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1 Introduction

For every unitarily invariant norm, we have the Heinz inequalities (see [1])
2[|A2XB3 || < [|A"XB" + A XB|| < IIAX + XBl|, (11)

where A, B, X are operators on a complex separable Hilbert space such that A and B are
positive and ||| - ||| denotes a unitarily invariant norm.

The function f(v) = [||A”XB'™" + A"V XB"||| is convex on the interval [0, 1], attains its min-
imum at v = %, and attains its maximum at v = 0 and v = 1. Moreover, f(v) = f(1 — v) for
0<v<l.

n [4], (1.1) is refined by Kittaneh by using the following equalities (see p.122 of [2]):

a+b f(ﬂ)+f(b)
(58) = 55 [ roa L@ 12)

where f is a real-valued function which is convex on the interval [a, b].

In [3], Feng used the following inequalities to get refinements of (1.1):

)<t (52 o) Lo

where f is a real-valued function which is convex on the interval [a, b].
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In this paper, we prove that i(f(a) + 2f(“7+b) +f(b)) of (1.3) can be replaced by % (15f(a) +
2f(%) +15f(b)), and based on the inequalities

f(aTw>_b_ /f(t)dt<—(15f(zz)+2f( )+15f(b)>

Sf(a)+f(b’

5 (1.4)

we give some new refinements of Heinz inequalities of matrices.
Our results are better than the ones in [4], but we cannot say that our results are better
than the ones in [3].

2 Main results

In [4], Kittaneh gave some refinements of the Heinz inequalities by using the previous
lemma. In the following, we will use the following lemma to obtain several better refine-
ments of the Heinz inequalities.

Lemmal Letf be a real-valued function which is convex on the interval [a, b]. Then

f(ﬂ;rb)_b_ /f(t)dt<—(15f(a)+2f( ) 15f(b)> f()+f

Proof Since f(%22) < [@I® e know that 15f(a) + 2f(%L) + 15f(b) < 16f(a) + 16f(b).
Thus

%(15f(a)+2f(¥> 15f(b)) Jf@+f0) +f ®)

Next, we will prove the following inequality:

b
bia/ f)dt < 312(15f(a)+2f(“%b) +15f(b)>.

We have

1 b a+b
b_aLf(t)dt - a(/ f(eyde+ be()dt)

1 <f(a) +f(451) b-a f(5)+f(B) b—a)
b-a 2 2 2 2

- (f(a +2f(“+b)+f(b>)
- (@6 (457) +yr)

- (Sf(a) . zf(“T”’> +7(Fla) + £ (b)) + 8f(b)>

IA

IA

1 b
- = (15f(a) + 2f(%) + 15f(b)>. O
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Applying the previous lemma to the function f(v) = [||A”XB*" + AL"VXB"||| on the inter-
val [i,1—pu] when 0 < u < %, and on the interval [1 — u, «] when % < u <1, we obtain
refinement of the first inequality in (1.1).

Theorem 1 Let A, B, X be operators such that A, B are positive. Then, for 0 < u <1 and
for every unitarily invariant norm, we have

1
1—2u

1—
2llabxst = | [ s 4w
0

< i(wmAuXBl—ﬂ + ATHXB|| + 2|43 XB2 ||)
16
<||a*XB"" + AVHXB|. 21

Proof First assume that 0 < p < % Then it follows by the previous lemma that

l-pu+up 1 I
f( 5 )51—2M/M f()de

5%(15f(u)+2f(1_u+ﬂ)+15f(1—u)>

2
<f(u)+f(1—u)’
= 2

Thus,

1

2l|a2xB? | <
1-2u

1-p
/ A" XB"" + A" XB||| dv
y

< - (15[JaxBr ¢ 4B |+ 243 xBE |

<||A*XB"" + AV XB ). (2.2)

Now, assume that % < @ < 1. Then, by applying (2.2) to 1 — u, it follows that

offatast] < [ axe et a
1-n

2u—1
< %(15 la#XB# + Al xBH || + 2[| A3 xB2 )

<||A*XB"" + A¥*XB ). (2.3)


http://www.journalofinequalitiesandapplications.com/content/2013/1/424

Wang Journal of Inequalities and Applications 2013, 2013:424
http://www.journalofinequalitiesandapplications.com/content/2013/1/424

Since

1-
lim ’ [ axeay
W %|1_2M| "w

= lim %(15”]14“)(31-“ + AVHXBH || +2]|A3xBE ||)
)

=2||A2xB3 |,

the inequalities in (2.1) follow by combining (2.2) and (2.3). O

Applying the previous lemma to the function f(v) = ||A*XB*" + A"V XB"|| on the interval
[, 2] when0 < pu < —, and on the interval [ | when < u <1, we obtain the following.

Theorem 2 Let A, B, X be operators such that A, B are positive. Then, for 0 < u <1 and
for every unitarily invariant norm, we have

2,“1 3-2u 3= 2# 2u+1
|

A7 XB™+" +A™%

' f : |[A"XB'" + A*"XB|| dv

<
B |1 — 24l
3 (15|||AMXBI w4 AR XBH ||| +2|”A2u+1 s | o
+30]|A2XB2 ||)
= L (e a2l abxs ), "

Inequality (2.4) and the first inequality in (1.1) yield the following refinement of the first
inequality in (1.1).

Corollary 1 Let A, B, X be operators such that A, B are positive. Then, for 0 < u <1 and

for every unitarily invariant norm, we have

2f|azx|

2u+1 3=

2u
XB T LATE XBTT

2u+1 |||

=[la™

1
< f HlATXB + AXBY || dv
|1 —2u|

3 3-2p 2;,L+1
4

=5 (15|||A“XBI "+ ATPXBH
+30]a1xB! )

< S (JarxBr ¢ 4| + 2] 4381 |

< ||A*xB** + A¥*XB*||. (25)

Applying the previous lemma to the function f(v) = [|A*XB"™" + A"V XB"|| on the interval
[0,u] when 0 < u < %, and on the interval [u,1] when % < u <1, we obtain the following
theorem.
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Theorem 3 Let A, B, X be operators such that A, B are positive. Then,
D foro<p< % and for every unitarily norm,

|A% XB5 + A5 xB% ||
"
<o [Clrxsr s arxs | av
mJo
< Si (15|AX + XBI| + 2||AZXB'"% + A5 XBY || + 15||A*XB'" + A XB" )

< = (IlAX + XB|| + ||A*XB"* + A" XB"

); (2.6)

NI>—‘

(2) for % < <1 and for every unitarily norm,

1
< IL |A"XB™ + A" XB"|| dv

1+M

A xB + A xS

—n
3%(15|||AX+XB||| +2[|AT XBT + AP XB || +15]| A" XB " + A1 XB )
%(|||AX+XB||| + ||A*XB'H + AT XBM|). (2.7)

Since the function f(v) = [|A"XBY™ + A'""XB"||| is decreasing on the interval [0, %] and
increasing on the interval [1,1], and using the inequalities (2.6) and (2.7), we obtain the
refinement of the second inequality in (1.1).

Corollary 2 Let A, B, X be operators such that A, B are positive. Then, for 0 < u <1 and
for every unitarily invariant norm, we have
D foro<p< % and for every unitarily norm,

|A*XB" + A" XB"

<||AXxB"% + A5 XBE

<= / [[A"XB™ + A*"XB" || dv

1-5

<— (15|||AX + XB|| +2[|AZXB""% + AV 2 XB? || + 15]|A# XB " + A1 XB )

=3 (|||AX +XB|| + ||A*XB" + A" XB*||)

< lAX + XB|ll; (2.8)
(2) for % < u <1 and for every unitarily norm,

||lA*XxB* + A#XB* ||

T+p

|||A B

0 1-p 1+p

XB + A XB

<— / [[A*XB"" + A"V XB|| dv
1-wJ,
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siz (151X + XBJ| + 2[|A "% XB'?" + A" XB'#" || + 15]|A*XB"# + A" XB" )
%(|||AX+XB||| + [|A*XB'H + AT XBM|)

= lIAX + XB]|l. (2.9)

It should be noticed that in inequalities (2.6) to (2.9),

"
fim |A"XB"" + A" XB|| dv,
0

u—>0 1
fim —— / |A7XBY + A" XB" || dv
u=>11-—p

= |AX + XB]||.
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