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Abstract
Introduction A proof-of-concept demonstration of the use
of label-free quantitative glycoproteomics for biomarker
discovery workflow is presented in this paper, using a
mouse model for skin cancer as an example.

Materials and Methods Blood plasma was collected from ten
control mice and ten mice having a mutation in the p19ARF

gene, conferring them high propensity to develop skin cancer
after carcinogen exposure. We enriched for N-glycosylated
plasma proteins, ultimately generating deglycosylated forms
of the tryptic peptides for liquid chromatography mass
spectrometry (LC-MS) analyses. LC-MS runs for each
sample were then performed with a view to identifying
proteins that were differentially abundant between the two
mouse populations. We then used a recently developed
computational framework, Corra, to perform peak picking
and alignment, and to compute the statistical significance of
any observed changes in individual peptide abundances.
Once determined, the most discriminating peptide features
were then fragmented and identified by tandem mass
spectrometry with the use of inclusion lists.
Results and Discussions We assessed the identified proteins
to see if there were sets of proteins indicative of specific
biological processes that correlate with the presence of
disease, and specifically cancer, according to their func-
tional annotations. As expected for such sick animals, many
of the proteins identified were related to host immune
response. However, a significant number of proteins are
also directly associated with processes linked to cancer
development, including proteins related to the cell cycle,
localization, transport, and cell death. Additional analysis
of the same samples in profiling mode, and in triplicate,
confirmed that replicate MS analysis of the same plasma
sample generated less variation than that observed between
plasma samples from different individuals, demonstrating
that the reproducibility of the LC-MS platform was
sufficient for this application.
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Conclusion These results thus show that an LC-MS-based
workflow can be a useful tool for the generation of
candidate proteins of interest as part of a disease biomarker
discovery effort.

Keywords Skin cancer . LC-MS . Label-free protein
quantification . Biomarker discovery . Systems biology .

Targeted peptide sequencing . Glycoproteomics . Plasma

Introduction

Cancer is a leading cause of mortality in the USA [1] and
other developed countries. Years of research have revealed
cancer to be a complex disease typically involving both
genetic and environmental factors, which results in the
molecularly heterogeneous disease that we know [2].
Collectively, the various genetic and environmental factors
combine to cause activation and inhibition of multiple
cellular pathways, resulting in a range of pathophysiol-
ogies, such as angiogenesis, immune system evasion,
metastasis, altered cell growth, death, and metabolism [3].
In turn, the heterogeneous nature of cancer has presented a
significant challenge for finding new biomarkers for the
disease, a topic which thus continues to generate significant
research interest [4–6].

There are many types of biomarkers, each fulfilling a
particular function. These would include diagnostic, prog-
nostic, predictive, and pharmacodynamic markers [6].
However, regardless of the purpose for which a biomarker
is used, it relies on our ability to measure a change in
abundance for one or more molecules of interest. Thus, in
any new biomarker discovery effort, analytical methods
need to be able to robustly and reproducibly measure
changes in biomolecules, and be able to identify and
quantify with confidence the molecular species that are
changing as a result of disease.

In this study, we demonstrate the feasibility of using a
liquid chromatography mass spectrometry (LC-MS)-based
approach to identifying protein changes in the blood, as a
result of the disease, using plasma obtained a mouse model
of skin cancer and controls. We also show how the use of
protein interaction networks and functional analyses can
further inform a biomarker discovery effort. This approach
is not just valid for skin cancer, or even cancer in general,
but should be equally applicable to most other diseases if
suitable biospecimens are available for analysis.

Blood, perfusing the whole body, moving molecules
between organs, is a rich body fluid for biomarker
discovery. It is assumed that blood and plasma, where the
blood cells have been removed, contains clues about the
health status of most organs and tissues of the body.

Because it is readily accessible, blood plasma is very
attractive for biomarker discovery efforts. The main hurdle
with plasma is its high degree of complexity, containing
probably millions of distinct molecular species, spanning
more than ten orders of magnitude in concentration [7].
Since it is assumed that potential protein biomarkers are
most likely present in the lower abundance range and whole
plasma analyses overwhelm even the most powerful LC-
MS system, the adoption of one of many available
strategies for reduction of sample complexity is additionally
required.

Sample fractionation seeks to divide one complex
sample into many samples of lesser complexity and takes
advantage of separation techniques that are orthogonal or
complimentary to the C18 chromatography used in LC-MS.
Protein separation [8], strong cation exchange [9, 10], and
1D [11] and 2D gel electrophoresis [12, 13] are among the
most common fractionation methods used to date for
complex samples in proteomics. Although fractionation is
an effective way to perform an extensive inventory of a
complex sample, such as plasma, the multiplication of
samples it creates becomes a limitation for analyzing large
sample populations, as one would do for biomarker
discovery.

Another way to reduce complexity is to remove the
proteins that are likely not relevant to the disease, such as
highly abundant and ubiquitous proteins, which are
generally dismissed as biomarker candidates. This is a
particularly important consideration for plasma protein
analyses, since albumin alone accounts for over half of
the total protein content [7], and just the top 22 most
abundant make up about 99%. Immunoaffinity subtraction
[14, 15] columns have thus been used to selectively deplete
these most abundant proteins from plasma samples,
opening up the dynamic range for potentially detecting
more interesting proteins. One problem with this approach
is that some of the potential biomarkers might bind to
abundant proteins and be removed either by non-specific
binding or by binding to proteins that are removed.

An alternative strategy to complexity reduction involves
specific enrichment for a subfraction of analytes, rather than
removing some of them as above. Such approaches
typically focus on taking advantage of unique chemical
properties of a subfraction of the proteome to enrich for it.
Examples of this approach include selective enrichment of
cysteinyl-containing peptides [16], phosphorylated peptides
[17], and N-glycosylated peptides [18]. Glycosylated
proteins are particularly attractive as potential candidate
biomarkers that might be detectable in plasma since, by
definition, they almost exclusively exist as secreted proteins
or are embedded in cell surface membranes. They may thus
represent a sub-proteome more likely to be detectable in
the blood, either through direct secretion or via deposit
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from cell membranes via a process of cell shedding,
leaching, or cell death. It is also known that the oncogenic
process itself causes altered cell surface protein expression
patterns in tumor cells [19, 20], making glycoproteins also
interesting from the disease perspective, as most cell
surface proteins are glycosylated. In addition, their hydro-
philic sugar moieties tend to make them quite soluble,
further increasing our chance of detecting them in blood.
Finally, protein N-glycan structures provide a convenient
chemical ‘handle’ that can readily be used for their selective
enrichment.

Since this approach typically generates only one or a few
peptides per protein (more than enough to identify most
proteins), the significant reduction in complexity it affords
results in a sample that can be directly analyzed by LC-MS
without the need for additional fractionation, though this
can still be an option in some workflows. This allows us to
analyze only one sample per individual, making the
approach ideal for population-based studies, as typically
required for biomarker discovery. Another advantage of
selective enrichment of N-glycopeptides comes at the data
analysis stage, where the known consensus sequence for N-
glycosylation, N-X-S/T (where X is any amino acid but
proline and S/T is serine or threonine), serves as a useful
confirmation of peptide identification and can thus be used
as a filter to reduce the false discovery rate (FDR). In
addition to this, the enzymatic deamidation step that is used
to remove the N-glycan structure and make the peptides
amenable to LC-MS results in conversion of the formerly
glycosylated asparagine to aspartic acid. This generates a
small mass shift for the resultant peptide, easily measurable
in higher accuracy mass spectrometers. This serves as yet
another confirmation of peptide identity and further
provides positive identification of the N-glycosylation site
on the protein, information that may turn out to also be
biologically relevant down the road. Finally, with the
availability of sequence databases and the existence of an
N-glycosylation motif, the finite number of possible N-
glycosylated peptides, along with their expected sequences,
is known. This has allowed for the building of N-
glycosylation databases, such as UniPep [21], that can be
a useful resource in a candidate-based biomarker discovery
workflow.

For relevant biomarker discovery research, one also
needs to perform quantitative measurements on populations
of samples and identify discriminating peptides for which
the abundance segregates the populations into disease
states. Traditional quantification methods for proteomics
involve stable isotope tags of distinct masses, which enable
multiplexing of samples in one LC-MS measurement [22–
27]. However, there is a strict limit to the number of
samples that can be multiplexed, restricting their use in
population studies. Multiplexing also reduces the available

dynamic range, as the amount of sample loaded into the
LC-MS system is a finite quantity. Multiplexing five
samples is equivalent to loading only one fifth of the
original material on a per sample basis.

Traditional shotgun proteomic workflows have signifi-
cant limitations for biomarker discovery. Automatic pre-
cursor selection introduces a bias toward high intensity
precursor ions, leaving the lower intensity ones that
frequently correspond to lower abundance peptides uniden-
tified. Typically, the majority of the reliably detected
peptides at the MS1 level do not get identified by automatic
precursor selection [28]. To concentrate our efforts on the
specific and discriminating features, our approach compares
LC-MS profiles first, to find changes in peptide abun-
dance between different populations. Once those peptides
are found, their m/z and retention times are placed in an
inclusion list to be sequenced and identified, on reanalysis
of the same samples by tandem mass spectrometry (MS/
MS) [29].

In label-free LC-MS quantification, only one sample is
analyzed at a time, which requires a highly reproducible
analytical platform. To infer relative peptide abundance,
peak areas from different LC-MS experiments analyzed
under similar conditions are compared. The first step in
label-free LC-MS quantification is to find all the peaks
detected in a sample, a process called peak picking. The
next step is peak alignment, where the peaks found in some
samples are tentatively mapped to other samples, compen-
sating for small changes in m/z and retention times. This
type of analysis assumes that the samples have a majority
of peaks in common and that only a small fraction of those
will change between subjects. This approach has been
formulated in various software packages [30–33]. However,
it was found that most tools were designed with a particular
kind of data in mind and did not perform well with data
acquired with another type of mass spectrometer. Factors
such as mass accuracy, noise level, and resolving power,
which are specific not only to a particular instrument but to
how that instrument is operated, can limit the scope of such
tools. The Corra framework (M. Brusniak et al., manuscript
submitted for publication) was designed to facilitate the use
of those tools and combine them with statistical methods
for data analysis within a common interface where we can
mix and match different software tools and instruments.

The goal of this study was thus to demonstrate the
applicability of a highly integrated label-free LC-MS
proteomics workflow to a disease biomarker discovery
effort. We used a p19ARF mouse model for skin cancer [34]
to perform a proof-of-concept experiment to show that we
were able to identify peptides and proteins that were
differentially abundant between plasma samples from
skin-cancer-bearing mice and normal controls. We utilized
N-glycopeptide enrichment for plasma protein complexity
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reduction, followed by LC-MS and Corra data analysis to
identify differentially abundant peptides. We then used
inclusion list MS/MS to identify the peptides and the
proteins they originated from. Finally, we used protein
interaction and functional data to identify protein networks
and molecular functions that were enriched in the regulated
proteins. This confirmed that cancer-related proteins and
processes were indeed detectable and quantifiable in plasma
by this method, thus demonstrating its utility as part of any
larger biomarker discovery project.

Materials and Methods

Mouse Model

The p19ARF mouse model is a well-characterized in vivo
model of epithelial neoplasia, as deletion of the p19ARF

tumor suppressor makes them highly susceptible to tumor
formation upon topical application of carcinogenic agents.
The two-stage chemical protocol involves treatment of mice
with a carcinogen, 7,12-dimethylbenz[a]anthracene (DMBA)
followed by multiple applications of the promoting agent,
12-O-tetradecanoylphorbol-13-acetate (TPA). This treatment
induces benign squamous cell papillomas, with sustained
activating mutations in the H-ras oncogene. Early papillomas
consist of folded epidermal or follicular hyperplasias that
begin to protrude from the skin surface. In wild-type mice, a
small fraction of these benign papillomas will progress over
time to malignant carcinomas as further genetic mutations
occur. Mice heterozygous for the tumor suppressor p19ARF

were used for the skin tumor model in this study due to their
reduced latency in developing papillomas and carcinomas
compared to wild-type mice [34].

Breeder pairs of genotype p19ARF+/− X p19ARF +/+ on a
NIH01a background strain were set up to generate a cohort
of ten experimental and ten control mice of genotype
p19ARF +/−. Each experimental mouse was paired with a
control mouse from the same litter and sex and housed in
the same cage during the course of the experiment. Care
was taken to ensure that no systematic biases were
introduced between cases and controls. All mice were
maintained on a 12-h light–dark cycle and had access to
autoclaved food and water ad libitum. For the experimental
mice, the backs of 8-week-old male and female mice were
shaved and treated with a single application of DMBA
(Sigma, St. Louis, MO) 25 μg in 200 μl acetone, followed a
week later by twice weekly applications of TPA (Sigma)
(200 μl of 10−4 M solution in acetone) for 15 weeks. Control
mice were treated with TPA alone for 15 weeks. Benign
squamous cell papillomas appeared by 8 weeks post-DMBA
treatment that progressed to malignant squamous cell
carcinomas beginning at 24 weeks. The experimental mice

had an average of five papillomas and one carcinoma. No
tumors were detected on the backs of control mice. Mice
were monitored daily and any abnormal health or behavior
noted. Benign to malignant conversion was accompanied by
a dramatic change in the appearance of the tumor and its
invasion and growth into the underlying dermis. Conversion
was easily quantified by visual inspection and confirmed
using histological analysis of tumor sections. Carcinoma-
bearing experimental mice and the matched control were
killed within 1–2 weeks after first visual detection of
carcinoma. Mice were euthanized by CO2 inhalation, and
whole blood was collected by cardiac puncture. Plasma was
purified from the whole blood by K3EDTA addition and
centrifugation. Plasma was stored in conical cryovials in
100 μl aliquots and stored in a liquid nitrogen tank.

Sample Preparation

The isolation of N-linked glycopeptides from total mouse
plasma samples (40 μl total from each mouse) was
performed essentially as described elsewhere [35, 36].
Unless otherwise noted, all chemicals and reagents were
from Sigma. Individual plasma samples were diluted with
40 μl trypsin buffer (0.1% Rapigest (Waters, Milford, MA)
in 25 mM KHPO4, pH 8) and desalted using spin columns
(SNS P060, The Nest Group, Southborough, MA) pre-
equilibrated in trypsin buffer, eluting in a final volume of
80 μl. Proteins were denatured with the addition of 75 μl
trifluoroethanol for 1 h, 60°C. Proteins were then reduced
with the addition of 10 μl of 80 mM Tris (2-carboxyethyl)
phosphine (Pierce, Rockford, IL) for 30 min, 60°C,
followed by alkylation with 20 μl of 100 mM iodoaceta-
mide for 30 min, room temperature, in the dark. Proteins
were next proteolyzed with the addition of 550 μl trypsin
buffer and 40-μl 0.5 mg/ml trypsin (Promega, Madison,
WI) for 2 h, 37°C. Glycopeptides were next oxidized with
the addition of 100 μl coupling buffer (1 M sodium acetate,
2.5 M NaCl, pH 5.5) and 100 μl of 100 mM NaIO4 (Sigma)
for 1 h, 4°C, in the dark and then captured to a solid-phase
with the addition 100 μl of a 50% slurry of hydrazide resin
(Bio-Rad, Hercules, CA) pre-washed with coupling buffer,
3 h at room temperature with gentle mixing. Beads were
washed 3× each with 1.5 M NaCl, H2O, and freshly made
bicarbonate buffer (100 mM NH4HCO3, pH 8.3) and the N-
linked glycopeptides released by the addition to the beads
of 25 μl bicarbonate buffer and 3 μl protein N-glycosidase
F (PNGaseF, New England Biolabs, Ipswich, MA) and
incubation overnight at 37°C with gentle mixing. Released
peptides were then recovered with two additional washes
with 100 μl bicarbonate buffer and desalted and cleaned up
on Sep-Pak C18 cartridges (Waters) eluting with 50%
acetonitrile, 0.1% trifluoroacetic acid, and finally evaporat-
ed to dryness under vacuum in clean glass vials.
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Differential Mapping

Peptides were separated on an 1100 Series HPLC system
(Agilent, Santa Clara, CA) equipped with a nanoflow pump,
operating at a flow rate of 1 μl/min. Mobile phase A was a
0.1% formic acid in water and mobile phase B was 0.1%
formic acid, 5% water, and 95% acetonitrile. A binary
gradient from 5% to 35% B was used to separate the peptides
on a monolithic C18 10 cm long×100 μm inner diameter
column (Merck KGaA, Germany). A self-packed integraFrit
column (New Objective, Woburn, MA) with a bed of Magic
C18 5 μm particles (Michrom Bioressources, Auburn, CA)
2 cm×100 μm was used as a pre-column. Sample volumes of
5 μl were injected by the autosampler, and every batch of
replicates was randomized before injection.

Mass analysis was performed on a MicrOTOF electro-
spray time-of-flight mass spectrometer (Bruker Daltonics,
Billerica, MA) with a mass accuracy of 5 ppm and a
resolving power of 9,000 or better. The mass scale was
calibrated using glu1-fibrinopeptide B (Sigma), and mass
spectra were acquired at one spectra/s over the range of
300–1,600 m/z. High mass accuracy for the differential
mapping on the MicrOTOF was maintained by automatic
instrument recalibration between every sample. This was
achieved by injecting 320 fmol of glu1-fibrinopeptide B
(Sigma) with a 15-min gradient and increasing the cone
voltage to 220 V, inducing in-source CID. The fragments
were used by the visual basic script to recalibrate on-the-fly
the mass spectrometer, insuring the same mass accuracy
from the first to the last sample. This measure also had the
benefit of preventing carryover between samples and
provided a way to monitor the sensitivity and reproducibil-
ity of the system during large batch analyses.

Corra Statistical Analysis

The mzXML data was imported into the Corra framework
(M. Brusniak et al., manuscript submitted for publication) to
perform statistical analysis to reveal peptides that are
differentially abundant between the two sample populations.
Peak detection and alignment were performed within Corra
using the SpecArray [30] algorithm. The alignment was
performed such that only features that were detected in half
of the samples made it to the aligned feature table. Figure 1
represents schematically the Corra framework. Corra was
running on a six dual core, dual processor AMD Opteron
275, 2.2 GHz, 1 MB level 2 cache hardware configuration.

Targeted Sequencing of Discriminatory Peptides
by LC-MS/MS

The top 300 discriminatory peptides of charge 2 and 3 were
made into an inclusion list for sequencing on an LTQ-FT

mass spectrometer (ThermoFisher, San Jose, CA), as
described elsewhere [29]. A mass tolerance of 25 ppm
was specified, and ion accumulation time was set at 500 ms
for both IT-MS and FT-MS scans. The scan rate for the FT-
MS scans was set to 0.89 s over the range of 300–1,600 at a
resolving power of 100,000. MS/MS scan rate was set at
0.2 s. The LTQ-FT connected to an 1100 Series HPLC
system, but used a self-packed, 15-cm capillary column
with a 150 μm inner diameter packed with a bed of Magic
C18 5 μm particles (Michrom Bioresource), without a pre-
column. The flow rate was 1.2 μl/min, and the gradient was
the same as described for the differential mapping. The
identified peptides were mapped back to the aligned
features, keeping the same mass accuracy and retention
time tolerances as were used for the inclusion list.

Protein Identification and Function

The proteins from the inclusion lists were identified using
the Trans Proteomic Pipeline [37] using Sequest version 27
and the mouse IPI database version 3.5. The searches were
performed using a mass tolerance of 0.1 Da on the
precursor ion and of 3 Da on the fragment ions. Variable
modifications were included for oxidized methionine
(16.0 Da) and conversion of asparagine to aspartic acid
due to the deglycosylation (0.98 Da) were added to the
search, as well as a static modification for cysteine
carbamidomethylation (57.02 Da). Trypsin was selected as
the proteolytic enzyme. Peptide and Protein FDRs are
automatically calculated in a dataset-dependant manner by
the PeptideProphet and ProteinProphet components of the
Trans Proteomic Pipeline [37].

Because biological function is more commonly annotat-
ed to genes than proteins, the first step of the protein data
analysis was to find the Entrez GeneIDs that coded for the
identified proteins. These GeneIDs allowed us to identify
enriched biological processes and molecular functions,
protein–protein interactions, and protein associations. The
data mining was performed using Cytoscape [38] and
Gaggle [39], through the Protein Function Exploration
WorkBench [40] using the following data sources: Entrez
GeneID identifications were obtained primarily from the
mouse database version 3.5 (ftp://ftp.ebi.ac.uk) and then
supplemented (for IPIs that had no Entrez GeneID) by
searching the IPI protein sequence against the NCBI ‘nt’
database, using tblastn (http://blast.wustl.edu/) dynamically
translating in all six reading frames, selecting only high
scoring, complete matches with Entrez GeneIDs. Enriched
Gene Ontology biological processes, and molecular func-
tions were calculated using the Bioconductor GOstats
package (http://bioconductor.org) on annotations provided
by the Affymetrix Mouse Genome 430 2.0 Array annota-
tion data. Protein–protein interactions were inferred from
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HPRD, the Human Protein Reference Database (http://
www.hprd.org) via homology, using NCBI’s Homologene
(http://www.ncbi.nlm.nih.gov). Other gene associations
were provided by EMBL String (http://string.embl.de).

Results and Discussion

LC-MS Analysis of N-glycosylated Tryptic Peptides
by LC-MS

For this experiment, we enriched formerly N-glycosylated
tryptic peptides from the blood plasma of ten cancer-
bearing mice and ten control mice. All 20 samples were

initially analyzed by LC-MS on an ESI-TOF system.
Sample run order was randomized for all 20 samples. This
randomization was to both average out any cross contam-
ination that might occur due to sample carryover and to
ensure that no statistical bias for run order was introduced
for subsequent data analysis. To further minimize sample
carryover, a standard injection of 320 fmol of the
calibration standard peptide glu1-fibrinopeptide B was
inserted between each of the 20 LC-MS injections. An
advantage of doing this between each LC-MS run was that
this calibration standard could be used to recalibrate the
machine between each run in an automated fashion. This
gave us great confidence in, and knowledge of, the mass
resolution and accuracy from run to run. This, in turn, gave

Fig. 1 Workflow of the Corra framework. The pipeline accepts
mzXML files as input, then it performs peak picking and alignment.
The statistics module is used to find differentially abundant features

and generates an inclusion list from them. Identified peptides are then
annotated back to the feature list
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us increased confidence in the LC-MS data alignments,
which is done on the basis of accurate mass and LC
retention time.

Feature Selection and Clustering

All 20 LC-MS maps were processed with Corra. The number
of detected features per LC-MS injection varied from 1,096 to
1,407, with a median of 1,354 features on the ESI-TOF
platform. To increase our chances of identifying cancer-
specific regulated proteins, we only made use of features that
aligned across, minimally, half of the LC-MS runs. This
approach would, in theory, find any differentially abundant
feature observed in all of the cancer mice and not the controls
and reduce the processing time to a manageable amount, as it
grows exponentially with the number of features to compare.
In using this filter, we would expect to loose some genuine
cancer marker candidates. However, this was done to help
control the FDR. While we would expect that some N-
glycoproteins that might be upregulated and detectable in
cancer and below the level of detection in controls, they may
not be detected in all cancer mouse LC-MS runs. This
likelihood increases as their relative abundance decreases.
However, for the purposes of this study, it was important to
have a low false-discovery rate in terms of the alignments, so
that we could have high confidence in the downstream protein
function analyses. The next step in the data analysis was to
superimpose observed signal intensities for the aligned
peptide features to determine which showed differential
abundance between case and control mice. This information
was then used to see whether the aligned LC-MS data alone
could be used to distinguish between the two disease
populations in a blind analysis.

Figure 2 shows how the use of principal components
analysis (PCA) allowed us to successfully differentiate
between the healthy and disease states on the basis of the
LC-MS profiles alone. The samples from the tumor-bearing
mice clustered in the bottom left corner of the PCA space,
while the normal mice samples clustered in the top right
corner. In Fig. 2, each data point represents a single sample,
on which a series of measurements have been made, in this
case of peak intensities at aligned retention times and m/z.
All the measurements are projected in orthogonal space, on
a reduced number of axes, typically two or three. This
dimensionality reduction facilitates the visualization of
trends in the data. Since PCA is an unsupervised mode of
analysis, it reveals clustering in an unbiased way, without
risk of over fitting by using a priori knowledge of class
membership (in this case, those from cancer and those from
control mice). More importantly with this plot, that we
observed two linearly separable clusters tells us that there
were differences at the protein level between the normal
and the tumor-bearing mice. It also tells us that those

differences could be measured, as well as quantified, and
that they contain information of sufficient power to
correctly classify all 20 LC-MS data files on the basis of
disease state. This result further goes to illustrate the
potential applicability of such an LC-MS workflow to a
larger biomarker discovery effort.

Targeted Sequencing by LC-MS/MS for Peptide
and Protein Identification

With the aligned peptide feature signal intensities for the
cancer versus normal mice, the next step was to identify the
peptides and proteins of most interest, according to
apparent differential abundance, via inclusion list-based
targeted LC-MS/MS. To do this, we selected 300 aligned
features (based on raking according to Corra-generated
p values) to form the inclusion list. In turn, this was used
for LC-MS/MS sequencing using and LTQ-FT MS system
and was performed on six randomly chosen plasma N-
glycopeptide isolates, three each from the cancer and
normal sample sets.

The mass spectrometer was set to monitor selected ion
traces of all the targeted features throughout the chromato-
graphic gradient. Thus there were more identified peptides
than targeted features as the mass (i.e., m/z) of a feature can
correspond to multiple peptides, especially for a complex
sample such as isolates from plasma, within the resolving
power of the LTQ portion of the mass spectrometer. Corra
then determined the correct assignment of identified
peptides to a particular feature, based not just on observed

Fig. 2 PCA plot of the clustering of the 20 LC-MS runs for two
different disease states are linearly separated. Each data point is
annotated with a number representing the order in which the samples
were analyzed, followed by a letter, N or T, which indicate normal and
tumor-bearing mice, respectively. In this plot, the first principal
component represents 25% and the second principal component
represents 17% of the total variance
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mass but also on expected retention times. The MS/MS
spectra obtained from the inclusion lists were then searched
against a sequence database so that the corresponding
peptides sequences could be mapped back to their respective
LC-MS features. In this way, we identified 80 peptides out of
the 300 differentially abundant features with a PeptideProphet
score of ≥0.9. In addition, we identified another eight
glycopeptides that had a score lower than 0.9 but were
manually validated to be correct (shown in Supplemental
Figure S1). The PeptideProphet-calculated FDR for a cut-off
of ≥0.9 for this data set was ∼2%.

Variability and Reproducibility of the Analytical Platform

For an LC-MS platform such as this to be useful for studies
such as biomarker discovery, it is important that the
reproducibility of the experimental platform as a whole is
not so great as to confound subsequent data analyses. We
thus performed some additional analyses to look at the
reproducibility of the platform used in this study.

As was discussed in the “Materials and Methods” above,
the use of an internal MS calibration standard in the wash
cycles between analytical runs effectively removed variation
in the accuracy of the MS measurements themselves. Much
more variation, however, could be expected to come from the
LC-MS system. We had previously determined that the
normalization process and alignment tools of Corra ade-
quately control for inherent variation in global signal intensity
and LC retentions times for the LC systems used in this study
(Brusniak et al., manuscript submitted for publication).
However, since we were also mapping back subsequent
MS/MS identifications onto the original, aligned LC-MS
data, we looked to see how well these data correlated.

Figure 3 shows a plot of observed retention times for the
LC-MS data (from an ESI-TOF) versus the subsequent LC-
MS/MS data (from an LTQ-FT) for the 48 positively
identified aligned features/peptides (from the inclusion list
experiment above) for one of the serum samples analyzed
on both machines. Here, the identified peptides from the
targeted MS/MS experiment were mapped back manually
to the original aligned LC-MS features using Corra. This
plot shows that, with the exception of the beginning of the
chromatography run, where the peptides eluted earlier from
the LC system on the LTQ-FT platform, due to the absence
of a trapping column, the retention times coincide, well
within 5 min of each other. This observation reconfirmed
the reproducibility of the LC system and Corra alignments.
Also based on this observation, we used a LC elution time
window of 5 min for the software-based annotation of the
LC-MS features by Corra. It additionally demonstrates the
portability of the features form one instrument to the other.

It is generally assumed that the largest form of variation
in a LC-MS based disease biomarker study is likely to be

between the individuals (patients, mice, etc.) being used for
the study. While this variation is expected to be high in
human studies, transgenic mice, as used in this study, might
generate less variation due to their common genetic
background and the use of littermates (i.e., siblings) as
controls. To be able to accurately identify differences in the
LC-MS profiles of the individuals in a given study, it is
important that the observed variation between the individ-
uals is less than the variation observed for the analytical
platform as a whole. To investigate whether this was the
case for the experimental platform being used for this study,
we thus performed additional LC-MS profiling of the 20
samples, however, in triplicate, this time (60 runs in all) to
better examine the variation introduced into the data via the
experimental platform.

The plot shown in Fig. 4 displays the distribution of
calculated standard deviations for the observed signal
intensities observed for all features that aligned across at
last three of the 60 LC-MS runs (i.e., to be observed in at
least one sample, in all three replicates of that sample). On
the left side, we show the standard deviation distribution
observed for the same features aligned across multiple
individuals in the same disease class, i.e., for cancer and
normal, separately. On the right side, we show the standard
deviation distribution observed for the same features but,
instead, aligned across the replicate analyses of the same
sample/individual. As expected, desired for a successful
outcome, we found that the variation between individual
mice was, indeed, significantly higher than the variation
introduced by the analytical platform itself, again high-
lighting the good reproducibility of the LC-MS based
approach.

Fig. 3 Correlation between LC elution times for MS/MS identified
peptides using an LTQ-FT platform versus their respective LC-MS
aligned features from an ESI-TOF platform. Shown are 48 MS/MS
identified peptides from the analysis of one mouse plasma glycopep-
tide isolate that could be mapped back onto the LC-MS data. Both
instruments use a similar HPLC hardware setup, and all 48 features
were validated by visual examination of the original raw data files
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Biological Inference Via Protein Network and Functional
Analyses

The final step in the data analysis process was to take the
peptides/proteins identified from the targeted MS/MS and use

protein network and functional analyses to see if we can
identify interesting proteins or protein families enriched in the
dataset. In so doing, by using network inference, we might
also expect to identify additional proteins, not actually
identified in the MS/MS data but that might also be of interest
with respect to disease, on account of being linked to other
proteins in a network or functional group that were identified.
To increase our confidence in the protein networks, we
restricted these analyses to proteins identified by at least one
identified glycosylated peptide (i.e., containing the N-glyco-
sylation consensus motif of -N-X-S/T-, where X is any amino
acid except proline and S/T is serine or threonine). Using
these criteria, a total of 21 proteins, shown in Table 1, were
used for the functional protein network analysis.

Figure 5 shows a protein–protein interaction network,
generated using human orthologs of the identified mouse
proteins, and the HPRD (www.hprd.org). Proteins that were
found to be more abundant in cancer are shown as red circles
and those less abundant in cancer as green circles. The white
rectangles represent the proteins that were identified by MS2
peptide sequencing at high confidence but not assigned to a
LC-MS feature. All identified glycoproteins were used, not
just the differentially abundant, to give the network more
context around the differentially abundant ones. To ensure
that they better pertain to the disease being studied, we also
only included those proteins with MS/MS evidence that they
were present in one or more cancer samples analyzed by
MS/MS. To enhance the information density of the network

Table 1 Gene name, description, IPI number, log2 ratio, PeptideProphet, and ProteinProphet probabilities for the differentially abundant
glycoproteins that were identified by targeted MS/MS analysis

Gene Description IPI log2 ratio PeptideProphet ProteinProphet

Ahsg Alpha-2-HS-glycoprotein IPI00128249 −0.39 0.62 0.6
Apob Apolipoprotein B IPI00350772 0.53 1.00 1
C9 Complement component 9 IPI00230718 −0.35 0.59 1
Cfh Complement component factor h IPI00130010 0.44 1.00 1
Cfi Complement component factor i IPI00320675 0.27 0.93 0
Hp Haptoglobin IPI00409148 0.04 1.00 1
Hpx Hemopexin IPI00128484 0.70 0.74 1
Igh-1a Immunoglobulin heavy chain 1a (serum IgG2a) IPI00111657 −0.44 0.96 0
Ighg1 Immunoglobulin heavy constant gamma 1 (G1m marker) IPI00308213 0.59 0.83 0.98
Itih3 Inter-alpha trypsin inhibitor, heavy chain 3 IPI00124725 0.50 1.00 1
Itih4 Inter alpha-trypsin inhibitor, heavy chain 4 IPI00119818 0.74 0.99 1
Klkb1 Kallikrein B, plasma 1 IPI00113057 −0.81 1.00 1
Lcat Lecithin cholesterol acyltransferase IPI00133500 0.22 0.60 1
Lifr Leukemia inhibitory factor receptor IPI00119299 0.64 1.00 1
LOC640207 Similar to Ig heavy chain V region 102 precursor IPI00125877 0.38 1.00 1
Lrg1 Leucine-rich alpha-2-glycoprotein 1 IPI00129250 0.52 0.99 0.96
Pzp Pregnancy zone protein IPI00126194 0.27 0.92 1
Serpina10 Serine (or cysteine) peptidase inhibitor, clade A

(alpha-1 antiproteinase, antitrypsin), member 10
IPI00153258 −0.03 0.85 1

Serpina6 Serine (or cysteine) peptidase inhibitor, clade A, member 6 IPI00116105 −0.58 0.99 1
Serpind1 Serine (or cysteine) peptidase inhibitor, clade D, member 1 IPI00113227 0.28 1.00 0.88
Spil-6 Serine protease inhibitor 1–6 IPI00117857 0.46 0.71 1

Fig. 4 Distribution of standard deviations for the intensity of the
aligned features across individuals in the same group (i.e., cancer and
normal) (green) and across technical replicates (blue), for three
replicate LC-MS runs of each 20 samples. The horizontal line
represents the median value, and the upper and lower edges of the
boxes represent the 75 and 25 percentile data points, respectively
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and thereby connect more proteins, some proteins were
inferred (i.e., had no observational evidence for their
presence in this experiment) and are depicted in Fig. 5 by
the small white circles with dotted borders.

Another way to add information to the network is to look
for enrichment of biological process from the Gene Ontology
(GO). The GO terms are a controlled vocabulary that describe
gene and gene product attributes according to their molecular
functions, cellular components, or biological process. The
p values, probabilities that a certain term is over-represented
in a gene list, are used as a measure of likelihood of these
processes having been activated in the mouse cancer model

studied. Filtering for low p values will highlight the
processes that are unlikely to appear within a group of
randomly selected genes or proteins. The yellow rectangles
represent those GO biological processes that were prevalent
in this data set. As it is shown in Fig. 5, the major differences
between the two populations are the result of the cancer-
bearing mice being seriously sick due to the advanced state of
the cancer. Hence, we observed proteins whose function is
related to the host response to disease, such as inflammatory
response, regulation of multicellular organism processes, and
complement activation. For example, we observed proteins
such as C9, Cfi, Cfh, and C1qa, which are complement factors

Fig. 5 Protein–protein interaction map constructed from the proteins
identified by targeted MS/MS, using inferred human protein orthologs
and the protein interaction database HRPD. Proteins that were observed
with increased abundance in cancer are represented by red circles, those
observed to decrease in abundance by green circles. Increased circle
size represents higher observed ProteinProphet probability, and in-
creased fold-change observed with Corra is represented by a darker hue.

White squares represent proteins identified in only cancer mice, with
increased box size again indicative of higher ProteinProphet probability.
Inferred proteins, observed to interact with identified proteins according
to the HRPD database, but not observed in the MS/MS data, are
represented by smaller dotted circles and were added to the network to
connect more nodes together. The GO biological processes for which
those proteins are involved are indicated by yellow rectangles
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related to innate immunity, a general defense mechanism
against pathogens and infections. Likewise, the increased
abundance of proteins involved in blood coagulation, such
as Klkb1, Fga, Apoh, Serpind1, and Serpinc1, is likely an
indication of wounding if we view the morphology of
the carcinoma as akin to an open wound. The functional
enrichment for these pathways confirmed our ability to
detect significant changes in protein abundances caused by
disease. Considering the advanced state of the cancer in this
study, it was not unexpected that it would generate a very
strong host response and that Corra would detect those pro-
teins in our data.

Another protein cluster can be seen that includes Lcat, Hpx,
Serpina6, Apob, which are clustered together around the
transport and localization GO categories. A post-translational
protein modification enrichment region has been identified
featuring where Anapc7 has been identified. Anapc7 is
regulated by Trp53 [41], which is a tumor repressor protein.
Proteins related to cell death and cell cycle include comple-
ment component 9 (C9) and Ighg1. C9 protein is a membrane
attack protein and can form large pores that will lyse a cell.
Ighg1 appears to be more abundant in the cancer samples, and
it has been shown to be produced by cancer cells [42].
Hyaluronan metabolic process was also represented by the
differentially abundant Itih3. Hyaluronan contributes signifi-
cantly to cell proliferation and migration and may also be
involved in the progression of some malignant tumors [42,
43]. Using a different mouse skin cancer model but the same
glycopeptide enrichment technique, Zhang et al. [44] previ-
ously found carboxipeptidase N, hemopexin, and complement
component factor h to be differentially regulated.

Taken together, while the proteins identified in this study
and discussed in this paper are insufficient to formulate a
strong cancer hypothesis, they can be a starting point for a
more targeted type of analysis such as high sensitivity
multiple reaction monitoring experiments [45, 46]. Addi-
tionally, the inferred proteins from the protein–protein
interaction network would also make prime candidates for
follow-up analysis. It is important to note that proteins that
were not identified by MS/MS but present in this network
were either not differentially abundant or were present
below the detection limit of the technique.

Concluding Remarks

This study demonstrated that it is possible to start from a
population of complex plasma samples and perform label-
free LC-MS quantitative proteomics to identify a list of
differentially abundant features that segregate two or more
sample populations and link those features to proteins
present in serum. We also showed that the changes detected
do reflect actual biological processes that are related to the

presence of disease, such as host response, cell cycle, cell
death, cell adhesion, and DNA damage.

We demonstrated that a modern LC-MS platform has
sufficient reproducibility and can perform label-free protein
quantification of small sample populations, which is
challenging for most other techniques used for biomarker
discovery. We also confirmed that run-to-run variations
were smaller than individual variation, an important
prerequisite for this mode of analysis. It was possible to
map the retention times from one instrument to another to
perform targeted peptide sequencing. Simpler and afford-
able LC-ESI-TOF platforms can thus be used to analyze the
bulk of the data and keep the smaller number of sequencing
experiments on the more costly tandem mass spectrometer.

Measuring the difference in protein abundance is the first
step of biomarker discovery. The proteins identified were
clearly not all specific markers for skin cancer. Many were
related to the host immune responses that are expected during
tumor growth. However, some proteins seem to be involved in
biological processes that are critical to cancer. To detect early
disease biomarkers, it would be interesting to repeat the
experiment with earlier stages of cancer. This data may still be
of value to inform follow-up targeted MRM experiments for
the cancer-related proteins that were identified, as well as
those that were not identified, but inferred from the building of
the protein interaction network.

Finally, this methodology has no definite limit in the
number of samples that can be compared, making it suitable
for large-scale studies. The principle was demonstrated with a
small number of cancer mouse model samples, but can also be
directly applied to other organisms and other diseases.
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