (2) × SU (2).

Based on the analysis of [16], one may generalize the above discussion and conjec-

ture explicit expressions for the contributions ZG ′/�
P (τ ) to the coset partition functions

of gauge fields in principal �-bundles P for groups G ′ = G̃/Z ′ where Z ′ ⊂ Z̃ is a
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non-anomalous subgroup, see Sect. 4.4. Let bĝ,ĥ,z̃
k,�,λ(τ ) be the so-called twining branch-

ing functions introduced in [16] for z̃ ∈ Z̃� with spectral flow fixing (�, λ) and set to
zero otherwise. The formula

ZG ′/�
P (τ ) =

∑
z∈Z ′

∑
[�,λ]∈Pz

1

|S[�,λ]|bĝ,ĥ,zP

k,z−1�,λ
(τ ) bĝ,ĥ,zP

k,�,λ (τ ) (6.76)

should hold for a special choice of the �-equivariant structure on the gerbe Gk over G ′
(for G ′ = G̃, see Remark 7.2 below). Since for zP = 1 the twining branching functions
coincide with the standard ones, the above expression gives correctly the contribution
of the sector with topologically trivial gauge fields, see Eq. (4.60). Summing over the
isomorphism classes of �-principal bundles, i.e. over zP ∈ Z̃� , one obtains, with the
use of the Plancherel formula for the isotropy groups S[�,λ] ⊂ Z̃� , the expression for
the total partition function

ZG ′/�
tot (τ ) =

∑
z∈Z ′

∑
[�,λ]∈Pz

∑
χ∈S∗[�,λ]

bĝ,ĥ,χ
k,z−1�,λ

(τ ) bĝ,ĥ,χ
k,�,λ(τ ) (6.77)

in terms of the resolved fixed-point branching functions [16]

bĝ,ĥ,χ
k,�,λ(τ ) = 1

|S[�,λ]|
∑

z̃∈S[�,λ]

χ(z̃)−1bĝ,ĥ,z̃
k,�,λ(τ ). (6.78)

satisfying the sum rule

∑
χ∈S∗[�,λ]

bĝ,ĥ,χ
k,�,λ(τ ) = bĝ,ĥ

k,�,λ(τ ). (6.79)

On the other hand, the twist of the �-equivariant structure by a character χK ∈ Z̃∗
� intro-

duces the factor χK (zP ) on the right hand side of Eq. (6.76) giving rise to the modified
total partition function

ZG ′/�
tot (τ ) =

∑
z∈Z ′

∑
[�,λ]∈Pz

∑
χ∈S∗[�,λ]

bĝ,ĥ,χ
k,z−1�,λ

(τ ) bĝ,ĥ,χK χ

k,�,λ (τ ). (6.80)

For G ′ = G̃, Eq. (6.77) gives the coset partition function in terms of the sum of squares
of the fixed-point resolved branching functions, as postulated in [16].

7. Ad-Equivariant WZW Gerbes Over Simply Connected Groups

In order to illustrate the concept of �-equivariant gerbes, we shall return to the situation
discussed in Sect. 4.2 involving the WZW gerbes Gk over connected compact simple
groups G = G̃/Z viewed as �-spaces for � = G̃/Z̃ acting by the adjoint action. Recall
that Theorem 6.9 states that gerbes Gk possess �-equivariant structures whenever the
phases (4.22) are trivial, so always for G = G̃. Such structures are composed of 1-iso-
morphism α and 2-isomorphism β, see Definition 5.1. They are classified by the dual
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group of Z̃ , see Corollary 6.15. What follows is devoted to an explicit construction of
�-equivariant structures on gerbes Gk over simply connected groups G̃.

Instead of the local data formalism used in Sect. 6, we shall employ below a geo-
metric presentation of gerbes and their 1- and 2-isomorphisms, see, e.g., [27]. In such
a presentation, a gerbe G over M with curvature H is a quadruple (Y, B, L , μ), where
π : Y �� M is a surjective submersion, B is a 2-form on Y , called curving, such that
d B = π∗ H, L is a line bundle over the fiber-product Y [2] = Y ×M Y with curvature
F = B2 − B1, and μ : L12 ⊗ L23 �� L13 is an isomorphism of line bundles over
Y [3] = Y ×M Y ×M Y that defines a groupoid structure on L ⇒ Y (the subscripts
denote here the pullbacks along projections from Y [p] �� Y [q]). An explicit geometric
construction of gerbes Gk over M = G̃ with k ∈ Z was given in [42] and is somewhat
involved. We shall use here its description from [24], see also Sec. 4.1 of [20].

7.1. WZW gerbes over compact simply connected simple Lie groups. As before, coroots,
coweights, roots and coroots will be considered as elements of the imaginary Cartan
subalgebra ι̇t ⊂ ι̇g identified with its dual with the help of the bilinear form tr. The
normalization of tr makes the length squared of long roots equal to 2. αi , α∨

i , λi and
λ∨

i , where i = 1, . . . , r , will denote the simple roots, coroots, weights and coweights,
respectively, with r the rank of g. The highest root φ = ∑

i kiαi , where the positive
integers ki are the Kac labels. Denote by AW ⊂ it the positive Weyl alcove. AW is a
simplex with vertices τi = 1

ki
λ∨

i , i = 1, . . . , r , and τ0 = 0. For i ∈ R := {0, 1, . . . , r},
let

Ai = {τ ∈ AW | τ =
∑

j

s jτ j with si > 0},

Oi = {g = Adhg (e
2πι̇τ ) | hg ∈ G̃, τ ∈ Ai }, (7.1)

and, for I ⊂ R, let AI = ∩i∈I Ai and OI = ∩i∈I Oi . Subsets OI of G̃ are open
and Ad-invariant. They are composed of elements g = Adhg (e

2πι̇τ ) with hg ∈ G and
τ ∈ AI . The expressions

Bi = k
4π tr

(
�(hg) Ade 2πι̇τ (�(hg)) + 2πι̇(τ − τi )[�(hg),�(hg)]

)
, (7.2)

where �(hg) = h−1
g dhg , define smooth 2-forms on Oi such that d Bi = Hk |Oi . For

groups SU (n), it is enough to take Y = �i Oi , see [7,23]. In order to have a unique con-
struction of gerbes Gk for all compact simply connected simple Lie groups, one makes
a more involved choice [42].

Consider the stabilizer subgroups,

G I = {γ ∈ G̃ | γ e 2πι̇τ γ−1 = e 2πι̇τ for (any) τ ∈ AI \ ∪
i 	∈I

Ai }. (7.3)

In particular, Gi is composed of the elements of G̃ that commute with e 2πι̇τi . The Cartan
subgroup T ⊂ G̃ is contained in all G I . The maps

OI � g = Adhg (e
2πι̇τ )

ηI� �� hgG I ∈ G/G I (7.4)
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are well-defined because the adjoint-action stabilizers of e 2πι̇τ for τ ∈ AI are contained
in G I . They are smooth, see Sec. 5.1 of [42]. One introduces principal G I -bundles
πI : PI �� OI ,

PI = {(g, h) ∈ OI × G̃ | ηI (g) = hG I }. (7.5)

For the gerbes Gk = (Y, B, L , μ), one sets

Y = �
i∈R

Pi (7.6)

with π : Y �� G̃ restricting to πi on Pi and the 2-form B restricting to π∗
i Bi . Let

Ŷi1...in = PI × Gi1 × · · · × Gin and Yi1...in = Ŷi1...in/G I (7.7)

for I = {i1, . . . , in}, and for G I acting on Ŷi1...in diagonally by the right multiplica-
tion. The fiber power Y [n] of Y may be identified with the disjoint union of Yi1...in by
assigning to the G I -orbit of ((g, h), γi1 , . . . , γin ) the n-tuple (y1, . . . , yn) ∈ Y [n] with
ym = (g, hγ−1

im
),

Y [n] ∼= �
(i1,...,in)

Yi1...in . (7.8)

The construction of the line bundle L over Y [2] uses more detailed properties of the
stabilizer groups G I . For I ⊂ J ⊂ R , G J is contained in G I . The smallest of those
groups, G R , coincides with the Cartan subgroup T of G̃. Groups G I are connected but
not necessarily simply connected. Let gI ⊃ t denote the Lie algebra of G I , and let eI

be the exponential map from gI to the universal cover G̃ I . One has

G I = G̃ I /Z I for Z I = e2πι̇Q
∨

I , (7.9)

where Q∨ ⊂ t is the coroot lattice of g. The exponential map eI maps t to the Abelian
subgroup T̃I ⊂ G̃ I . For I ⊂ J , the group G̃ J maps naturally into G̃ I and Z J into Z I .
One shows that the formula

χi (e
2πι̇τ
i ) = e 2πι̇ tr τi τ (7.10)

for τ ∈ t defines a character χi : T̃i �� U (1). By restriction, χi determines a character
of Zi . One may also define a 1-dimensional representation χi j : G̃i j �� U (1) by the
formula

χi j (γ̃i j ) = exp

[
1
ι̇

∫
γ̃i j

ai j

]
, (7.11)

where ai j = ι̇ tr(τ j − τi )�(γi j ) is a closed 1-form on Gi j (γ̃i j is identified with a
homotopy class of a path in Gi j starting at 1). For τ ∈ ι̇t one has:

χi j (e
2πι̇τ
i j ) = χi (e

2πι̇τ
i )−1χ j (e

2πι̇τ
j ). (7.12)

Besides χi j (γ̃i j ) = χ j i (γ̃i j )
−1, and for γ̃i jk ∈ G̃i jk ,

χi j (γ̃i jk) χ jk(γ̃i jk) = χik(γ̃i jk). (7.13)
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Over space Ŷi j , there is a line bundle L̂i j whose fiber over ((g, h), γi , γ j ) is composed
of the equivalence classes [γ̃i , γ̃ j , ui j ]i j with respect to the relation

(γ̃i , γ̃ j , ui j ) ∼
i j

(γ̃iζi , γ̃ jζ j , χi (ζi )
kχ j (ζ j )

−k ui j ) (7.14)

for γ̃i ∈ G̃i , γ̃ j ∈ G̃ j projecting to γi ∈ Gi and γ j ∈ G j , respectively, and ui j ∈
C, ζi ∈ Zi , ζ j ∈ Z j . One twists the natural flat structure of L̂i j by the connection form

Âi j = ι̇k tr(τ j − τi )�(h). (7.15)

The right action of Gi j on Ŷi j lifts to the action on L̂i j defined by

((g, h), [γ̃i , γ̃ j , ui j ]i j )
� �� ((g, hγ ), [γ̃i γ̃i j , γ̃ j γ̃i j , χi j (γ̃i j )

−k ui j ]i j ) (7.16)

for γi j ∈ Gi j and γ̃i j its lift to G̃i j . The hermitian structure and the connection of L̂i j

descend to the quotient bundle L̂i j/Gi j = Li j over Yi j and the line bundle L over Y [2]
for the gerbe Gk is taken as equal to Li j when restricted to Yi j . The curvature 2-form
Fi j of Li j lifts to Ŷi j to the 2-form d Âi j that coincides with the lift to Ŷi j of the 2-form
B j − Bi . This gives the required relation F = B2 − B1 between the curvature F of the
line bundle L over Y [2] and the curving B on Y .

The groupoid multiplication μ of G is defined as follows. Let ((g, h), γi , γ j , γk) ∈
Ŷi jk represent (y, y′, y′′) ∈ Y [3] with y = (g, hγ−1

i ), y′ = (g, hγ−1
j ) and y′′ =

(g, hγ−1
k ) and let


i j ∈ L(y,y′) , 
 jk ∈ L(y′,y′′) , 
ik ∈ L(y,y′′) (7.17)

be the elements in the appropriate fibers of L given by the Gi jk-orbits of


̂i j = ((g, h), [γ̃i , γ̃ j , ui j ]i j ), 
̂ jk = ((g, h), [γ̃ j , γ̃k, u jk] jk),


̂ik = ((g, h), [γ̃i , γ̃k, uik]i j ) (7.18)

with uik = ui j u jk . Then

μ(
i j ⊗ 
 jk) = 
ik . (7.19)

This ends the description of gerbes Gk = (Y, B, L , μ) over simply connected groups G̃.

7.2. Construction of 1-isomorphism α. We need to compare the pullbacks of gerbe Gk

to the product space � × G̃. Consider first the pullback (Gk)12 along the adjoint action

 : � × G̃ �� G̃ of � = G̃/Z̃ on G̃. One has:

(Gk)12 = (Y12, B12, L12, μ12). (7.20)

The adjoint action of G̃ on itself may be lifted to Y by the map

G̃ × Y � (γ̃ , y) � �� Adγ̃ (y) ∈ Y, (7.21)
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where for y = (g, h) ∈ Pi ⊂ Y, Adγ̃ (y) := (Adγ̃ (g), γ̃ h) ∈ Pi . The map (7.21) is
constant on orbits of the action

(γ̃ , y) � �� (zγ̃ , yz−1) (7.22)

of Z̃ on G̃ × Y , where yz−1 := (g, hz−1) for y = (g, h) ∈ Pi . It allows the canonical
identification

Y12 ≡ (G̃ × Y )/Z̃ . (7.23)

In this identification, the surjective submersion π12 : (Y )12 �� � × G̃ is generated by
the map (γ̃ , y) � �� (γ, π(y)), where γ ∈ � = G̃/Z̃ is the canonical projection of γ̃ .
Similarly,

Y [n]
12

∼= (G̃ × Y [n])/Z̃ . (7.24)

The action of Z̃ on G̃ × Y [2] induced by (7.22) may be lifted to the one on G̃ × L given
by

(γ̃ , 
i j )
� �� (zγ̃ , 
i j ! z−1), (7.25)

where for 
i j given by the Gi j -orbit (7.16) of 
̂i j = (
(g, h), [γ̃i , γ̃ j , ui j ]i j

)
, the element


i j ! z−1 is defined as the Gi j -orbit of


̂i j ! z−1 :=
(
(g, h), [γ̃i z̃, γ̃ j z̃, χi j (z̃)

−kui j ]i j

)
, (7.26)

with z̃ standing for any lift of z ∈ Z̃ to G̃i j . We introduce a special symbol for this action
to distinguish it from another one that will be defined below. As line bundles,

L12 ∼= (G̃ × L)/Z̃ . (7.27)

In order to obtain the correct connection on L12, the one on G̃ × L has to be modified
by twisting the flat structure on G̃ × L̂i j by the connection 1-form

γ̃ ∗ Âi j = ι̇k tr(τ j − τi )�(γ̃ h) (7.28)

rather than by Âi j of Eq. (7.15).
1-isomorphism α will compare gerbe (Gk)12 to Iρk ⊗ (Gk)2 = (Y2, B2 + π∗

2 ρk, L2,

μ2), where (Gk)2 is the pullback of Gk to � × G̃ along the projection to the second
factor. It will be convenient to identify

Y2 = � × Y ∼= (G̃ × Y )/Z̃ , (7.29)

where now Z̃ acts only on G̃. The projection π2 : Y2 �� � × G̃ is induced upon this
identification by the map (γ̃ , y) � �� (γ, π(y)). Similarly,

Y [n]
2 = � × Y [n] ∼= (G̃ × Y [n])/Z̃ , L2 = � × L ∼= (G̃ × L)/Z̃ , (7.30)

with Z̃ always acting trivially on the 2nd factor.
The first part of data for 1-isomorphism α is a line bundle E over W12 :=Y12 ×

(�×G̃)

Y2, see [26]. E has to be equipped with a connection whose curvature form F E is equal
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to (B2 + π∗
2 ρk)2 − (B12)1, where the outside subscript 1 (resp. 2) refers to the pullback

along the projection from W12 to Y12 (resp. to Y2). In view of identifications (7.23) and
(7.29), we obtain for the fiber-product space W12,

W12 ∼= (G̃ × Y [2])/Z̃ (7.31)

for the action (γ̃ , (y, y′)) � �� (zγ̃ , (yz−1, y′)) of Z̃ . The projection to Y12 is induced by
the map (γ̃ , (y, y′)) � �� (γ̃ , y), the one to Y2 by (γ̃ , (y, y′)) � �� (γ̃ , y′). The composed
projection " : W12 �� � × G̃ is (γ̃ , (y, y′)) � �� (γ, π(y) = π(y′)). Line bundle E
over W12 will be defined by

E := (G̃ × L)/Z̃ , (7.32)

for the action of Z̃ ,

(γ̃ , 
i j )
� �� (zγ̃ , 
i j · z−1), (7.33)

where the element 
i j · z−1 defined as the Gi j -orbit of


̂i j · z−1 :=
(
(g, h), [γ̃i z̃, γ̃ j , χi (z̃)

kχ(z) ui j ]i j

)
, (7.34)

with χ : Z̃ �� U (1) a fixed character. Note the difference between elements 
̂i j · z−1

and 
̂i j ! z−1, with the latter one defined by Eq. (7.26).
The connection in line bundle E requires a careful definition in order to assure that it

has the desired curvature. Note that the 2-form (B2 +π∗
2 ρk)2 − (B12)1 on (G̃ ×Yi j )/Z̃ ⊂

W12 is equal to the pullback by " of the 2-form (B j )2 +ρk −(Bi )12 on �×Oi j ⊂ �×G̃.
A short calculation shows that for γ ∈ � and g = Adhg (e

2πι̇τ ) ∈ Oi j ,

(
(B j )2 + ρk − (Bi )12

)
(γ, g)

= d
(
ι̇k tr Adhg (τ − τi )�(γ )

)
+ 1

2 ι̇k tr(τi − τ j )[�(hg),�(hg)]. (7.35)

It was shown in [42] that the map

Oi � g = Adhg (e
2πι̇τ )

� �� Adhg (τ − τi ) ∈ ι̇g, (7.36)

denoted #i there, is well defined and smooth so that the 1-form Ai = ι̇k tr Adhg (τ − τi )

�(γ ) is well defined and smooth on � × Oi . On the other hand, the 2-form B j − Bi =
1
2 ι̇k tr(τi −τ j )[�(hg),�(hg)] is a well defined closed 2-form on Oi j which, when pulled
back to Yi j ⊂ Y [2], coincides with the curvature form of L|Yi j = Li j . In order to assure

the correct curvature of E , we shall additionally twist the connection of G̃ × L|Yi j in

(7.32) by the pullbacks to G̃ × Yi j of the forms

Âi = ι̇k tr Adhg (τ − τi )�(γ̃ ) (7.37)

on G̃ × Oi j . A straightforward check shows that the resulting connection in G̃ × L
descends to the quotient by the action (7.33) of Z̃ . Note that the resulting bundles E
differ for different characters χ of Z̃ by tensor factors that are pullbacks to W12 of flat
bundles over �.
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1-isomorphism α : (Gk)12 �� Iρk ⊗ (Gk)2 of Definition 5.1 is an isomorphism of
line bundles over W [2]

12

α : L12 ⊗ E2 �� E1 ⊗ L2, (7.38)

where natural pullbacks of bundles L12 and L2 are understood. Recalling realization
(7.31) of W12, we have

W [2]
12

∼= (G̃ × Y [4])/Z̃ (7.39)

with the action

(γ̃ , y1, y′
1, y2, y′

2)
� �� (zγ̃ , (y1z−1, y′

1, y2z−1, y′
2)) (7.40)

of Z̃ . Suppose that (y1, y′
1, y2, y′

2) ∈ Yi1 j1i2 j2 and that


i1i2 ∈ L(y1,y2), 
i2 j2 ∈ L(y2,y′
2)
, 
i1 j1 ∈ L(y1,y′

1)
, 
 j1 j2 ∈ L(y′

1,y
′
2)

(7.41)

are given by Gi1 j1i2 j2 -orbits of


̂i1i2 = (
(g, h), [γ̃i1, γ̃i2 , ui1i2 ]i1i2

)
, 
̂i2 j2 = (

(g, h), [γ̃i2 , γ̃ j2 , ui2 j2 ]i2 j2

)
,

(7.42)


̂i1 j1 = (
(g, h), [γ̃i1, γ̃ j1 , ui1 j1 ]i1 j1

)
, 
̂ j1 j2 = (

(g, h), [γ̃ j1, γ̃ j2 , u j1 j2 ] j1 j2

)
.

(7.43)

with μ(
i1i2 ⊗ 
i2 j2) = μ(
i1 j1 ⊗ 
 j1 j2), i.e.

ui1i2 ui2 j2 = ui1 j1 u j1 j2 . (7.44)

The bundle isomorphism α of (7.38) will be generated by a map α̃ such that

α̃
(
γ̃ , 
i1i2 ⊗ 
i2 j2

) = (
γ̃ , 
i1 j1 ⊗ 
 j1 j2

)
. (7.45)

Consistency requires that α̃ commutes with the action of Z̃ , i.e. that

α̃
(

zγ̃ , 
i1i2 ! z−1 ⊗ 
i2 j2 · z−1
)

=
(
γ̃ , 
i1 j1 · z−1 ⊗ 
 j1 j2

)
. (7.46)

In view of Eqs. (7.26), (7.34) and (7.44), this is guaranteed by the relation

χi1i2(z̃)
−kχi2(z̃)

kχ(z) = χi1(z̃)
kχ(z), (7.47)

which follows from identity (7.12). That the bundle isomorphism α preserves the con-
nections follows from the equality of the (modified) connection forms

γ̃ ∗ Âi1i2 + Âi2 j2 + Âi2 = Âi1 j1 + Âi1 + Â j1 j2 , (7.48)

which is easy to check.
For the bundle isomorphism α to define a gerbe 1-isomorphism from (Gk)12 to Iρk ⊗

(Gk)2, one has to require a proper behavior with respect to the groupoid multiplication
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[26]. More precisely, what is needed is the coincidence of two composed isomorphisms
of line bundles over W [3]

12 . The first one is

(L12)1,2 ⊗ (L12)2,3 ⊗ E3
Id⊗α2,3�� (L12)1,2 ⊗ E2 ⊗ (L2)2,3

α1,2⊗Id
�� E1 ⊗ (L2)1,2 ⊗ (L2)2,3

Id⊗(μ2)1,2,3�� E1 ⊗ (L2)1,3, (7.49)

with the exterior subscripts referring to the components of W [3]
12 . The second one is

(L12)1,2 ⊗ (L12)2,3 × E3
(μ12)1,2,3⊗Id

�� (L12)1,3 ⊗ E3
α1,3 �� E1 ⊗ (L2)1,3. (7.50)

Straightforward verification that they coincide is carried out in Appendix 7.

7.3. Construction of 2-isomorphism β. 2-isomorphism β of Definition 5.1 compares
1-isomorphisms of gerbes over �2 × G̃. First, consider gerbe (Gk)123 = (Y123, B123,

L123, μ123). The same way as before for Y12, we shall use the map

G̃2 × Y � (γ̃1, γ̃2, y) � �� Adγ̃1γ̃2 y ∈ Y (7.51)

constant on orbits of the Z̃2-action

(γ̃1, γ̃2, y) � �� (z1γ̃1, z2γ̃2, y(z1z2)
−1) (7.52)

in order to identify

Y [n]
123

∼= (G̃2 × Y [n])/Z̃2. (7.53)

As line bundles,

L123 ∼= (G̃2 × L)/Z̃2 (7.54)

for the action

(γ̃1, γ̃2, 
i j )
� �� (z1γ̃1, z2γ̃2, 
i j ! (z1z2)

−1). (7.55)

The connection in L has to be modified by twisting the flat structure of G̃2 × L̂i j

by the connection 1-form (γ̃1γ̃2)
∗ Âi j , see Eq. (7.28). Similarly, for gerbe (Gk)23 =

(Y23, B23, L23, μ23) over �2 × G̃, we have:

Y [n]
23

∼= (G̃2 × Y [n])/Z̃2, (7.56)

where now the action of Z̃2 is induced from the one on G̃2 × Ỹ given by

(γ̃1, γ̃2, y) � �� (z1γ̃1, z2γ̃2, yz−1
2 ). (7.57)

As line bundles,

L23 ∼= (G̃2 × L)/Z̃2 (7.58)

for the action

(γ̃1, γ̃2, 
i j )
� �� (z1γ̃1, z2γ̃2, 
i j ! z−1

2 ), (7.59)
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with the connection of G̃2 × L modified now using 1-forms γ̃ ∗
2 Âi j . Finally, for gerbe

(Gk)3 = (Y3, B3, L3, μ3),

Y [n]
3

∼= (G̃2 × Y [n])/Z̃2 and L3 ∼= (G̃2 × L)/Z̃2, (7.60)

with Z̃2 acting only on the factors G̃2.
For the fiber-product space W123 = Y123 ×

(�2×G̃)
Y23 ×

(�2×G̃)
Y3, we have

W123 = (G̃2 × Y [3])/Z̃2 (7.61)

for the action

(γ̃1, γ̃2, (y, y′, y′′)) � �� (z1γ̃1, z2γ̃2, (y(z1z2)
−1, y′z−1

2 , y′′)) (7.62)

of Z̃2. We may pull back the line bundle E over W12 in three different ways to W123,
obtaining the respective line bundles E1,23, E2,3 and E12,3. One has

E1,23 ∼= (G̃2 × L1,2)/Z̃2, E2,3 ∼= (G̃2 × L2,3)/Z̃2,

E12,3 ∼= (G̃2 × L1,3)/Z̃2. (7.63)

The actions of Z̃2 above are defined as follows. If (y, y′, y′′) ∈ Yi jk ⊂ Y [3] and

i j , 
 jk and 
ik are as in (7.17), i.e. 
i j ∈ L(y,y′) ⊂ L1,2, 
 jk ∈ L(y′,y′′) ⊂ L2,3 and

ik ∈ L(y,y′′) ⊂ L1,3, then under (z1, z2) ∈ Z̃2,

(γ̃1, γ̃2, 
i j )
� �� (z1γ̃1, z2γ̃2, (
i j ! z−1

2 ) · z−1
1 ), (7.64)

(γ̃1, γ̃2, 
 jk)
� �� (z1γ̃1, z2γ̃2, 
 jk · z−1

2 ), (7.65)

(γ̃1, γ̃2, 
ik)
� �� (z1γ̃1, z2γ̃2, 
ik · (z1z2)

−1). (7.66)

The connection of L in the three pullbacks in (7.63) has to be modified by twisting the
flat structure of G̃2 × L̂i j by the 1-form

Â1,23
i j = ι̇k tr(τ j − τi )�(γ̃2hg) + ι̇k tr Adγ̃2hg (τ − τi )�(γ̃1), (7.67)

that of G̃2 × L̂ jk by

Â2,3
jk = ι̇k tr(τk − τ j )�(hg) + ι̇k tr Adhg (τ − τ j )�(γ̃2), (7.68)

and that of G̃2 × L̂ik by

Â12,3
ik = ι̇k tr(τk − τi )�(hg) + ι̇k tr Adhg (τ − τi )�(γ̃1γ̃2). (7.69)

There is a natural isomorphism β : E1,23 ⊗ E2,3 �� E12,3 given by the groupoid
multiplication μ in L , i.e. induced by the map

(γ̃1, γ̃2, 
i j ⊗ 
 jk)
β̃� �� (γ̃1, γ̃2, μ(
i j ⊗ 
 jk)). (7.70)

Indeed, β̃ commutes with the action of Z̃2 because μ
(
(
i j ! z−1

2 ) · z−1
1 ⊗ 
 jk · z−1

2

)
=


ik · (z1z2)
−1 if μ

(

i j ⊗ 
 jk

) = 
ik as

χi (z̃1)
k χ(z1) χi j (z̃2)

−kχ j (z̃2)
k χ(z2) = χi (z̃1 z̃2)

k χ(z1z2). (7.71)
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Besides, β̃ intertwines the modified connections since

Â1,23
i j + Â2,3

jk = Â12,3
ik , (7.72)

as a short calculation shows.
For the line bundle isomorphism β to provide a gerbe 2-isomorphism required by

Definition 5.1, one needs (see [26]) that over

W [2]
123

∼= (G̃2 × Y [6])/Z̃2, (7.73)

with the action of Z̃2 induced from that in (7.62), the diagram of line bundle isomor-
phisms

L123 ⊗ (E1,23)2 ⊗ (E2,3)2

Id⊗β2

��

α1,23⊗Id�� (E1,23)1 ⊗ L23 ⊗ (E2,3)2
I d⊗α2,3 �� (E1,23)1 ⊗ (E2,3)1 ⊗ L3

β1⊗Id

��
L123 ⊗ (E12,3)2 α12,3

�� (E12,3)1 ⊗ L3

(7.74)

with the exterior subscripts referring to the pullbacks to W [2]
123 and with the obvious

pullbacks omitted, be commutative. This is checked in Appendix 8.

7.4. Commutativity of diagram (5.1). This is the identity

β1,23,4 • ((I d ⊗ β2,3,4) ◦ Id) = β12,3,4 • (I d ◦ β1,2,34)) (7.75)

for composed 2-isomorphisms between 1-isomorphisms of gerbes over �2 × G̃ (see
[54] for the abstract definition of the vertical • and horizontal ◦ compositions of
2-morphisms). The left- and the right-hand side are the following compositions of the
isomorphisms of line bundles:

E1,234 ⊗ E2,34 ⊗ E3,4
Id⊗β2,3,4�� E1,234 ⊗ E23,4

β1,23,4 �� E123,4, (7.76)

and

E1,234 ⊗ E2,34 ⊗ E3,4
β1,2,34⊗Id

�� E12,34 ⊗ E3,4
β12,3,4 �� E123,4, (7.77)

respectively, over the fiber-product space W1234 = (Y )1234 ×
(�3×G̃)

(Y )234 ×
(�3×G̃)

(Y )34 ×
(�3×G̃)

(Y )4. It is checked in Appendix 9 that they coincide. This proves identity
(7.75) establishing the commutativity of diagram (5.1) of Definition 5.1 and completing
the construction of �-equivariant structures on gerbe Gk over G̃ for the adjoint action of
� = G̃/Z̃ on G̃.

Theorem 7.1. The �-equivariant structures on the WZW gerbe Gk over G̃ constructed
above are non-isomorphic for different characters χ : Z̃ �� U (1) and each
�-equivariant structure on Gk is isomorphic to one of them.
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Proof. The general discussion of classification of �-equivariant structures in Sect. 6.5
showed that different isomorphism classes of �-equivariant structures correspond in this
case to cohomology classes [b′] ∈ H1(� × M,U (1)) ∼= H1(�,U (1)) in the image of
homomorphism κ , see Corollary 6.15. The classes [b′] are the isomorphism classes of
flat line bundles over � by which differ the line bundles E over W12 involved in the
above construction of 1-isomorphisms α of Definition 5.1. Different choices of char-
acters χ : Z̃ �� U (1) correspond to tensoring E with such flat line bundles, as was
remarked in Sect. 7.2. The claim of the theorem now follows from the isomorphism of
H1(�,U (1)) with the character group Z̃

∗
. ��

Remark 7.2. It is natural to conjecture that the special �-equivariant structure for which
Eq. (6.76) gives the contributions of the topologically non-trivial gauge fields to the
partition function of the G̃/� coset theory corresponds to χ = 1.

8. Conclusions

We revisited the problem of the gauging of rigid symmetries in two-dimensional sigma
models with the Wess-Zumino action related to a closed 3-forms H on the target man-
ifold. For topologically trivial gauge fields given by global Lie-algebra valued 1-forms
on the worldsheet, the gauging prescription of Refs. [37] and [36], recalled in Sect. 3.1,
assures infinitesimal gauge invariance. We showed, however, that it may lead to global
gauge anomalies. In Corollary 4.5 and Sect. 6.1, we classified such anomalies using
geometric tools based on the theory of bundle gerbes. As was shown in Sect. 4.2, global
gauge anomalies occur, for example, in numerous WZW sigma models with non-simply
connected target groups when one gauges their adjoint symmetries. They lead to the
inconsistency, discussed in Sect. 4.4, of the corresponding coset models obtained by
integrating out the external gauge fields in the respective gauged WZW models. In
Sect. 5.1, we introduced geometric structures called equivariant gerbes, living on the
target space, that permit an anomaly-free coupling of WZ amplitudes to arbitrary (also
topologically non-trivial) gauge fields. A detailed analysis of obstructions to the exis-
tence of such structures was performed and their classification was obtained in Sect. 6. In
particular, we proved Theorem 6.9 asserting that the gerbes relevant to the WZW theo-
ries with compact semi-simple target groups can be equipped with equivariant structures
with respect to adjoint symmetries if and only if there is no global gauge anomaly in the
coupling of the WZW model to topologically trivial gauge fields. In Sect. 7, we explic-
itly constructed all nonequivalent equivariant structures in the case of simply connected
target groups. Different equivariant structures result in the coupling to topologically
non-trivial gauge fields that differs by phases. We showed in Sect. 6.6 that such ambigu-
ities, anticipated in [33], are given by characters of a subgroup of the fundamental group
of the symmetry group, if the latter is connected, see Corollary 6.20. In Sect. 6.7, we
discussed how such ambiguities are reflected in the (fixed-poit resolved) partition func-
tions of the non-anomalous coset theories. We do not know if, in general, the existence
of equivariant gerbes is also a necessary condition for the existence of non-anomalous
coupling of WZ amplitudes to gauge fields in topologically non-trivial sectors, but this
is a plausible conjecture. The analysis of the present paper was limited to the case of
oriented closed worldsheets. Local gauge anomalies on worldsheets with boundary were
studied in [12]. A generalization of the present work to the case of such worldsheets,
or worldsheets with conformal defects, will be discussed in a separate publication. An
extension of WZ amplitudes to unoriented surfaces requires an additional structure on
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gerbes that was introduced under the name of Jandl structure in [48], see also [26,27].
We plan to discuss the interrelation between equivariant structures, Jandl structures,
and multiplicative structures on gerbes of [5,25,55], in a future study, with applications
to orientifolds of coset models. Other possible extensions of our work should cover
the cases of WZW and coset theories with gauging of twisted-adjoint symmetries or
with non-compact targets, of supersymmetric sigma models, and applications to global
aspects of T -duality [34]. It should also be possible to study global gauge anomalies for
higher dimensional WZ actions on spacetimes with arbitrary topology using the theory
of bundle n-gerbes [6].
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Appendices

1. Proof of Proposition 3.1. We have to find conditions under which the coupled ampli-
tudes A(ϕ, A) given by Eq. (3.5) are invariant under infinitesimal gauge transformations.
Setting e−t�φ = (I d, e−t�ϕ) and denoting by �̄ the vector field on �× M in the direc-
tion of M given by �̄(x,m) = d

dt |t=0(x, e−t�m), we observe that

d

dt

∣∣∣∣
t=0

∫
�

(e−t�φ)∗
(
−v(A) + 1

2 u(A2)
)

=
∫
�

φ∗L�̄

(
−v(A) + 1

2 u(A2)
)

=
∫
�

φ∗ι�̄d
(
−v(A) + 1

2 u(A2)
)

(A.1.1)

since the other term dι�̄ in the Lie derivative gives a term that vanishes by integration
by parts. Similarly, as d

dt

∣∣
t=0 e−t� A = d� − [�, A], see Eq. (3.4), one obtains

d

dt

∣∣∣∣
t=0

∫
�

φ∗ (−v(e−t� A) + 1
2 u((e−t� A)2)

)

=
∫
�

φ∗ (−v(d� − [�, A]) + u((d� − [�, A])A)) . (A.1.2)

On the other hand, AWZ (e−t�ϕ) = HolG2(e
−t�φ), where the subscript 2 on G refers

to the pullback along the projection from � × M to M (the latter relation follows from
the behavior of gerbe holonomy under gerbe pullbacks). Proceeding as in the proof of
Proposition 5.5 one then shows that

d

dt

∣∣∣∣
t=0

AWZ (e
−t�ϕ) =

(
ι̇

∫
�

φ∗ (ι�̄H
))

AWZ (ϕ), (A.1.3)
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so that ι�̄H (more pedantically defined as ι�̄H2) is a form on � × M . Gathering the
above relations, we infer that

d

dt

∣∣∣∣
t=0

AWZ (e
−t�ϕ, e−t� A) =

(
ι̇

∫
�

φ∗ [ι�̄
(

H + d(−v(A) + 1
2 u(A2))

)

− v(d� − [�, A]) + u ((d� − [�, A])A)]

)
AWZ (ϕ, A). (A.1.4)

Consequently, the invariance of the amplitudes AWZ (ϕ, A) under infinitesimal gauge
transformations requires that for all ϕ and A,∫

�

φ∗ [ι�̄
(

H +d(−v(A) + 1
2 u(A2))

)
−v(d� − [�, A])+u((d� − [�, A])A)

]
=0.

(A.1.5)

In order to proceed, it will be easier to employ a basis (ta) in g, writing A = ta Aa,� =
ta�a and using the notations of Remark 3.2.2, Eq. (A.1.5) may then be rewritten as∫

�

φ∗ [�a
(
ιa
(

H + d(−vb Ab + 1
2 ubc Ab Ac)

)
+ f abc

(
vc Ab − ucd Ab Ad

))

+(d�a)(va + uab Ab)
]

=
∫
�

φ∗ [�a
(
ιa H − ιa(dvb)Ab + ιavbd Ab + 1

2 ι
a(dubc)Ab Ac + f abcvc Ab

− f abcucd Ab Ad − dva − (duab)Ab − uabd Ab
)]

= 0, (A.1.6)

where the terms in the last line were obtained by integration by parts. Since �a are
arbitrary functions on �, we infer that the 2-form

ϕ∗ (ιa H − dva) + ϕ∗ (−ιa(dvb) + f abcvc − duab
)

Ab + ϕ∗ (ιavb − uab
)

d Ab

+ 1
2 ϕ∗ (ιadubc − f abdudc + f acdudb

)
Ab Ac (A.1.7)

on � has to vanish for all maps ϕ : � �� M and all 1-forms Aa on �. It is easy to see
that this imposes the separate constraints

ιa H − dva = 0, −ιa(dvb) + f abcvc − duab = 0, (A.1.8)

ιavb − uab = 0, ιadubc − f abdudc + f acdudb = 0. (A.1.9)

The 1st of these equalities gives the left of Eqs. (3.6). The 3rd one gives Eq. (3.7), imply-
ing also the right of Eqs. (3.6) and, via the 2nd equality, the middle of Eqs. (3.6). The
4th equality may be rewritten as

ιX̄ dιȲ v(Z) − ι[X̄ ,Ȳ ]v(Z) + ι[X̄ ,Z̄ ]v(Y ) = 0 (A.1.10)

and now holds automatically since

ιX̄ dιȲ v(Z) = LX̄ ιȲ v(Z), ι[X̄ ,Z̄ ]v(Y ) = −ιȲ v([X, Z ]) = −ιȲ LX̄v(Z)

(A.1.11)

and [LX̄ , ιȲ ] = ι[X̄ ,Ȳ ]. This ends the proof of Proposition 3.1.
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2. Proof of Lemma 3.13. In order to prove that the 2-form ρ of Eq. (3.26) is �-invariant,
recall that�×M is considered as a�-space with the action 
̃γ (γ

′,m)=(Adγ (γ
′), 
γ m)

of γ ∈ �. Using relation (4.5), we obtain:


̃
∗
γ ρ = 
̃

∗
γ

(
−v(�) + 1

2 (ι�̄v)(�)
)

= −(
∗
γ v)(Ad∗

γ�) + 1
2 (ιAd

γ−1 (Ad∗
γ �) 


∗
γ v)(Ad∗

γ�)

= −(v(Adγ−1(Ad∗
γ�)) + 1

2 (ιAd
γ−1 (Ad∗

γ �) v)(Adγ−1(Ad∗
γ�)), (A.2.1)

where the 2nd equality follows from the 2nd of relations (3.24). The identity Ad∗
γ� =

Adγ (�) implies that the right-hand side is γ -independent so that the �-invariance of ρ
follows.

Let us pass to the proof of relation (3.31). Using the equality�(γ1γ2) = Ad
γ−1

2
�(γ1)+

�(γ2), we obtain on �2 × M ,

ρ12(γ1, γ2,m) = ρ(γ1γ2,m)

= −
[
v(Ad

γ−1
2

�(γ1))
]
(m) − [

v(�(γ2))
]
(m)+ 1

2

[
ιAd

γ
−1
2

�(γ1)
v(Ad

γ−1
2

�(γ1))

]
(m)

+ 1
2

[
ι�̄(γ2)

v(Ad
γ−1

2
�(γ1))

]
(m) + 1

2

[
ιAd

γ
−1
2

�(γ1)
v(�(γ2))

]
(m)

+ 1
2

[
ι�̄(γ2)

v(�(γ2))
]
(m). (A.2.2)

Using, again, the 2nd of relations (3.24) as well as the last of equalities (3.6), identity
(4.5) and, finally, equality (3.27), we may rewrite the last identity as

ρ12(γ1, γ2,m)

= −
[

∗
γ2
v(�(γ1))

]
(m) − [

v(�(γ2))
]
(m) + 1

2

[

∗
γ2
(ι�̄(γ1)

v(�(γ1)))
]
(m)

+
[
ι�̄(γ2)


∗
γ2
v(�(γ1))

]
(m) + 1

2

[
ι�̄(γ2)

v(�(γ2))
]
(m)

=
[
exp[−ι�̄(γ2)

] 
∗
γ2

(
−v(�(γ1)) + 1

2 ι�̄(γ1)
v(�(γ1))

)]
(m) − [

v(�(γ2))
]
(m)

+ 1
2

[
ι�̄(γ2)

v(�(γ2))
]
(m)

=
[
−v(�(γ1)) + 1

2 ι�̄(γ1)
v(�(γ1))

]
(γ2m) + ρ(γ2,m)

= ρ(γ1, γ2m) + ρ(γ2,m) = [
ρ1,23 + ρ2,3

]
(γ1, γ2,m). (A.2.3)

3. Proof of Proposition 4.2. Note, first, that the action Lh of the gauge transformation
h on � × M defined in (4.1) may be factored through � × � × M as

(x,m)
� Kh �� (x, h(x),m)

� Id×
 �� (x, h(x)m) . (A.3.1)

It follows that

L∗
hGA = K ∗

h (Id × 
)∗GA = K ∗
h (Id × 
)∗(IρA ⊗ G2), (A.3.2)
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see the 2nd of Eqs. (3.9). Now,

(Id × 
)∗(IρA ⊗ G2) = I(ρA)1,23 ⊗ G23, (A.3.3)

with the indices referring to the factors of � × � × M so that (ρA)1,23 = (Id × 
)∗ρA.
From the definition (4.8) of the gerbe F , it follows that


∗G = G12 ∼= Iρ ⊗ G2 ⊗ F , (A.3.4)

where ∼= stands for “is 1-isomorphic to”. Equation (A.3.3) then implies

(Id × 
)∗(IρA ⊗ G2) ∼= I(ρA)1,23 ⊗ Iρ2,3 ⊗ G3 ⊗ F2,3 = I(ρA)1,23+ρ2,3 ⊗ G3 ⊗ F2,3.

(A.3.5)

The substitution of this identity into the right hand side of relation (A.3.2) gives

L∗
hGA ∼= K ∗

h (I(ρA)1,23+ρ2,3 ⊗ G3 ⊗ F2,3) = Iω ⊗ G2 ⊗ (h × Id)∗F , (A.3.6)

where

ω := K ∗
h ((ρA)1,23 + ρ2,3) = L∗

hρA + (h × Id)∗ρ (A.3.7)

is a 2-form on the product space � × M that is identified in

Lemma A.3.1. ω = ρh−1 A.

Proof. On the one hand,

(
L∗

hρA
)
(x,m) = ρA(x, h(x)m) =

[
exp[−ι(h∗�)(x)] 
∗

h(x)(ρA)(x, ·)
]
(m)

=
[
exp[−ι(h∗�)(x)] 
∗

h(x)

(
−v(A(x)) + 1

2 ι Ā(x)v(A(x))
)]

(m)

=
[
− v((Adh−1(A))(x)) + ι(h∗�)(x) v((Adh−1(A))(x))

+ 1
2 ι(Adh−1 (A))(x)v((Adh−1(A))(x))

]
(m). (A.3.8)

On the other hand,

[
(h × Id)∗ρ

]
(x,m) =

[
−v(h∗�) + 1

2 ιh∗� v(h∗�)
]
(x,m). (A.3.9)

Adding both expressions and using the 3rd of relations (3.6), we infer that

L∗
hρA + (h × Id)∗ρ = −v(h∗� + Adh−1(A)) + 1

2 ιh∗�+Adh−1 (A) v(h
∗� + Adh−1(A))

= −v(h−1 A) + 1
2 ιh−1 A

v(h−1 A) (A.3.10)

which is the identity claimed by Lemma A.3.1. ��
Replacing A by h A and recalling definition (3.9) of the gerbe GA, we infer from

Eq. (A.3.6) and Lemma A.3.1 the existence of the 1-isomorphism required by Proposi-
tion 4.2.
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4. Proof of Theorem 5.3. To prove Theorem 5.3, we shall show the existence of a canon-
ical equivalence

Grb∇(M)�0
∼= Grb∇(M ′) (A.4.1)

of 2-categories. Here, M is assumed to be a left principal �-bundle over M ′. On the
left-hand side of (A.4.1) is the 2-category of �-equivariant gerbes over M whose
2-form ρ vanishes. On the right-hand side is the 2-category of gerbes over the quo-
tient M ′ = M/�. We shall show that the equivalence (A.4.1) is a consequence of the
fact that gerbes form a sheaf of 2-categories over smooth manifolds. We shall first recall
some details about this fact.

Associated to any surjective submersion ω : M �� M ′, we consider the descent
2-category Des(ω) defined as follows, with πi1...iq standing for the projection from a
p-fold fiber-product M [p] = M ×M ′ M ×M ′ · · ·×M ′ M to the q-fold fiber product M [q]
forgetting all but the i1, . . . , iq components. An object in Des(ω) is a triple (G, C, λ)
consisting of a gerbe G over M , a 1-isomorphism C : π∗

1 G �� π∗
2 G over M [2] and a

2-isomorphism

λ : π∗
23C ◦ π∗

12C �� π∗
13C (A.4.2)

over M [3] such that the diagram

π∗
34C ◦ π∗

23C ◦ π∗
12C

Id◦π∗
123λ

��











π∗
234λ◦Id

�� ��
��

��
��

��
��

��
��

π∗
24C ◦ π∗

12C

π∗
124λ ��












π∗
34C ◦ π∗

13C

π∗
134λ�� ��

��
��

��

��
��

��
��

π∗
14C

(A.4.3)

of 2-isomorphisms over M [4] is commutative. A 1-morphism

(D, κ) : (Ga, Ca, λa) �� (Gb, Cb, λb) (A.4.4)

in Des(ω) is a 1-isomorphism D : Ga �� Gb of gerbes over M and a 2-isomorphism

κ : π∗
2 D ◦ Ca �� Cb ◦ π∗

1 D (A.4.5)

such that the diagram

π∗
3 D ⊗ π∗

23Ca ⊗ π∗
12Ca

Id⊗λa

���������������

�������������
π∗

23κ⊗Id

�� ��������������

��������������

π∗
23Cb ⊗ π∗

2 D ⊗ π∗
12Ca

Id⊗π∗
12κ ��

��
��

��
�

��
��

��
�

π∗
3 D ⊗ π∗

13Ca

π∗
13κ�� ��

��
��

��

��
��

��
��

π∗
23Cb ⊗ π∗

12Cb ⊗ π∗
1 D

λb⊗Id
�� π∗

13Cb ⊗ π∗
1 D

(A.4.6)



574 K. Gawȩdzki, R. R. Suszek, K. Waldorf

of 2-isomorphisms over M [3] is commutative. Finally, a 2-isomorphism ε : (D, κ) ��

(D′, κ ′) in Des(ω) is a 2-isomorphism ε : D �� D′ such that the diagram

π∗
2 D ◦ Ca κ ��

π∗
2 ε◦Id

��

Cb ◦ π∗
1 D

Id◦π∗
1 ε

��
π∗

2 D′ ◦ Ca
κ ′

�� Cb ◦ π∗
1 D′

(A.4.7)

of 2-isomorphisms over M [2] is commutative. Composition and identities in Des(ω) are
defined in the natural way. There is an obvious functor

ω∗ : Grb∇(M ′) �� Des(ω) (A.4.8)

which sends a gerbe G over M ′ to the triple (ω∗G, Id, Id), and is defined analogously
for 1-morphisms and 2-morphisms.

An important part of the statement that gerbes form a sheaf of 2-categories over
smooth manifolds is the gluing axiom for this sheaf. Using the definitions introduced
above, it can be formulated in the following way.

Theorem A.4.2. For any surjective submersion ω : M �� M ′, the functor (A.4.8) is
an equivalence of 2-categories.

This was proven in [50], Prop. 6.7, in a setup with (bundle) gerbes without connec-
tions, but the proof actually works also for gerbes with connection.

The equivalence (A.4.1) that we have to prove is now a consequence of Theorem A.4.2
and the following relation between equivariant gerbes and the descent 2-categories intro-
duced above. Here, we remark that the projection of any principal G-bundle is a surjective
submersion.

Lemma A.4.3. Let M be a (left) principal �-bundle over M ′ with projection
ω : M �� M ′. Then, there is a canonical equivalence of 2-categories

Grb∇(M)�0
∼= Des(ω). (A.4.9)

Proof. Since M is a principal �-bundle over M ′, there are diffeomorphisms f p : � p−1×
M �� M [p],

(γ1, . . . , γp−1,m)
f p� �� (γ1 . . . γp−1m, γ2 . . . γp−1m, . . . , γp−1m,m). (A.4.10)

The diffeomorphisms f p exchange various maps 
... : � p−1 × M �� �q × M that we
introduced in Sect. 3.3 with projections πi1,...,iq : M [p] �� M [q] in the following way:


12 = π1 ◦ f2 and 
2 = π2 ◦ f2, (A.4.11)

f2 ◦ 
2,3 = π23 ◦ f3, f2 ◦ 
1,23 = π12 ◦ f3 and f2 ◦ 
12,3 = π13 ◦ f3,

(A.4.12)

f3 ◦ 
1,2,34 = π123 ◦ f4, f3 ◦ 
12,3,4 = π134 ◦ f4,

f3 ◦ 
2,3,4 = π234 ◦ f4 and f3 ◦ 
1,23,4 = π124 ◦ f4. (A.4.13)
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Consider a descent object (G, C, λ). Note that the curvature H of gerbe G is (without any
extension) �-equivariantly closed so that we may take ρ = 0 for the �-equivariant struc-
ture on G, see Definition 5.1. Using rules (A.4.11), the pullback of C : π∗

1 G �� π∗
2 G

along f2 : G × M �� M [2] is a 1-isomorphism

α := f ∗
2 C : 
∗

12G �� 
∗
2G, (A.4.14)

and thus precisely the datum (i) we need for a �-equivariant structure. Using rules
(A.4.12), the pullback of the 2-isomorphism λ : π∗

23C ◦ π∗
12C �� π∗

13C along f3 is a
2-isomorphism

β := f ∗
3 λ : 
∗

2,3α ◦ 
∗
1,23α

�� 
∗
12,3α, (A.4.15)

and thus precisely the datum (ii) we need for the �-equivariant structure. It is then easy
to observe that the pullback of the commutative diagram (A.4.3) along f4 is, using rules
(A.4.13), precisely the diagram (5.1) in Definition 5.1. Thus, (G, α, β) is a �-equivariant
gerbe relative to the zero 2-form. In the same way one verifies, using (A.4.11)–(A.4.13),
that 1-isomorphisms and 2-isomorphisms in Des(ω) pull back to 1-isomorphisms and
2-isomorphisms between �-equivariant gerbes, respectively. This defines a functor

f ∗ : Des(ω) �� Grb∇(M)�0 . (A.4.16)

This functor is an equivalence, because the maps f p are diffeomorphisms. Indeed, if
(G, α, β) is a �-equivariant gerbe then, using (A.4.11)–(A.4.13) again, one observes that
C := ( f −1

2 )∗α and λ := ( f −1
3 )∗β make up a descent object (G, C, λ), and analogously

for 1-isomorphisms and 2-isomorphisms. ��

5. Proof of Lemma 5.4. For ρ̃A and 
̃ defined by Eqs. (5.8) and (5.9), one obtains by
virtue of relations (5.7) and (3.27):

(ρ̃A)1̃2̃ (γ, (p,m)) =
(

̃

∗
ρ̃A

)
(γ, (p,m)) =

(

∗

1,3ρ̃Adγ (A−�(γ ))

)
(γ, p,m)

=
(

exp[−ι�̄(γ )](
γ )∗3 ρ̃Adγ (A−�(γ ))

)
(p,m)

=
(
(
γ )

∗
3 ρ̃Adγ (A−�(γ ))

)
(p,m) −

(
ι�̄(γ )(
γ )

∗
3 ρ̃Adγ (A−�(γ ))

)
(p,m). (A.5.1)

The 2nd of relations (3.24) implies further that
(
(
γ )

∗
3 ρ̃Adγ (A−�(γ ))

)
(p,m)

=
{
(
γ )

∗
3

[
−v(Adγ (A −�(γ )))+ 1

2 ιAdγ (A−�(γ ))
v(Adγ (A − �(γ )))

]}
(p,m)

=
[
−v(A − �(γ )) + 1

2 ιA−�(γ )
v(A − �(γ ))

]
(p,m). (A.5.2)

Hence,
[
(
γ )

∗
3 ρ̃Adγ (A−�(γ ))

]
(p,m)

=
[
−v(A) + 1

2 ιĀv(A) + v(�(γ )) + 1
2 ι�̄(γ )v(�(γ ))
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− 1
2 ι�̄(γ )v(A) − 1

2 ιĀv(�(γ ))
]
(p,m)

=
[
−v(A) + 1

2 ιĀv(A) + v(�(γ )) + 1
2 ι�̄(γ )v(�(γ )) − ι�̄(γ )v(A)

]
(p,m),

(A.5.3)

where the last equality follows from the right one of relations (3.6). Consequently,[
ι�̄(γ )(
γ )

∗
3 ρ̃Adγ (A−�(γ ))

]
(p,m) =

[
−ι�̄(γ )v(A) + ι�̄(γ )v(�(γ ))

]
(p,m).

(A.5.4)

Subtracting the last expression from the previous one, we infer from Eq. (A.5.1) the
relation

(ρ̃A)1̃2̃(γ, (p,m)) =
[
−v(A) + 1

2 ιĀv(A) + v(�(γ )) − 1
2 ι�̄(γ )v(�(γ ))

]
(p,m)

= ρ̃A(p,m) − ρ(γ,m). (A.5.5)

This is the identity claimed by Lemma 5.4

6. Construction of flat gerbes from characters. Let � be a connected Lie group and
ω : M �� M ′ a left principal �-bundle. We shall assume that M is also connected.
One has � = �̃/Z̃� where �̃ is the covering group of � and Z̃� is a subgroup of
the center of �̃ and is naturally identified with the fundamental group of �. Note that
H1(�,U (1)) ∼= Z̃

∗
� . To each character χ ∈ Z̃

∗
� , there corresponds a flat line bundle Lχ

composed of classes [γ̃ , u]χ of the equivalence relation on �̃ × C

(γ̃ , u) ∼
χ

(γ̃ z−1, χ(z)u) (A.6.1)

for z ∈ Z̃� . We can associate to this line bundle Lχ a flat gerbe Gχ = (Y, B, L , μ) over
M ′ using the geometric description of gerbes mentioned in the beginning of Sect. 7. We
shall take Y = M with the canonical projection on M ′ and a vanishing curving B = 0.
The fiber products Y [p] = M [p] may be naturally identified with � p−1 × M by the map
f p given by Eq. (A.4.10). For the line bundle L we shall take the pullback of Lχ along
the map Y [2] � (γm,m)

� �� γ ∈ �. The groupoid multiplication μ is then induced by
the map

[γ̃1, u1]χ ⊗ [γ̃2, u2]χ � �� [γ̃1γ̃2, u1u2]χ . (A.6.2)

It is easy to show that the pullback gerbe ω∗Gχ is 1-isomorphic to the trivial gerbe I0 on
M and that Gχ is 1-isomorphic to the trivial gerbe on M ′ if and only the flat line bundle
Lχ extends from a fiber of the bundle ω : M �� M ′ to M .

The 1-isomorphism class of the flat gerbe Gχ gives the element of H2(M ′,U (1))
associated by the middle homomorphism τ in the exact sequence (6.59) to the element
of H1(�,U (1)) identified with the character χ of Z̃� .

7. Behavior of isomorphism α under groupoid multiplication. We verify here that, for
the line bundle isomorphism α constructed in Sect. 7.2, the two composed isomorphisms
(7.49) and (7.50) coincide so that α defines a 1-isomorphism between the gerbes (Gk)12

and Iρ ⊗ (Gk)2 over the product group � × G̃. Similarly as for W [2]
12 , see Eq. (7.39), we

have:
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W [3]
12 = (G̃ × Y [3])/Z̃ . (A.7.1)

Over (G̃ × Yi1 j1i2 j2i3 j3)/Z̃ ⊂ W [3]
12 , consider elements 
i1i2 . . . 
 j1 j3 in the respective

fibers of L . The composition (7.49) of line bundle isomorphisms is induced by the map

(
γ̃ , 
i1i2 ⊗ 
i2i3 ⊗ 
i3 j3

) Id⊗α̃2,3� ��
(
γ̃ , 
i1i2 ⊗ 
i2 j2 ⊗ 
 j2 j3

)
α̃1,2⊗Id� ��

(
γ̃ , 
i1 j1 ⊗ 
 j1 j2 ⊗ 
 j2 j3

) Id×(Id⊗(μ2)1,2,3)� ��
(
γ̃ , 
i1 j1 ⊗ 
 j1 j3

)
(A.7.2)

with μ(
i2i3 ⊗
i3 j3) = μ(
i2 j2 ⊗
 j2 j3), μ(
i1i2 ⊗
i2 j2) = μ(
i1 j1 ⊗
 j1 j2) and μ(
 j1 j2 ⊗

 j2 j3) = 
 j1 j3 . The associativity of the groupoid multiplication μ then implies that

μ(
i1i2 ⊗μ(
i2i3 ⊗
i3 j3))=μ(
i1i2 ⊗μ(
i2 j2 ⊗
 j2 j3))=μ(μ(
i1i2 ⊗
i2 j2) ⊗ 
 j2 j3)

=μ(μ(
i1 j1 ⊗
 j1 j2) ⊗ 
 j2 j3)=μ(
i1 j1 ⊗μ(
 j1 j2 ⊗
 j2 j3)) = μ(
i1 j1 ⊗ 
 j1 j3).

(A.7.3)

Similarly, the composition (7.50) descends from the map

(
γ̃ , 
i1i2 ⊗
i2i3 ⊗
i3 j3

) Id×((μ12)1,2,3⊗Id)� ��
(
γ̃ , 
i1i3 ⊗ 
i3 j3

) α̃1,3� ��
(
γ̃ , 
i1 j1 ⊗
 j1 j3

)
(A.7.4)

with μ(
i1i2 ⊗ 
i2i3) = 
i1i3 and μ(
i1i3 ⊗ 
i3 j3) = μ(
i1 j1 ⊗ 
 j1 j3). Now

μ(μ(
i1i2 ⊗ 
i2i3) ⊗ 
i3 j3) = μ(
i1i3 ⊗ 
i3 j3) = μ(
i1 j1 ⊗ 
 j1 j3). (A.7.5)

Comparison between the relations (A.7.3) and (A.7.5) and the use of the associativity
of μ show that the target elements of (A.7.2) and (A.7.4) coincide if the initial elements
are the same. That demonstrates the identity of two composed line bundle isomorphisms
(7.49) and (7.50).

8. Commutativity of diagram (7.74). We shall prove that diagram (7.74) of isomor-
phisms of line bundles over W [2]

123 is commutative. Over subspace (G̃2×Yi1 j1k1i2 j2k2)/Z̃2 ⊂
W [2]

123, with notations similar to those in the previous Appendix, the top line of the dia-
gram is induced by the composite map

(
γ̃1, γ̃2, 
i1i2 ⊗ 
i2 j2 ⊗ 
 j2k2

) α̃1,23⊗Id� ��
(
γ̃1, γ̃2, 
i1 j1 ⊗ 
 j1 j2 ⊗ 
 j2k2

)
Id⊗α̃2,3� ��

(
γ̃1, γ̃2, 
i1 j1 ⊗ 
 j1k1 ⊗ 
k1k2

)
(A.8.1)

with μ(
i1i2 ⊗ 
i2 j2) = μ(
i1 j1 ⊗ 
 j1 j2) and μ(
 j1 j2 ⊗ 
 j2k2) = μ(
 j1k1 ⊗ μk1k2) which
imply that

μ(μ(
i1i2 ⊗ 
i2 j2) ⊗ 
 j2k2) = μ(μ(
i1 j1 ⊗ 
 j1 j2) ⊗ 
 j2k2)= μ(
i1 j1 ⊗ μ(
 j1 j2 ⊗ 
 j2k2))= μ(
i1 j1 ⊗ μ(
 j1k1 ⊗ 
k1k2)). (A.8.2)
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The bottom line of the diagram (7.74) descends from the map

(
γ̃1, γ̃2, 
i1i2 ⊗ 
i2k2

) α̃12,3� ��
(
γ̃1, γ̃2, 
i1k1 ⊗ 
k1k2

)
(A.8.3)

with

μ(
i1i2 ⊗ 
i2k2) = μ(
i1k1 ⊗ 
k1k2). (A.8.4)

Assuming that (
γ̃1, γ̃2, 
i2k2

) = β̃
(
γ̃1, γ̃2, 
i2 j2 ⊗ 
 j2k2

)
and(

γ̃1, γ̃2, 
i1k1

) = β̃
(
γ̃1, γ̃2, 
i1 j1 ⊗ 
 j1k1

)
, (A.8.5)

i.e. that 
i2k2 = μ(
i2 j2 ⊗ 
 j2k2) and 
i1k1 = μ(
i1 j1 ⊗ 
 j1k1), we infer from compar-
ison between Eqs. (A.8.4) and (A.8.2) that the target elements of (A.8.1) and (A.8.3)
coincide, establishing the commutativity of diagram (7.74).

9. Proof of the equality of isomorphisms (7.76) and (7.77). Similarly as before, one may
identify

W1234 = (G̃3 × Y [4])/Z̃3 (A.9.1)

with the action of Z̃3 given by(
γ̃1, γ̃2, γ̃3, (y, y′, y′′, y′′′)

)
� ��

(
z1γ̃1, z2γ̃2, z3γ̃3, (y(z1z2z3)

−1, y′(z2z3)
−1, y′′z−1

3 , y′′′)
)
. (A.9.2)

The different pullbacks of the bundle E over W12 to W1234 may be identified as

E1,234 ∼= (G̃3 × L1,2)/Z̃3, E2,34 ∼= (G̃3 × L2,3)/Z̃3, E3,4 ∼= (G̃3 × L3,4)/Z̃3,

E23,4 ∼= (G̃3 × L2,4)/Z̃3, E12,34 ∼= (G̃3 × L1,3)/Z̃3, E123,4 ∼= (G̃3 × L1,4)/Z̃3,

(A.9.3)

with appropriate actions of Z̃3 and appropriate modifications of the connection of the
pullbacks of L . If (y, y′, y′′, y′′′) ∈ Yi jkl ⊂ Y [4] and 
i j ∈ L(y,y′) ⊂ L1,2, . . . . . . , 
il ∈
L(y,y′′′) ⊂ L1,4, then the composition (7.76) of the line bundle isomorphisms is induced
by the map

(
γ̃1, γ̃2, γ̃3, 
i j ⊗ 
 jk ⊗ 
kl

) Id×Id⊗β̃2,3,4� ��
(
γ̃1, γ̃2, γ̃3, 
i j ⊗ 
 jl

)
Id×β̃1,23,4� �� (γ̃1, γ̃2, γ̃3, 
il) (A.9.4)

with 
 jl = μ(
 jk ⊗ 
kl) and 
il = μ(
i j ⊗ 
 jl) = μ(
i j ⊗ μ(
 jk ⊗ 
kl)). On the other
hand, the composition (7.77) is given by

(
γ̃1, γ̃2, γ̃3, 
i j ⊗ 
 jk ⊗ 
kl

) Id×β̃1,2,34⊗Id� �� (γ̃1, γ̃2, γ̃3, 
ik ⊗ 
kl)

Id×β̃12,3,4� �� (γ̃1, γ̃2, γ̃3, 
il) (A.9.5)

with 
ik = μ(
i j ⊗ 
 jk) and 
il = μ(
ik ⊗ 
kl) = μ(μ(
i j ⊗ 
 jk) ⊗ 
kl). Using
the associativity of μ, we infer that the two compositions give the same line-bundle
isomorphism.
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