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Abstract
In this paper, a n-dimensional prescribed mean curvature Rayleigh p-Laplacian
equation with a deviating argument, (ϕp( u′(t)√

1+|u′(t)|2 ))
′ + F(t,u′(t)) + G(t,u(t – τ (t))) = e(t),

is studied. By means of Mawhin’s continuation theorem and some analysis methods,
a new result on the existence of homoclinic solutions for the equation is obtained.
Our research enriches the contents of prescribed mean curvature equations.

Keywords: homoclinic solution; Mawhin’s continuation theorem; n-dimensional;
prescribed mean curvature; p-Laplacian

1 Introduction
In recent years, the existence of homoclinic solutions has been studied widely for the
Hamiltonian systems and the p-Laplacian systems (see [–] and the references therein).
For example, in [], Lzydorek and Janczewska studied the existence of homoclinic solu-
tions for second-order Hamiltonian system in the following form:

q̈ + Vq(t, q) = f (t),

where q ∈R
n and V ∈ C(R×R

n,R), V (t, q) = –K(t, q)+W (t, q) is T-periodic with respect
to t. Lu in [] studied the existence of homoclinic solutions for a second-order p-Laplacian
differential system with delay

d
dt

[
ϕp

(
u′(t)

)]
+

d
dt

∇F
(
u(t)

)
+ ∇G

(
u(t)

)
+ ∇H

(
u
(
t – γ (t)

))
= e(t),

where p ∈ (, +∞), ϕp : Rn → R
n, ϕp(u) = (|u|p–u, |u|p–u, . . . , |un|p–un) for u �=  =

(, , . . . , ) and ϕp() = (, , . . . , ), F ∈ C(Rn,R), G, H ∈ C(Rn,R), e ∈ C(R,Rn), and γ (t)
is a continuous T-periodic function with γ (t) ≥ ; T is a given constant.

In the recent past, the prescribed mean curvature equation
(

u′(t)
√

 + (u′(t))

)′
= f

(
u(t)

)
,

and its modified forms, which arises from some problems associated to differential geom-
etry and combustible gas dynamics, were studied extensively [–]. Also, we note that

© 2015 Lu and Kong. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13661-015-0362-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-015-0362-0&domain=pdf
mailto:fanchaokong88@sohu.com


Lu and Kong Boundary Value Problems  (2015) 2015:105 Page 2 of 16

the existence of periodic solutions for the prescribed curvature mean equations has at-
tracted much attention from researchers. For example, Feng in [] studied the problem
of the existence of periodic solution for a prescribed mean curvature Liénard equation

(
u′(t)

√
 + (u′(t))

)′
+ f

(
u(t)

)
u′(t) + g

(
t, u

(
t – τ (t)

))
= e(t), (.)

where τ , e ∈ C(R,R) are T-periodic, and g ∈ C(R × R,R) is T-periodic in the first argu-
ment, T >  is a constant. Aiming to apply Mawhin’s continuation theorem, Feng made
(.) equivalent to the following system through the transformation v(t) = u′(t)√

+(u′(t))
:

{
u′(t) = ϕ(v(t)) = v(t)√

–v(t)
,

v′(t) = –f (t,ϕ(v(t))) – g(t, u(t – τ (t))) + e(t).

Li in [] further studied the existence of periodic solutions for a prescribed mean curva-
ture Rayleigh equation of the form

(
u′(t)

√
 + (u′(t))

)′
+ f

(
t, u′(t)

)
+ g

(
t, u

(
t – τ (t)

))
= e(t),

and Wang in [] discussed the following boundary valued problem:

⎧
⎨

⎩

(ϕp( x′(t)√
+(x′(t))

))′ + f (t, x′(t)) + g(t, x(t – τ (t))) = e(t),

x() = x(ω), x() = x(ω),
(.)

where p >  and ϕp : R →R is given by ϕp(s) = |s|p–s for s �=  and ϕp() = , g ∈ C(R,R),
e, τ ∈ C(R,R), g(t +ω, x) = g(t, x), f (t +ω, x) = f (t, x), f (t, ) = , e(t +ω) = e(t) and τ (t +ω) =
τ (t). By using a similar transformation in [], (.) is converted to the following system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x′
(t) = φ(x(t)) = ϕq(x(t))√

–ϕ
q (x(t))

,

x′
(t) = –f (t, ϕq(x(t))√

–ϕ
q (x(t))

) – g(t, x(t – τ (t))) + e(t),

x() = x(ω), x() = x(ω).

(.)

Under the conditions imposed on f and g such as

f (t, x) ≥ a|x|r , ∀(t, x) ∈R


and

g(t, x) – e(t) ≥ –m|x| – m, ∀t ∈R, x > d,

where a, r ≥ ; m and m are positive constants, the author found that (.) has at least
one periodic solution. It is easy to see from the first equation of (.) that the function
ϕq(x(t)) must satisfy maxt∈[,T] |ϕq(x(t))| < . This implies that the open and bounded set
� associated to Mawhin’s continuation theorem must satisfy � ∈ {(x; x)� ∈ X : ‖x‖∞ <
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M;‖x‖∞ < }. Thus, there must be a constant ρ ∈ (, ) such that � ∈ {(x; x)� ∈ X :
‖x‖∞ < M;‖x‖∞ < ρ}. But in [], the author obtained � = {(x; x)� ∈ X : ‖x‖∞ <
M;‖x‖∞ < M} and there was no proof as regards M < . A similar problem also oc-
curred in [].

Inspired by the above fact, the aim of this paper is to investigate the existence of homo-
clinic solution to the following n-dimensional prescribed mean curvature equation with
a deviating argument:

(
ϕp

(
u′(t)

√
 + |u′(t)|

))′
+ F

(
t, u′(t)

)
+ G

(
t, u

(
t – τ (t)

))
= e(t), (.)

where p ∈ (, +∞), ϕp : Rn → R
n, ϕp(u) = (|u|p–u, |u|p–u, . . . , |un|p–un) for u �=  =

(, , . . . , ) and ϕp() = (, , . . . , ), F ∈ C(R × R
n;Rn), G ∈ C(R × R

n;Rn), e ∈ C(R;Rn),
τ (t) is a continuous T-periodic function and T >  is given constant.

In order to study the homoclinic solution for (.), firstly, like in [–, ] and [], the
existence of a homoclinic solution for (.) is obtained as a limit of a certain sequence of
kT-periodic solutions for the following equation:

(
ϕp

(
u′(t)

√
 + |u′(t)|

))′
+ F

(
t, u′(t)

)
+ G

(
t, u

(
t – τ (t)

))
= ek(t), (.)

where k ∈N. ek : R →R is a kT-periodic function such that

ek(t) =

{
e(t), t ∈ [–kT , kT – ε),
e(kT – ε) + e(–kT)–e(kT–ε)

ε
(t – kT + ε), t ∈ [kT – ε, kT],

(.)

where ε ∈ (, T) is a constant independent of k. Obviously, for each k ∈ N, from (.) we
observe that ek ∈ C(R,Rn) with ek(t + kT) ≡ ek(t). In this paper, the approach for solving
the kT-periodic solutions to (.) is based on Mawhin’s continuation theorem [], which
is different from the corresponding ones in [–] associated to critical point theory.

The rest of this paper organized as follows. In Section , we state some necessary defi-
nitions and lemmas. In Section , we prove the main result.

2 Preliminaries
First of all, we give the definition of the homoclinic solution. A solution u(t) is named
homoclinic (to ) if u(t) →  and u′(t) →  as |t| → +∞. In addition, if u �= , then u is
called a nontrivial homoclinic solution.

In the following, we recall some notations and lemmas, which are important for proving
our main result.

Throughout this paper, ‖ · ‖ will denote the Euclidean norm on R
n and 〈·, ·〉 : Rn ×R

n →
R denote the standard inner product.

For each k ∈N, define

CkT =
{

u|u ∈ C
(
R,Rn), u(t + kT) ≡ u(t)

}
,

C
kT =

{
u|u ∈ C(

R,Rn), u(t + kT) ≡ u(t)
}
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and

C
kT =

{
u|u ∈ C(

R,Rn), u(t + kT) ≡ u(t)
}

.

If the norm of CkT , C
kT , and C

kT is defined by ‖·‖CkT = ‖·‖, ‖x‖C
kT

= max{‖x‖,‖x′‖},
and ‖x‖C

kT
= max{‖x‖,‖x′‖,‖x′′‖}, respectively, then CkT , C

kT , and C
kT are all

Banach spaces.
Moreover, for any ψ ∈ CkT , define ‖ψ‖r = (

∫ kT
–kT |ψ(t)|r dt) 

r , where r ∈ (, +∞).
In order to use Mawhin’s continuation theorem, we first recall it.
Let X and Y be two Banach spaces, a linear operator L : D(L) ⊂ X → Y is said to be a

Fredholm operator of index zero provided that
(a) Im L is a closed subset of Y ,
(b) dim ker L = codim Im L < ∞.
Let � ⊂ X be an open and bounded set, and let L : D(L) ⊂ X → Y be a Fredholm op-

erator of index zero. This means that there are continuous linear projectors P : X → X
and Q : Y → Y such that Im P = ker L, ker Q = Im L, X = ker L ⊕ ker P and Y = Im L ⊕ Im Q.
Obviously, L : D(L)∩ker P → Im L has its right inverse. Let KP : Im L → D(L)∩ker P be the
right inverse of L : D(L) ∩ ker P → Im L. A continuous operator N : � ⊂ X → Y is said to
be L-compact in � provided that

(c) Kp(I – Q)N(�) is a relative compact set of X ,
(d) QN(�) is a bounded set of Y .

Lemma . ([]) Let X and Y be two real Banach spaces, � be an open and bounded
subset of X, L : D(L) ⊂ X → Y be a Fredholm operator of index zero and the operator N :
� ⊂ X → Y be L-compact in �. In addition, if the following conditions hold:

(h) Lx �= λNx, ∀(x,λ) ∈ ∂� × (, );
(h) QNx �= , ∀x ∈ ker L ∩ ∂�;
(h) deg{JQN ,� ∩ ker L, } �= , where J : Im Q → ker L is a homeomorphism.

Then Lx = Nx has at least one solution in D(L) ∩ �.

Lemma . ([]) Let  < α < T be a constant, τ ∈ C(R,R) be a T-periodic function and
maxt∈[,T] |τ (t)| = α, then for all u ∈ C(R,R) with u(t + T) ≡ u(t), we have

∫ T



∣
∣u(t) – u

(
t – τ (t)

)∣∣ dt ≤ α
∫ T



∣
∣u′(t)

∣
∣ dt.

Lemma . ([]) If u : R → R is continuously differentiable on R, a > , μ > , and p > 
are constants, then for every t ∈R, the following inequality holds:

∣∣u(t)
∣∣ ≤ (a)– 

μ

(∫ t+a

t–a

∣∣u(s)
∣∣μ ds

) 
μ

+ a(a)– 
p

(∫ t+a

t–a

∣∣u′(s)
∣∣p ds

) 
p

.

Lemma . ([]) Suppose τ ∈ C(R,R) with τ (t + ω) ≡ τ (t) and τ ′(t) < , ∀t ∈ [,ω]. Then
the function t – τ (t) has an inverse μ(t) satisfying μ ∈ C(R,R) with μ(t + ω) ≡ μ(t) + ω,
∀t ∈ [,ω].
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Throughout this paper, besides τ being a periodic function with period T , we suppose
in addition that τ ∈ C(R,R) with τ ′(t) < , ∀t ∈ [, T].

Remark . From the above assumption, one can find from Lemma . that the function
(t – τ (t)) has an inverse denoted by μ(t). Define σ = – mint∈[,T] τ

′(t), σ = maxt∈[,T] τ
′(t)

and ‖τ‖ = maxt∈[,T] |τ (t)|. Clearly, σ ≥  and  ≤ σ < .

Lemma . ([]) Let uk ∈ C
kT be a kT-periodic function for each k ∈N with

|uk| ≤ A,
∣∣u′

k
∣∣
 ≤ A,

∣∣u′′
k
∣∣
 ≤ A,

where A, A, and A are constants independent of k ∈ N. Then there exists a function
u ∈ C(R,Rn) such that for each interval [c, d] ⊂ R, there is a subsequence {ukj} of {uk}k∈N
with u′

kj
(t) → u′

(t) uniformly on [c, d].

Equation (.) is equivalent to the following system:

⎧
⎨

⎩

u′(t) = φ(v(t)) = ϕq(v(t))√
–|ϕq(v(t))| ,

v′(t) = –F(t,ϕ(v(t))) – G(t, u(t – τ (t))) + ek(t),
(.)

where ϕq(s) = |s|q–s, 
p + 

q = , v(t) = ϕp( u′(t)√
+|u′(t)| ) = φ–(u′(t)).

Define

Xk = Yk =
{
ω =

(
u(t), v(t)

)� : u ∈ CkT , v ∈ CkT
}

,

and the norm ‖ω‖Xk = ‖ω‖Yk = max{‖u‖kT ,‖v‖kT }. Obviously, Xk and Yk are Banach
spaces.

Now we define the operator

L : D(L) ⊂ Xk → Yk , Lω = ω′ =
(
u′(t), v′(t)

)�,

where D(L) = {ω|ω = (u(t), v(t))� : u ∈ C
kT , u ∈ C

kT }. Let

Zk =
{
ω =

(
u(t), v(t)

)� ∈ Xk : v ∈ C(R, Bk)
}

,

where Bk = {x ∈R
n : |x| < }. The nonlinear operator

N : � ⊂ Zk → Yk

is defined as

Nω =
(

ϕq(v(t))
√

 – |ϕq(v(t))| , –F
(

t,
ϕq(v(t))

√
 – |ϕq(v(t))|

)
– G

(
t, u

(
t – τ (t)

))
+ ek(t)

)�
,

where � is an open bounded subset of Zk . Clearly, the problem of the existence of a kT-
periodic solution to (.) is equivalent to the problem of the existence of a solution in �

for the equation Lω = Nω.
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By simple calculating, we have ker L = R
n and Im L = {z ∈ Yk ,

∫ kT
 z(s) ds = }. There-

fore, L is a Fredholm operator of index zero.
Define

P : Xk → ker L, Pω =


kT

∫ kT


ω(s) ds

and

Q : Yk → Im Q, Qz =


kT

∫ kT


z(s) ds.

If we define Kp = L|–
Ker L∩D(L), then it is easy to see that

(Kpz)(t) =
∫ kT


Gk(t, s)z(s) ds,

where

Gk(t) =

{
s–kT

kT ,  ≤ t ≤ s;
s

kT , s ≤ t ≤ kT .

For all � such that � ⊂ Zk ⊂ Xk , we can see that Kp(I – Q)N(�) is a relative compact set
of Xk and QN(�) is a bounded set of Yk , so the operator N is L-compact in �.

For the sake of convenience, we list the following assumptions:

(H) There are two constants m >  and m >  such that

〈
x, F(t, x)

〉 ≤ –m|x| and
∣
∣F(t, x)

∣
∣ ≤ m|x|, for all (t, x) ∈R×R

n.

(H) There are two constants α >  and β >  such that

〈
x, G(t, x)

〉 ≤ –α|x| and
∣∣G(t, x)

∣∣ ≤ β|x|, for all (t, x) ∈R×R
n.

(H) e ∈ C(R,Rn) is a bounded function with e(t) �=  = (, , . . . , )� and

A :=
(∫

R

∣
∣e(t)

∣
∣ dt

) 


+ sup
t∈R

∣
∣e(t)

∣
∣ < +∞.

Remark . From (.), we can see that |ek(t)| ≤ supt∈R |e(t)|. So if (H) holds, for each
k ∈N, (

∫ kT
–kT |e(t)| dt) 

 < A.

3 Main results
In order to study the existence of kT-periodic solutions to system (.), we firstly study
some properties of all possible kT-periodic solutions to the following system:

⎧
⎨

⎩

u′(t) = λφ(v(t)) = λ
ϕq(v(t))√

–|ϕq(v(t))| ,

v′(t) = –λF(t,ϕ(v(t))) – λG(t, u(t – τ (t))) + λek(t), λ ∈ (, ],
(.)
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where (uk , vk)� ∈ Zk ⊂ Xk . For each k ∈N and all λ ∈ (, ]. Let

� =
{
ω = (u, v)� ∈ Xk : Lω = λNω,λ ∈ (, ]

}
.

This means that � represents the set of all the possible kT-periodic solutions to (.).

Theorem . Assume that assumptions (H)-(H) hold, α
+σ

> mβ
√

–σ+
√

β‖τ‖
m(–σ) , and

[
β‖τ‖dd

T
√

( – σ)
+

mdd + Ad

T

] 
q

+
√

Tdβ +
√

T( – σ)(md + A)√
( – σ)

< ,

where

d :=
A( – σ)( + σ)(m + m) +

√
Aβ‖τ‖( + σ)

√
 – σ

αm( – σ) – mβ( + σ)
√

 – σ –
√

β‖τ‖( + σ)

and

d :=
βd

m
√

 – σ
+

A
m

.

Then, for each k ∈ N, if (u, v)� ∈ �, there are positive constants ρ, ρ, ρ, ρ, A, A, A,
and A, which are independent of k and λ, such that

‖u‖ ≤ ρ, ‖v‖ ≤ ρ < ,
∥
∥u′∥∥

 ≤ ρ,
∥
∥v′∥∥

 ≤ ρ,

‖u‖ ≤ A,
∥∥u′∥∥

 ≤ A, ‖v‖p ≤ A,
∥∥v′∥∥

 ≤ A.

Proof For each k ∈N, if (u, v)� ∈ �, then (u(t), v(t))� satisfies (.). Multiplying the second
equation of (.) by u(t) and integrating from –kT to kT , we have

∫ kT

–kT

〈
u′(t), v(t)

〉
dt

= –
∫ kT

–kT

〈
u(t), v′(t)

〉
dt

= λ

∫ kT

–kT

〈
u(t), F

(
t,

u′(t)
λ

)〉
dt

+ λ

∫ kT

–kT

〈
u(t), G

(
t, u

(
t – τ (t)

))〉
dt – λ

∫ kT

–kT

〈
u(t), ek(t)

〉
dt

= λ

∫ kT

–kT

〈
u(t), F

(
t,

u′(t)
λ

)〉
dt

+ λ

∫ kT

–kT

〈
u(t) – u

(
t – τ (t)

)
, G

(
t, u

(
t – τ (t)

))〉
dt

+ λ

∫ kT

–kT

〈
u
(
t – τ (t)

)
, G

(
t, u

(
t – τ (t)

))〉
dt – λ

∫ kT

–kT

〈
u(t), ek(t)

〉
dt,
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which combining with (H) and (H) gives

∫ kT

–kT

|v(t)|q
√

 – |ϕq(v(t))| dt + α

∫ kT

–kT

∣∣u
(
t – τ (t)

)∣∣ dt

≤ m

λ

∫ kT

–kT

∣
∣u(t)

∣
∣
∣
∣u′(t)

∣
∣dt + β

∫ kT

–kT

∣
∣u(t) – u

(
t – τ (t)

)∣∣
∣
∣u

(
t – τ (t)

)∣∣dt

+
∫ kT

–kT

∣∣u(t)
∣∣∣∣ek(t)

∣∣dt. (.)

Furthermore,

∫ kT

–kT

∣
∣u

(
t – τ (t)

)∣∣ dt =
∫ kT–τ (kT)

–kT–τ (–kT)


 – τ ′(μ(s))

∣
∣u(s)

∣
∣ ds.

It follows from Lemma . that

∫ kT–τ (kT)

–kT–τ (–kT)


 – τ ′(μ(s))

∣∣u(s)
∣∣ ds =

∫ kT

–kT


 – τ ′(μ(s))

∣∣u(s)
∣∣ ds.

By Remark ., we have


 + σ

‖u‖
 ≤

∫ kT

–kT


 – τ ′(μ(s))

∣∣u(s)
∣∣ ds ≤ 

 – σ
‖u‖

. (.)

Substituting (.) into (.) and combining with |v(t)|q√
–|ϕq(v(t))| > |v(t)|q, we get

∫ kT

–kT

∣
∣v(t)

∣
∣q dt +

α

 + σ

∫ kT

–kT

∣
∣u(t)

∣
∣ dt

≤ m

λ

(∫ kT

–kT

∣
∣u(t)

∣
∣ dt

) 

(∫ kT

–kT

∣
∣u′(t)

∣
∣ dt

) 


+ β

(∫ kT

–kT

∣
∣u

(
t – τ (t)

)∣∣ dt
) 



×
(∫ kT

–kT

∣∣u(t) – u
(
t – τ (t)

)∣∣ dt
) 


+

(∫ kT

–kT

∣∣ek(t)
∣∣ dt

) 

(∫ kT

–kT

∣∣u(t)
∣∣ dt

) 


.

By applying Lemma . and (.), we see that

∫ kT

–kT

∣∣v(t)
∣∣q dt +

α

 + σ

∫ kT

–kT

∣∣u(t)
∣∣ dt

≤ m

λ

(∫ kT

–kT

∣∣u(t)
∣∣ dt

) 

(∫ kT

–kT

∣∣u′(t)
∣∣ dt

) 


+
√

β‖τ‖√
 – σ

(∫ kT

–kT

∣∣u(t)
∣∣ dt

) 


×
(∫ kT

–kT

∣∣u′(t)
∣∣ dt

) 


+
(∫ kT

–kT

∣∣ek(t)
∣∣ dt

) 

(∫ kT

–kT

∣∣u(t)
∣∣ dt

) 


,

i.e.,

‖v‖q
q +

α

 + σ
‖u‖

 ≤ m

λ
‖u‖

∥∥u′∥∥
 +

√
β‖τ‖√
 – σ

‖u‖
∥∥u′∥∥

 + A‖u‖.
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This implies that

‖v‖q
q ≤ m

λ
‖u‖

∥∥u′∥∥
 +

√
β‖τ‖√
 – σ

‖u‖
∥∥u′∥∥

 + A‖u‖ (.)

and

α

 + σ
‖u‖

 ≤ m

λ
‖u‖

∥∥u′∥∥
 +

√
β‖τ‖√
 – σ

‖u‖
∥∥u′∥∥

 + A‖u‖. (.)

Multiplying the second equation of (.) by u′(t) and integrating from –kT to kT , we
have

 = λ

∫ kT

–kT

〈
ϕq(v(t))

√
 – |ϕq(v(t))| , v′(t)

〉
dt =

∫ kT

–kT

〈
u′(t), v′(t)

〉
dt

= –λ

∫ kT

–kT

〈
u′(t), F

(
t,

u′(t)
λ

)〉
dt – λ

∫ kT

–kT

〈
u′(t), G

(
t, u

(
t – τ (t)

))〉
dt

+ λ

∫ kT

–kT

〈
u′(t), ek(t)

〉
dt.

Combining with (H), (H), and (.), we get

m

∫ kT

–kT

∣
∣u′(t)

∣
∣ dt

≤
∣∣
∣∣λ


∫ kT

–kT

〈
u′(t)
λ

, F
(

t,
u′(t)
λ

)〉
dt

∣∣
∣∣

≤ λβ

∫ kT

–kT

∣∣u′(t)
∣∣∣∣u

(
t – τ (t)

)∣∣dt + λ

∫ kT

–kT

∣∣u′(t)
∣∣∣∣ek(t)

∣∣dt

≤ λβ√
 – σ

∥∥u′∥∥
‖u‖ + λA

∥∥u′∥∥
,

which results in

∥∥u′∥∥
 ≤ λβ

m
√

 – σ
‖u‖ +

λA
m

≤ β

m
√

 – σ
‖u‖ +

A
m

. (.)

Substituting (.) into (.), we obtain

α

 + σ
‖u‖

 ≤ m

λ
‖u‖

(
λβ

m
√

 – σ
‖u‖ +

λA
m

)

+
√

β‖τ‖√
 – σ

‖u‖

(
β

m
√

 – σ
‖u‖ +

A
m

)
+ A‖u‖.

It follows from α
+σ

> mβ
√

–σ+
√

β‖τ‖
m(–σ) that

‖u‖ ≤ A( – σ)( + σ)(m + m) +
√

Aβ‖τ‖( + σ)
√

 – σ

αm( – σ) – mβ( + σ)
√

 – σ –
√

β‖τ‖( + σ)

:= d. (.)
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Substituting (.) into (.), we get

∥∥u′∥∥
 ≤ λdβ

m
√

 – σ
+

λA
m

, (.)

i.e.,

∥
∥u′∥∥

 ≤ dβ

m
√

 – σ
+

A
m

:= d. (.)

Substituting (.), (.), and (.) into (.), we have

‖v‖q
q ≤ m

λ
‖u‖

∥
∥u′∥∥

 +
√

β‖τ‖√
 – σ

‖u‖
∥
∥u′∥∥

 + A‖u‖

≤
√

β‖τ‖√
 – σ

dd + mdd + Ad. (.)

Moreover, it follows from Lemma . that

∣∣u(t)
∣∣ ≤ (T)– 



(∫ t+kT

t–kT

∣∣u(s)
∣∣ ds

) 


+ T(T)– 


(∫ t+kT

t–kT

∣∣u′(s)
∣∣ ds

) 


= (T)– 


(∫ kT

–kT

∣
∣u(s)

∣
∣ ds

) 


+ T(T)– 


(∫ kT

–kT

∣
∣u′(s)

∣
∣ ds

) 


,

which combining with (.) and (.) yields

∣∣u(t)
∣∣ ≤ (T)– 

 d + T(T)– 
 d := ρ, for all t ∈ R,

and then

‖u‖ = max
t∈[–kT ,kT]

∣
∣u(t)

∣
∣ ≤ ρ. (.)

Clearly, ρ is independent of k and λ.
Multiplying the second equation of (.) by v′(t) and integrating from –kT to kT , in view

of (H) and (H), we have

∫ kT

–kT

∣
∣v′(t)

∣
∣ dt = –λ

∫ kT

–kT

〈
v′(t), F

(
t,

u′(t)
λ

)〉
dt – λ

∫ kT

–kT

〈
v′(t), G

(
t, u

(
t – τ (t)

))〉
dt

+ λ

∫ kT

–kT

〈
v′(t), ek(t)

〉
dt

≤ m

λ

∫ kT

–kT

∣∣v′(t)
∣∣∣∣u′(t)

∣∣dt + β

∫ kT

–kT

∣∣v′(t)
∣∣∣∣u

(
t – τ (t)

)∣∣dt

+
∫ kT

–kT

∣
∣v′(t)

∣
∣
∣
∣ek(t)

∣
∣dt.

By applying the Hölder inequality and (.), we have

∥∥v′∥∥
 ≤ m

λ

∥∥u′∥∥
 +

β√
 – σ

‖u‖ + A.
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By (.), (.), and (.), we have

∥∥v′∥∥
 ≤ m

λ

∥∥u′∥∥
 +

β√
 – σ

‖u‖ + A

≤ m

λ

(
λdβ

m
√

 – σ
+

λA
m

)
+

β√
 – σ

‖u‖ + A

= m

(
dβ

m
√

 – σ
+

A
m

)
+

β√
 – σ

‖u‖ + A

≤ dβ√
 – σ

+ md + A. (.)

By applying Lemma . again and combining with (.) and (.), we get

∣∣v(t)
∣∣ ≤ (T)– 

q

(∫ t+kT

t–kT

∣∣v(s)
∣∣q ds

) 
q

+ T(T)– 


(∫ t+kT

t–kT

∣∣v′(s)
∣∣ ds

) 


= (T)– 
q

(∫ kT

–kT

∣
∣v(s)

∣
∣q ds

) 
q

+ T(T)– 


(∫ kT

–kT

∣
∣v′(s)

∣
∣ ds

) 


≤ (T)– 
q

(√
β‖τ‖√
 – σ

dd + mdd + Ad

) 
q

+ T(T)– 


(
dβ√
 – σ

+ md + A
)

=
[

β‖τ‖dd

T
√

( – σ)
+

mdd + Ad

T

] 
q

+
√

Tdβ +
√

T(md + A)
√

 – σ√
( – σ)

:= ρ.

Since

[
β‖τ‖dd

T
√

( – σ)
+

mdd + Ad

T

] 
q

+
√

Tdβ +
√

T(md + A)
√

 – σ√
( – σ)

< ,

we have

‖v‖ = max
t∈[–kT ,kT]

∣∣v(t)
∣∣ ≤ ρ < . (.)

Clearly, ρ is independent of k and λ.
Furthermore, it follows from (.) that

∥
∥u′∥∥

 = max
t∈[–kT ,kT]

∣
∣u′(t)

∣
∣ = max

t∈[–kT ,kT]
λ

ϕq(v(t))
√

 – (ϕq(v(t)))

≤ ρ
q–
√

 – ρ
q–


:= ρ. (.)

Clearly, ρ is independent of k and λ.
Define Fρ = max|x|≤ρ,t∈[,T] |F(t, x)| and Gρ = max|y|≤ρ,t∈[,T] |G(t, y)|, then from the

second equation of (.), we get

∥∥v′∥∥
 = max

t∈[–kT ,kT]

∣∣v′(t)
∣∣ ≤ Fρ + Gρ + A := ρ. (.)
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ρ is also independent of k and λ. Therefore, from (.), (.), (.), (.), (.), (.),
(.), and (.), we know that all the conclusions of Theorem . hold. �

Theorem . Assume that the conditions of Theorem . are satisfied. Then, for each k ∈
N, system (.) has at least one kT-periodic solution (uk(t), vk(t))� in � ⊂ Xk such that

‖uk‖ ≤ ρ, ‖vk‖ ≤ ρ < ,
∥∥u′

k
∥∥

 ≤ ρ,
∥∥v′

k
∥∥

 ≤ ρ,

‖uk‖ ≤ A,
∥∥u′

k
∥∥

 ≤ A, ‖vk‖p ≤ A,
∥∥v′

k
∥∥

 ≤ A,

where ρ, ρ, ρ, ρ, A, A, A, and A are constants defined by Theorem ..

Proof In order to use Lemma ., for each k ∈N, we consider the following system:

⎧
⎨

⎩

u′(t) = λϕ(v(t)) = λ
ϕq(v(t))√

–|ϕq(v(t))| ,

v′(t) = –λF(t,ϕ(v(t))) – λG(t, u(t – τ (t))) + λek(t), λ ∈ (, ),
(.)

where v(t) = ϕp(
u′(t)

λ√
+| u′(t)

λ
|

). Let � ⊂ Xk represents the set of all possible kT-periodic so-

lutions of (.). Since (, ) ⊂ (, ], then � ⊂ �, where � is defined by Theorem .. If
(u, v)� ∈ �, by using Theorem ., we have

‖u‖ ≤ ρ,
∥∥u′∥∥

 ≤ ρ, ‖v‖ ≤ ρ < ,
∥∥v′∥∥

 ≤ ρ.

Define � = {ω = (u, v)� ∈ ker L, QNω = }. If (u, v)� ∈ �, then (u, v)� = (a, a)� ∈ R


(constant vector) such that

⎧
⎪⎨

⎪⎩

∫ kT
–kT

ϕq(a)√
–|ϕq(a)| dt = ,

∫ kT
–kT [–F(t, ϕq(a)√

–|ϕq(a)| ) – G(t, a) + ek(t)] dt = ,

i.e.,

{
a = ,
∫ kT

–kT [–F(t, ) – G(t, a) + ek(t)] dt = .
(.)

Multiplying the second equation of (.) by a and combining with (H) and (H), we
have

kTα|a| ≤
∫ kT

–kT

∣∣F(t, )
∣∣|a|dt +

∫ kT

–kT
|a|

∣∣ek(t)
∣∣dt

≤ kT |a|A.

Thus,

|a| ≤ A
α

:= � .
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Now, if we define � = {ω = (u, v)� ∈ Xk ,‖u‖ < ρ +� ,‖v‖ < +ρ
 < }, it is easy to see that

� ∪ � ⊂ �. So, condition (h) and condition (h) of Lemma . are satisfied. In order to
verify the condition (h) of Lemma ., define

H(ω,μ) :
(
� ∩R

) × [, ] →R: H(ω,μ) = μω + ( – μ)JQN(ω),

where J : Im Q → ker L is a linear isomorphism, J(u, v) = (v, u)�. From assumption (H), we
have

ω�H(ω,μ) �= , ∀(ω,μ) ∈ ∂� ∩R
 × [, ].

Hence,

deg
{

JQN ,� ∩R
, 

}
= deg

{
H(ω, ),� ∩R

, 
}

= deg
{

H(ω, ),� ∩R
, 

}

�= .

Thus, the condition (h) of Lemma . is also satisfied. Therefore, by using Lemma ., we
can see that (.) has a kT-periodic solution (uk , vk)� ∈ �. Clearly, uk is a kT-periodic
solution to (.), and (uk , vk)� must be in � for the case of λ = . Thus, by using Theo-
rem ., we have

‖uk‖ ≤ ρ, ‖vk‖ ≤ ρ < ,
∥∥u′

k
∥∥

 ≤ ρ,
∥∥v′

k
∥∥

 ≤ ρ,

‖uk‖ ≤ A,
∥∥u′

k
∥∥

 ≤ A, ‖vk‖p ≤ A,
∥∥v′

k
∥∥

 ≤ A.

Hence, all the conclusions of Theorem . hold. �

Theorem . Suppose that the conditions in Theorem . hold, then (.) has a nontrivial
homoclinic solution.

Proof From Theorem ., we see that for each k ∈N, there exists a kT-periodic solution
(uk , vk)� to (.) with (uk , vk)� ∈ Xk and

‖uk‖ ≤ ρ, ‖vk‖ ≤ ρ < ,
∥
∥u′

k
∥
∥

 ≤ ρ,
∥
∥v′

k
∥
∥

 ≤ ρ, (.)

where ρ, ρ, ρ, ρ are constants independent of k ∈ N. Equation (.) together with
Lemma . shows that there are a function w := (u, u)� ∈ C(R,Rn) and a subsequence
{(ukj , vkj )�} of {(uk , vk)�}k∈N such that for each interval [a, b] ⊂ R, ukj (t) → u(t), and
vkj (t) → v(t) uniformly on [a, b]. Below, we will show that (u(t), v(t))� is just a homo-
clinic solution to (.).

Since (uk(t), vk(t))� is a kT-periodic solution of (.), it follows that

⎧
⎨

⎩

u′
k(t) = φ(vk(t)) = ϕq(vk (t))√

–|ϕq(vk (t))| ,

v′
k(t) = –F(t,ϕ(vk(t))) – G(t, uk(t – τ (t))) + ek(t).

(.)
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For all a, b ∈ R with a < b, there must be a positive integer j such that for j > j,
[–kjT , kjT – ε] ⊃ [a – ‖τ‖, b + ‖τ‖]. So for j > j, from (.) and (.) we see that

⎧
⎨

⎩

u′
kj

(t) = ϕ(ykj (t)) =
ϕq(vkj (t))

√
–|ϕq(vkj (t))| ,

v′
kj

(t) = –F(t,ϕ(ykj (t))) – G(t, ukj (t – τ (t))) + e(t), t ∈ (a, b),

which results in

u′
kj

(t) =
ϕq(vkj (t))

√
 – |ϕq(vkj (t))|

→ ϕq(v(t))
√

 – |ϕq(v(t))| (.)

and

v′
kj

(t) = –F
(
t,ϕ

(
vkj (t)

))
– G

(
t, ukj

(
t – τ (t)

))
+ e(t)

→ –F
(
t,ϕ

(
v(t)

))
– G

(
t, u

(
t – τ (t)

))
+ e(t) (.)

uniformly for t ∈ [a, b] as j → +∞. Since ukj (t) → u(t) and ukj (t) is continuously differ-
entiable for t ∈ (a, b), it follows that

u′
kj

(t) → u′
(t) uniformly for t ∈ [a, b] as j → +∞,

which together with (.) yields

u′
(t) =

ϕq(v(t))
√

 – |ϕq(v(t))| , t ∈ (a, b).

Similarly, by (.) we have

v′
(t) = –F

(
t,ϕ

(
v(t)

))
– G

(
t, u

(
t – τ (t)

))
+ e(t), t ∈ (a, b).

Considering a, b to be two arbitrary constants with a < b, it is easy to see that (u(t), v(t))�,
t ∈ R, is a solution to the following equation:

⎧
⎨

⎩

u′(t) = φ(v(t)) = ϕq(v(t))√
–|ϕq(v(t))| ,

v′(t) = –F(t,ϕ(v(t))) – G(t, u(t – τ (t))) + e(t),

i.e.,
⎧
⎨

⎩

u′
(t) = φ(v(t)) = ϕq(v(t))√

–|ϕq(v(t))| ,

v′
(t) = –F(t,ϕ(v(t))) – G(t, u(t – τ (t))) + e(t).

(.)

Now, we will prove u(t) →  and u′
(t) →  as |t| → +∞.

Since
∫ +∞

–∞

(∣∣u(t)
∣∣ +

∣∣u′
(t)

∣∣)dt = lim
i→+∞

∫ iT

–iT

(∣∣u(t)
∣∣ +

∣∣u′
(t)

∣∣)dt

= lim
i→+∞ lim

j→+∞

∫ iT

–iT

(∣∣u(t)
∣
∣ +

∣
∣u′

(t)
∣
∣)dt.
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By using the conclusion of Theorem ., we have

∫ iT

–iT

(∣∣ukj (t)
∣∣ +

∣∣u′
kj

(t)
∣∣)dt ≤

∫ kjT

–kjT

(∣∣ukj (t)
∣∣ +

∣∣u′
kj

(t)
∣∣)dt ≤ A

 + A
 .

Let i → +∞ and j → +∞, we have

∫ +∞

–∞

(∣∣u(t)
∣
∣ +

∣
∣u′

(t)
∣
∣)dt ≤ A

 + A
 ,

and then
∫

|t|≥r

(∣∣u(t)
∣∣ +

∣∣u′
(t)

∣∣)dt → 

as r → +∞. So by using Lemma ., we obtain

∣∣u(t)
∣∣ ≤ (T)– 



(∫ t+T

t–T

∣∣u(s)
∣∣l+ ds

) 


+ T(T)– 


(∫ t+T

t–T

∣∣u′
(s)

∣∣ ds
) 



≤ [
(T)– 

 + T(T)– 

][(∫ t+T

t–T

∣
∣x(s)

∣
∣ ds

)/()

+
(∫ t+T

t–T

∣
∣u′

(s)
∣
∣ ds

) 

]

→  as |t| → +∞,

which implies that

u(t) →  as |t| → +∞. (.)

Similarly, we can prove that

v(t) →  as |t| → +∞,

which together with the first equation of (.) gives

u′
(t) →  as |t| → +∞. (.)

It is easy to see from (.) that u(t) is a solution for (.). Thus, by (.) and (.),
u(t) is just a homoclinic solution to (.). Clearly, u(t) �≡ , otherwise, e(t) ≡ , which
contradicts assumption (H). Hence, the conclusion of Theorem . holds. �

Remark . Obviously, the prescribed mean curvature equations studied in [, , ,
] are special cases of (.). This implies that the main result in this paper is essentially
new.
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