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Abstract We show that the stochastic Morris–Lecar neuron, in a neighborhood of its
stable point, can be approximated by a two-dimensional Ornstein–Uhlenbeck (OU)
modulation of a constant circular motion. The associated radial OU process is an
example of a leaky integrate-and-fire (LIF) model prior to firing. A new model con-
structed from a radial OU process together with a simple firing mechanism based on
detailed Morris–Lecar firing statistics reproduces the Morris–Lecar Interspike Interval
(ISI) distribution, and has the computational advantages of a LIF. The result justifies
the large amount of attention paid to the LIF models.

Keywords Stochastic dynamics · Diffusions · Interspike intervals ·
Conditional firing probability

Mathematics Subject Classification 60G17 · 92Bxx · 37N25 · 92C20

1 Introduction

Much effort has been made to create a realistic but still easily computed stochastic
neuron model, primarily by combining subthreshold dynamics with firing rules. The
result has been a variety of, usually one dimensional, leaky integrate-and-fire (LIF)
descriptions with a fixed membrane potential firing threshold (Burkitt 2006; Gerstner
and Kistler 2002; Lansky and Ditlevsen 2008; Lapicque 1907) or with a rate of firing
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Fig. 1 Phase-state plots of the normalized conductance Wt against membrane voltage Vt . The full drawn
magenta curve is a stable limit cycle, the dashed magenta curve is an unstable limit cycle, and the magenta
point is a stable fixed point. Black curves are sample trajectories. a Model without noise, (1)–(5). If the
process is started between the stable and the unstable limit cycle, or outside the stable limit cycle, the solu-
tion is seen to spiral out, respectively in, towards the stable limit cycle, corresponding to repetitive firing of
the neuron. If the process is started inside the unstable limit cycle, the solution spirals into the stable fixed
point, corresponding to subthreshold fluctuations of the neuron. Note that three trajectories are plotted.
b Model with noise, (1), (3)–(5) and (8), σ∗ = 0.05. Only one trajectory is plotted, and the solution is seen
to switch between periods of firing and quiescence (color figure online)

depending more sensitively on membrane potential (Jahn et al. 2011; Pfister et al.
2006). These models are useful both for obtaining analytical results and for ease of
simulation.

By contrast, the two-dimensional stochastic Morris–Lecar (ML) neuron model,
a simple cousin to the more detailed Hodgkin–Huxley (HH) model, describes the
dynamics of firing in a way more closely motivated by the biology. It has been better
respected by biologists than the LIF class of models, but has received little attention
owing to the difficulty of mathematical analysis of this rather complicated stochastic
dynamical system.

In Sect. 4 of this paper we show that in fact a LIF model is embedded in the ML
model as an integral part of it, closely approximating the subthreshold fluctuations of
the ML dynamics. This result suggests that perhaps the firing pattern of a stochastic
ML can be recreated using the embedded LIF together with a ML stochastic firing
mechanism. We construct such a model in Sects. 5 and 6, and show in Sect. 7 that its
Interspike Interval (ISI) distribution is similar to that of the ML. Our model, while of
the type described in our first paragraph, combines the realism of the ML with the ease
of analysis and computation of a one dimensional LIF-type model. The work invested
in LIF models is further justified by this new model.

Before we set up our stochastic ML model and write analytical details, let us have
an informal look at how it works. The principal dynamics of the ML, in the central
range of the input current, consist of a stable limit cycle (Fig. 1a) corresponding to
firing, which encloses a stable fixed point. In between there loops an unstable limit
cycle. The path of the stochastic model has two quasi-stable patterns (Fig. 1b). One is
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successive firings, where the dynamics makes “large” noisy circuits around the stable
limit cycle, the other is membrane fluctuations between spikes, where the dynamics
makes “small” noisy circuits around the fixed point inside the unstable limit cycle.
The system would continue forever in one of these two patterns were it not for the
noise which causes switching from firing to subthreshold fluctuations and back again
at random times when the dynamics cross the unstable limit cycle. Our analysis will
show that the dynamics between spikes, of random cycling inside the unstable limit
cycle followed by crossing to the stable limit cycle outside it, can be identified with the
sample path behavior of a two-dimensional Ornstein–Uhlenbeck (OU) process times
a rotation.

A main ingredient in our result is the stochastic dynamical phenomenon that oscil-
lations which damp to a fixed point in a deterministic system will be sustained by
the stochasticity in a corresponding stochastic system. Damped oscillations in a two-
dimensional system are signalled by a local linear structure defined by a matrix having
a pair of conjugate complex eigenvalues with negative real part. A corresponding sto-
chastic system will not damp, being prevented by the noise. Instead, a quasi-stationary
stochastic process is set up, which cycles in a random pattern around the fixed point.
Using recent results of Baxendale and Greenwood (2011) we are able to identify,
approximately, this stochastic process which is part of the subthreshold dynamics
of the ML. Up to a fixed linear transformation, the approximating process is the
product of a steady fast rotation with a two-dimensional OU process. The identifi-
cation allows us to cement in place the correspondence, for a particular set of model
parameters, a particular LIF model as the appropriate subthreshold phase between ML
firings.

2 The Morris–Lecar model

There exists a large variety of modeling approaches to the generation of spike trains in
neurons (see e.g. Dayan and Abbott 2001; Gerstner and Kistler 2002; Izhikevich 2007).
Most famous is the Hodgkin–Huxley (HH) model (Hodgkin and Huxley 1952) con-
sisting of four coupled differential equations, one for the membrane voltage, and three
equations describing the gating variables that model the voltage-dependent sodium and
potassium channels. A large amount of research effort is currently directed towards
understanding how neural coding carries information through nervous systems. Basic
to the subject is how single neurons transmit information. As in any modeling effort,
we must ignore or summarize details and focus on what, we hope, are a few essen-
tial aspects. The ML model (Morris and Lecar 1981) has often been used as a good,
qualitatively quite accurate, two-dimensional model of neuronal spiking. It is a con-
ductance-based model like the HH model, introduced to explain the dynamics of the
barnacle muscle fiber. The original ML model was three-dimensional, including a fast
responding voltage-sensitive Ca2+ conductance, and a delayed voltage-dependent K+
conductance for recovery. To justify the two-dimensional version, one uses that the
Ca2+ activation moves on a much faster time scale than the other variables, and can
conveniently be treated as an instantaneous variable, by replacing it by its steady-state
value given the other variables.
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242 S. Ditlevsen, P. Greenwood

Table 1 Variables and parameter values used in the Morris–Lecar model

V (t) [mV] Membrane voltage
W (t) [1] Normalized K+ conductance
t [ms] Time

V1 = −1.2 mV Scaling parameter

V2 = 18 mV Scaling parameter

V3 = 2 mV Scaling parameter

V4 = 30 mV Scaling parameter

gCa = 4.4 μS/cm2 Maximal conductance associated with Ca2+ current

gK = 8 μS/cm2 Maximal conductance associated with K+ current

gL = 2 μS/cm2 Conductance associated with leak current

VCa = 120 mV Reversal potential for Ca2+ current

VK = −84 mV Reversal potential for K+ current

VL = −60 mV Reversal potential for leak current

C = 20 μF/cm2 Membrane capacitance

φ = 0.04 1/ms Rate scaling parameter

I = 90 μA/cm2 Input current

The parameter values in our computations were chosen from Rinzel and Ermentrout
(1998), Tateno and Pakdaman (2004), and are given in Table 1 together with the
interpretation of variables and parameters. The variable Vt represents the membrane
potential of the neuron at time t , and Wt represents the normalized conductance of
the K+ current. This is a variable between 0 and 1, and could be interpreted as the
probability that a K+ ion channel is open at time t . The non-linear model equations
are

dVt = 1

C
(−gCam∞(Vt )(Vt − VCa) − gK Wt (Vt − VK ) − gL(Vt − VL) + I ) dt,

(1)

dWt = (α(Vt )(1 − Wt ) − β(Vt )Wt ) dt, (2)

with the auxiliary functions given by

m∞(v) = 1

2

(
1 + tanh

(
v − V1

V2

))
, (3)

α(v) = 1

2
φ cosh

(
v − V3

2V4

) (
1 + tanh

(
v − V3

V4

))
, (4)

β(v) = 1

2
φ cosh

(
v − V3

2V4

) (
1 − tanh

(
v − V3

V4

))
. (5)

Equation (1) describing the dynamics of Vt contains four terms, corresponding to
Ca2+ current, K+ current, a general leak current, and the input current I . The func-
tions α(·) and β(·) model the rates of opening and closing, respectively, of the K+
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ion channels. The function m∞(·) represents the equilibrium value of the normalized
Ca2+ conductance for a given value of the membrane potential.

In Fig. 1a the phase-state of the model is plotted. The system has two stable at-
tractors; a stable fixed point corresponding to quiescence of the neuron, and a stable
limit cycle corresponding to repetitive firing. In between the two attractors is an unsta-
ble limit cycle, which splits the state space into two parts from either of which the
deterministic process cannot escape, once trapped there.

2.1 The stochastic Morris–Lecar model with channel noise

It has long been known that the opening and closing of ion channels is an important
part of neuron function. Channel activity is summarized, even in the comparatively
detailed HH model, by potential dependent averages. However, it has become appar-
ent that the stochastic nature of ion channels must be explicitly modeled if we are
to capture essential features of neuron dynamics. Changes in the states of channels
cannot be tracked explicitly because of their vast number. Hence, it is useful to model
the role of ion channels as a stochastic process, Wt , the proportion of channels open at
time t . We therefore add channel noise by changing the ordinary differential equation
system (1)–(5), to a stochastic differential equation system, replacing the conductance
equation (2) by

dWt = (α(Vt )(1 − Wt ) − β(Vt )Wt ) dt + h(Vt , Wt )d Bt , (6)

where Bt is a standard Wiener process, and the function h(·) has to be chosen.
The diffusion coefficient h(·) in (6) should be based on the drift coefficient which

gives the rate of change of fraction of open ion channels due to random openings and
closings. A natural choice of the function h(·), following the diffusion approximation
of Kurtz (1978), would be the square root of the sum of the two rates in the drift coeffi-
cient, times a factor 1/

√
N where N is the number of ion channels involved. However,

this choice has the problem that it is not zero when all the channels are closed, and the
resulting (6) would produce negative solutions with positive probability. To avoid this
difficulty, for fixed Vt we let Wt be a Jacobi diffusion. In fact, in the class of Pearson
diffusions (Forman and Sørensen 2008), i.e. one-dimensional diffusions with linear
drift, and with h2(·) a polynomial of at most degree two, this is the only bounded
diffusion. Living on (0, 1), it has the form

d Xt = −θ (Xt − μ) dt + γ
√

2θ Xt (1 − Xt )d Bt (7)

where θ > 0 and μ ∈ (0, 1). It is named for the eigenfunctions of the generator,
which are the Jacobi polynomials. It is ergodic provided that γ 2 ≤ min(μ, (1 − μ)),
and its stationary distribution is the Beta distribution with shape parameters μ/γ 2 and
(1 − μ)/γ 2. It has mean μ and variance γ 2μ(1 − μ)/(1 + γ 2). In our case, because
the diffusion coefficient in (7) should be of the same order as the one given by the
Kurtz approximation (Kurtz 1978), γ is proportional to 1/

√
N .
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By equating the drift terms in (6) and (7), we obtain θ = α(Vt ) + β(Vt ) and
μ = α(Vt )/(α(Vt ) + β(Vt )). So for fixed Vt , and setting h2(Vt , Wt ) = γ 22(α(Vt ) +
β(Vt ))Wt (1−Wt ), where γ 2 is constrained by γ 2(α(Vt )+β(Vt ))≤min(α(Vt ), β(Vt )),
also (6) will stay bounded in (0, 1). Since α(Vt ) and β(Vt ) are strictly positive, we
can put γ 2 = (σ ∗)2α(Vt )β(Vt )/(α(Vt ) + β(Vt ))

2, with σ ∗ ∈ (0, 1], and specify the
conductance equation (6) as

dWt = (α(Vt )(1 − Wt ) − β(Vt )Wt ) dt

+ σ ∗
√

2
α(Vt )β(Vt )

α(Vt ) + β(Vt )
Wt (1 − Wt )d Bt . (8)

In the next section we compute the equilibrium point (Veq, Weq) of the system (1)–(5)
for the chosen parameters. By equating the diffusion coefficient as it would occur in
the diffusion approximation of Kurtz (1978) with the one in (8) at (Veq, Weq) we will
obtain σ ∗ in terms of 1/

√
N , where N is the number of channels involved.

It can be shown by a coupling argument that also for varying Vt will Wt given by
(8) stay bounded in (0, 1), since Vt is bounded once it is started inside some interval
(Ditlevsen and Jacobsen 2012).

In Fig. 2, the model defined by (1), (3)–(5) and (8) is simulated for different values
of σ ∗, where these can be thought of as corresponding to different total numbers of
ion channels.

3 The linear approximation of the stochastic Morris–Lecar during quiescence

To identify the process of subthreshold oscillations, i.e. the dynamics close to the
stable fixed point between firings, we analyze the linearized system around this point.
Consider the system

dVt = f (Vt , Wt )dt,

dWt = g(Vt , Wt )dt + h(Vt , Wt )d Bt ,

where the functions f (·), g(·) and h(·) are given by (1), (3)–(5) and (8).
For the chosen parameter values given in Table 1, the deterministic system, obtained

for h(·) = 0, has a unique locally stable equilibrium point (Veq, Weq) given by

Weq(Veq) = α(Veq)

α(Veq) + β(Veq)
= 1

2

(
1 + tanh

(
Veq − V3

V4

))

and Veq is the solution to the equation f (Veq, Weq(Veq)) = 0, which cannot be solved
analytically, but can be found numerically. The input current value I = 90 μA/cm2

is a typical value well inside the range of I where the deterministic dynamics has a
stable limit point inside an unstable limit cycle as shown in Fig. 1a. The equilibrium

123



The Morris–Lecar neuron model embeds a leaky integrate-and-fire model 245

time

membrane voltage, V(t)

0.
15

normalized conductance, W(t)

time

membrane voltage, V(t)

normalized conductance, W(t)

time

membrane voltage, V(t)

normalized conductance, W(t)

time

membrane voltage, V(t)

−
30

−
20

0 2000 4000

−
50

0

0 2000 4000

0.
2

0.
4

−
50

0

0 2000 4000

0.
2

0.
4

−
50

0

0 2000 4000

0.
2

0.
4

normalized conductance, W(t)

Fig. 2 Time series plots (black curves) of the stochastic Morris–Lecar model for different noise levels
started inside the unstable limit cycle, but not at the fixed point. Upper left: σ∗ = 0.02, upper right:
σ∗ = 0.03, lower left: σ∗ = 0.05, lower right: σ∗ = 0.1. Note different scales, in the upper left panel
there is no firing. The magenta curves are the deterministic model, σ∗ = 0 (color figure online)

point for I = 90 μA/cm2 is

(Veq, Weq) = (−26.6 mV, 0.129).

In terms of the centered variables

X (1)
t = Vt − Veq , X (2)

t = Wt − Weq

the system becomes

d X (1)
t = f

(
(X (1)

t + Veq), (X (2)
t + Weq)

)
dt + 0 · d B(1)

t

= f ∗(X (1)
t , X (2)

t )dt, (9)
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d X (2)
t = g

(
(X (1)

t + Veq), (X (2)
t + Weq)

)
dt

+ h
(
(X (1)

t + Veq), (X (2)
t + Weq)

)
d B(2)

t

= g∗(X (1)
t , X (2)

t )dt + h∗(X (1)
t , X (2)

t )d B(2)
t . (10)

We write Xt = (X (1)
t X (2)

t )T and Bt = (B(1)
t B(2)

t )T , where T denotes transposition.
Note that B(1)

t does not enter the dynamics, but is introduced to ease the matrix nota-
tion, as will be clear in the following. When the noise is small and the process Xt

is started near the equilibrium point, x = (0, 0), we expect the dynamics to concen-
trate around the equilibrium point. A local approximation is obtained by linearizing
(9)–(10) around (0, 0). The diffusion term is approximated by setting X (1)

t = X (2)
t = 0

in the diffusion coefficients. The linearized system is

d Xt = MXt dt + Gd Bt , (11)

where

M =
(

m11 m12
m21 m22

)
=

(
∂ f ∗
∂x1

∂ f ∗
∂x2

∂g∗
∂x1

∂g∗
∂x2

)∣∣∣∣∣
(x1,x2)=(0,0)

=
(

0.0258 −22.961
0.000335 −0.0446

)
,

using the parameter values in Table 1, and

G =
(

0 0

0 σ ∗√2(α(Veq) + β(Veq))(1 − Weq)Weq

)
=

(
0 0

0 σ

)
, (12)

where σ = 0.034σ ∗. By evaluating the diffusion approximation of Kurtz (1978) at
(Veq, Weq) and equating to the above we obtain σ ∗ = 1/

√
Weq(1 − Weq)N ≈ 3/

√
N .

In the Appendix the matrix M is detailed. Solutions of (11) with G = 0 are given in
terms of the eigenvalues of M which are complex conjugates and given by

−λ ± ωi = −0.0094 ± 0.0803i

where λ = −tr(M)/2, ω2 = |λ2 − det(M)| and i = √−1. Thus, near the equilibrium
point the solution of (11), with σ = 0, is

Xt = C
(

cos ωt
sin ωt

)
e−λt , (13)

where C contains the initial conditions

C =
(

x0 (m12 y0 + (m11 + λ)x0)/ω

y0 (m21x0 − (m11 + λ)y0)/ω

)
.

In Fig. 3 the solution of the deterministic model, (1)–(5) with σ = 0, is compared to
the linear approximation (13).
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Fig. 3 The solution of the
deterministic model (1)–(5) with
σ = 0 (black full drawn curves)
is compared to the linear
approximation (13)
(cyan dashed curves). Upper
panel: normalized conductance
Wt (dimensionless). Lower
panel: membrane potential Vt
(mV). Time is measured in ms
(color figure online)
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4 Identification of the stochastic process of quiescence

In this Section we identify the stochastic process defined by the linearized system (11)
in the limit of small λ, i.e. under the condition λ � ω. The deterministic system (13)
has decaying oscillations, whereas for the stochastic system (11), the noise will pre-
vent the decay of the oscillations. Can we describe the resulting process specifically?
The answer is that, after a linear change of variables, this process can be approximated
in distribution by a fixed matrix times a deterministic circular motion modulated by
an OU process.

We follow the development in Baxendale and Greenwood (2011), where a first step
is to transform the matrix M into a form which reveals the slow decay towards the
equilibrium point and the fast oscillatory structure of the deterministic dynamics. Let
Q be a 2 × 2 matrix such that

Q−1MQ =
(−λ ω

−ω −λ

)
.= A.

A possible choice for Q is

Q =
(−ω m11 + λ

0 m21

)
.

Let X̃t = Q−1 Xt , then

d X̃t = AX̃t dt + Cd Bt (14)

where C = Q−1G. A further change of variables moves the rotation to form part of
the diffusion coefficient of the linear stochastic system. We define
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248 S. Ditlevsen, P. Greenwood

˜̃Xt = Rωt X̃ t

where

Rs =
(

cos s − sin s
sin s cos s

)

is the counterclockwise rotation of angle s. Then by Ito’s formula

d ˜̃Xt = −λ
˜̃Xt dt + Rωt Cd Bt . (15)

The infinitesimal covariance matrix in (14) is

B = CCT = Q−1GGT (Q−1)T = σ 2

m2
21ω

2

(
(m11 + λ)2 ω(m11 + λ)

ω(m11 + λ) ω2

)
.

Now define

τ 2 = 1

2
tr(B) = 1

2
(B11 + B22) = − σ 2m12

2ω2m21
, (16)

where we have used that (m11 +λ)2 +ω2 = −m12m21. Finally, we rescale ˜̃Xt so that
we can compare with a standardized two-dimensional OU process. Let

Ut =
√

λ

τ

˜̃Xt/λ.

Relation (15) becomes

dUt = −Ut dt + 1

τ
Rωt/λCd B̃t (17)

where B̃t = √
λBt/λ is another standard two-dimensional Brownian motion. The fol-

lowing Theorem from Baxendale and Greenwood (2011) allows us to approximate
the process Ut given by (17), by a two-dimensional OU process with independent
coordinates.

Theorem 1 For each fixed t∗ > 0 and x ∈ IR2 the distribution of {Ut : 0 ≤ t ≤ t∗}
given by (17) with U0 = x converges as λ/ω → 0 to the distribution of the standard-
ized two-dimensional OU process {St : 0 ≤ t ≤ t∗} generated by

d St = −St dt + d Bt

with S0 = x.
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Here St follows a normal distribution, St ∼ N
(
S0e−t , 1

2 (1 − e−2t )I
)
, where I is the

2 × 2 identity matrix. The proof of this Theorem uses a martingale problem conver-
gence argument and involves the notion of stochastic averaging, where fast oscilla-
tions integrate out revealing the remaining structure determined by slower oscillations.
Another result of this type obtained by a different method, called multiscale analysis,
is in Kuske et al. (2007).

Thus, the process Ut is approximated by St if λ � ω. In our case λ is one order of
magnitude smaller than ω.

Putting together the transformations and the final approximation we have, in the
sense of stochastic process distributions,

Xt = QX̃t = QR−ωt
˜̃Xt = QR−ωt

τ√
λ

Uλt ≈ QR−ωt
τ√
λ

Sλt

= τ√
λ

(−ω m11 + λ

0 m21

)(
cos ωt sin ωt

− sin ωt cos ωt

)
Sλt . (18)

Let us denote by Xa
t the stochastic process on the right hand side of (18), i.e.

Xa
t = τQR−ωt Sλt/

√
λ. (19)

To get a sense of how closely the process Xa
t approximates the dynamics of the ML

process in a neighborhood of (Veq, Weq) we compare their power spectral densities,
as well as that of the solution of the linearized system (11). The spectral density of Xa

t
and that of Xt satisfying (11) can be calculated explicitly using the power spectrum
formula of Gardiner (1990) for linear diffusions of the form (11). In fact Xa

t is such a
diffusion: the effect of the stochastic averaging can be seen as replacing C from (14)
by a multiple of the identity in the system (14), so the approximation to X̃ satisfies
d X̃a

t = AX̃a
t dt + τd Bt , where τ is given by (16). If we transform this equation by

Xa
t = QX̃a

t , we see that Xa
t satisfies

d Xa
t = MXa

t dt + τQd Bt . (20)

The spectral density of the first coordinate of Xa is

S( f ) = 1

2π

σ 2m2
12(

( f 2 − det(M))2 + ( f tr(M))2
)
(

f 2 + det(M)
)

2ω2 ,

whereas the spectral density of the first coordinate of the linearized system, (11), is

S( f ) = 1

2π

σ 2m2
12

( f 2 − det(M))2 + ( f tr(M))2 .

In Fig. 4 the theoretical spectral densities for the two approximations are plotted,
together with the estimated spectral density of the quiescent process from simulations
of the stochastic ML model (1),(3)–(5) and (8). The spectral density is estimated by
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Fig. 4 Spectral density estimated from simulations between spikes of model (1), (3)–(5), (8) (black solid
line), theoretical spectral density of model (20) (cyan dashed line), and theoretical spectral density of model
(11) (magenta dotted line). From left to right: σ∗ = 0.03, 0.05 and 0.1 (color figure online)

averaging over at least 20 estimates from paths started at 0 of at least 450 ms of
subthreshold fluctuations, and scaled to have the same maximum as the theoretical
spectral density from (20). The averaging is done to reduce the large variance con-
nected with spectral density estimation, avoiding any smoothing. Thus, the estimator
is approximately unbiased, see also Ditlevsen et al. (2005) where this approach is
treated. The estimation is done for σ ∗ = 0.03, 0.05 and 0.1. For higher noise, the
lengths of subthreshold fluctuations between spikes are too short to reliably estimate
the spectral density. Moreover, σ ∗ = 0.1 corresponds to a number of ion channels
N ≈ 900, which can be considered a minimum acceptable number for the diffusion
approximation to be relevant. The value σ ∗ = 0.03 corresponds to N ≈ 10, 000.
Remember that σ = 0.034σ ∗, see (12).

The approximations are only acceptable for small noise, which is expected, since
larger noise brings the process to areas further away from the fixed point, where non-
linearities become increasingly important.

5 Reconstructing the stochastic ML firing mechanism

In this section we construct a firing mechanism matching that of the stochastic ML
neuron. In Sect. 6 we will define a new LIF-type process by combining this firing
mechanism with the radial OU process. This new model will, for small σ , have an ISI
distribution similar to that of the ML.

Firing in model (1), (3)–(5) and (8) occurs when the stochastic dynamics shifts from
a path circulating the stable equilibrium, modulated by an OU, to a noisy circuiting of
the stable limit cycle. This shift happens, roughly, when the orbit passes from the inside
to the outside of the unstable limit cycle. When the orbit comes close to the unstable
limit cycle, it will follow this limit cycle for a short time, and then escape either to
the inside, i.e. continue its subthreshold oscillations, or to the outside and a spike
will occur. To translate this understanding of the original ML model to a mathemati-
cal description of a firing scheme for our approximate model, we embed the process
Xa defined by (19) in the stochastic ML model by constructing a firing mechanism
mimicking that of the ML itself. It is clear that in the ML model, starting inside the
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unstable limit cycle, a spike will occur with increasing probability, the further away the
process is from the fixed point. In order to construct a firing mechanism matching that
of ML, we will estimate, from simulations, the conditional probability that the ML fires,
given that the trajectory of the ML crosses the line L = {(v,w) : v = Veq, w < Weq}.
We computed estimates from simulated data using crossings of the line L as follows.

For a given value of σ ∗ and distance l from the fixed point, a short trajectory
starting in (Veq, Weq − l) was simulated from model (1), (3)–(5) and (8), and it was
registered whether firing occurred in the first cycle of the stochastic path around
(Veq, Weq). Firing was defined by the path crossing the line v = 0, which is well
above the largest level inside the unstable limit cycle, see Fig. 1b. This was repeated
1000 times, and estimates of the conditional probability of spiking, p̂(l, σ ∗), were
computed as the frequency of the trajectories where firing occurred. The procedure
was repeated for l = li = iδ, i = 1, . . . , 25, where δ is the distance to the stable
limit cycle divided by 20. In this way a grid of possible l values was covered, starting
from l = 0 at the fixed point, where the probability of firing is close to zero, to a
point on L below the stable limit cycle, where the probability of firing is close to
one. The estimation was, furthermore, repeated for σ ∗ = 0.01 to 0.08 in steps of
0.01.

For each fixed σ ∗, the estimates of the conditional probability appear to depend
in a sigmoidal way on the distance from the fixed point. We assumed the conditional
firing probability to be of the form

p(l) = 1

1 + exp((α − l)/β)
. (21)

The parameters α and β were estimated using non-linear regression of the 25 esti-
mates of p̂(li ; σ ∗) on l. In Fig. 5a these parametric estimates are plotted, as well
as the individual nonparametric estimates p̂ for σ ∗ = 0.02, 0.05 and 0.08. We see
that the family of estimates, p̂, fits the hypothetic curve quite well for each value
of σ ∗. Regression estimates are reported in Table 2. Note that α is the distance
along L from Weq at which the conditional probability of firing equals one half.
For all values of σ ∗, the estimate of α is close to the distance along L between
Weq and the unstable limit cycle, which equals 0.0172. In other words, the prob-
ability of firing, if the path starts at the intersection of L with the unstable limit
cycle, is about 1/2. The parameter β indicates the width of a band around α where
the conditional probability essentially changes. For instance, if l ∈ α ± β then
p(l) ∈ (0.27, 0.73), if l ∈ α ± 2β then p(l) ∈ (0.12, 0.88). As expected, the esti-
mate of β increases with increasing σ ∗, and for small noise the conditional prob-
ability approaches a step function since the process is mostly dominated by the
drift. A step function would correspond to the firing being represented by a first-
passage time of a fixed threshold. Note though that β̂ is approximately proportional
to σ ∗, and thus, as we said earlier and will see in the following, a fixed threshold
at the crossing of the unstable limit cycle does not reproduce the desired spiking
characteristics.

In order to simplify the construction in Sect. 6 of a LIF model which, together with
a firing rule, behaves like the stochastic ML, we will change coordinates as follows.
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Fig. 5 Conditional probability of spiking when crossing the line L = {(v, w) : v = Veq, w < Weq} for
different values of σ∗. a Original space. The circles, plus’s and stars are individual nonparametric estimates
obtained using σ∗ = 0.02, 0.05 and 0.08, respectively, with the fitted curves on top given by (21). The
dashed line indicates where the unstable limit cycle crosses L , the full drawn line where the stable limit
cycle crosses L . b The fitted curves in the transformed space for σ∗ = 0.02, 0.03, 0.04, 0.05, 0.06, 0.07
and 0.08 (right to left), as a function of the distance from the fixed point in the transformed coordinates. The
crosses and boxed crosses indicate the crossing of the unstable and stable limit cycles of L , respectively,
which depend on σ = 0.034σ∗

Table 2 Estimates of regression parameters for p(·) in the original space (first two rows), and in the
transformed coordinates (last two rows)

σ∗ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

α̂ 0.0174 0.0174 0.0169 0.0168 0.0171 0.0169 0.0167 0.0168

β̂ 0.0006 0.0013 0.0020 0.0028 0.0033 0.0039 0.0047 0.0054

α̂
√

2λ/σ 7.1022 3.5426 2.3012 1.7156 1.3922 1.1474 0.9739 0.8549

β̂
√

2λ/σ 0.2590 0.2624 0.2759 0.2831 0.2718 0.2674 0.2738 0.2764

Observe that (19) can be written

√
λ

τ
Q−1 Xa

t =
(

cos ωt sin ωt
− sin ωt cos ωt

)
Sλt , (22)

so for fixed t,
√

λQ−1 Xa
t /τ is the clockwise rotation by angle ωt of the orthogonal pair

(S(1)
λt , S(2)

λt ). We define a transformation of the space (v,w) by centering at (Veq, Weq)

and normalizing as in (22). Let

(
ṽ

w̃

)
=

√
λ

τ
Q−1

(
v − Veq
w − Weq

)
(23)
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be the coordinates of the transformed space. In the new coordinates our process is
simplified to a rotation modulated by a standard two-dimensional OU process with
independent components.

The transformation depends on σ = 0.034σ ∗, namely, the transformed unstable
limit cycle becomes smaller with increasing noise, through the value of τ given in
(16). This is exactly what is causing a higher firing probability for larger σ ∗. The line
L will in the transformed space be

L̃ =
√

λ

τ
Q−1

(
0
l

)
=

√
λ

m21τ

(m11+λ
ω
1

)
l

for l ≥ 0. A distance l will thus transform to a distance r = (
√

2λ/σ)l, and the
conditional probability of firing (21) transforms to

p(r) = 1

1 + exp((α∗ − r)/β∗)
, (24)

where α∗ = α
√

2λ/σ and β∗ = β
√

2λ/σ . The fitted curves of (24) for σ ∗ = 0.02 −
0.08, as a function of the distance from the fixed point in the transformed coordinates
are given in Fig. 5b, with indication of the crossings of the unstable and stable limit
cycles, respectively, which now depend on σ . Note that in the transformed space, the
width of the band where the conditional probability is essentially different from 0 or 1
is nearly constant, see Table 2. From here on we use the coordinates defined by (23).

6 Construction of a leaky-integrate-and-fire model with ML firing statistics

The simpler stochastic LIF models sacrifice realism for mathematical tractability
(Burkitt 2006; Gerstner and Kistler 2002). In these models, a neuron is character-
ized by a single stochastic differential equation describing the evolution of neuronal
membrane potential depending on time,

d Xt = μ(Xt )dt + σ(Xt )d Bt , X0 = x0, (25)

where Xt corresponds to Vt in the ML model, together with a threshold firing rule,

T = inf{t > 0 : Xt ≥ S}. (26)

In this Section we define a LIF model which does not make this compromise, using
the result of Sect. 4 and the firing mechanism defined in Sect. 5.

The distance of the approximate process
√

λQ−1 Xa
t /τ of (22) from the point (0, 0)

at time t is given by the modulus of the two-dimensional standardized OU process
Sλt . The modulus of Sλt at time t is given by the process

Rλt =
√

(S(1)
λt )2 + (S(2)

λt )2,
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which is a standard radial OU process with two degrees of freedom. It has state space
(0,∞), and solves the stochastic differential equation

d Rλt =
(

1

2Rλt
− Rλt

)
dt + dWλt , (27)

see e.g. Borodin and Salminen (2002). We define a new LIF process by (27), and
firing mechanism derived from (24). After each firing, we will reset the time to 0
and assume the process reset to 0, i.e. R0 = 0, corresponding to S0 = (0, 0) and
(V0, W0) = (Veq, Weq). By Ito’s formula, the process Yu = R2

u satisfies the stochastic
differential equation

dYu = 2 (1 − Yu) du + 2
√

YudWu, (28)

and is thus a square-root process, see e.g. Cox et al. (1985), also called a Feller
or a Cox–Ingersoll–Ross process. This process is ergodic, and its stationary distri-
bution is the exponential distribution with mean one. It follows that the stationary
distribution of Ru has density f (r) = 2re−r2

on (0,∞), i.e. it follows a Rayleigh
distribution. The transition density of Yu starting at y0 at time 0, is a non-central
χ2-distribution with two degrees of freedom and non-centrality parameter δ(u, y0) =
2y0e−2u/(1−e−2u). Then 2Yu/(1−e−2u) follows the standard non-central χ2-distri-
bution Fχ2(2y/(1−e−2u), 2, δ(u, y0)). It is particularly simple because of the integer
degrees of freedom. Transforming to the radial OU we obtain the transition density of
Ru starting at s at time 0

fu(r, s) = 2r

1 − e−2u
exp

{
−r2 + s2e−2u

1 − e−2u

}
I0

(
rs

sinh(u)

)
, (29)

where I0(x) = 1
π

∫ π

0 ex cos θ dθ is the modified Bessel function of the first kind of
index 0.

Writing the two-dimensional process Su in polar coordinates, Ru and θu , where θu

is the angle at time u to the positive part of the first coordinate, we find that the mod-
ulus and the angle are independent, and that θu is uniformly distributed on (0, 2π).
This can e.g. be seen from the fact that S(1)

u and S(2)
u are independent normal with

mean 0 and equal variances. Thus, for fixed u, S(2)
u /S(1)

u is standard Cauchy distrib-
uted and θu = arctan(S(2)

u /S(1)
u ) is U (0, 2π). It can also be seen from the standard

Box-Muller transform of two independent uniform variables to generate a standard
bivariate normal variable.

Let T denote the firing time random variable. We want to compute the density of
the distribution of T , and for this we find it convenient to express this density in terms
of the conditional hazard rate,

α(t, r) = lim
�t→0

1

�t
P(t ≤ T < t + �t |T ≥ t, Rλt = r).
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This function is the density of the conditional probability, given the position on L is r
at time t , of a spike occurring in the next small time interval, given that it has not yet
occurred.

From standard results from survival analysis, see e.g. Aalen et al. (2010), we obtain

P(T > t |Rλs, 0 ≤ s ≤ t) = exp

⎛
⎝−

t∫
0

α(Rλs)ds

⎞
⎠ .

The unconditional distribution is then given by

P(T > t) = E

⎛
⎝exp

⎛
⎝−

t∫
0

α(Rλs)ds

⎞
⎠

⎞
⎠ (30)

where E(·) denotes expectation with respect to the distribution of R. The density is
thus

g(t) = d

dt
P(T ≤ t) = E

⎛
⎝α(Rλt ) exp

⎛
⎝−

t∫
0

α(Rλs)ds

⎞
⎠

⎞
⎠ . (31)

The firing is defined to be initiated from L , and on average the process crosses L every
2π/ω = 78.2 time units. Using (24), the estimated conditional probability of firing
given the position on L is r , which by definition does not depend on t , we estimate
the hazard rate as

α(t, r) = α(r) = ω

2π

1

1 + exp((α∗ − r)/β∗)
. (32)

Note that it is bounded. This is not realistic, since a very large value of r should cause
immediate firing.

In Pfister et al. (2006) a firing rule with unbounded hazard rate was proposed, and
in Jahn et al. (2011) it was shown to fit well to experimental data. Therefore, we will
also see how our model performs if we use in the firing mechanism a hazard rate of
the form

α(t, r) = α(r) = exp((r − α)/β) (33)

for α, β > 0. Like before, α plays the role of a threshold, and β gives the width
of the threshold region. When β → 0, the firing rule converges to a fixed threshold
crossing. To estimate α and β in (33), we simulated 1,000 spike times from the ML.
The cumulative hazard A(t) = ∫ t

0 α(t) was then estimated from the simulated spike
times by the standard empirical Nelson–Aalen estimator. The theoretical cumulative
hazard using (27) and (33) can be calculated as
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A(t) = E

⎛
⎝

t∫
0

α(Rλs)ds

⎞
⎠ = exp

(
−α

β

) t∫
0

E

(
exp

(
Rλs

β

))
ds

= √
π exp

(
−α

β

) t∫
0

(
g(s) exp

(
1

4
g(s)2

)
�(g(s)) + 1

)
ds (34)

where we have used the density fλs(r, 0) given in (29). Here, g(s) = √
1 − e−2λs/β,

and �(·) is the standard normal cumulative distribution function. Then, α and β were
estimated by the least square distance between (34) and the estimated cumulative haz-
ard from the simulated spike times. For σ ∗ = 0.05 the estimates were α = 6.31 and
β = 0.76.

The final model is

d Ru =
(

1

2Ru
− Ru

)
dt + dWu − Ru−μ(Ru−, du), (35)

where μ(Ru−, du) is a Poisson measure with intensity α(Ru−), and Ru− denotes the
left limit of Ru . Here, α(·) is either given by (32) or (33). The jump size is −Ru−, thus
giving the reset to 0 at spike times.

A reasonable alternative to the soft threshold firing mechanism used here would
be to use the firing rule defined by a threshold as in the classical LIF models, equa-
tion (26). A natural choice of threshold would be where the LIF process reaches a level
corresponding to the unstable limit cycle. In fact, according to our estimates in Fig. 5
and Table 2, the firing probability of the ML at this threshold is around 1/2. However,
the ISI distribution estimated from simulations using a hard threshold at the unstable
limit cycle is shifted towards larger times, relative to the ML ISI distribution. This
happens because the process might cycle many times inside the unstable limit cycle,
so even if the probability of spiking in a single cycle is small, the total probability is
not negligible. This is lost when only a hard threshold is considered. Instead we chose
the threshold value such that the mean of the ML ISI distribution and the mean of the
LIF ISI distribution were the same. In Graczyk and Jakubowski (2008), the mean of T
from (26) with Xt = Rt started at R0 = 0 is given using a hypergeometric function,

E(T ) = S2

2
2 F2

(
1, 1; 2, 2; S2

)
. (36)

The average of the 1000 ML firing times for σ ∗ = 0.05 was 447. Equating with (36)
gives a value S = 2.97 for the hard threshold. Note that this is much smaller than the
estimated α from (33).

7 Comparison of firing statistics

One of the major issues in computational neuroscience is to determine the ISI dis-
tribution. We therefore simulated the ML model given by (1), (3)–(5) and (8) until
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Fig. 6 Distribution of firing
times for σ∗ = 0.05. The
histogram is based on 1,000
simulated firing times from the
ML model, the vertical dotted
line is the average. Curves are
estimates of the probability
density, equation (37). Black
curve is estimated using (32),
gray curve is estimated using
(33), dashed curve is estimated
using a fixed threshold, (26)
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spiking, and thereafter reset to the fixed point. This was done 1,000 times, and the time
of the firing was recorded. The ISI distribution from our approximate model is given
by the density (31), or equivalently, from the survival function (30). Due to the law
of large numbers and since we know the exact distribution of Ru , for fixed t we can
numerically determine (31) up to any desired precision by choosing n and M large
enough through the expression

g(t) ≈ 1

M

M∑
m=1

α
(

R(m)
λt

)
exp

⎛
⎝− t

n

n∑
i=1

α
(

R(m)
iλt/n

)
+ α

(
R(m)

(i−1)λt/n

)
2

⎞
⎠ . (37)

Here (R(m)
0 , . . . , R(m)

iλt/n, . . . , R(m)
λt ) are M realizations of Riλt/n, i = 0, 1, . . . , n, and

the integral has been approximated by the trapezoidal rule. The hazard rate is either
given by (32) or (33).

The results are illustrated in Fig. 6 for σ ∗ = 0.05, using M = 1000. The estimated
ISI distributions from our approximate model with both firing mechanisms compare
well with the estimated ISI distribution of ML reset to 0 after firings. On the contrary,
the hard threshold does not reproduce the ISI distribution well, e.g. the right tail is too
heavy. This is because the probability of firing during low subthreshold activity is set
to 0, whereas we have seen it is not.

8 Discussion

A stochastic LIF model constructed with a radial OU process and firing mechanism
of either logistic or exponential type has been shown to mimic the ISI statistics of a
ML neuron model. It captures subthreshold dynamics, not of the membrane potential
alone, but of a combination of the membrane potential and ion channels. This con-
struction will allow us to answer several questions about ML models, which have been
accessible only for LIF models, even though the latter have less biological motivation.

123



258 S. Ditlevsen, P. Greenwood

An example of such a question would be: Using ISI experimental data, the noise
standard deviation σ can be estimated (Lansky and Ditlevsen 2008). In principle, this
should also be possible from our new LIF model, even though we use a soft threshold.
This will give an estimate of N , the number of ion channels involved, through the
relation (σ ∗)2 ≈ 9/N .

A question we have not explored is: what is the best way to restart our new LIF
model? In our simulations we restarted both our LIF and the ML at the fixed point
of the ML. However, an uninterrupted stochastic ML produces continuous paths as
in Fig. 1b. After firing, which means traversing the large stable limit cycle, possibly
several times, they reenter a neighborhood of the fixed point from its edge. A further
refinement of our LIF model will be obtained by introducing a reentry mechanism,
which mimics this aspect of the ML.

The techniques introduced should be applicable to other excitable systems. An
excitable system is characterized by three states; a rest state, an excited state, and a
recovery state, in the ML model these correspond to the fixed point, to the stable limit
cycle, and the recovery state is the time the system spends in a cycle. Classical exam-
ples of excitable stochastic dynamics are the FitzHugh–Nagumo and the LIF models.
Recently, Berglund and Landon (2011) showed that when the FitzHugh–Nagumo
model is in the excitable regime, the ISI distribution is asymptotically geometric. This
is in agreement with the results in Rowat and Greenwood (2011), who analyzed the
ISI distribution of the ML model. It should be possible to apply our approach also to
the FitzHugh–Nagumo model in the excitable regime, where the fixed point is stable.
Noise will induce sustained oscillations with random excursions in the larger cycle
corresponding to spikes, and it would be interesting to identify the corresponding LIF
model embedded in the FitzHugh–Nagumo model.
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Appendix

Linearization matrix The expression for M in (11) is

M =
(

m11 −gk Weq(Veq − VK )/C
2VeqWeqβ

(
Veq

)
/V4 −α

(
Veq

) )
,

m11 = − Veq

C

(
2gCa(Veq − VCa)α

(
Veq

)
β

(
Veq

)
V2(α

(
Veq

) + β
(
Veq

)
)2

+ gCam∞(Veq) + gK Weq + gL

)
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