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Abstract We examine the role played in double-parton
interactions (DPI) by the parton—parton correlations originat-
ing from perturbative QCD parton splittings. Also presented
are the results of the numerical analysis of the integrated DPI
cross sections at Tevatron and LHC energies. To obtain the
numerical results the knowledge of the single-parton GPDs
gained by the HERA experiments was used to construct the
non-perturbative input for generalized double-parton distri-
butions. The perturbative two-parton correlations induced by
three-parton interactions contribute significantly to a reso-
lution of the longstanding puzzle of an excess of multi-jet
production events in the back-to-back kinematics observed
at the Tevatron.

1 Introduction

The field of multiple hard parton interactions (MPI) is an
important element of the picture of strong interactions at high
energies. The issue attracts a lot of attention. A series of the-
oretical studies were carried out in the last decade [1-18].
Attempts have been made to incorporate multi-parton colli-
sions into event generators [19-21].

Multi-parton interactions can serve as a probe for non-
perturbative correlations between partons in the nucleon
wave function and are crucial for determining the structure
of the underlying event at LHC energies. They constitute an
important background for new physics searches at the LHC.
A number of experimental studies were performed at the
Tevatron [22-24]. New measurements are under way at the
LHC [25,26].

Double hard parton scattering in hadron—hadron collisions
(DPI) can contribute to production of four hadron jets with
large transverse momenta p | > Aqcp, of two electroweak
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bosons, or “mixed” ensembles comprising three jets and y,
two jets and W, etc. In this paper we present the numerical
results for a variety of final states. However, for the sake of
definiteness, in the following we refer to production of four
final state jets in the collision of partons 1 and 2 from one
incident hadron with partons 3 and 4 from the second hadron:
143> N+ 13,24+4— Jy+ J4.

The double hard interaction is a process difficult to
approach theoretically. Formally speaking, it calls for anal-
ysis of four-parton operators, which emerge in the squared
matrix element describing a two-parton state in a hadron.
Relevant objects—quasi-parton operators—were introduced
and classified, and evolution of their matrix elements stud-
ied by Bukhvostov et al. in the 1980s in a series of papers
[27-29].

An approach to MPI based on the operator product expan-
sion and on the notion of transverse momentum dependent
parton distributions (TMD) is being developed in [7-9].

MPI is a multi-scale problem, not only because the sepa-
rate parton—parton interactions may differ in hardness. More
importantly, each single hard interaction possesses two very
different hardness scales. The distinctive feature of DPI is
that it produces two pairs of nearly back-to-back jets, so that

83 = (1L + 1)’ < Of =Ji ~ I3, (12)
83, =(ht +Ji )< Q5= ~J}. (Ib)

Hence, in the collision of partons 1 and 3 the first (larger)
scale is given by the invariant mass of the jet pair, Q> =
47 12 | 4J32 ", while the second scale is the magnitude of the
total transverse momentum of the pair: 82 = 8123.

It is important to stress that in the MPI physics there is
no factorization in the usual sense of the word. The cross
sections do not factorize into the product of the hard parton
interaction cross sections and the multi-parton distributions
depending on momentum fractions x; and the hard scale(s).
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In [17] we have introduced the necessary theoretical tools
for approaching the problem by introducing the general-
ized double parton distributions (GPDs) in the momen-
tum space. The double-parton GPD depends on one extra
variable as compared to the double-parton distribution—the
transverse momentum mismatch A between the partons in
the wave function and the wave function conjugated. In the
mixed space of longitudinal momenta and transverse coordi-
nates, an object equivalent to ,GPD has been introduced by
Treleani and Paver in the early-1980s [30] and has long since
been present in the literature; see, in particular, [7,31,32].

In order to construct a viable model for the two-parton
distribution stemming from the non-perturbative parton
wave function of the proton and, in particular, for the
A-dependence of the corresponding part of ,GPD, we have
exploited the existing experimental information obtained by
the HERA experiments. This model disregards (rather arbi-
trarily, for lack of anything better) any long-range correla-
tions between the partons in the proton wave function, which
approximation seems reasonable in a limited range of par-
ton momenta 10~! > x; > 1073 (see Sect. 6 for details).
This allows one to express the non-perturbative ,GPD via
the standard generalized parton distributions (GPDs) studied
at HERA.

In [18] we have studied how perturbative QCD (pQCD)
phenomena affect two-parton correlations. One obvious
effect is “scaling violation” due to parton multiplication pro-
cesses in higher orders. Another important effect is short-
range correlations induced by perturbative parton splitting,
giving rise to three-parton collisions. Such contributions we
will label as 1 ® 2 (“3 — 47 of [17,18], “1v2” of [33]). This
contribution to double hard interactions emerges as a result
of collision of two partons from one hadron with the two off-
spring of the perturbative splitting of a single parton taken
from another hadron. Perturbative splitting of one parton into
two as a contributor to double-parton distributions has been
discussed in the literature for a long time; see, e.g., [34-36].
However, for a relevant object—double-parton GPD—it was
embedded into the parton evolution picture only recently.

The pQCD expressions for fully differential distributions
were derived in the leading collinear approximation in [18].
In the present paper we examine how various contributions to
the differential distribution, being integrated over transverse
momentum imbalances, give rise to the expression for the
integrated cross section in terms of the product of , GPDs of
colliding hadrons.

The results of numerical studies of the integrated DPI
cross sections based on the theory and the model for non-
perturbative two-parton distributions in the proton developed
earlier are reported. We demonstrate that the 1 ® 2 processes
contribute significantly to the DPI cross section and, in par-
ticular, are capable of explaining the longstanding Tevatron
puzzle [22-24]. Namely, the DPI cross section extracted by
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the CDF and DO at x; ~ 0.01 turned out to be a factor of
2 larger than the expectation based on the approximation of
independent partons in the proton with the transverse dis-
tance spread extracted from the HERA data [15,16].

This observation does not exclude the presence of gen-
uinely non-perturbative correlations between partons in the
proton. However, we find it interesting that the pQCD
induced correlations alone could explain the scale of the
enhancement found by the Tevatron experiments.

We also discuss the pattern of the x- and Q?-dependence
of the effective interaction area (aka “effective cross section”)
induced by pQCD correlations at Tevatron and LHC energies.

The paper is organized as follows.

In Sect. 2 we reflect upon intrinsic complexity of theo-
retical MPI analysis. In Sect. 3 we remind the reader of the
basics of our approach to generalized two-parton distribu-
tions, »GPD, and we discuss the approximations adopted for
constructing the model for ,GPD in terms of the standard
GPDs.

In Sect. 4 we discuss the importance of perturbative par-
ton correlations and give a semi-quantitative estimate of their
magnitude. Section 5 is devoted to three-parton interactions
(1 ® 2 subprocesses). Here we reexamine the role of the so-
called “short split” term in 1 ® 2 subprocesses, which is con-
centrated in the kinematical region of nearly equal transverse
momentum imbalances,

8% = (815 +6)? < 83, ~ 83,

see [18]. We show here that the “short split” contribution to
the integrated cross section is actually contained in o3 that
one obtains integrating the simple DDT-like formula derived
in the complementary kinematical region 6123 < 8§4 (8123 >
8%4). Thus we correct (and simplify) the expression for the
integrated DPI cross section (the original Eq. (28) of [18]
was plagued by double counting).

In Sect. 6 we discuss the independent parton model for the
non-perturbative part of two-parton correlations. The numer-
ical results for Tevatron and LHC energies are presented in
Sect. 7. We conclude and discuss the results and perspectives
of DPI studies in Sect. 8.

2 Hidden reefs of DPI physics

An important question is whether MPI admits an intuitive
probabilistic parton interpretation as do the classical single
hard interaction processes.

When one considers inclusive one-parton distribution in a
hadron (pdf), the quantum state of the parton in the light-cone
hadron wave function (w.f.) coincides with that in the wave
function conjugated (w.f.c.). This lays down the foundation
for the probabilistic QCD improved parton picture.
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In the case of the two-parton correlation the situation is
different. Here only the overall quantum characteristics of the
parton pair as a whole (its total energy-momentum, its spin
and color states) should be identical in the w.f. and w.f.c. As a
result, the momentum, spin and color state of a single parton
in the pair do not necessarily match in the wave function and
in the wave function conjugated, thus endangering the very
probabilistic interpretation of the process under considera-
tion.

A general approach to double hard interactions has been
developed in [17]. It turned out that the transverse momen-
tum of the parton in the w.f. and that of its counterpart in
the w.f.c. are indeed necessarily different, with their dif-
ference A being conjugate to the relative transverse dis-
tance between the two partons in the hadron. This has led to
introduction of the notion of the generalized double-parton
distribution, ,GPD, which depends on a new momentum
parameter A Tt is important to stress that the cross sec-
tion of the double hard process does not factorize into the
product of the hard cross section and parton distributions.
Instead, it contains a convolution of the product of two , GPDs
over d2A.

Non-diagonality in the longitudinal momentum fractions
also occurs. Representing the incident partons as plain waves
with definite momenta, one ignores the fact that the two
partons originate from one and the same finite size hadron.
Therefore, when one picks two partons with momenta x,
x from the hadron wave function, one has to integrate over
x1—x3 atthe level of the amplitude, which integration ensures
that the longitudinal separation between the partons does
not exceed the size of the parent hadron. When one con-
siders independent hard interactions of two pairs of partons,
(x1, x3) and (x2, x4), taken from colliding hadrons, the inte-
grals over r = x; — xp and r’ = x3 — x4 do not manifest
themselves, since all four longitudinal momentum fractions
x; are uniquely determined by the kinematics of the two pro-
duced hard systems.

This is not in order for 1 @ 2 processes. In this case a flow
of large momenta between the two hard vertices is possible,
and the integration over r’ is instrumental in getting rid of
the fake singularity of the scattering matrix element (a simple
explanation of the origin of this unphysical singularity can
be found in [37]; see also [18]).

As aresult, a small offset between the parton longitudinal
momenta in the w.f. and w.f.c. emerges, |x3 — x3| o 82/ 0%
However, this mismatch turns out to be negligible in the dom-
inant kinematical region where the squared total transverse
momentum &2 of the jet pair is much smaller than the overall
hardness Q2 of the process: 8123 =L+ p3)? <« Q% ~
4 pil.

As noticed by Gaunt [38], the non-diagonality in the
longitudinal momentum space is likely to get induced in
1 ® 2 processes by higher-order QCD effects. This happens

when incoming partons, in the w.f. and w.f.c., exchange (real
or virtual) gluons with transverse momenta in the interval
AéCD < ki <« 8%. In [38,39] arguments were raised in
favor of smallness of the crosstalk effects in the DPI cross
section. Otherwise, this would have led to an unwelcome
complication of the problem: one would be forced to deal
with an unknown function of four longitudinal momentum
fractions (three independent variables) in place of the two
of ,GPD(x1, x2). Hence for the time being we disregard this
complication.

We do not dwell on the potential non-diagonality in color
and in spin variables either. One may argue that such non-
diagonal configurations are likely to be suppressed, as they
can be related with form factors for proton transition between
two states with different quantum numbers of the proton con-
stituents. For example, consider swapping inside the proton
the colors of two partons that sit at distances of the order of
the nucleon radius. This corresponds to an excitation that can
be visualized as adding an extra piece of color string whose
energy, O (1 GeV), would excite and destroy the proton.

3 Generalized two-parton distribution

In [17,18] we have developed a formalism to address the
problem of multi-parton interactions. The QFT description
of double hard parton collisions calls for introduction of a
new object—the generalized two-parton distribution, ,GPD.
Defined in the momentum space, it characterizes two-parton
correlations inside a hadron [17]:

Dy (x1, %2, 07, 03; A).

Here the index A refers to the hadron, x1 and x; are the light-
cone fractions of the parton momenta, and Q3, Q% are the
corresponding hard scales. As has been mentioned above,
the two-dimensional vector A is Fourier conjugate to the
relative distance between the partons 1 and 2 in the impact
parameter plane. The distribution obviously depends on the
parton species; we suppress the corresponding indices for
brevity.

The double hard interaction cross section (and, in particu-
lar, that of production of two dijets) can be expressed through
the generalized two-parton distributions » GPD.

2GPDs enter the expressions for the differential distri-
butions in the jet transverse momentum imbalances gik in
the kinematical region (1), as well as for the “total” DPI
cross section (integrated over S} ). In the latter case the hard-
ness parameters of the ,GPDs are given by the jet trans-
verse momenta Ql.z, while in the differential distributions—
by the imbalances 8[.2,( themselves. The corresponding formu-
las derived in the leading collinear approximation of pQCD
can be found in Ref. [18].

@ Springer
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It is important to bear in mind that the DPI cross section
does not factorize into the product of the hard parton inter-
action cross sections and the two two-parton distributions
depending on momentum fractions x; and the hard scales,
Q2, Q%. Instead,

do PP do do 1

- 2
dtizdrg  dry3 dig x ()

- 9
Oeff

2% - >
1 I 7(‘;7,?2 Dy, (x1,x2, 03, 035 A) Dy, (x3, x4, 02, 035 —A)

Oefi Dy, (x1, 01 Dy, (x2, Q3) Dy, (x3, Q) Dp, (x4, 03)
(2b)

The effective interaction area o is given by the convo-
lution of the ,GPDs of incident hadrons over the transverse
momentum parameter A normalized by the product of single-
parton inclusive pdfs.

For the expression (2) for the DPI cross section to make
sense, the integral over A has to be convergent. This is
the case when the two partons are taken from the non-
perturbative (NP) proton wave function. Indeed, a typical
inter-parton distance in the proton is large, of the order of the
hadron size R. Accordingly, one expects the corresponding
correlator in the momentum space to be concentrated at a
finite NP scale A% ~ R~2 and to fall fast at large A (expo-
nentially or as a sufficiently high power of A).

However, there is another source of two-parton correla-
tions. This is the purely perturbative (PT) mechanism when
the two partons emerge from perturbative splitting of one
parton taken from the hadron wave function. In this scenario
the production of the parton pair is concentrated at much
smaller distances. As a result, the corresponding contribu-
tion to »GPD turns out to be practically independent on A2
in a broad range, up to the hard scale(s) characterizing the
hard process under consideration (A2 only affects the lower
limit of transverse momentum integrals in the parton cas-
cades, causing but a mild logarithmic dependence).

Given the essentially different dependence on A, one has
to treat the two contributions separately by casting the ,GPD
as a sum of two terms:

Dy (x1, x2, Q%, Q%; A) = 21D (x1, x2, Q%, Q%; A)
+11Da(x1, x2, 01, 03 A). (3)

Here subscripts 2] D and 1] D denote the first and the second
mechanisms, respectively: two partons from the wave func-
tion versus one parton that perturbatively splits into two.

4 Perturbative two-parton correlations
In this section we discuss the role of the PT parton correla-

tions and show that, given a sufficiently large scale of hard
interactions, they turn out to be as important as NP ones.

@ Springer

4.1 Estimate of the PT correlation
Let us chose a scale Qfep that separates NP and PT physics to
be sufficiently low, so that parton cascades due to evolution
between QZCP and Ql.2 are well developed. To get a feeling
of relative importance of the PT correlation, as well as to
understand its dependence on x and the ratio of scales, Q2
VS. Qfep, the following lowest-order PT estimate can be used.

Imagine that at the scale Qgep the nucleon consisted of
ng quarks and ng gluons (“valence partons”) with relatively
large longitudinal momenta, so that triggered partons with
X1, X2 < 1 resulted necessarily from the PT evolution. In the
first logarithmic order, a5 log(Q?/ Q%) = &, the inclusive
spectrum can be represented as

D & (nyCF + ngN,)E,

where we suppressed the x-dependence as irrelevant. If both
gluons originate from the same “valence” parton, then

1
D o SNe& - D + (nyC% +ngN2)E?, (4a)
while independent sources give [21D:

(ng(ng—1)C% 4 2nyngCpNe + ng(ng—1)N2)E>
= D? — (n,C% +ngN)E2 (4b)

Recall that the A-dependence is different in (4a) and (4b).
However, at A =0 the second terms cancel in the sum and
we get for the correlator

D(xl,x%o) ~ NL'

L LA V). C— 5)
D(x1)D(x2) 2(ngCr +ngN¢)

The correlation is driven by the gluon cascade—the first term
in (4a)—and is not small (being of the order of unity). It gets
diluted when the number of independent “valence sources”
at the scale Qgep increases. This happens, obviously, when x;
are taken smaller. On the other hand, for large x; ~ 0.1 and
increasing, the effective number of more energetic partons
in the nucleon is about 2 and decreasing, so that the relative
importance of the 1 ® 2 processes grows.

We conclude that the relative size of PT correlations is of
order one, provided £ = O (1).

Moreover, the PT parton correlations cannot be disre-
garded without running a risk of violating general principles.
This can be illustrated by looking at the momentum sum rule
for double-parton distributions.

4.2 Momentum sum rule

An obvious momentum sum rule should be satisfied; namely,
that the integral over dx; with the weight x» (summing over
all parton species) should in the end produce (1 — x1) times
the inclusive one-parton distribution D (x1)—that is, the total
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longitudinal momentum carried by all the partons but the
triggered one:

Z/dxz X2 D,(jl’iZ)(xl,xz, 0%, 03 A=0)
in

=1 —x1)-D}'(x1, 0} (6)

(here we have explicitly restored the parton species indices
i1, i2). This sum rule, together with other ones concerning
the valence quantum numbers, has been discussed by Gaunt
and Stirling in [14] as a means for restricting the form of
double-parton distributions. Setting the A argument of ,GPD
to A =0 corresponds to taking the integral over the relative
transverse distance between the partons in the proton.

The derivation of (6) is carried out in Appendix A. It
explicitly demonstrates that the PT parton splitting enters on
equal grounds with the contribution due to two partons taken
both from the initial NP hadron wave function.

5 1 ® 2 DPI process

Actually, the NP and PT contributions do not enter the phys-
ical DPI cross section in arithmetic sum (3), driving one
even farther from the familiar factorization picture based
on universal (process independent) parton distributions. As
explained in [18], the double hard interaction of two pairs
of partons that both originate from PT splitting of a single
parton from each of the colliding hadrons does not produce
back-to-back dijets. In fact, such an eventuality corresponds
to a one-loop correction to the usual 2 — 4 jet production
process and should not be looked upon as a multi-parton inter-
action. The term [1]Dy,, X [1]Dp, has to be excluded from the
product Dy, x Dy,, a conclusion we share with Gaunt and
Stirling [33].

So, we are left with two sources of genuine two-parton
interactions: four-parton collisions described by the product
of (PT-evolved) GPDs of NP origin (2 ® 2),

21Dn, (x1, x2, 07, 03; A) 21D, (x3, x4, 01, 03; —A),
(7a)

and three-parton collisions due to an interplay between the
NP two-parton correlation in one hadron and the two partons
emerging from a PT parton splitting in another hadron (1®2),
described by the combination

210n, (x1, %2, 07, 03; A) (11D, (x3, X4, 07, 03: —A)
+110n, (x1, X2, O3, 03: A) (1D, (X3, X4, OF, 03 —A).
(7b)

Given that 2;D falls fast at large A, the mild logarithmic A-
dependence of 11D can be neglected in the product in (7b).

5.1 On separation of NP and PT parts of ,GPD:
parameter Q%)

Separation of PT and NP contributions is a delicate issue.
By definition of the perturbative correlation function, 11D
vanishes when Q2, Q% are taken equal to the separation scale
Qgep that one chooses to set the lower limit for applicabil-
ity of the pQCD calculations. Strictly speaking, Qgep can
be chosen arbitrarily: both the NP input function ;D and
the PT-calculable correlation [1].D contain Qgep-dependence,
but their sum does not depend on this formal parameter. At
the same time, the character of the A-dependence of 2;D
depends, obviously, on the choice of the Q?ep scale. Indeed,
by increasing the value of Qgep one will shuffle a part of the
perturbative splitting contribution from [1}D into 2}D. As a
result, the “NP correlator” (23D, contaminated by a short-
range PT correlation, would acquire a “tail” at large A2,
which would spoil convergence of the A integration in (2).
Thus, in order to preserve the logic of the NP-PT sep-
aration, one is led to introduce a specific resolution scale,
Qgep = (3, at which scale the NP correlation [2}D falls fast
with increase of A2. So defined, Q(z) is no longer an arbi-
trary “factorization scale” but a phenomenological parame-
ter whose value (which one expects to be of order of 1GeV)

should be established from the data.

5.2 Composition of the 1 ® 2 DPI cross section

In order to derive the DPI cross section, one has to start with
examination of the double differential transverse momentum
distribution and then integrate it over jet imbalances §;;. Why
is this step necessary?

The parton distribution D(x, Q2)—the core object of
the QCD-modified parton model—arises upon logarithmic
integration over the transverse momentum up to the hard
scale, kf_ < Q2. Analogously, the double-parton distribu-
tion D(x1, x2, Q%, Q%; A) embeds independent integrations
over parton transverse momenta k12 i k% L upto Q% and Q%,
respectively. However, the 1 ® 2 DPI cross section contains
a specific contribution (“short split”; see below) in which the
transverse momenta of the partons 1 and 2 are strongly cor-
related (nearly opposite). This pattern does not fit into the
structure of the pQCD evolution equation for ,GPD where
k11 and k> change independently. Given this subtlety, the
legitimate question arises whether the expression for the inte-
grated 1 ® 2 cross section (7b) based on the notion of the
two-parton distribution 11D takes the short split into account.
Below we demonstrate that in fact it does.

The differential distribution over jet imbalances was
derived in [18] in the leading collinear approximation of
pQCD. It resembles the “DDT formula” for the Drell-Yan
spectrum [49] and contains two derivatives of the product of

@ Springer
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L

Fig. 1 Kinematics of the “short split” contribution

2GPDs (7) that depend on the corresponding §;; as hardness
scales, and the proper Sudakov form factors depending on
(the ratio of) the Ql.2 and ka.

In particular, in the region of strongly ordered imbalances,

72do PPl af

x 5__.
d?813d%824 87563,

813 > 854, 815 < 83, ®)

the differential 1 ® 2 cross section reads

n? do1g2
d2813 d%84

do d d d2A
= { (11Dh,

T divdh, de?y a8y, | ) @n)?
(X1, X2, 823, 8245 A) (2D (x3, x4, 825, 8245 A)
2 g2 2 2
x$1 (01, 813) $3 (01, 813)

52(03.5%) 54 (03,83 | + [ = o).
)

The differential distribution for the 2 ® 2 DPI mechanism
has a similar structure; see Eq. (25) of [18].

In addition to (9), there is another source of double
collinear enhancement in the differential 1 ® 2 cross section.
It is due to the kinematical region where the two imbalances
nearly compensate one another,

= (813 +804)° < 8% =83~ 83, (10)

and the dominant integration region is complementary to that
of (8):

2 DPI 2
dashon S

42813 280 . 8262

8% « 5% (1)

This enhancement characterizes the set of 1 ® 2 graphs
in which there is no accompanying radiation with transverse
momenta exceeding |§’|.

In this s1tuat10n the parton that compensates the overall
imbalance, k; = —¢' is radiated off the i incoming, quasi-
real, parton legs as shown in Fig. 1. At the same time, the
virtual partons after the core splitting “0”— “1” + *“2” enter
their respective hard collisions without radiating any off-
spring along the way.

@ Springer

The 1 — 2 splitting neighbors the hard vertices; therefore
we use the name ““short split” (aka “endpoint contribution”,
[18]).

A closed expression for the differential distribution in
jet imbalances due to the short split, derived in the leading
collinear approximation, is given by Eq. (27) of [18]:

DPI o ( 82)
27 82

2
u dgshort dapfm

d2513 d2324 - dlAl dfz .
PO —2—) 51(03, 8% 52(03, 82
x Y P, ) S1(Q1.8% 503,69

c

Dy, (x1+x2,87)

S 2, 5/2 S 2, 5/2
A 3(Q7.87)84(03.67)

d
T {50(52, %)

d’A
* / @np
The short split becomes less important when the scales
of the two hard collisions separate. Indeed, the logarithmic
integration over 82 is kinematically restricted from above,
8% < 82, >~ min{Q3%, Q3}. As a result, when the transverse
momenta of jets in one pair much exceed those of the second

pair, e.g., Q% > Q% (see (1)), the contribution of the short
split becomes suppressed as

Diy (x3, x4, 87 8" 5)} +{h1 < ha}. (12)

oo 1007 o Si(at, a3 3. a) < 1 (01> 03,
Here S and S5 are the double logarithmic Sudakov form fac-
tors of the partons “1” and “3” that enter the hard interaction
with the larger hardness scale.

The short split induces a strong correlation between jet
imbalances, which is worth trying to look for experimentally.

The relative weight of the short split depends on the pro-
cess under consideration. For most DPI processes in the kine-
matical region we have studied, it typically provides 10-15 %
of the R value. However, it happens to be more important
when the nature of the process favors parton splitting. This
is markedly the case of the double Drell-Yan pair produc-
tion where the short split contribution reaches 30-35 %. On
the contrary, it turns out to be practically negligible for the
same-sign double W-meson production (see the discussion
in Sect. 8 below).

5.3 Short split in the integrated cross section

In the preceding publication we have treated the contribution
of the short split to the total DPI cross section as an addi-
tion, 1/0ghort, to the 1 ® 2 effective interaction area 1/03; see
Egs. (28) and (32c) of [18]. However, this was not a right
thing to do. As it turns out, the short split contribution to the
integrated cross section is already contained in (17b).

To see how this happens, one has to examine the structure
of the DDT formula for the 1 ® 2 differential cross section
(9) more closely. The distribution function [1}D in (9) in the
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leading collinear approximation is given by Eq. (18) of [18]:

b e
[1]D;(,a )(xl,xz;qlz,qzz; A)

min (ql q2

dk? o (k%)
=X / S [ S o)
k* 2m y2
/b/ W
dz (a',b) 2.12
x [ ——— PPz DY, qi; k
zZ(1 —2z2) zy
X2 2.2
xDb, [ ——=—,¢2; k). 13
’ ((l—z)y “ ) (1

Here a, b denote the registered partons, and a’,b’, ¢ are
the indices of the partons involved in the splitting ¢ —
' (2) b/ (1 — z) with the DGLAP probability P?” (7). The
distribution Dy, (y, k?) describes the standard probability of
finding a parton c inside the incident hadron £ at the trans-
verse momentum scale k2, and the functions Df, (x, qz; k2) in
the second line stand for the distribution of parton 7, probed
at scale g2, in the initial parton i” at lower virtuality scale k.

Let us examine the structure of the terms one gets applying
two derivatives to (13) substituted into (9):

dk
i i —7 oKD F U 47, 3). (14)
Taking the derivative over in of the product D(x, q?) X
S(Q?, ql.z) corresponds to picking up from the parton chain an
accompanying parton £ (with the largest transverse momen-
tum) which compensates the imbalance, £ = —g;.

Apart from logarithmic dependences of D and S, the
derivative in (9) may act upon the upper limit of the
k*integration in (13). We have

min (‘11 (12)

dk
/ T tF 6 ah gd).

s (15a)
q1 95

Differentiating the upper limit of the k?-integral describes
another legitimate situation, i.e. when one of the partons “1”
and “2” does not radiate before entering the hard interaction.
In this case the smaller of the jet imbalances is determined
by the splitting momentum k:

qg O

(9@}~ D F oy + 9@~ aDF |z

(15b)

S
277
1492

Finally, applying both derivatives to the integration limit (13)
gives rise to

qg

2 2
q—25(Q1 - ‘12)-7'—|kz:q12:q%-
1
Contrary to the first two contributions (15a) and (15b), the last
term (15c) obviously violates the condition of applicability
(8) of the DDT formula. Instead, in the region 5%3 ~ 8%4

(15¢)

it is the short split that contributes in the leading collinear
approximation, so that (12) has to be used to describe the
differential spectrum in place of (15c).

However, as far as the fotal cross section is concerned, the
integrals over imbalances of the short split and of the fake
singular term (15c) turn out, as if by miracle, to be the same.
Indeed, integrating the short split (12) over 8% up to 8%, we
get

min(Q1.03) 5
ZP(l’z) X1 / ﬁas(S )Dhl(xl+x278 )
- ¢ X1+x2 82 2w xX1+x0
4 2
d“A 2
XESI '/W[Z]th(x:i?x“ﬂ(g 18 1A)a (]6)

where [T, Si = 1(03,6%$:(03, 815303, 6%)54(03,
8%).

On the other side, taking the integrand of 11D (13) in the
point ql2 = q22 = k2, and using

D”,<x1 k2> :3“,5<1—x—‘>
@\ zy a g zy)’

X2
Db, (— q3; kz) = 5”,5(1 -
PNA—2y"" g

- )
we eValuate the momentum integl‘als,

[ [ (=50 a25) = o
z2(1—=2) 2y (1-2)y)  xi+x’

to arrive at the very same expression (16).

It is worth noticing that this correspondence does not
depend on the precise form of the upper integration limit
in (13). The result does not change, within the leading loga-
rithmic accuracy, if one replaces a sharp ©*-function cut by a
smooth damping factor that cuts the logarithmic k> integra-
tion at k2 ~ min{qlz, qzz}.

Thus, for the integrated DPI cross section we obtain two
contributions to the effective interaction area:

[T, Dx) d’A

o4 - (2m)? 21D, (x1, X2, 01, 03; A) (21D,

x (x3, x4, 07, 03: —A),
[T, D) d2A
o5 / (2n)?

X Dpy(x3, X4, 01, 03) + (11Dn,(x1, x2, 0F, 0D

X Dpy(x3, X4, O3, Q%;B)}

(17a)

{[2]Dh1(X1, X2, Q%, Q%;A)[u

(17b)

Let us stress in conclusion that a compact and intuitively
clear expression containing the product of the ,GPDs 21D
and 11D in (17b) applies only to the integrated 1 ® 2 cross
section.

@ Springer
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When addressing the differential distributions, one has
to employ the “DDT-like formula” (9) in the region of
strongly ordered transverse momenta (8), and the quite dif-
ferent expression (12) in the kinematical region of nearly
opposite jet pair imbalances (11).

6 Modeling 21D

To proceed with the quantitative estimates, one needs a model
for the non-perturbative two-parton distributions in a proton.

A priori, we know next to nothing about them. The first
natural step to take is an approximation of independent par-
tons. It allows one to relate oGPD with known objects,
namely [17]

21D (x1, %2, 0%, 0% A) = G(x1, 0F; AHG(x2, 03; AY).
(18a)

Here G is the non-forward parton correlator (known as the
generalized parton distribution, GPD), which determines,
e.g., hard vector meson production at HERA and which enters
in our case in the diagonal kinematics in x (x; = xi, see
Fig. 2).

The modeling by (18a) is not perfect. First of all, it does
not respect the obvious restriction D(x] 4+ x3 > 1) = 0. So,
x; have to be taken not too large (say, x; < 0.5). Actually, x;
must be taken even smaller. The GPD in Fig. 2 is an elastic
amplitude, while the corresponding block in the DPI repre-
sents the inclusive cross section (the cut-through amplitude).
For the analogy to hold, the interaction amplitude has to be
close to imaginary. This condition calls for x; < 0.1.

On the other hand, x; should not be foo small to stay away
from the region of the Regge—Gribov phenomena where there
are serious reasons for parton correlations to be present at the
non-perturbative level (see the discussion in [40]).

Thus, we fix the domain of applicability of the model (18a)
for ,GPD as 10~ > x; > 1073.

The GPD, in turn, can be modeled as

G(x1, 0% A%) =~ D(x1, 0%) x Fe(A?), (18b)

\ t:—Az

Fig. 2 GPD in the vector meson electroproduction amplitude

@ Springer

with D the usual one-parton distribution determining DIS
structure functions and F the so-called two-gluon form factor
of the hadron. The latter is a non-perturbative object; it falls
fast with the “momentum transfer” A2. This form factor can
be parametrized differently. For example, by a dipole formula

2 -2
Frp(a?) = (142
2g m2 )

8

(18¢)

where the effective parameter mz, extracted from the FNAL
and HERA J/+ exclusive photoproduction data lies in the
ballpark of m3(x ~ 0.03, Q* ~ 3GeV?) ~ 1.1GeV? and
decreases with further decrease of x [41].

Substituting (18) into (2) gives

2

d2A m
-1 __ 4 2y g ~
Fo(A%) = 2, 0wt = 32mb. (19)

Oeff = _(27_[)2

It is about a factor of 2 larger than the value measured by the
Tevatron experiments [22,23].

pQCD induced parton correlations (1 ® 2 DPI processes)
are capable of explaining this discrepancy.

Turning to the 1 ® 2 term, we neglect a mild logarithmic
A-dependence of [11D in (17b) and use the model (18) for
121D to obtain

a7 |:[1]D(x1,x2)

o3 ~ -
3 LD(x1)D(x2)

[1]D(X3,x4)]  on-]
D(x3)D(x4) '
(20)

where we substituted the value of the integral (cf. (19))

A, mé
2R (A = 8
f(2n)2 2e (A7) 127

We will parametrize the result in terms of the ratio

R= J1e2 _ % Q1)
022 o3

For the effective interaction area,

O = 05 4oy, (22)

we then have

28w 1 35mb 1 32mb
Ocff = —2 . ~ 3 . ~ (23)
mg 1+R mg[GeV] 1+ R 14+ R

(the phenomenological value mg, = 1.1 GeV? was used).

Within the framework of the NP two-parton correlations
model (18a), there is but one free parameter Q%. The DPI
theory applies to various processes and holds in a range of
energies and different kinematical regions. Therefore, having
fixed the Q(z) value, say, from the Tevatron data, one can con-
sider all other applications (in particular, to LHC processes)
as parameter-free theoretical predictions.
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Fig. 3 The 1 ® 2./2 ® 2.rati0 R Q(2)=0.5 GeV? R 03=1 GeV?
(21) in the CDF kinematics for 27 -18 0 18 27 27 -18 0 09 18 27
the process 15F T T T T 15 15 T T AT 315
pp— y +3jets+ X \m\_/ \/
0.441
075 4075 075 F 1075
S 071 0 & 0 04 Ho
02
o4
~075F 1-0.75 ~075 F 1-075
02 042
m 0.
-15 ¢ . . . 4-15 -15 ) . . LMY s
27 -18 0 } 18 27 27 -18 0 09 18 27
m m

7 Numerical results
7.1 Calculation framework

In numerical calculations we used the GRV92 parametriza-
tion of gluon and quark parton distributions in the proton
[42]. We have checked that using more advanced GRV98
and CTEQG6L parametrizations does not change the numer-
ical results. The explicit GRV92 parametrization is speed
efficient and allows one to start the PT evolution from rather
small virtuality scales. The combination (Q% + A?) was used
as the lower cutoff for logarithmic transverse momentum
integrals in the parton evolution, which induced a mild (log-
arithmic) A-dependence on top of the relevant power of the
two-gluon form factor f, (A2).

To quantify the role of the 1 ® 2 DPI subprocesses, we
calculated the ratio R (21) in the kinematical region 1073 <
x; < 107! for Tevatron (/s = 1.8 = 1.96 TeV) and LHC
energies (/s = 7 TeV). We chose to consider three types of
ensembles of colliding partons:

1. u(u) quark and three gluons, relevant for “photon plus
three-jets” CDF and DO experiments,

2. four gluons (two pairs of hadron jets),

3. ud plus two gluons, illustrating W jj production.

4. ud plus dii, corresponding to the W+ W~ channel.

7.2 Perturbative 1 ® 2 correlation at the Tevatron
7.2.1 CDF experiment

In Fig. 3 we show the profile of the 1 ® 2 to 2 ® 2 ratio R for
the y+three-jets process in the kinematical domain of the
CDF experiment [22]. The calculation was performed for
the dominant “Compton scattering” channel of the photon
production: g(x2) + u(it)(x4) — y +u(u). The longitudinal
momentum fractions of two gluons producing second pair of

jetsare x1 and x3. The typical transverse momenta were taken
tobe p11.3 = 5GeV for the jet pair, and p 7 4 =~ 20 GeV for
the photon—jet system. In Fig. 3 R is displayed as a function
of rapidities of the photon—jet, n, = %ln(xz /x4), and the
two-jet system, n; = 1 In(x1/x3).

We observe that the enhancement factor lies in the ballpark
of 1 + R ~ 1.5 + 1.8. Using (23), it translates into oeff =~
18 = 21 mb. This expectation has to be compared with the
CDF finding oefr = 14.5 £ 1.7 fé; mb. A recent reanalysis
of the CDF data points at an even small value: oeff = 12.0 £
1.4 113 mb, [43].

In our previous report [40] we have included a plot of the
x-dependence of R for central production at Tevatron and
LHC energies. That plot turned out to be confusing: a rather
sharp x-dependence it has demonstrated seemed to contradict
the CDF findings of approximate constancy of oefr. In fact,
this variance with x was in the major part resulting from
the kinematical link between x and Q2 for a given collision
energy (Q2 = xzs/4).

The results of a numerical calculation for the fixed hard-
ness Q% shown in Fig. 3 for the CDF kinematics exhibit a
very mild x-dependence of the R factor and thus of the oeft.

7.2.2 DO experiment

The ratio R is practically constant in the kinematical domain
of the DO experiment on photon-+three-jets production [23,
24] and is very similar to that of the CDF experiment shown
above in Fig. 3. So, for the DO kinematics we instead display
in Figs. 4, 5 the enhancement factor 1+ R in dependence on
p. of the secondary jet pair for photon transverse momenta
10, 20, 30, 50, 70, and 90 GeV (from bottom to top).

The corresponding prediction for oefr is shown in Fig. 6
in comparison with the DO findings.

Both the absolute value and (a hint at) the p -trend look
satisfactory.

@ Springer
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1+R
2.4

. Q3= 0.5 GeV?

20}

18}

1.6

14 1b 1.5 2.0 3b 5.0 7b
P (GeV)

Fig. 4 Central rapidity photon+three-jets production in u(u)-gluon
collisions in the DO kinematics

1+R
2.0

2 2
18F QO: 1.0 GeV

1.4 //

1.2

1.0

10 15 20 30 50 70
jet
p‘ﬂ_ (GeV)

Fig. 5 Same as Fig. 4 for Q% = 1GeV?

7.3 LHC energies

In Fig. 7 we show the 1 ® 2 to 2 ® 2 ratio for production
of two pairs of back-to-back jets with transverse momenta
50 GeV produced in collision of gluons at the LHC energy
s =17 TeV.

The dependence on the hardness parameters of the DPI
process of double gluon—gluon collisions is illustrated in
Fig. 8. For the sake of illustration, we have chosen the value
of the PT cutoff parameter Q% = 0.5GeV?, and we have
calculated the enhancement factor 1 4+ R for five values of
the transverse momenta of the jets in one pair, p 1 = 20, 40,
60, 80, 100 GeV.

Figure 8 demonstrates its dependence on the transverse
momenta of jets in the second pair, p; = pJ».

We observe that within the chosen range, R increases by
about 15-25 % with increase of the hardness of one of the jet
pairs. This corresponds to approximately 10 % drop in oeff.
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C DO mg = 1.1GeV?
25 - 2 _ 12
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Fig. 6 o.f as a function of the hardness of the second jet in the kine-
matics of the DO experiment for p, = 70 GeV

Finally, in Fig. 9 we show the rapidity profile of the R ratio
for the process of production of the vector boson, ud — W,
accompanied by an additional pair of (nearly back-to-back)
jets with transverse momenta p; = 30GeV produces in a
gluon—gluon collision.

It is interesting to notice that the effect of perturbatively
induced parton—parton correlations is maximal for equal
rapidities of the W and the jet pair, and it diminishes when
they separate. This feature is more pronounced when the cut-
off parameter Q% is taken larger, so that the PT correlation
becomes smaller and, at the same time, exhibits a stronger
rapidity dependence.

The recent ATLAS study [44] reported for this process
the value oeff = 15 £ 3 fg mb, which is consistent with the
expected enhancement due to contribution of the 1 ® 2 DPI
channel; see (21).

Figure 10 shows a slight variation of o with the jet scale
in Wjj production.

7.4 Qp-dependence

The dependence of the enhancement factor 1 + R on the
Qo parameter is shown for the typical kinematics of the
CDF photon+three-jets experiment in Fig. 11, and for cen-
tral production of two pairs of p; =~ 50 GeV jets at the LHC

(1 = np) in Fig. 12.
8 Conclusions and discussion

In the previous paper [18] we have analyzed the perturbative
correlation that arises due to 1 ® 2 splitting of the parton
in one of the colliding hadrons and derived the correspond-
ing expressions in the leading collinear approximation of the
pQCD. Here we presented the results of the numerical eval-
uation of this contribution to the DPI cross section measured
at the Tevatron and found the theoretical results to be con-
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Fig. 7 Rapidity dependence of
the R factor for two pairs of
p1 = 50GeV jets produced in

R Q%=1 GeV?
-23 -1.15 0 1.15 23

gluon—gluon collisions

-23 -1.15 0

m
1+R
3.0
28} Q3= 0.5 GeV?
26
24}
22 1
2.0 /
50 30 50 70 100

pI% (GeV)

Fig. 8 1+ R for two dijets at LHC: p; | = 20, 40, 60, 80, 100 GeV
(from bottom to top)

sistent with the data for the value of the model parameter
Q(z) ~ 0.5GeV2. With Q(z) fixed, theoretical expectations for
certain exemplary DPI processes at LHC energies become
parameter-free predictions.

The theoretical derivation of the effective interaction area
oerf (“effective cross section”) relied on certain assump-

Fig. 9 Ratio R for production R
of W plus a pair of
p1 >~ 30GeV gluon jets

03=0.5 GeV* R
1.2 2.4 -24 -12 0 1.2 2.4

0.93 IR
a5 11.15
10
1115
‘ 23
115 23
O'eﬂ‘[mb]
20.0 . .
2 2
195k QO = 0.5 GeV
190

17.5F

17.0 y . .
20 30 40 50 60

pjft (GeV)

Fig. 10 o for the Wjj process at LHC energy as a function of jet
transverse momentum

tions and approximations. Our approach to perturbative QCD
effects in DPI developed in [18] was essentially probabilis-
tic. In particular, we did not discuss the issue of a possible
interference between 1 ® 2 and 2 ® 2 two-parton amplitudes.
One can argue that such an eventuality should be strongly
suppressed. Indeed, the spatial properties of the accompany-

03=1 GeV?

087 2.4 2.4 Foum 045 2.4

11.2

1-1.2

d4-24

24
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1+R
2.0
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1.0 1.5 2.0 3.0
2
Q3 (Gev?)

Fig. 11 Qp-dependence of the enhancement factor 1 + R for the CDF
y + three-jets experiment

1+R

24 F
22 F
20 F
1.8
1.6 f
14
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2
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Fig. 12 Qp-dependence of the enhancement factor 1 + R for p; =~
50 GeV LHC dijets

ing radiation produced by so different configurations make
them unlikely to interfere, since in the 2 ® 2 mechanism
a typical transverse distance between two partons from the
hadron w.f. is of the order of the hadron size, while in the
1 ® 2 case it is much smaller and is determined by a hard
scale. Moreover, we disregarded potential contributions from
non-diagonal interference diagrams that are due to crosstalk
between partons in the amplitude and the amplitude conju-
gated. Such contributions are absent in 2 ® 2 collisions but
emerge specifically in the 1 ®2 DPI process, in which the two
partons from the hadron wave function are relatively close to
one another in the impact parameter plane [38].

Our prediction for oeff was obtained as the ratio of the
DPI and SPI cross sections derived in the leading collinear
approximation of pQCD (LLA). This means that the evolu-
tion of perturbative parton cascades was treated at the one-
loop level, and the matrix elements of hard parton interac-
tions were treated in the Born approximation. In the DPI
problem, the subleading non-logarithmic corrections to the
LLA are bound to be sizable. Indeed, when deriving the total

@ Springer

DPI cross section within the LLLA accuracy, one integrates
the differential distribution over jet imbalances, 8,.2,( < Q?,
up to the scale given by the transverse momenta of the jets,
Ql.2. In reality, due to experimental cuts that are imposed in
order to extract jets in the back-fo-back kinematics the true
hard scale of the DPI cross section is lower. Being formally a
subleading O («s) correction, it will affect both the 1 ® 2 and
the 2 ® 2 cross sections. In which way the subleading pQCD
effects will change the ratio is so far unknown. To establish
the true hard scales of the parton distributions entering the
DPI cross section formula, one has to carry out the NLLA
analysis which would include taking into consideration con-
crete details of the jet finding algorithms employed in the
experimental setup.

Finally, our prediction for the DPI cross sections was
based on a model assumption of the absence of NP two-
parton correlations in the proton. This assumption is arbitrary.
One routinely makes it for lack of any first-hand information
as regards such correlations. In [40] we have pointed out a
source of genuine non-perturbative two-parton correlations
that should come onto the stage for very small x values,
x & 1073, and we estimated its magnitude via inelastic
diffraction in the framework of the Regge—Gribov picture
of high energy hadron interactions. Also it was argued in
[45] that strong quark—antiquark correlations may arise from
dynamical chiral symmetry breaking.

In order to be able to reliably extract the DPI physics, one
has to learn how to theoretically predict 1 ® 1 parton col-
lision processes with production of two hard systems (four
jets in particular). This is the dominant channel, and it is
only in the back-to-back kinematics thatthe2 ® 2 and 1 ® 2
DPI processes become competitive with it. Among the first
subleading pQCD corrections to the 1 ® 1 amplitude, there
is a loop graph that looks like two-by-two parton collision.
This resemblance is deceptive, though. Unlike the 2 ® 2 and
1 ® 2 contributions, this specific correction does not depend
on the spatial distribution of partons in the proton (informa-
tion encoded in ogfr), is not power enhanced in the region
of small transverse momenta of hard systems, and therefore
does not belong to the DPI mechanism [18,33]. Treating the
1 ® 1 amplitude at the one-loop level corresponds to the two-
loop accuracy for the cross section. Until this accuracy is
achieved, the values of o extracted by experiments should
be considered as tentative.

Our first conclusion is that in the kinematical region
explored by the Tevatron experiments, the x-dependence of
Oeff turns out to be rather mild. This by no means implies,
however, that ot can be looked upon as any sort of universal
number. On the contrary, we see that the presence of the per-
turbative correlation due to the 1 ® 2 DPI mechanism results
in the dependence of oef not only on the parton momentum
fractions x; and on the hardness parameters, but also on the
type of DPI process.
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For example, in the case of the golden DPI channel of
production of two same-sign W bosons [46] the discussed
mechanism leads to the expectation of significantly larger ot
than for, say, W plus two-jets process. Indeed, the comparison
of the values of R for central production of two-gluon jet
pairs, Wjj and WT W (with jet transverse momenta p| ~
Mw /2), gives (/s =TTeV, n; =1 = 0)

R(jj+jj) =1.18 (0.81)
R(W + jj) =0.75 (0.45)
R(WTWT) =0.49 (0.26)

02 =05(1.0)GeV2.  (24)

As a result of the varying magnitude of the perturbative cor-
relation, the effective interaction areas o turn out to be
significantly different for the three processes:

jj+jj: oef = 14.6 = 17.6mb,
W+ jj: oer = 18.3 +22.0mb, (25)
WHWt: oo =21.5+25.4mb.

The smaller value for each effective interaction area corre-
sponds to more developed perturbative parton cascades than
the larger one (Q(z) = 0.5GeV? versus Q(z) = 1.0GeV?).

Contrary to the W W™ channel, the double Drell-Yan
process favors the 1 ® 2 mechanism, g — uiu. As a result,
the effective interaction area here turns out to be even smaller.

For central production of two Z bosons at /s = 7TeV
we get

R(ZZ) = 1.03 (0.73),

(26)
ZZ: o =159+ 18.5mb.

An important feature of the 1 ® 2 mechanism is its depen-
dence on the hardness of the process. With increase of Qiz,
the 1 ®2 to 2®2 ratio R should increase rather fast thus push-
ing oefr to smaller values. At the same time, with decrease
of the p, of the jets this contribution decreases. As we have
seen above, such a trend is consistent with the DO data for
x ~ 1072,

By pushing the hardness scales downto p; ~ 3 +-4GeV,
one enters the domain of the physics of minijets. Here one
should have o ~ 25 mb for x; ~ 1072, a much larger
value than the Q-independent o which had been assumed
in Monte Carlo models like PYTHIA for a long time.

It would be interesting to implement in the MC models a
more realistic account of MPI in which o would decrease
with increase of p .
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Appendix A: Momentum sum rule

The proof of the sum rule (6) involves two types of graphs;
see Fig. 13.

A.1 Two partons from the wave function

Consider first two partons 1 and 2 whose parents are taken
from the hadron wave function at some scale Qgep that sep-
arates NP and PT stages. Distribution of each parton then
independently evolves up to the hard scale Q2 according to
the standard pQCD rules.

The single-parton distribution is presented in the form of

a convolution:
: d
y X i
Dl (x. 0= / ;D,-f (;, 0% Qiep) wh(y: 0%
B X

of the NP input function w with the parton evolution function
Dif (x, Q%; Q2 ) obeying the initial condition

sep

D/ (x, 0%, 0% =8/ -8(1 — x).

sep’

Applying the momentum integral (6) to the single parton
distribution D™ (x5, Q?) gives

Z/dxzxz Dzz(xz) = Z)_’B,
iy B

with yp the average energy fraction of the proton carried by

the initial parton B (parent of i) at the scale Qgep,

jg = /dyB YB W (v8; Qrep)-

Due to the momentum sum rule for the parton wave function
of the proton, summing over parton species B produces the
total energy carried by all initial partons but the parent of
the second registered parton i;:

» O O»
Y1 Yy by
by

Fig. 13 Independent and correlation diagrams
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l—yl.

Y s =
B

The parent parton energy y; is not observable. What is fixed
by the measurement is x, while y; is being integrated over:

Z/dxz X2 Dzl’iz(xl,xz)
in
: d
V1 i1 [ X1
= Z[ —[1 - m]w,ﬁ(ylm;; (—, 0% Qé)
Y1 V1
A

=[1-0n]-Df (x.07), )

where we have introduced an average conditional parent par-
ton energy (y;) which depends on x; and Q2. It is important
to notice that this quantity depends also on the unphysical
scale Qqep which separates the domains of the PT and NP
descriptions (unlike the physical inclusive parton distribu-
tion in the proton D on the r.h.s. of (27)).

A.2 One parton splitting into two

For the perturbative correlation we have

dy i [ M 24,2
Z/ /Z(l P2(2)Dj} (y)D} (Zy)xa 2%y
i X
- g/dy/ fPf(z)Df(y)DB (j) x (1 = 2).

We split the factor (1 — z) into two pieces, (1) + (—z). The
first one gives

o dz o [ X1
—n; / dy / 7P£<z>D;;‘<y>D,; (5>
- f dySa(k*) D (v, k%)

o |:SA1(k2) D! (% 0% k2>}. (28)

Here we have used the evolution equation for the second D
function differentiated over the smaller scale k*:

2
ag(k ) Zf PG DY ()2_6 Qz;kz)

[s;l(kz) DA (x, 0% kz)}, (29)

= — Sa(k?)

9 In k2

where S4 is the Sudakov form factor of the parton A depend-
ing on the two scales, the overall Q2 and the floating splitting
scale k? [47-49].

An alternative evolution equation where the derivative is
applied to the upper scale of the parton distribution in the
proton reads

@ Springer

as(k)z/_PA()Dh (;,{z)

[SB (k*) DE (x, k2)]. (30)

—1,12
=5 g

This equation allows us to analogously represent the second
piece (—z) as the derivative of the first D-function over the
upper scale:

s _ dz g A i X1
;;/dn z)/ — P (@ DD} (Zy)

[SB D, k2>], 31)

91Ink2

with y’ = zy. Combining (28) and (31), we get a full loga-
rithmic scale derivative of the product of the D-functions:

dk? d roit (X1 2 2
_Z/ [ k2[D"(yk)D (7’Q’k)]

Now we integrate over the intermediate virtuality and make
use of the boundary conditions,

’Dﬁ <§’ Q2; Q2)=8£5 (1—%), Dh o, Qsep)_w;?(y)’

with w;:‘ as the NP input parton distribution. We obtain

Z/d)’I wy, ()’I)D” (_ Q2 Qsep)

—X1D2] (1, 0% = [(n) —x1]- D) (x1, 0%, (32)

Once the two- and one-parton contributions (27) and (32) are
taken together, the unphysical quantity (y;) cancels out, and
we arrive at the desired sum rule (6).

We conclude that for consistency of the DPI picture, the
perturbative parton correlation (and thus the 1 ® 2 sub-
processes) should be taken into full consideration at that
very moment when one allows for distributions of partons
picked from the hadron wave function to evolve with the
hard scale(s).
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