
Liu and Song Advances in Difference Equations 2014, 2014:137
http://www.advancesindifferenceequations.com/content/2014/1/137

RESEARCH Open Access

Minimum distance estimation for fractional
Ornstein-Uhlenbeck type process
Zaiming Liu and Na Song*

*Correspondence:
songna@csu.edu.cn
School of Mathematics and
Statistics, Central South University,
Changsha, China

Abstract
We consider a one-dimensional linear stochastic differential equation defined as
dXt = θXt dt + ε dBHt , X0 = x0, with θ the unknown drift parameter, where
{BHt , 0 ≤ t ≤ T} is a fractional Brownian motion with ε > 0. The consistency and the
asymptotic distribution of the minimum Skorohod distance estimator θ ∗

ε of θ based
on the observation {Xt , 0 ≤ t ≤ T} is studied as T → +∞.
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Introduction
Stochasticmodels having long-range dependence phenomena have been paidmuch atten-
tion to in view of their applications in signal processing, computer networks, and math-
ematical finance (see [, ]). The long-range dependence phenomenon is said to occur in
a stationary time series {Xn,n ≥ } if the autocovariance functions ρ(n) := cov(Xk ,Xk+)
satisfy

lim
n→∞

ρ(n)
cn–α

= 

for some constant c andα ∈ (, ). In this case, the dependence betweenXk andXk+n decays
slowly as n→ ∞ and

∑∞
n= ρ(n) =∞.

Fractional Brownian motions are a special class of long memory processes when the
Hurst parameterH > 

 .When one implements the fractional Ornstein-Uhlenbeckmodel,
it is important to estimate the parameters in the model.
In case of diffusion type processes driven by fractional Brownian motions, the most im-

portantmethods are either maximum likelihood estimation (MLE) or least square estima-
tion (LSE). Substantial progress has beenmade in this direction. The problemof parameter
estimation in a simple linear model driven by a fractional Brownian motion was studied
in [] in the continuous case. For the case of discrete data, the problem of parameter es-
timation was studied in [, ]. Hu and Nualart [] studied a least squares estimator for
the Ornstein-Uhlenbeck process driven by fractional Brownian motion and derived the
asymptotic normality of by using Malliavin calculus. The MLE of the drift parameter has
also been extensively studied. Kleptsyna and Le Breton [] considered one-dimensional
homogeneous linear stochastic differential equation driven by a fractional Brownian mo-
tion in place of the usual Brownian motion. The asymptotic behavior of the maximum
likelihood estimator of the drift parameter was analyzed. Tudor and Viens [] applied the
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techniques of stochastic integration with respect to fractional Brownian motion and the
theory of regularity and supremum estimation for stochastic processes to study the MLE
for the drift parameter of stochastic processes satisfying stochastic equations driven by
a fractional Brownian motion with any level of Hölder-regularity (any Hurst parameter).
Moreover, in recent years, there has been increased interest in studying the asymptotic
properties of the MLE for the drift parameter in some fractional diffusion systems (see
[–]). However, MLE has some shortcomings; its expressions of likelihood function are
not explicitly computable.Moreover,MLE are not robust, whichmeans that the properties
of MLE will be changed by a slight perturbation.
In order to overcome this difficulty, the minimum distance estimation approach is

proposed. For a more comprehensive discussion of the properties of the minimum dis-
tance estimation, we refer to Millar []. In this direction, the parameter estimation for
Ornstein-Uhlenbeck process driven by Brownian motions is well developed. Kutoyants
and Pilibossian [] and Kutoyants [] proved that ε–(θ∗

ε – θ) converge in probability
to the random variable ζT with L, L or supremum norm and he also proved that ζT

is asymptotically normal when θ >  as T → +∞. Hénaff [] established the same re-
sults in the general case of a norm in some Banach space of functions on [,T]. Diop and
Yode [] studied the minimum Skorohod distance estimation for a stochastic differential
equation driven by a centered Lévy process. However, there have been very few studies on
the minimum distance estimate for the fractional Ornstein-Uhlenbeck process. Prakasa
Rao [] studied the minimum L-norm estimator θ∗

ε of the drift parameter of a fractional
Ornstein-Uhlenbeck type process and proved that ε–(θ∗

ε –θ ) converges in probability un-
der Pθ to a random variable ζ . Our main motivation is to obtain the minimum Skorohod
distance estimator of Ornstein-Uhlenbeck process driven by fractional Brownianmotions
and study the asymptotic properties of this estimator.

Preliminaries
Let (�,F , {Ft}t≥,P) be a stochastic basis satisfying the usual conditions, i.e., a filtered
probability space with a filtration. {Ft}t≥ is right continuous andF contains every P-null
set. Suppose that the processes discussed in the following are {Ft}t≥-adapted. Further the
natural filtration of a process is understood as the P-completion of the filtration generated
by this process.
Consider the parameter estimation problem for a special fractional process, i.e., frac-

tional Ornstein-Uhlenbeck type process X = {Xt ,  ≤ t ≤ T}, which satisfies the following
stochastic integral equation:

Xt = x + θ

∫ t


Xs ds + εBH

t ,  ≤ t ≤ T , ()

where the drift parameter θ ∈ � = (θ, θ) ⊆ R is unknown, ε > , and BH = {BH
t (t),  ≤

t ≤ T} is a scalar fractional Brownian motion defined on the probability space (�,F ,
{Ft}t≥,P). For a fractional BrownianmotionBH withHurst parameterH ∈ (  , ), wemean
that it is a continuous and centered Gaussian process with the covariance function

E
(
BH
s B

H
t
)
=


[
sH + tH – |s – t|H]

, t ≥ , s ≥ . ()

By [] (see Definitions .. and .., p.), we introduce the following.
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Definition  We say that an R
d-valued random process X = (Xt)t≥ is self-similar or sat-

isfies the property of self-similarity if for every a >  there exists b >  such that

Law(Xat , t ≥ ) = Law(bXt , t ≥ ), ()

where Law(·) denotes the law of random variable · .

Remark  Note that () means that the two processes Xat and Xbt have the same finite-
dimensional distribution functions, i.e., for every choice t, . . . , tn in R,

P(Xat ≤ x, . . . ,Xatn ≤ xn) = P(Xbt ≤ x, . . . ,Xbtn ≤ xn)

for every x, . . . ,xn in R.

Definition  If b = aH in the above definition, then we say that X = (Xt)t≥ is a self-similar
process with Hurst index H or that it satisfies the property of (statistical) self-similar with
Hurst index H . The quantity D = /H is called the statistical fractal dimension of X.

Remark  Note that the law of a Gaussian random variance is determined by its expecta-
tion value and variation. By (), it is easy to see that BH is a self-similar process with Hurst
index H . Let

BH∗
T := sup

≤t≤T
BH
t . ()

Then we conclude from the fact that BH is a self-similar process with Hurst index H that

Law
(
BH∗
at

)
= Law

(
aHBH∗

t
)
, a > , t ≥ . ()

Let xt(θ ) be the solution of the above differential equation with ε = . It is obvious that

xt(θ ) = xeθ t ,  ≤ t ≤ T . ()

Let

KH (t, s) =H(H – )
d
ds

∫ t

s
rH– 

 (r – s)H– 
 dr,  ≤ s ≤ t. ()

Define the minimum Skorohod distance estimator

θ∗
ε := argmin

θ∈�
ρ
(
X,x(θ )

)
, ()

the Skorohod distance ρ(·, ·)

ρ(x, y) := inf
λ∈
([,T])

(
H(λ) + sup

t∈[,T]

∣∣x(λ(t)) – y(t)
∣∣) ()

on the Skorohod space D([,T],R).
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Here



(
[,T]

)
:=

{
λ|t ∈ [,T],λ(t) ∈ [,T]

}
, ()


([,T]) is continuous, strictly increasing such that λ() =  and λ(T) = T . Let

H(λ) := sup
s,t∈[,T],s 	=t

∣∣∣∣log
(

λ(s) – λ(t)
s – t

)∣∣∣∣ < ∞. ()

Note that the spaceD([,T],R) consists of functions which are right continuous with left
limits on [,T]. The uniform metric coincides with Skorohod distance when relativized
to C([,T],R) the space of continuous functions on [,T].
Denote θ the true parameter of θ and P

(ε)
θ

be the probability measure induced by the
process {Xt}.
The following two lemmas due to Novikov and Valkeila [] and Kutoyants and Pili-

bossian [] play an important role in the limit analysis below.

Lemma  Let T > , BH∗
T = sup≤t≤T BH

t and {BH
t (t),  ≤ t ≤ T} be a fractional Brownian

motion with Hurst parameter H, then for every p > ,

E
(
BH∗
T

)p = K (p,H)TpH , ()

where K(p,H) = E(BH∗
 )p.

Lemma  Let Zε(u), ε > , u ∈R be a sequence of continuous functions and Z(u) a convex
function which admits a unique minimum ξ ∈ R. Let Lε , ε >  be a sequence of positive
numbers such that Lε → +∞ as ε → .We suppose that

lim
ε→

sup
|u|<Lε

∣∣Zε(u) – Z(u)
∣∣ = ,

then

lim
ε→

arg min|u|<Lε

Zε(u) = ξ ,

where if there are several minima of Zε , we choose an arbitrary one.

For any δ > , define

g(δ) := inf|θ–θ|>δ

∥∥x(θ ) – x(θ)
∥∥∞. ()

Note that g(δ) >  for any δ > .
Introduce the random variable

ζ := argmin
u∈R

ρ
(
Y (θ),ux′(θ)

)
, ()

where x′(θ) = xteθt is the derivative of xt(θ) with respect to θ.
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It can be obtained from () that

Xt – xt(θ) = εeθt
∫ t


e–θs dBH

s . ()

Let

Yt = eθt
∫ t


e–θs dBH

s . ()

Note that {Yt ,  ≤ t ≤ T} is a Gaussian process and can be interpreted as the ‘derivative’
of the process {Xt , ≤ t ≤ T} with respect to ε.
Now we investigate the parameter estimation problem of parameter θ based on the ob-

servation of a fractional Ornstein-Uhlenbeck type process X = {Xt ,  ≤ t ≤ T} satisfying
the following stochastic differential equation:

dXt = θXt dt + ε dBH
t ,  ≤ t ≤ T ,X = x, ()

where the drift parameter θ ∈ � = (θ, θ) ⊆ R is unknown and T is a fixed time. We will
study its consistency as ε → .

Consistency
Theorem  For every p > , δ > , we have

P
(ε)
θ

(∣∣θ∗
ε – θ

∣∣ > δ
) ≤ pTpHK (p,H)e|θT |p(g(δ))–pεp =O

((
g(δ)

)–p
εp

)
. ()

Proof Let the set

A =
{
ω : inf|θ–θ|<δ

ρ
(
X,x(θ )

)
> inf|θ–θ|>δ

ρ
(
X,x(θ )

)}
. ()

Fix δ > ,

P
(ε)
θ

(∣∣θ∗
ε – θ

∣∣ > δ
)
= P

(ε)
θ
(A). ()

In fact, for ω ∈A,

inf|θ–θ|<δ
ρ
(
X(ω),x(θ )

)
> inf|θ–θ|>δ

ρ
(
X(ω),x(θ )

)

≥ inf
θ∈ω

ρ
(
X(ω),x(θ )

)
= ρ

(
X(ω),x

(
θ∗
ε

))
,

thus |θ∗
ε (ω) – θ| > δ.

Conversely, if |θ∗
ε (ω) – θ| > δ, then

ρ
(
X(ω),x

(
θ∗
ε

)) ≤ inf|θ–θ|>δ
ρ
(
X(ω),x(θ )

)

< inf|θ–θ|<δ
ρ
(
X(ω),x(θ )

)
.

http://www.advancesindifferenceequations.com/content/2014/1/137


Liu and Song Advances in Difference Equations 2014, 2014:137 Page 6 of 8
http://www.advancesindifferenceequations.com/content/2014/1/137

Since

ρ
(
X,x(θ)

) ≤ ∥∥X – x(θ)
∥∥∞,

ρ
(
x(θ ),x(θ)

)
=

∥∥x(θ ) – x(θ)
∥∥∞,

inf|θ–θ|<δ
ρ
(
x(θ ),x(θ)

)
= ,

then, for all δ > ,

P
(ε)
θ

(∣∣θ∗
ε – θ

∣∣ > δ
)

≤ P
(ε)
θ

(
inf|θ–θ|<δ

ρ
(
X,x(θ )

)
> inf|θ–θ|>δ

∣∣ρ(
X,x(θ)

)
– ρ

(
x(θ),x(θ )

)∣∣)

≤ P
(ε)
θ

(
inf|θ–θ|<δ

ρ
(
X,x(θ )

)
> inf|θ–θ|>δ

ρ
(
x(θ),x(θ )

)
– ρ

(
X,x(θ)

))

≤ P
(ε)
θ

(
inf|θ–θ|<δ

ρ
(
x(θ ),x(θ)

)
+ ρ

(
X,x(θ)

)
> inf|θ–θ|>δ

ρ
(
x(θ),x(θ )

))

≤ P
(ε)
θ

(∥∥x(θ ) – x(θ)
∥∥∞ >

g(δ)


)
.

Since the process {Xt} satisfies the stochastic differential equation (), it follows that

Xt – xt(θ) = x + θ

∫ t


Xs ds + εBH

t – xt(θ) = θ

∫ t



(
Xs – xs(θ)

)
ds + εBH

t . ()

Then

∣∣Xt – xt(θ)
∣∣ =

∣∣∣∣θ
∫ t



(
Xs – xs(θ)

)
ds + εBH

t

∣∣∣∣ ≤ |θ|
∫ t



∣∣Xs – xs(θ)
∣∣ds + ε

∣∣BH
t
∣∣. ()

Applying the Gronwall-Bellman lemma, we obtain

sup
≤t≤T

∣∣X – xt(θ)
∣∣ = ∥∥X – x(θ)

∥∥∞ ≤ εe|θT | sup
≤t≤T

∣∣BH
t
∣∣. ()

Hence,

P
(ε)
θ

(∥∥x(θ ) – x(θ)
∥∥∞ >

g(δ)


)
≤ P

(
sup

≤t≤T

∣∣BH
t
∣∣ ≥ g(δ)

εe|θT |

)

= P
(
BH∗
t ≥ g(δ)

εe|θT |

)
. ()

Applying Lemma  and Chebyshev’s inequality, for all p > , we get

P
(ε)
θ

(∣∣θ∗
ε – θ

∣∣ > δ
) ≤ E

(
BH∗
t

)p(εe|θT |

g(δ)

)p

= pTpHK (p,H)e|θT |p(g(δ))–pεp
= O

((
g(δ)

)–p
εp

)
. ()

This completes the proof. �
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Remark  As a consequence of the above theorem, we obtain the result that θ∗
ε converges

in probability to θ under P(ε)
θ
-measure as ε → . Furthermore, the rate of convergence is

of order O(εp) for every p > .

Asymptotic distribution
Theorem  As ε → , the random variable ε–(θ∗

ε – θ) converges in probability to a ran-
dom variable whose probability distribution is the same as that of ζ under Pθ .

Proof Denote x′
t(θ ) = xteθ t and let

Zε(u) = ρ
(
Y , ε–

(
x(θ + εu) – x(θ)

))
, ()

Z(u) = ρ
(
Y ,ux′(θ)

)
. ()

Furthermore, let

u∗
ε = ε–

(
θ∗
ε – θ

)
, Aε =

{
ω :

∣∣θ∗
ε – θ

∣∣ < δε

}
, δε = ετ , τ ∈

(


, 

)
,

Lε = ετ–.
()

For the random variable u∗
ε , we get

Zε

(
u∗

ε

)
= min|u|<Lε

Zε(u), ω ∈ Aε . ()

Also we define the random variable

ζε := arg min|u|<Lε

Z(u). ()

Note that, with probability , we get

sup
|u|<Lε

∣∣Zε(u) – Z(u)
∣∣

= sup
|u|<Lε

∣∣∣ inf
λ∈
([,T])

∥∥Yλ – ε–
(
x(θ + εu) – x(θ)

)∥∥∞ – inf
λ∈
([,T])

∥∥Yλ – ux′(θ)
∥∥∞

∣∣∣

= sup
|u|<Lε

∣∣∣∣ inf
λ∈
([,T])

∥∥∥∥Yλ – ux′(θ) –


εux′′(θ̃ )

∥∥∥∥∞
– inf

λ∈
([,T])

∥∥Yλ – ux′(θ)
∥∥∞

∣∣∣∣
≤ sup

|u|<Lε

[


εu sup

≤t≤T

∣∣x′′(θ̃ )
∣∣]

≤ εLε


|x|Te(|θ|+εLε)T

=
ετ–


|x|Te(|θ|+ετ )T ,

where θ̃ = θ + tεu ∈ (θ, θ + εu), t ∈ (, ). From Lemma , we get {Z(u), –∞ < u < +∞}
has a unique minimum u∗ with probability .
Furthermore, we can choose the interval [–L,L] such that

P
(ε)
θ

{
u∗

ε ∈ (–L,L)
} ≥  – βg(L)–p ()

http://www.advancesindifferenceequations.com/content/2014/1/137
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and

P
{
u∗ ∈ (–L,L)

} ≥  – βg(L)–p, ()

where β > . The processes {Zε(u),u ∈ [–L,L]}, and {Z(u),u ∈ [–L,L]}, satisfy the Lips-
chitz conditions and Zε(u) converges uniformly to Z(u) on u ∈ [–L,L], so the minimizer
of Zε(u) converges to the minimizer of Z(u). This completes the proof. �

Remark  It is not clear what the distribution of ζ is. It would be interesting to say some-
thing about the distribution of ζ through simulation studies even if an explicit computa-
tion of the distribution seems to be difficult.
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