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1 Introduction

Despite the successes of the AdS/CFT correspondence, a full understanding of the dual-

ity is still lacking. Since the original conjecture [1], much of the research effort has been

aimed at developing a precise dual dictionary connecting geometric quantities in the bulk

to observables in the boundary field theory. However, this dictionary remains poorly un-

derstood, hampering our ability to reconstruct the bulk geometry from the field theory,

compute field theory quantities from the classical bulk theory, and assess whether or not

the correspondence is complete. This last effort has been placed under scrutiny by the

recent controversy over the black hole interior (see e.g. [2–10]), and direct efforts to con-

struct — or demonstrate an inability to construct — a full dual dictionary, may serve to

address it.

To resolve such questions, a good starting point is the identification of bulk probes

that depend primarily on the bulk geometry and are dual by the AdS/CFT dictionary to

known field theory observables. The existence of such bulk probes is not guaranteed; how-

ever, spacelike extremal surfaces, which are covariantly-defined and depend exclusively on

the bulk geometry, are dual to well-understood field theory observables. In fact, spacelike

extremal surfaces constitute most of the probes used in AdS/CFT. The dual observables

include correlators [11], entanglement entropy [12, 13], and Wilson loops [14]. The length

of spacelike geodesics with boundary endpoints allows one to compute, in the WKB ap-

proximation, the two-point correlator of a high conformal dimension field operator at the
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endpoints. The area of a codimension 2 spacelike extremal surface anchored on some re-

gion R on the boundary of an asymptotically locally Anti-de Sitter (AlAdS) spacetime is

associated with the entanglement entropy of R within the boundary field theory.

A field theory observable which is dual to an extremal surface must in some way

encode information about the bulk geometry at the location of the extremal surface. If

there is a limit on how far into the bulk such surfaces can reach, this also limits our

ability to reconstruct the geometry from the corresponding dual observables. The natural

question that arises is how much of the bulk can be recovered from extremal surface probes.

Extremal surface probes and their maximal reach were studied in [15] for the case of static

and translationally or spherically symmetric asymptotically AdS spacetimes,1 and in a

large amount of literature (e.g. [17] and [18]) for eternal AdS black holes. Studies have also

been done for extremal surfaces in time-dependent geometries (e.g. [13, 19–22]).

In this paper, we establish a general constraint on the reach of probe spacelike extremal

surfaces in spacetimes which are not necessarily AlAdS. We find that many generic geome-

tries admit a certain kind of surface which acts as a barrier for probe surfaces anchored to

one boundary. We furthermore show that trapped surfaces with nonpositive null extrinsic

curvature give rise to extremal surface barriers, and that — on spacetimes which admit a

totally geodesic spatial slice — the existence of barriers implies the existence of either a

singularity or a marginally trapped surface.

More explicitly, we consider a codimension 1 “splitting surface” Σ which divides the

spacetime into two regions. Σ may be spacelike, timelike, or null. We take some class X

of spacelike extremal surfaces of codimension 1 or greater, which are anchored to some

boundary I on one side of Σ. Then, given two simple assumptions, we can show that no

members of this class of extremal surfaces cross (or even touch) Σ. In other words, the

splitting surface acts as an extremal surface barrier. The two assumptions are as follows:

1. All of the extremal surfaces in the class X can be continuously deformed (while

remaining extremal) to surfaces which lie on the exterior of Σ.

2. Σ has nonpositive extrinsic curvature (as measured by normal vectors pointing out-

ward, towards the exterior of Σ). In other words, Σ can only bend outward relative

to its tangent plane.

Given these assumptions, Σ acts as a barrier to any of the extremal surfaces lying in

the class X . This generalizes some previously known result in Riemannian manifolds,

that surfaces with an inward-pointing mean curvature vector can sometimes act as local

barriers to minimal surfaces, and also act as global barriers in certain circumstances (see

e.g. [23–25]).

Our proof uses elements from the approach of [26] and [36], and shows that spacelike

extremal surfaces cannot approach surfaces with negative extrinsic curvature. They can,

however, approach arbitrarily close to totally geodesic surfaces. We do not need to make any

1A study on the reach of extremal surfaces in static black holes with higher derivative terms was done

in [16].
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assumptions about causality or an energy condition; the restriction is purely geometrical

in nature.

The first criterion is often satisfied: it simply requires that there be no obstruction to

deforming the extremal surface (while maintaining extremality) away from Σ.2 In many

cases, this criterion holds for all extremal surfaces due to the topology and geometry of

the spacetime, so the class X consists of all extremal surfaces. For example, this is true

in vacuum AdS spacetimes. More generally, if the extremal surfaces are anchored to just

one connected component of the boundary I, and the bulk spacetime is homotopically

trivial, then all surfaces may be continuously deformed towards I. However, it may be

an additional constraint on the geometry that the surfaces can remain extremal while this

happens. For example, if there is another region Σ′ which acts as a barrier to extremal

surfaces anchored anywhere on the boundary of the spacetime ∂M , then Σ′ may be an

obstruction to deforming extremal surfaces past Σ.

The second criterion may be satisfied by a totally geodesic surface, i.e. a surface with

vanishing extrinsic curvature.3 An example of such a surface is a stationary black hole

horizon (which, given the area theorem [27], is a stationary black horizon for spacetimes

obeying the null energy condition). However, totally geodesic surfaces do not appear in

generic spacetimes. Fortunately, the result also applies to surfaces with negative extrinsic

curvature, which can appear in generic spacetimes. Examples will be given in section 3. In

fact, if there exists a surface Σ whose extrinsic curvature is negative everywhere, we will

show that it is not actually the tightest bound on extremal surfaces. There will be some

other “outermost” barrier Σ′ some distance away, which has at least partly nonnegative

extrinsic curvature (in section 4, we will prove a theorem relating compact outermost

barriers to trapped surfaces and singularities).

The existence of such extremal surface barriers and their link to singularities is a

curiosity which is of relevance to the firewall controversy. The fact that many bulk probes

do not extend beyond the barrier may suggest that the firewall, if it exists, may be at

or behind the outermost barrier. At the very least, it shows that field theory observables

that are dual to extremal surfaces anchored at one boundary do not directly reveal any

information about the interior. Any information about this region in the bulk must come

from probes that are not extremal surfaces. In some cases, the presence of a barrier

might even indicate that the boundary field theory does not have sufficient information to

reconstruct the geometry behind the barrier [28]. In that case, additional factors of the

Hilbert space may be needed to describe that region.

An interpretation involving a loss of determinism may at first seem implausible in

the case where Σ is spacelike: one could use the bulk equations of motion to evolve the

2For some field theory observables, the bulk extremal surface is required to be the minimal area surface

of those which are extremal. This can cause the location of the surface to jump discontinuously as one

changes where it is anchored to I (e.g. geodesics in the BTZ black hole geometry [12]). This is not an issue

for our proof, since we do not require that the deformed extremal surface be minimal.
3A totally geodesic surface Σ can also be equivalently defined as a surface Σ in (M, g) such that every

geodesic on Σ (with respect to the induced connection on Σ) is also a geodesic on M (with respect to the

connection on M .
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information in Σ forwards or backwards in time and thus reconstruct some or all of the

interior of Σ. However, the presence of a firewall at Σ would result in a breakdown of the

classical bulk equations of motion. In this case, our hope of reconstructing the interior of

Σ relies entirely on the AdS/CFT correspondence dictionary. This dictionary, however, is

primarily composed of extremal surface probes, which we prove below cannot probe past Σ.

This paper is structured as follows. In section 2, we prove our sufficient condition

for a spacetime to have a “barrier surface” past which extremal surfaces cannot reach; we

further prove that trapped surfaces form extremal surface barriers. We will also show that

the outermost barrier surface must have partly nonnegative extrinsic curvature. Section 3

provides examples of bulk spacetimes with extremal surface barriers. In section 4, we prove

that in a certain a class of geometries, barriers occur only in the presence of singularities

or trapped surfaces.

2 Barrier theorems

We first prove in two parts that extremal surfaces do not probe past surfaces with a nonposi-

tive extrinsic curvature tensor, and further, that barriers with everywhere negative extrinsic

curvature are not the outermost barrier surfaces. (M, g) will be a Lorentzian manifold with

at least one boundary I for the rest of this paper. We start with two definitions.

Define a codimension 1 surface Σ in M to be a splitting surface if it separates M into

two open regions, Ext(Σ) and Int(Σ), where we define the interior and exterior relative to

the normal which defines the extrinsic curvature, and ∂Σ = ∅. This normal is taken to

point towards Ext(Σ).

Let Σ now be a splitting surface. Let {Nr} be a family of spacelike extremal surfaces

in M of codimension n ≥ 1 such that all the Nr can all be continuously deformed from

some initial surface N0 ⊂ Ext(Σ) anchored at Ext(Σ) ∩ I, and all the Nr are anchored

at Ext(Σ) ∩ I (see, e.g. figure 1).4 Then any surface in the family Nr shall be called

Σ-deformable.

2.1 K < 0 surfaces are barriers

Theorem 2.1. Let Σ be a codimension 1 splitting surface in M such that for any vec-

tor field vµ on Σ, ΣKµνv
µvν < 0, where ΣKµν is the extrinsic curvature of Σ.5 Any

Σ-deformable spacelike extremal surface which is anchored within I ∩ Ext(Σ) remains in

Ext(Σ). Moreover, no such spacelike extremal surface ever touches Σ (or even comes arbi-

trarily close to touching Σ).6

4For simplicity, we will assume that all extremal surfaces in the family are twice differentiable, at least

where they intersect Σ, so that the extrinsic curvature Kµν is well-defined. Presumably this assumption

can be weakened if care is taken in dealing with distributional extrinsic curvatures.
5In terms of γµν , the induced metric on Σ, the extrinsic curvature on Σ is given by ΣKµν = γσ

µγλν∇σ
Σkλ.

For a surface N of codimension n > 1, the extrinsic curvature carries an additional index, and is defined in

terms of hµν , the induced metric on N : NKµν = hσ
µhνλ∇σh

ρλ.
6If ΣKµνv

µvν > 0, we could prove, using precisely the same formalism used in the proof above, that

surfaces anchored in Int(Σ) remain in Int(Σ).
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Σ
I

N0N NI

bp

Figure 1. The family of deformations {Nr}, all anchored at Ext(Σ) ∩ I. For ΣKµνv
µvν ≤ 0, NI

and N do not exist.

Proof. The proof closely follows that of Lemma B in [26]. Let Nr be the family of surfaces

all deformable from N0 as defined above. If all surfaces Nr are in Ext(Σ), we are done,

since that implies that surfaces which are anchored at I ∩ Ext(Σ) can never be deformed

past Σ.

Suppose there exists a surface NI in {Nr} such that NI ∩ Int(Σ) 6= ∅. Then, since NI

is linked to N0 via a series of smooth deformations, there exists a “midway” surface N in

the family of surfaces which coincides with Σ at a set of points {pi} and is tangent to Σ

at those points. Figure 1 illustrates the deformation family. We focus on one coincident

point p of Σ and N .

As explained in [26], ΣKµνv
µvν is a measure of how much Σ curves away from the

tangent plane normal to Σkµ with motion away from p in the vµ direction, where Σkµ is

the normal to Σ when Σ is not null, and we take Σkµ to be the null generator for null Σ.

Similarly, NK
ρ
µνv

µvν Σkρ measures how much N curves away from the plane normal to Σ

at p as one moves in the vµ direction away from p (restricted to motion tangent to N). N

is outside of Σ, so Σ curves away from its tangent plane at least as much as N does:

ΣKµνv
µvν ≥ NKρ

µνv
µvνΣkρ (2.1)

In particular:

ΣKµνh
µν ≥ NKρ

µνh
µν Σkρ = 0 (2.2)

ΣKµνh
µν ≥ 0 (2.3)

where hµν is the induced metric on N . The equality in eq. (2.2) follows from the fact that

N is extremal.

N is spacelike, so hµν is Riemannian and has no temporal components, which implies

that ΣKµνh
µν < 0, since ΣKµνv

µvν < 0. We therefore have a contradiction with eq. (2.3),

so the surfaces in the family {Nr} never reach Σ, which in turn implies that NI does not

exist. Moreover, it is impossible for N to approach arbitrarily close to Σ, because in the

limit eq. (2.3) would still hold, and we would again arrive at a contradiction.7

7If we are only interested in barriers for extremal surfaces with a particular dimensionality, eq. (2.2) may

allow us to prove the existence of a barrier with a weaker condition than in theorem 2.1. For example, to
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Σ

N

bp

Σkµ(p)

b
q

bs
Σkµ(s)

Figure 2. A zoom-in near a neighborhood where Σ and N coincide. The horizontal lines at the

point p represent the covector Σkµ(p) =
Σkν(p)gµν , where

Σkν(p) is the null generator for null Σ,

or the normal for timelike or spacelike Σ. The horizontal lines at s represent the covector Σkµ(s),

which is obtained by parallel transporting Σkµ(p) along Σ.

2.2 So are K = 0 surfaces

Theorem 2.2. Let Σ be a splitting surface as above, but we now take it to be totally

geodesic, i.e. ΣKµν = 0. Any Σ-deformable spacelike extremal surface which is anchored in

the intersection of the boundary I with one component of M (as divided by Σ) remains in

that component.8

Note that in the case where Σ is totally geodesic, it provides a barrier both for surfaces

in Int(Σ) and Ext(Σ).

Proof. The proof is identical for N ⊂ Int(Σ) and N ⊂ Ext(Σ). For concreteness we

assume N ⊂ Ext(Σ).

We take N to be the midway surface as above, and we show that if N agrees with Σ

at p and is tangent to it, then N ⊂ Σ. This would imply that N is no longer anchored at

I ∩ Ext(Σ), and therefore it is impossible to deform a surface to reach and cross Σ while

maintaining boundary conditions in Ext(Σ). The saturated equation is:

0 = ΣK = NKρ Σkρ = 0 (2.4)

This shows that the two surfaces curve away in the normal direction equally, and is an

indication that the two surfaces must agree everywhere on N if they coincide at a point.

We now show this in more detail.

prove that a spacelike codimension 1 surface is a barrier for n-dimensional extremal surfaces, it is sufficient

if the sum of the largest n eigenvalues of ΣKµν are negative. However, the analysis is more complicated for

timelike or null barriers.
8Suppose that M has some nontrivial topology or geometrical defect that creates an obstruction for

Σ-deformability. If we can find another spacetime M ′ which agrees with M everywhere inside Σ and also

obeys the following conditions: (a) the extremal surface N is the same in M and M ′, (b) the splitting

surface Σ is the same in M and M ′, and (c) N is Σ-deformable in M ′, then Σ is still a barrier in M , by

the proof of theorem 2.2.
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Suppose Σ is null, and let Σkµ be the null generator of Σ directed towards N . The

corresponding covector is defined: Σkµ = gµν
Σkν , as illustrated in figure 2. Consider a

small neighborhood U of p of length scale ǫ. Let q ∈ N ∩ U and let s ∈ Σ ∩ U . Define the

coordinate y(q):

y(q) = Σkµ(s) (s
µ − qµ) (2.5)

where Σkµ(s) is obtained by parallel transporting Σkµ(p) along Σ, and (sµ − qµ) is a vector

pointing from s to p in the small neighborhood around p. Note that because Σ is totally

geodesic, Σkµ(s) is null. Within U , we can always find an s ∈ Σ such that y(q) ≪ ǫ. For

such a choice of s, we therefore obtain:

Σkµ(s)−
Nkµ(q) = ∇µy(q) +O

(

(∇y)2
)

(2.6)

where Nkµ(q) is obtained by parallel transporting Nkµ(p) =
Σkµ(p) along N .

The null extrinsic curvatures therefore obey:

ΣKµν −
NKρ

µν
Σkρ = ∇µ∇νy (2.7)

NKρ
µν

Σkρ = −∇µ∇νy (2.8)

NKρ Σkρ = −∇2y (2.9)

0 = ∇2y (2.10)

Let r, defined on Σ, be the proper distance from p. We can use r as a coordinate labeling

points on Σ. Let dσ be the volume element of a constant r slice. Integrating over a disk

D of radius r = R:

0 =

∫

D
∇2y(R− r) dr dσ =

∫

D
∂ry dr dσ =

∫

r=R
y dσ (2.11)

Since y is never negative (that would contradict the assumption that N does not cross

Σ), we conclude that y = 0 everywhere on a neighborhood of p. But this implies that

y = 0 everywhere, and N ⊂ Σ. This completes the proof for null Σ. This reasoning applies

directly to the cases where Σ is timelike or spacelike by simply substituting the N -pointing

spacelike or timelike normal of Σ, respectively, for the null generator in the N direction.

This proof allows us to generalize a previously-known result for totally geodesic

surfaces:

Corollary 2.1. Let Σ be a totally geodesic codimension m surface in M . Let N be a

codimension n ≤ m spacelike extremal surface satisfying the following conditions:

1. N coincides with Σ at some point(s) p,

2. N does not cross Σ anywhere (and therefore N is tangent to Σ at p),

then N ⊂ Σ.

– 7 –
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Proof. Let Σkµ i be the outwards-pointing normals to Σ as above (null generators in the

N direction, if Σ is null), where i runs from 1, · · · ,m. Let Σkiµ = Σkν igµν . Let U be a

neighborhood of p. We define y(q) for q ∈ N ∩ U as above:

yi(q) = Σkiµ(s) (s
µ − qµ) (2.12)

where s ∈ Σ ∩ U is chosen so that yi(q) ≪ ǫ. Then:

Σkiµ(s)−
Nkiµ(q) = ∇µy(q)

i +O
(

(∇y)2
)

(2.13)

where for the case of null Σ, Σkiµ(p) = Nkiµ(p), and for timelike and spacelike cases, we

just require them to be equal. As before, we obtain Σkiµ(s) by parallel transporting along

Σ and Nkiµ(q) by parallel transporting along N . The remaining reasoning in the proof of

theorem 2.2 above yields yi = 0, and we are done.

This leads to a natural corollary of theorems 2.1 and 2.2, which combines the assump-

tions made in those theorems:

Corollary 2.2. Let Σ be a splitting surface in M such that ΣKµνv
µ
i v

ν
i < 0 for some vector

fields {vi} on Σ and ΣKµνu
µ
i u

ν
i = 0 for all other vector fields {ui} on Σ. Then any

Σ-deformable spacelike extremal surface which is anchored in Ext(Σ) remains in Ext(Σ).

Moreover, although such extremal surfaces might conceivably come arbitrarily close to Σ if

they only propagate along the vi directions, they cannot approach Σ if they propagate along

the ui directions.

Proof. As above, let {Nr} be a family of Σ-deformable surfaces, all deformable from N0 ⊂

Ext(Σ), and let N be the midway surface between NI and N0. We again focus on a

coincident point p ∈ Σ ∩N . By eq. (2.3), we have ΣKµνh
µν ≥ 0, where hµν is the induced

metric on N . We can decompose the metric into the components that lie along the v

directions and the u directions:

hµν = h(1)µν + h(2)µν

where h
(1)
µν =

∑

i aivi µvi ν and h
(2)
µν =

∑

i biui µui ν for some constants ai and bi. Eq. 2.3

can be decomposed as follows:

ΣKµνh
µν = ΣKµνh

(1)µν + ΣKµνh
(2)µν (2.14)

If N has no components in the ui directions, then h(2)µν = 0, and eq. (2.14) reduces to
ΣKµνh

µν = ΣKµνh
(2)µν = 0. This is simply the case of theorem 2.2, so N could potentially

get arbitrarily close to Σ while remaining on Ext(Σ).

If N has at least one component in ui directions, then eq. (2.14) yields ΣKµνh
µν =

ΣKµνh
(1)µν + ΣKµνh

(2)µν = ΣKµνh
(2)µν < 0. This is simply the case of theorem 2.1, so N

cannot approach Σ, and must always remain in Ext(Σ).

We conclude that if N propagates in the directions in which Σ has vanishing extrinsic

curvature, N can approach Σ, but if N propagates in the directions in which Σ has negative

extrinsic curvature, N cannot approach Σ.

– 8 –
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2.3 Trapped surface barriers

One consequence of corollary 2.2 is that any null splitting surface Σ which is foliated

by surfaces where all components of the null extrinsic curvature are nonpositive is an

extremal surface barrier. But if we are only interested in whether or not Σ is a barrier

to codimension 2 extremal surfaces, it turns out the we can do better: it is sufficient if

the expansion θ ≤ 0, i.e. the trace of the null extrinsic curvature is nonpositive. This is

because when a codimension 2 extremal surface N touches (but does not cross) Σ, we can

take the trace of eq. (2.1) over all D − 2 spacelike directions to obtain:

0 ≥ θΣ ≥ θN = 0. (2.15)

As in the case of corollary 2.1, the above equation can only be saturated if N lies on Σ.

This means that Σ is a barrier to Σ-deformable spacelike extremal codimension 2 surfaces.

If we assume the null curvature condition Rµνk
µkν ≤ 0, we can additionally

show how to use a codimension 2 extremal surface to construct a barrier to other

codimension 2 surfaces.

Theorem 2.3. Let X be a codimension 2 spacelike extremal surface. Let Σ be the union of

null congruences shot outwards from X towards both the future and the past directions. As-

suming the null curvature condition, Σ is a barrier to Σ-deformable codimension 2 surfaces

anchored to Ext(Σ).

Proof. By the standard construction, the Raychaudhuri equation implies that the two null

congruences shot out from X converge, so that θΣ ≤ 0, where θ is defined as the expansion

moving outwards away from X. As in the proof of theorems 2.1 and 2.2, we assume for

contradiction that N is a midway surface touching Σ but not crossing it. (It does not

matter which of the two null congruences N touches first, but whichever one it touches

first, we are only interested in the θ of that congruence.) At the point of coincidence,

eq. (2.3) implies that θΣ and θN both vanish. Therefore, by the same reasoning as in

corollary 2.1, N must lie entirely on Σ. But then it cannot be anchored at Ext(Σ).

Even without assuming the null curvature condition, the following corollary

follows immediately:

Corollary 2.3. If Σ be a null surface foliated by (marginally) outer trapped surfaces (i.e.

θ ≤ 0), then Σ is a barrier to Σ-deformable codimension 2 surfaces anchored to Ext(Σ).

Thus, if we are only interested in codimension 2 extremal surfaces (e.g. for purposes

of holographic entanglement entropy [12, 13]), we can prove the existence of barriers in

more circumstances.

2.4 Outermost barriers have a K ≥ 0 direction

We proved that the presence of the surface Σ with nonpositive spatial extrinsic curvature

is a sufficient condition for an extremal surface barrier. This raises the question of whether

this barrier is the closest one to the extremal surfaces. Consider some region on the

– 9 –
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R

Σ

Figure 3. A illustration of a possible situation in which the extremal surface (in red) are anchored

at R, but they give rise to an outermost barrier Σ (in blue above) whose exterior contains R as a

proper subset.

boundary of the spacetime, R ⊂ I. Let Xi denote the spacelike extremal surfaces anchored

at R. We define the outermost barrier Σ for surfaces anchored at R to be given by:

Σ = ∂

(

⋃

i

Xi

)

.

(For some (non-AlAdS) spacetimes, R may be a proper subset of Ext(Σ), as shown in

figure 3.) The above definition is partly motivated by [29], although the case under discus-

sion there involved only minimal area surfaces, whereas we consider all extremal surfaces.

Note that we can similarly define the outermost barrier for a subset {Yi} of all spacelike

extremal surfaces anchored at R by defining ΣY = ∂ (
⋃

i Yi).

We now prove some properties of the outermost barrier.

Theorem 2.4. Let Σ be an outermost barrier in M , and let {Nr} be a family of extremal

surfaces that can all be smoothly deformed from some initial surface N0 ⊂ Ext(Σ) such

that some surface N ∈ {Nr} is arbitrarily close to Σ. Then ΣKµνh
µν ≥ 0, where hµν is the

induced metric on N .

Proof. By definition of outermost barrier, for any point p, spacelike extremal surfaces in

Ext(Σ) can be deformed to either come arbitrarily close to Σ or coincide with and be

tangent to Σ at p. In the latter case, we can simply take the limiting surface that touches

Σ. In any small neighborhood where Σ and one of these spacelike extremal surfaces touch

or nearly touch, eq. (2.3) yields ΣKµνh
µν ≥ 0, where hµν is the induced metric on the

extremal surface, and we are done.

In particular, since the extremal surface is spacelike, hµν is Riemannian, so in order for

all of the components of ΣKµν to add up to a nonnegative number, at least one eigenvalue

of ΣKµν must be nonnegative.

Whenever we can find a barrier of entirely negative extrinsic curvature, we can therefore

find a barrier of partly nonnegative curvature. This is in agreement with theorem 2.1,

which implies that extremal surfaces cannot come arbitrarily close to a surface with strictly

negative curvature. The existence of a barrier is therefore quite generic, since we expect

it to occur for any surface Σ which splits the spacetime into 2 regions and has negative or

vanishing extrinsic curvature components.
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Many of the known analytic solutions that are AlAdS admit a totally geodesic surface

that acts an as extremal surface barrier, as well as multiple surfaces with negative extrinsic

curvature. Totally geodesic surfaces are quite special and therefore spacetimes containing

them are not representative of general AlAdS spacetimes. We expect, however, that small

perturbations of spacetimes that admit splitting surfaces with negative extrinsic curvature

do again result in spacetimes with splitting surfaces of nonpositive extrinsic curvature. The

existence of such surfaces is thus stable under small perturbations of the metric.

We therefore conclude that many generic AlAdS spacetimes admit an extremal surface

barrier. Moreover, we show in the examples below that the barrier often separates a region

of proximity to a singularity from the boundary of the spacetime. In section 4, we further

prove that for certain spacetimes, the existence of a compact outermost barrier implies the

existence of singularities.

The implications of this barrier in the context of AdS/CFT are disturbing: as rule of

thumb, the best-understood aspect of the duality dictionary is generically limited in the

scope of information it contains about the bulk. This at best suggests that we must change

our approach towards extracting bulk information by using probes that are not extremal

surfaces. At worst indicates that complete information of a large class of bulk geometries

may simply not be contained in the dual field theory [28].

3 Examples

In this section, we provide some examples of spacetimes with barriers. Some of these

barriers are totally geodesic, others have negative extrinsic curvature. The latter condition

is stable under small perturbations, although the former is not.

3.1 Pure AdS

The simplest example is pure AdS itself. If we consider the metric on the Poincaré patch:

ds2 =
1

z2

(

−dt2 + dx2i + dz2
)

(3.1)

Surfaces of constant t or surfaces of constant xi are totally geodesic. Since extremal surfaces

in pure AdS remain on constant time slices, it is clear that they do not cross constant t

totally geodesic surfaces. Similarly, a surface which is anchored between xi = −x0 and

xi = x0 will not propagate to xi > x0 or xi < −x0.

3.2 AdS cosmology

The next example we consider is an isotropic AdS cosmology. The metric on global AdS

can be written, via a coordinate transformation (see e.g. [19]), as an open Friedmann-

Robertson-Walker (FRW) universe in the interior of the lightcone, and foliated into de

Sitter slices in the exterior of the lightcone:

ds2int = −dt2 + sin2(t)
(

dχ2 + sinh2 χ dΩ2
)

(3.2)

ds2ext = dr2 + sinh2(r)
(

−dτ2 + cosh2 τ dΩ2
)

(3.3)
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FRWd+1

Σ

dSd

Figure 4. The isotropic AdSd+1 cosmology. Σ is the surface where a(t) is maximized.

where the two are related via an analytic continuation (see figure 4). Any small perturba-

tion to this metric results in a curvature singularity replacing the coordinate singularity.

If we couple the metric to, say, a scalar field, as in [30], the resulting geometry features

a curvature singularity (the first indication of some sort of an accumulation surface for

codimension 2 surfaces in this geometry was found in [19]):

ds2int = −dt2 + a2(t)
(

dχ2 + sinh2 χ dΩ2
)

(3.4)

ds2ext = dr2 + b2(r)
(

−dτ2 + cosh2 τ dΩ2
)

(3.5)

where a(0) = 0 and b(0) = 1 at the lightcone and a(tsingularity) = 0 is a big-crunch collapse.

It was found in [31] that this spacetime contains a totally geodesic barrier: there is a point

tm at which a(tm) reaches a maximum. The extrinsic curvature of any constant t surface

with respect to the past-pointing timelike normal is given by:

Kij = a′(t)gij

where gij is the FRW metric inside the lightcone. The constant t = tm surface Σ is

therefore totally geodesic, and surfaces with t > tm have negative extrinsic curvature.

We demonstrate the barrier at work here using spacelike radial geodesics as an example

of extremal surface probes. This is easily generalized to extremal surfaces with fewer

symmetries, but for brevity we limit ourselves to the simplest case.

Consider a geodesic with endpoints at θ = 0 and θ = π, where θ is one of the suppressed

angles in eq. (3.5). The length functional for this geodesic within the FRW region is:

L =

∫

√

−dt2 + a2(t)dχ2 =

∫

√

−t′(χ)2 + a2(t(χ))dχ (3.6)

where we have chosen χ to parametrize the geodesic. The boundary conditions θ = 0 and

θ = π imply t′(χ = 0) = 0. We solve for the geodesic from the lightcone interior outwards,

starting from χ = 0 to the lightcone and the exterior region, using the reflection symmetry

in θ along the geodesic path.
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2

1

4

3 I1I2

Σ1Σ2

Figure 5. The Schwarzschild-AdSd+1 black hole. Σ1 and Σ2 are totally geodesic splitting surfaces,

and are therefore by theorem 2.2 extremal surface barriers.

Since χ is a cyclic coordinate, the Hamiltonian is conserved:

H(t) = −
a2(t)

(a2(t)− t′(χ)2)1/2
= H (t(χ = 0)) = a (t(χ = 0)) . (3.7)

Solving for t′(χ) yields:

t′(χ) = ±a (t(χ))

(

1−

(

a (t(χ))

a (t(0))

)2
)1/2

. (3.8)

Since the scale factor vanishes at the lightcone and at the singularity, and reaches its

maximum at some intermediate time t = tm, it follows from eq. (3.8) that any geodesic with

t(χ = 0) > tm must propagate towards progressively larger t. Geodesics with t(χ = 0) = tm

stay on t(χ) = tm for all χ. This is precisely what theorem 2.2 states: extremal surfaces

in the interior of Σ (i.e. t > tm) remain in the interior, extremal surfaces in the exterior

of Σ (i.e. t < tm) remain in the exterior, and extremal surfaces that coincide with Σ (i.e.

t = tm) lie on Σ, where Σ is the totally geodesic surface given by t = tm.

One implication of this result is that, in the isotropic AdS Cosmology, only geodesics

on the exterior of Σ make it to the lightcone at t = 0 and from there to the boundary. The

totally geodesic surface prevents boundary-anchored probes from getting arbitrarily close

to the singularity.

3.3 Black holes

Another prominent example of a spacetime with a totally geodesic barrier surface as pre-

scribed in section 2 includes any black hole with a stationary horizon [32, 33].9 This

category includes AlAdS spacetimes such as Schwarzschild-AdS, RN-AdS, Kerr-AdS, the

BTZ black hole, the planar AdS black hole (the horizon in this case was separately proven

to be a barrier surface in [15]), and the hyperbolic AdS black hole. In particular, in

AdS-Schwarzschild, there are two totally geodesic surfaces: the past- and future-directed

9Stationary geons, which are not black holes, also exhibit a barrier at the horizon.
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horizons, denoted Σ1 and Σ2 in figure 5. Spacelike extremal surfaces anchored at I1 must

therefore always remain in region 1, while those anchored at I2 must remain in region 3

of the spacetime. Extremal surfaces anchored at both I1 and I2 are not constrained by

our theorems to remain in any part of the spacetime. In fact, [17] found that spacelike

geodesics with one endpoint at I1 and one endpoint at I2 can probe arbitrarily close to the

singularity, and in particular, can cross both Σ1 and Σ2. We emphasize that this does not

contradict our results in the previous section because these geodesics are anchored to two

boundaries. As a point of interest, [18] found a barrier surface, or accumulation surface,

for codimension 2 extremal surfaces anchored to both boundaries, while, as noted above,

radial geodesics observe no such barrier.10

It is clear at this point that spacetimes with singularities seem to have a particular

proclivity for admitting barriers. This is not a coincidence: corollary 2.3 states that null

surfaces foliated by (marginally) trapped surfaces act as barriers at least for codimension 2

extremal surfaces. If we additionally assume the stronger statement11 that all components

of the null extrinsic curvature are nonpositive, we found in corollary 2.2. that it is a barrier

to extremal surfaces of every dimension.

In particular, when the null barrier Σ is spatially compact, i.e. the entire boundary is

in Ext(Σ), then Σ is ruled by trapped surfaces. If the spacetime is furthermore globally

(or AdS) hyperbolic, spatially noncompact, and obeys the null curvature condition, the

existence of trapped surfaces guarantees the existence of singularities and horizons [34].

In the next section, we will prove a partial converse of our conclusions from corollary 2.2:

barriers imply the existence of trapped surfaces or singularities, at least for spacetimes

which admit a totally geodesic spacelike slice.

It is worthwhile here to comment on any bearing this might have on the recent con-

troversy over the completeness of the AdS/CFT correspondence. The question of whether

the black interior is fully described by the boundary field theory is particularly relevant to

this discussion. In [3, 4, 8], it was shown that there exist operators in the static black hole

interior that cannot exist in the dual field theory. The fact that a well-used probe of the

bulk geometry cannot reach into a bulk region which is not completely described by the

boundary field theory may not be coincidental. Since the limited reach of extremal surfaces

in the static black hole geometry is simply a special case of the barrier theorems presented

in section 2, we may expect that other black hole AlAdS geometries admitting barriers

may manifest similar incompleteness on the dual field theory side. One may also speculate

that field theories dual to other geometries, not necessarily black holes, may exhibit the

same behavior near a singularity.

4 Barriers and singularities

The examples in the previous section suggest that there is some connection between singu-

larities (particularly singularities masked by horizons), and extremal surface barriers. In

10The Vaidya spacetime, which has just one boundary, has no extremal surface barrier because spacelike

geodesics which enter at early times can leave at arbitrarily late times. However, there is an effective barrier

for surfaces that are anchored to the boundary at late times.
11If we assume spherical symmetry, this condition automatically follows for trapped surfaces.
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this section, we will prove this result in some special cases. Consider a spacetime manifold

M containing a totally geodesic spacelike slice S. Such slices can be found, for instance, in

static spacetimes, or more generally, spacetimes with a moment of time reflection symme-

try. Since we intend to drop in extremal surfaces from the boundary of S, we must assume

that S is noncompact. Because S is totally geodesic, these extremal surfaces remain on S.

Suppose further that there is an outermost barrier Σ such that the intersection between

Σ and S is nonempty and compact. Then we prove below that S either admits a singularity,

or else a marginally trapped surface.

If, in addition, we assume global hyperbolicity (including AlAdS spacetimes with

the appropriate generalization of global hyperbolicity), the null curvature condition

(Rµνk
µkν ≥ 0 for all null vectors kµ) and the generic condition (roughly, that each null ray

encounters at least a little bit of null curvature or shear) then the existence of a marginally

trapped surface itself implies the existence of a singularity somewhere on M [34].

We first prove a lemma:

Theorem 4.1. No compact extremal surface barrier Σ in M ever touches extremal surfaces

anchored to I.

Proof. We prove this by contradiction. Let Σ be a barrier, and suppose there exists a

spacelike extremal surface N which is anchored to I. By assumption, N ⊂ Ext(Σ) every-

where except where it coincides. In any neighborhood of such a coincident point p, there

exists a point such that:
ΣKµνh

µν > NKρ
µνh

µν Σkρ = 0 (4.1)

where Σkρ is the null generator of Σ for null Σ, and the N -directed normal to Σ otherwise.

N cannot lie on Σ for a continuous neighborhood (otherwise it would lie on Σ every-

where, which would violate the boundary conditions on N). N can therefore touch Σ while

remaining anchored on the boundary. But then we can slightly deform N in a neighborhood

of p, to make a new surface N ′ which crosses Σ. Using the elliptical equation of extremality,

we can solve for N ′ outside the neighborhood as well. Because the perturbation is small,

N ′ must still be anchored to the boundary. This shows that Σ is not a barrier, and we

have arrived at a contradiction.

Theorem 4.1 may at first seem to indicate that compact outermost barriers cannot

exist, since we have defined outermost barriers as the boundary of the union of some set

of extremal surfaces: one might naturally ask how the outermost barrier is constructed, if

extremal surfaces cannot touch it. The barrier must be constructed as a limit of extremal

surfaces that come arbitrarily close to touching it. We assume therefore, that one can

find sequences of extremal surfaces approaching any point p, whose limit is an extremal

surface tangent to Σ at p. However, the limiting extremal surface must not be anchored

anymore to the boundary, or it would contradict theorem 4.1. We will make use of this

limit construction of the outermost barrier in the proof of theorem 4.2 below, where we

prove a condition relating the existence of barriers to the presence of singularities and

trapped surfaces.
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Σs

N

S

M

Σ

Figure 6. A spacetime M with a timelike barrier Σ, projected onto a spacelike codimension 1

totally geodesic slice S yields a compact barrier ΣS for extremal surfaces on S.

Because we are taking a limit of extremal surfaces, one may worry that this limit

will be related to the boundary in a bizarre way, perhaps by spiraling around, getting

arbitrarily close to the boundary without actually being anchored to it. We will deal with

these pathological cases by including them in the following definition: a surface N is weakly

anchored if there exists a d ∈ R such that all points p ∈ N are less than d away from I

along N , after compactifying I.

Theorem 4.2. Let M admit a totally geodesic codimension 1 spacelike slice S. Given

a compact, nonempty, outermost barrier ΣS for weakly-anchored, codimension 2, ΣS-

deformable (i.e. where the deformations are restricted to S) spacelike extremal surfaces

on S (e.g. figure 6), then one of the following is true:

1. There exists a singularity outside or on ΣS, or

2. ΣS is a marginally trapped surface (in either time direction).

Proof. Since ΣS is an outermost barrier, there exist extremal surfaces that either coincide

with it and are tangent to it at coincident points, or come arbitrarily close to coinciding

with it. The former case is ruled out by theorem 4.1.

Let {Nr} be a family of spacelike extremal surfaces that approach arbitrarily close to

some point q ∈ ΣS while remaining weakly anchored on IS = I ∩ S. In a neighborhood of

q, we take the limit of these surfaces N ′ of {N ′

r} that reaches Σ at q.

Since we are operating at the “physics” standard of rigor, we assume without proof

that (a) this limit must exist for some sequence of extremal surfaces, and that (b) the

resulting extremal surface may be extended outside the neighborhood of q by solving the

elliptical equation of extremality. When we solve this equation, by theorem 4.1, N ′ must

no longer be entirely anchored on IS .
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S

N

N’

Σs

Σs’

(a)

S

N

N’

Σs

Σs’

(b)

Figure 7. (a) The original extremal surface N and its limiting surface N ′, in the case where

N ′ terminates at a singularity, (b) The extremal surfaces N and N ′, where N ′ spirals into some

limiting surface bounded by Σ′

S .

Since N ′ cannot be weakly anchored to IS , part of it must terminate somewhere in the

interior of the space-time. It can do it in one of the following two ways (figure 7):

(a) N ′ terminates in a singularity on or outside ΣS , or

(b) N ′ spirals outside ΣS forever, without ever coming to an end. In that case, we can

define N ′

∞
to be the limit set of the extremal surface as it gets arbitrarily far away

from the points where it is anchored to the boundary.12 N ′

∞
must be bounded by

some compact innermost surface Σ′

S , where Σ′

S ∩ I = ∅.13

If (a) is true, we get the first part of the claim. We now show that (b) results in the second

part of the claim. To do so, we need to show that ΣS = Σ′

S . We do this by contradiction.

Suppose Σ′

S 6= ΣS . Then Σ′

S ⊂ Ext(ΣS). This means that it is not a barrier for

extremal surfaces weakly anchored at I, and therefore by theorem 2.1 there must exist a

point p ∈ Σ′

S such that

trS

(

Σ′

SKµν

)

|p > 0. (4.2)

On the other hand, by construction, N ′

∞
⊂ Int(Σ′

S) can come arbitrarily close to Σ′

S

at any point p ∈ Σ′

S . This implies that the following holds everywhere:

trS

(

Σ′

SKµν

)

≤ 0. (4.3)

(The proof is essentially the same as theorem 2.4, but reversing the roles of the interior

and exterior.)

We have arrived at a contradiction, so instead we must assume that Σ′

S = ΣS . This tells

us that N ′ must in fact coincide with ΣS . Since N ′ is extremal, it follows that ΣS satisfies

trS
(

ΣSKµν

)

= 0. (4.4)

This is the same as saying that ΣS is a marginally trapped surface, which proves the second

part of the claim.

12If N ′ is not (weakly) anchored to the boundary anywhere, then N ′

∞ = N ′.
13Note that N ′

∞ cannot come arbitrarily close to the boundary, since then it would be boundary-anchored

by the generalized definition above.
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The assumption that there exists an outermost barrier ΣS for codimension 2 extremal

surfaces living on S is reasonable: if we take M to have a totally geodesic slice S and a

compact outermost barrier Σ such that Σ ∩ S 6= ∅, then in general, we expect that Σ ∩ S

will be compact, and be a barrier for extremal surfaces on S. There should then exist some

outermost ΣS which, at least for AlAdS spacetimes, will still be compact. (If there is a

barrier for all extremal surfaces, then obviously there must be a barrier for those which

are codimension 2 and restricted to S.)

If we further assume global hyperbolicity, the null curvature condition, and the generic

condition, we are able to say that marginally trapped surfaces only occur in geodesically

incomplete spacetimes, so that barriers in these spacetimes exist only in the presence

of singularities [34]. Singularities are therefore intrinsically linked to extremal surface

barriers. Assuming some form of cosmic censorship, these singularities must be hidden

behind horizons, thus outermost barriers are also linked to horizons.

In particular, the direct application of theorem 4.2 to the AdS/CFT correspondence

suggests that in general, extremal surface probes are not good probes for spacetimes with

singularities.

We expect that theorem 4.2 can be further generalized to both the noncompact barrier

case, as section 3.2 suggests, and to any time-dependent geometry, although this may

require assuming the null curvature condition (implied by the null energy condition and

Einstein’s equations), even to prove the existence of the trapped surface.14

5 Discussion

We proved in theorem 2.1, theorem 2.2, and corollary 2.2 that a splitting surface with non-

positive extrinsic curvature acts as a barrier to extremal surfaces (at least those which are

Σ-deformable). This can include spacelike, timelike, or null barrier surfaces. If we are only

interested in barriers to codimension 2 surfaces (as used in the holographic entanglement

entropy conjecture [12, 13]), then we have shown in theorem 2.3 and corollary 2.3 that null

surfaces foliated by (marginally) trapped surfaces are barriers.

Conversely, for spacetimes with a totally geodesic slice, the existence of a barrier

guarantees the existence of either singularities or else trapped surfaces for spacetimes with

a totally geodesic slice S, so long as the intersection of the barrier and S is compact.

We also showed that outermost barriers have at least one nonnegative extrinsic curvature

component (theorem 2.4), and we argued that extremal surface barriers occur somewhat

generically in AlAdS spacetimes. This presents a setback to attempts to reconstruct the

bulk geometries from field theory operators using extremal surface probes.

These results are particularly troubling in light of how pervasive extremal surface

probes are in applications of the AdS/CFT correspondence. If there are regions which

cannot be reconstructed from the entire boundary, than either those regions do not really

exist as semiclassical regions (e.g. because there is a firewall at their boundary), or else

14For example, the proof of strong subadditivity for extremal surfaces can be proven without the null

curvature condition in the static case [35], but requires it in the dynamical case [36].
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if they do exist, the information inside of them must be contained in a new factor of the

Hilbert space which is in addition to the boundary [28].

We have also studied cases in which there is a barrier to extremal surfaces located on

only part of the boundary. In this case it is not surprising that the entire bulk cannot be

reconstructed. Thus the location of the barrier might give clues about how much of the bulk

can be reconstructed from a CFT region. See [29, 36–38] for discussion of this question.

One should bear in mind that extremal surfaces are not the only probe used in

AdS/CFT. If there are other bulk probes besides extremal surfaces, it is possible that

a firewall (if it exists at all) might be located somewhere behind the outermost barrier.

Conversely, if there are some extremal surfaces which do not actually correspond to dual

observables (for example, because they are not the minimum area extremal surface), then it

could conceivably be that the firewall is actually outside of the barrier. It may also be that

there are regions of space where some kinds of extremal surfaces can probe, but not enough

to fully reconstruct the geometry. It is unclear what the status of these regions would be.

In the case of a Vaidya spacetime where a black hole forms from the collapse of a shell,

there is no extremal surface barrier. In particular, there are spacelike geodesics which pass

through any point of the black hole interior. The AMPS argument for firewalls [2] applies

to sufficiently old black holes that form from collapse, yet the absence of a barrier might

seem to suggest that there can be no firewall. However, the spacelike geodesics in question

are anchored at very large time separation on the boundary. In fact, [39] argued that

the WKB stationary phase approximation is not dominated by spacelike geodesics passing

through the interior of the black hole, but rather by complex geodesics.

It is unclear how to use the barrier results proven here in the case where the extremal

surfaces are complex, as was found in [17] for two-point correlators in the case of an AdS-

Schwarzschild bulk. However, the use of complex geodesics is only relevant when (at least

part of the) spacetime is analytic. In that case, all information about the metric is contained

in any small neighborhood, so it is difficult to use such calculations to determine how much

information can be reconstructed in general (without using the analyticity assumption).

However, even for the Vaidya spacetime, we still find that there is a partial barrier,

for spacelike surfaces anchored sufficiently far to the future of the collapsing shell. This is

because the spacetime is just Schwarzschild at late times. Thus the extremal surface barrier

might still give clues about the location of the firewall, although it does not necessarily tell

us when the firewall would first appear.

In general, our knowledge of the AdS/CFT dictionary comes from a bootstrapping

procedure where (a) proposed new ingredients to the dictionary can be checked using our

knowledge of bulk physics, while (b) the behavior of the bulk can also be predicted using

the dictionary. But if at step (b), our current understanding of the dictionary predicts

a firewall — resulting in a breakdown of the bulk equations of motion used at step (a)

— then it is unclear how to proceed. Should we modify the bulk equations of motion or

the dictionary? Perhaps it is the local bulk equations of motion which should be kept

sacrosanct, and other things we think we know about AdS/CFT should be modified in

order to preserve them. Ultimately, the question is what choice of dictionary leads to the

most consistent, complete, and interesting form of the correspondence.
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There are several remaining questions worth noting. First, we have yet to find a

complete description of the most general barrier, in particular for the outermost barrier

surface. Such a description would facilitate an understanding of precisely how generic

extremal surface barriers are. We expect that, assuming the null curvature condition, it

should be possible to show that compact outermost barriers can only occur in spacetimes

with singularities.

We note that (aside from theorem 2.3) the main results of this paper are purely ge-

ometrical in nature — they apply to any Lorentzian spacetime without needing to use of

any energy condition restricting the sign of the curvature. (Although given the existence of

trapped surfaces as shown in theorem 4.2, the null curvature condition would say that there

must be singularities.) This suggests that our results are still valid even in semiclassical

spacetimes (e.g. evaporating black holes) where local energy conditions are violated. How-

ever, the significance of these geometrical results for AdS/CFT is not the same, since in the

semiclassical (finite N) regime, there are quantum corrections to the dictionary relating

extremal surfaces to boundary physics.

For example, the entanglement entropy of a CFT region is no longer given just by the

area of an extremal surface. Instead it receives corrections due to the bulk entanglement

entropy [40]. Thus we should really be interested in surfaces which extremize the area plus

the bulk entanglement entropy. To find barriers to these surfaces, it is natural to look for

null surfaces foliated by quantum trapped surfaces, where the sum of the area and the bulk

entropy is decreasing. One can then prove quantum generalizations of the types of classical

theorems proven here [26].
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