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Abstract

Background: Temporal lobe epilepsy (TLE) and idiopathic generalized epilepsy (IGE) patients have each been
associated with extensive brain atrophy findings, yet to date there are no reports of head to head comparison of
both patient groups. Our aim was to assess and compare between tissue-specific and structural brain atrophy
findings in TLE to IGE patients and to healthy controls (HC).

Methods: TLE patients were classified in TLE lesional (L-TLE) or non-lesional (NL-TLE) based on presence or absence
of MRI temporal structural abnormalities. High resolution 3 T MRI with automated segmentation by SIENAX and
FIRST tools were performed in a group of patients with temporal lobe epilepsy (11 L-TLE and 15 NL-TLE) and in15
IGE as well as in 26 HC. Normal brain volume (NBV), normal grey matter volume (NGMV), normal white matter
volume (NWMV), and volumes of subcortical deep grey matter structures were quantified. Using regression analyses,
differences between the groups in both volume and left/right asymmetry were evaluated. Additionally, laterality of
results was also evaluated to separately quantify ipsilateral and contralateral effects in the TLE group.

Results: All epilepsy groups had significantly lower NBV and NWMV compared to HC (p < 0.001). L-TLE had lower
hippocampal volume than HC and IGE (p = 0.001), and all epilepsy groups had significantly lower amygdala volume
than HC (p < = 0.004). In L-TLE, there was evidence of atrophy in both ipsilateral and contralateral structures.

Conclusions: Our study revealed that TLE and IGE patients demonstrated similar overall tissue-specific brain
atrophy, although specific structures differences were appreciated. L-TLE also appeared to behave differently than
NL-TLE, with atrophy not limited to the ipsilateral side.
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Background
Temporal lobe epilepsy (TLE) is the most common
cause of partial epilepsy, and mesial temporal sclerosis
(MTS) is the major pathological finding, occurring in
roughly 50% of TLE patients. An estimated 30% of pa-
tients exhibit other identifiable magnetic resonance
imaging (MRI) findings such as cortical dysplasia, low
grade tumors or cavernous hemangiomas. The remaining
20% have no definite abnormalities observed visually on
qualitative MRI assessment, and are often referred as
non-lesional TLE [1] (NL TLE). Identifying the specific
structures and neuronal pathways affected in TLE can
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help further understand the underlying mechanisms and
disease chronicity. Different tissue-specific atrophy studies
have been reported separately in epileptic syndromes in-
cluding TLE, extra-temporal epilepsy, and idiopathic gen-
eralized epilepsy (IGE). In TLE, hippocampal involvement
has been considerably investigated by various methods
of MRI volumetric analyses, both manual and automatic
[2-7]. Most studies have found significant reductions in
hippocampal volumes, predominantly ipsilateral to the
seizure focus [4-6], although relation to disease duration
and seizure severity remains controversial [8-12]. Add-
itional studies in TLE have reported more extensive
structural involvement outside the temporal structures
[9,10,13], in particular bilateral atrophy of the thalami
has been consistently reported [9,11,14-16].
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IGE are a group of age-related epilepsies with com-
plex genetic backgrounds, subdivided according to the
predominant seizure types (absence, myoclonic, or gener-
alized tonic-clonic) and age of onset. The IGE are typically
divided in the following sub-syndromes: childhood ab-
sence epilepsy (CAE), juvenile absence epilepsy (JAE),
juvenile myoclonic epilepsy (JME), and IGE with general-
ized tonic-clonic seizures [17]. In IGE, various volumetric
studies have reported findings of structural abnormalities
[18-23], though reports implicating the thalamus are still
somewhat contradictory [15,19-22,24]. While thalamic
volumes in patients with IGE were not significantly differ-
ent from those of normal control subjects in some reports
[15], other studies reported evidence of regional atrophy
in the thalamus, putamen and globus pallidus in IGE pa-
tients as compared to controls [20,22]. Although specific
structural atrophies were reported independently in both
TLE and IGE, there are no reports of head to head com-
parison of both patient groups using the same atrophy
analysis measures.
The goal of this study was to assess the extent of tissue-

specific and structural brain atrophy in patients with TLE
compared with IGE and age-matched controls. We used
an automated software tool for brain MRI segmentation
into various regions of interest to enable quantitative
analysis of the different brain structures [25,26].

Methods
Research design
This was a retrospective study conducted at the Buffalo
Neuroimaging Analysis Center (BNAC) and the Com-
prehensive Epilepsy Program at the Jacobs Neurological
Institute, Department of Neurology, State University of
New York at Buffalo, with approval of the study protocol
by the institutional review board (IRB). The study con-
sisted of comprehensive review of medical records. Brain
MRI segmentation analysis was performed on the previ-
ously performed MRI. A waiver of informed consent was
obtained from the IRB.

Study population
The study included three population groups: TLE patients,
IGE patients and healthy controls. The first two patient
population groups were retrieved through a patient epilepsy
monitoring unit (EMU) database following IRB approval.
All patient demographics were de-identified. The inclusion
criteria for TLE patients consisted of: age >18 years
at time of MRI, diagnosis of TLE supported by his-
tory, documented seizures on EMU long term moni-
toring (LTM) video electroencephalogram (EEG), and
having underwent a 3 T MRI using a standard epi-
lepsy protocol at a single site within 12 months of
the LTM. The TLE patients’ were further subdivided
into lesional (L-TLE) and non-lesional (NL-TLE)
based on the presence or absence of temporal pathology
on MRI as identified by the report of a certified neuro-
radiologist. The inclusion criteria for IGE patients con-
sisted of: age > 18 years, and supportive ictal findings on
LTM. The IGE patients’ MRI were classified as normal or
with a low number of non-specific white matter changes
not related to the subcortical deep grey matter structures.
The exclusion criteria included any MRI-detected struc-
tural abnormalities beyond abnormalities seen in TLE that
would preclude the segmentation procedure. We enrolled
only patients with TLE and IGE that were 18 years and
older, as we only had age-matched MRI controls for this
age group.
Clinical data of all TLE and IGE patients were obtained

from medical history and LTM reports, and included loca-
tion of epileptic focus (for TLE patients), International
League Against Epilepsy seizure classification, frequency
of seizures, age at epilepsy onset and duration of disease.

MRI acquisition
All subjects underwent MRI testing at a single 3 T GE
Signa Excite HD 12.0 Twin Speed 8-channel scanner
(General Electric, Milwaukee, WI). Volumetric analysis
was based on an axial T1 Inversion Recovery Fast Spoiled
Gradient Echo (IR-FSPGR) sequence with flip angle = 20°,
repetition time = 9.46 ms, echo time = 3.87 ms, matrix size
of 256×256 pixels, and voxels of 1 × 1 × 1.5 mm. The le-
sions were assessed on 2D scans (proton density [PD]/
T2, Fluid attenuated inversion recovery [FLAIR] and
spin echo [SE] T1), with 48 slices collected, with a
thickness of 3 mm, and no gap between slices.

Image processing and volumetric analysis
To all images we applied an automatic inhomogeneity
correction [27] to overcome distortions of intensity non-
uniformity created by the scanner. The volumetric ana-
lyses were performed with the use of FMRIB tools (Oxford
Centre for Functional MRI of the Brain, version 4.1)
[25,26]. The volumetric analysis was performed in a
blinded manner in regard to the qualitative MRI results
provided by the neuro-radiologist.
The first stage of analysis used the structural image

evaluation using normalization of atrophy, cross-sectional
(SIENAX) [28,29] to estimate the normalized brain vol-
ume (NBV), normalized grey matter volume (NGMV),
and normalized white matter volume (NWMV). SIENAX
starts by extracting brain and skull images from single
whole-head input data [30]. The brain image is then
affine-registered to MNI152 space [31,32], using the skull
image to determine the registration scaling factor (to be
used as a normalization for head size). Next, tissue-type
segmentation with partial volume estimation is carried
out in order to calculate the total volume of brain tissue
(including separate estimates of grey and white matter



Figure 1 An axial and coronal MRI slice demonstrating the FIRST segmentation of the subcortical deep GM structures.
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volumes) [33]. The second stage of analysis used FIRST
(FMRIB’s Integrated Registration and Segmentation Tool)
[34-36] to estimate the volumes of the following subcor-
tical deep grey matter structures in both hemispheres:
hippocampus, amygdala, thalamus, putamen, pallidum and
caudate. FIRST is a model-based automated segmentation/
registration tool. The shape models used in FIRST are con-
structed from manually segmented images provided by
the Center for Morphometric Analysis, Massachusetts
General Hospital, Boston. The manual labels are parame-
terized as surface meshes and modeled as a point distribu-
tion model. Deformable surfaces are used to automatically
parameterize the volumetric labels in terms of meshes.
The deformable surfaces are constrained to preserve
vertex correspondence across the training data. Further-
more, normalized intensities along the surface normals
are sampled and modeled. The shape and appearance
model is based on multivariate Gaussian assumptions.
Shape is then expressed as a mean with modes of vari-
ation (principal components). Based on learned models,
FIRST searches through linear combinations of shape
modes of variation for the most probable shape instance
given the observed intensities in the T1 image. An ex-
ample of a segmented brain is presented in Figure 1.

Statistical analysis
Statistical analysis was performed with R version 3.1.0
(http://www.R-project.org/). A GLM-based analysis of
Table 1 Demographic and clinical characteristics

Characteristic TLE

N (Males: Females) 26 (14:12)

Age, years 42.1 ± 17.2 (18–72)

Age of onset, years 24.1 ± 20.3

Epilepsy duration in years 17.9 ± 18.6

Seizure frequency per month* 2.0

MRI findings 15 non-lesional, 11 lesional

*Seizure frequency is median (25th-75th inter-quartile range).
Legend: TLE temporal lobe epilepsy; IGE idiopathic generalized epilepsy; HC healthy
Continuous variables are shown as mean ± SD.
covariance (ANCOVA) model was used to evaluate group
differences in volume measures between controls, IGE,
NL-TLE, and L-TLE while controlling for variation in age
and gender. Where group was a significant factor, post-
hoc pair-wise comparisons were performed to identify
specific differences. In the primary set of analyses, total
tissue volumes and bilateral structure volumes were com-
pared. In a secondary set of analyses, laterality was evalu-
ated by comparing left/right asymmetry between groups.
Asymmetry was calculated as the absolute difference be-
tween left and right structures divided by the total volume
(left + right). Finally, ipsilateral and contralateral structures
(as related to epileptic focus localization) in L-TLE were
compared to HC to evaluate whether there was evidence
of contralateral atrophy. For this final analyses, individual
rather than left/right averaged structure volumes were
used, so a mixed-effect model was employed using lateral-
ity, age, and gender as fixed effects and subject as a ran-
dom effect. We used a conservative type 1 error threshold
of p < 0.01 to correct for multiple testing.

Results
Demographic and clinical characteristics of the study
groups
Demographic and clinical information of patients and
controls is presented in Table 1. The epilepsy popula-
tions were initially composed of 44 patients diagnosed
with TLE and 30 patients with IGE. Eighteen TLE and
IGE HC

15 (4:11) 26 (11:15)

31.7 ± 11.7 (18–59) 38.6 ± 14.3 (19–61)

12.5 ± 6.5 –

19.2 ± 15.6 –

0.2 –

All non-lesional All non-lesional

controls; SD standard deviation.

http://www.r-project.org/


Figure 2 Boxplots showing normalized brain parenchymal volume (NBV), normalized gray matter volume (NGMV), and normalized
white matter volume (NWMV) in patients with IGE, NL-TLE, L-TLE, and healthy controls (HC). Volumes are in cm3.
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15 IGE subjects were consequently dropped due to exclu-
sion criteria of having no recorded ictal events during
LTM, having multifocal seizure onset (only for TLE), or
other MRI-detected abnormalities (brain tumor, multiple
sclerosis, sub-optimal MRI study, etc.) that would affect
the segmentation procedure. The final study groups con-
sisted of 26 patients with unilateral TLE (15 NL-TLE and
Figure 3 Volumes of the amygdala, caudate, hippocampus, thalamus
in healthy controls (HC). Volumes are in cm3. Standard error bars are pres
11 L-TLE), 15 patients with IGE and 26 healthy controls.
There were no significant differences between the groups’
demographic distributions, other than a female predispos-
ition for IGE patients as compared to TLE and controls.
IGE patients were also of notably younger ages.
In the TLE group, 16 had the seizure focus on the left

hemisphere and 10 in the right hemisphere (for L-TLE
, pallidum and putamen in patients with IGE, L-TLE, NL-TLE, and
ented.
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alone, 4 right, 7 left). Fifteen patients in the TLE group
had complex partial seizures with secondary generalization
where 11 had complex partial seizures without secondary
generalization. In the IGE group, 14/15 subjects had gen-
eralized tonic-clonic seizures, 11/15 had absence seizure
and myoclonic seizures. MRI abnormalities included hip-
pocampal atrophy in 5 patients and other findings in the 6
patients (cortical dysplasia 1, venous anomaly 1, atrophy 2,
and non-specifc juxtacortical lesions 2).

Tissue- and structure-specific atrophy comparisons
Figure 2 compares the tissue-specific volumetric measures
between groups. After correcting for age and gender, NBV
(F = 13.72, p < 0.001) and NWMV (F = 16.32, p < 0.001)
were significantly different between groups. Post-hoc
analysis showed that HC had greater NBV and NWMV
as compared to all epilepsy groups (p < 0.001). This indi-
cates that the whole brain volume changes in epilepsy are
predominantly the result of WM volume loss. Within epi-
lepsy groups, there were no significant tissue-wide differ-
ences, although there was a general trend for L-TLE to
have the lowest volumes.
Figure 3 compares structure-specific volumetric mea-

sures between groups. There were significant group effects
Figure 4 Left/right asymmetry in volumes of the amygdala, caudate,
IGE, L-TLE, NL-TLE, and in healthy controls (HC). Volumes are in cm3.
in the hippocampus (F = 7.18, p = 0.001), amygdala
(F = 14.77, p < 0.001), and caudate (F = 4.56, p = 0.006),
and a trend in the thalamus (F = 3.95, p = 0.012). Post-hoc
analysis between groups in the significant structures re-
vealed lower hippocampal volume in L-TLE compared
to both HC (p = 0.001) and IGE (p < 0.001), lower
amygdala volume in all epilepsy groups compared to
HC (p < = 0.004), and a trend for lower caudate volume in
L-TLE compared to HC (p = 0.012) and IGE (p = 0.042).
Figure 4 compares asymmetry between structures and

groups. There were no statistically significant differences
between groups for any structures, although there was a
weak trend for L-TLE to have more hippocampal asym-
metry than HC (p = 0.071).
Figure 5 shows the results of laterality analysis be-

tween the L-TLE and HC groups. For the hippocam-
pus, the ipsilateral side was significantly smaller than HC
(p < 0.001), with a trend for the contralateral side as well
(p = 0.03). Both ipsilateral and contralateral amygdalae
were significantly smaller than in HC (p < 0.001). Putamen
differences were not significant, but showed trends for
both ipsilateral (p = 0.044) and contralateral (p = 0.0101).
There were similar bilateral non-significant trends in ipsi-
lateral (p = 0.02) and contralateral (p = 0.02) pallidum. No
hippocampus, thalamus, pallidum and putamen in patients with



Figure 5 Ipsilaterl and contralateral volumes of the amygdala, caudate, hippocampus, thalamus, pallidum and putamen in patients
L-TLE and in healthy controls (HC). Volumes are in cm3.

Goldberg et al. BMC Neurology 2014, 14:131 Page 6 of 8
http://www.biomedcentral.com/1471-2377/14/131
significant differences were observed in the thalamus or
caudate. Within the L-TLE group, only the hippocampus
showed a trend toward lower volume in the ipsilateral vs.
contralateral side (p = 0.011).

Discussion
In this study we compared L-TLE, NL-TLE, IGE, and
healthy controls using the same methodology and same
3 T-scanner. Our study revealed that patients with TLE
and IGE demonstrated similar tissue-specific atrophies
in the whole brain and white matter. After correcting for
age and gender, normal brain volume, normal grey mat-
ter volume and normal white matter volume were
lower in the epilepsy group (TLE plus IGE) compared
to controls, but predominantly as a result of white mat-
ter volume loss.
Our results in L-TLE patients were similar to varying

TLE study reports in relation to atrophy at various sub-
cortical structures such as the hippocampus and basal
ganglia [6,9,11,13,15,37]. The extent of atrophy noted in
TLE patients suggests that the impact of temporal sei-
zures is more widespread than the immediate temporal
vicinity of the epileptogenic region. Furthermore, the
bilateral distribution of tissue-specific atrophy suggests
that the neuronal atrophy extends to both hemispheres,
regardless of the side of focal epileptic origin [38-40].
Our results suggest that patients with chronic epilepsy,

whether TLE or IGE, have chronic atrophy, mostly of
white matter and of various subcortical deep grey matter
structures: particularly hippocampi and amygdale bilat-
erally. Altered white matter integrity has been reported
in TLE, with association to cognitive and clinical profiles
as measured on diffusion tensor imaging (DTI) studies
in the temporal, cerebellar and fronto-parietal structures
[41-43]. Extensive white matter tracts abnormalities on
DTI were identified also in JME [44].
Findings of ipsilateral thalamic hypometabolism on

positron emission tomography (PET) studies have been
described in patients with TLE, often attributed to a dia-
schisis effect. It has been postulated that hippocampal
cell loss may result in decreased efferent synaptic activ-
ity to the thalamus and basal ganglia, causing decreased
neuronal activity in these structures with consequent
hypometabolism. It remains unknown whether the
process of subcortical deep grey matter atrophy seen in
volumetric studies is due to a similar mechanism to the
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ipsilateral hypometabolism seen in PET studies in TLE
patients [45,46].
Several limitations in our study which may have im-

pacted our results and statistical power should be ac-
knowledged. Our study was retrospective, and included
a relatively small patient sample. Consesquently this
might have altered our ability to detect subtle volume
changes. In particular, we saw many intriguing statistical
trends that should be investigated in a larger study. In
addition, we performed a cross-sectional evaluation, mak-
ing it difficult to ascertain progressive developments. We
also did not have sufficient power to analyze the impact of
medication, which may have modified atrophy rates. An-
other limitation may be that the IGE group was younger
and although we corrected for age in our analysis the earl-
ier onset age of epilepsy in this group may be an interfer-
ing factor.

Conclusion
In conclusion, our study supports that TLE and IGE are
both associated with significant atrophy compared to
healthy controls These changes appear to occur beyond
the local temporal epileptogenic region for TLE patients.
It remains unknown whether these changes are associated
with neurological and cognitive morbidities often seen
in patients with chronic epilepsy.

Ethical approval
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