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Abstract
Background: The NO - cGMP system plays a key role in the regulation of sinusoidal tonus and
liver blood flow with phosphodiesterase-5 (PDE-5) terminating the dilatory action of cGMP. We,
therefore, investigated the effects of PDE-5 inhibitors on hepatic and systemic hemodynamics in
rats.

Methods: Hemodynamic parameters were monitored for 60 min. after intravenous injection of
sildenafil and vardenafil [1, 10 and 100 g/kg (sil1, sil10, sil100, var1, var10, var100)] in anesthetized
rats.

Results: Cardiac output and heart rate remained constant. After a short dip, mean arterial blood
pressure again increased. Systemic vascular resistance transiently decreased slightly. Changes in
hepatic hemodynamic parameters started after few minutes and continued for at least 60 min.
Portal (var10 -31%, sil10 -34%) and hepatic arterial resistance (var10 -30%, sil10 -32%) decreased
significantly (p < 0.05). At the same time portal venous (var10 +29%, sil10 +24%), hepatic arterial
(var10 +34%, sil10 +48%), and hepatic parenchymal blood flow (var10 +15%, sil10 +15%) increased
significantly (p < 0.05). The fractional liver blood flow (total liver flow/cardiac output) increased
significantly (var10 26%, sil10 23%). Portal pressure remained constant or tended to decrease. 10
g/kg was the most effective dose for both PDE-5 inhibitors.

Conclusion: Low doses of phosphodiesterase-5 inhibitors have distinct effects on hepatic
hemodynamic parameters. Their therapeutic use in portal hypertension should therefore be
evaluated.
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Background
Nitric oxide (NO) plays a crucial role in hepatic microvas-
cular blood flow under physiological conditions [1-5].
Hepatic vascular resistance is regulated on the one hand
by contraction or relaxation of smooth muscle cells in the
terminal arterioles. On the other hand, perisinusoidal
stellate cells (Ito-cells) regulate sinusoidal tonus depend-
ing on concentration of NO synthesized by the sinusoidal
endothelial cells. The diameter of liver sinusoids is
responsible for up to 1/3 of the intrahepatic vascular
resistance and is regulated by an interplay of endothelial
cells, hepatocytes and stellate cells [6,7]. NO is synthe-
sized by endothelial cells and activates soluble guanylate
cyclase of stellate cells. This results in the formation of
cGMP that regulates the tonus of stellate cells and sinu-
soids [8,9]. This action is terminated by phosphodieste-
rase-5 (PDE-5), which converts cGMP to 5'-GMP [10,11].
Furthermore, vascular tonus depends on the differential
distribution of - and -receptors in the blood vessels.
Angiotensin II and humoral factors, e.g., endothelins,
with strong vasoconstrictor effects within extrasinusoidal
and sinusoidal sites contribute to the regulation of liver
blood flow [12-14]. Recently it was shown that induction
of heme oxygenase-1 may reduce ischemia/reperfusion
injury, probably by enhancing microvascular blood flow
[15]. Data from the same group suggest an interplay
between hepatic NO synthesis and heme oxygenase-1 reg-
ulation [16].

In liver cirrhosis, the NO - cGMP system is dysregulated.
Portal hypertension is caused by an increased intrahepatic
vascular resistance resulting from the disturbed liver archi-
tecture, perisinusoidal fibrosis, and cellular alterations of
liver sinusoids as well as from functional changes. Due to
a reduced activity of the endothelial NO synthase (eNOS)
in liver endothelial cells NO decreases whereas hepatic
stellate cells transform to contractile myofibroblasts
[5,7,17-21]. These factors and an increased PDE-5 activity
in liver cirrhosis result in the contraction of sinusoids [22-
25]. In contrast to the intrahepatic condition in the
splanchnic vascular system, NO production increases
causing dilation of the mesenteric blood vessels and
splanchnic hyperperfusion [5,26,27]. Apart from liver cir-
rhosis, an altered NO metabolism also occurs in other
clinical settings, such as ischemia and reperfusion injury
during liver surgery [1,28,29]. Several animal studies have
shown that a selective modulation of NO metabolism in
the liver reduces intrahepatic resistance and portal pres-
sure in cirrhosis [30-36].

It is intriguing to investigate whether PDE-5 inhibitors
which inhibit the conversion of cGMP to 5'-GMP could
dilate hepatic sinusoids and increase hepatic blood flow.
In a previous clinical pilot study we showed that the PDE-
5 inhibitor vardenafil increases portal venous flow in nor-

mal and cirrhotic liver and lowers portal pressure and
hepatovenous pressure gradient in cirrhotics [37]. In a
patient with portopulmonary hypertension we could fur-
ther demonstrate that the PDE-5 inhibitor tadalafil lowers
both pulmonary arterial and portal pressure [38].
Recently, Lee et al. showed that after a standard dose of 50
mg sildenafil hepatic production of cyclic guanosine
monophosphate increases leading to a significant
decrease of hepatic sinusoid resistance (34). These
authors found no change in HVPG [39]. Clemmesen et al.
[40] observed a > 10% decrease of HVPG in 4 of 10
patients with liver cirrhosis. However, from animal exper-
iments [41] and case reports [42-44] it was considered
that PDE-5 inhibitors may even increase portal pressure.

The conflicting results obtained with PDE 5 inhibitors in
the clinical setting require a thorough investigation in an
experimental model prior to proceed to large scale clinical
studies. Neither the optimal dose of PDE 5 inhibitors nor
the optimal parameters of efficacy are known for a poten-
tial use of these drugs in liver cirrhosis. In this study we
analyzed the effects of PDE-5 inhibitors on hemodynam-
ics of normal liver in rats. We collected exact measure-
ments of the effects of sildenafil and vardenafil,
respectively, on hepatic blood flow and vascular resist-
ances, portal venous pressure, and regional hepatic per-
fusion as well as systemic hemodynamic variables, e.g.
cardiac output.

Methods
Reagents
Isoflurane was purchased from Abbott (Wiesbaden, Ger-
many), pancuronium from Organon (BH Oss, Nether-
lands). Sildenafil and vardenafil were obtained from the
Nycomed GmbH, (Konstanz, Germany). They were dis-
solved in 0.9% NaCl, containing 0.04% 0.1 N HCl.

Animals
Overnight fasted male Sprague Dawley rats (Charles River,
Sulzfeld, Germany) weighing 388 ± 37 g were used for all
experiments. The experimental protocol was approved by
the local Animal Care and Use Committee. All animals
received care according to the Guide for the Care and Use
of Laboratory Animals (American Association for Labora-
tory Animal Science. MD: NIH 1985).

Animal preparation
After inhalational induction of anesthesia with isoflurane
a tail vein was cannulated and a tracheotomy was per-
formed. After muscle relaxation by intravenous injection
of pancuronium (0.1 mg/kg i.v.) the animals were
mechanically ventilated (Rodent Ventilator UB 7025-10,
Harvard Apparatus, March-Hugstetten, Germany), under
continued isoflurane anesthesia. For compensation of
evaporative losses during the initial procedure of surgical
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preparation 4 ml/kg/h of a crystalloid solution (Jonos-
teril®, Fresenius, Bad Homburg, Germany) were continu-
ously infused. An arterial line (polyethylene PE-50 tube)
was placed into the left femoral artery for blood pressure
monitoring and blood withdrawal. For cardiac output
analysis by the transpulmonary thermodilution tech-
nique, a thermistor tip catheter (9490E, Columbus Instru-
ments, Columbus, OH, USA) was inserted into the aortic
arch through the left carotid artery. For monitoring central
venous pressure and injection of saline at 4°C to measure
cardiac output, a PE-50 catheter was positioned close to
the right atrium via the right external jugular vein. At the
time of laparotomy the continuous infusion of Jonosteril
was increased from 4 to 10 ml/kg/h. Ultrasound flow
probes were placed at the common hepatic artery and the
portal vein (T206, small animal flow meter, Transonic,
Ithaca, NY, USA). In addition, the portal vein was cannu-
lated (26G, Insyte-W, BD, USA) to measure portal pres-
sure. For microvascular (parenchymal) blood flow
measurement, a microvascular flow probe (DP10M 100ST
for DRT-4 Laser Doppler Monitor, Moor Instruments Ltd.,
Axminster, UK) was placed in a defined position on the
surface of the left liver lobe. The body temperature was
maintained normothermic (37 ± 0.5°C) throughout the
experiment.

Experimental Protocol
After stabilization for 15 min after surgery, baseline
hemodynamic parameters were measured. Animals were
then randomized into the following groups: sil100 100
g/kg (n = 7), sil10 10 g/kg (n = 7), sil1 1 g/kg (n = 5),
va100r 100 g/kg (n = 6), var10 10 g/kg (n = 7), var1 1
g/kg (n = 5), controls 1 ml/kg 0.9% NaCl containing
0.04% 0.1 N HCl (n = 7). In order to minimize plasma
volume related alterations of hemodynamic parameters
the pharmacological intervention was carried out in a
standard volume of 100 l/kg injected over 90 seconds via
the tail vein. Heart rate, mean arterial blood pressure, cen-
tral venous pressure, portal venous pressure, portal
venous flow, hepatic arterial flow, hepatic parenchymal
flow and cardiac output were measured 0.5, 1, 3, 5, 10, 20,
30, 45 and 60 min after injection. From the data we calcu-
lated the "fractional liver flow": Arterial liver flow + portal
liver flow/cardiac output. It represents the proportion of
cardiac output passing through the liver.

Data analysis
Normal distribution of all variables was tested before sta-
tistical analyses using the Kolmogorov-Smirnov test pro-
cedure. Changes between baseline and 60 min were
analyzed using Wilcoxon rank sum test. Statistical differ-
ences between the groups at baseline were determined
using a Kruskal-Wallis test on ranks. All p-values were
two-sided and a p-value of < 0.05 was considered statisti-

cally significant. Analyses were performed using the SPSS
software (version 15.0).

Results
The effects of sildenafil and vardenafil on hemodynamic
parameters are presented in Table 1, Figure 1, Figure 2,
and Figure 3. Table 1 shows data at baseline and 60 min
after injection of sildenafil or vardenafil at the three con-
centrations, compared to controls. The 60 min time point
was chosen because preliminary data had demonstrated
that after 60 min a steady state is reached. Figure 1 depicts
the time-dependent course of the two most important
hepatic hemodynamic parameters, portal flow and portal
pressure, at the three different doses of sildenafil and var-
denafil. These curves show 1. that the 10 g/kg doses seem
to induce the most impressive increase of portal blood
flow, and 2. that despite increasing portal flow the portal
pressure does not increase. Therefore, we depict the
courses of further systemic and hepatic hemodynamic var-
iables at this dose in Figure 2 and 3.

Effect of sildenafil and vardenafil on systemic 
hemodynamic parameters
In the control group, no parameter showed a significant
change as compared to baseline (Table 1). Sil and var at 1
g/kg and 10 g/kg induced a slight but significant change
of mean arterial pressure (MAP) by 1.1 - -11.0%. Systemic
vascular resistance (SVR) decreased significantly in the
sil10 and all vardenafil groups by 7.7 - 11.6%. Most
importantly, in none of the groups heart rate or cardiac
output changed significantly, there was a short initial
increase of heart rate and cardiac output after injection in
all of the groups. Taken together, sildenafil and vardenafil
induced only minor changes in systemic hemodynamic
parameters.

Effect of sildenafil and vardenafil on hepatic 
hemodynamic parameters
Hepatic arterial resistance decreased by 17.4 - 32.2% in all
intervention groups except in sil1. Consistent with these
findings hepatic arterial blood flow increased in all inter-
vention groups, reaching statistical significance in the
sil10 (increase by 47.5%), var10 and var100 groups
(increase by 33.5% and 20.2%), respectively. Portal resist-
ance (calculated as portal pressure minus central venous
pressure divided by portal flow) significantly decreased in
var1, var10, var100, and sil10 groups by 22.0 - 38.6%.
Portal venous flow increased significantly with sil and var
at 10 and 100 g/kg, respectively. Sil and var at 10 ug/kg
increased portal flow by 24.1% and 29.2%, respectively.
Hepatic parenchymal blood flow significantly increased
in all sil groups (by 6.3 - 15.3%) and in the var10 and
var100 groups (by 15.0% and 28.8%). Taken together, in
animals with normal liver we observed a decrease of arte-
rial hepatic and portal (transhepatic) resistance and an
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increase of portal, arterial and parenchymal blood flow of
the liver.

Most importantly, in none of the intervention groups por-
tal pressure increased. To the contrary, in sil10, sil100,
var1, var10, and var100 portal pressure decreased and
nearly reached statistical significance in the var10 group
(p = 0.06).

Additional information can be derived from Figure 2 and
Figure 3. Immediately after injection of sil or var at 10 g/
kg MAP decreased (Figure 2, panel 1) but increased again
only a few min later without reaching baseline levels at 60
min. This pattern was observed in all intervention groups.
SVR also dropped and then gradually increased without

complete normalization at the end of the experiment (Fig-
ure 2, panel 2). PDE-5 inhibitors had no effect on the
heart rate (data not shown) or cardiac output (Figure 2,
panel 3).

Already a few minutes after the injection of sil or var
hepatic arterial flow (Figure 3, panel 1), hepatic parenchy-
mal flow (Figure 3, panel 2), and portal venous flow (Fig-
ure 1) increased. This increase was independent from
cardiac output (which remained constant) and the slight
drop of MAP. The hepatic effects became even more pro-
nounced with time, e. g., after 15 min when drug distribu-
tion should have reached a steady state. Despite increased
portal venous and hepatic arterial blood flow portal pres-
sure does not increase. On the contrary, there is a trend to

Course of relative changes of portal flow and portal pressure after slow intravenous injection of different doses of sildenafil, vardenafil, or 0.9% NaClFigure 1
Course of relative changes of portal flow and portal pressure after slow intravenous injection of different doses 
of sildenafil, vardenafil, or 0.9% NaCl. Ordinate: time (minutes) Abscissa: relative change (e.g. 0.00 means baseline; 0.10 
means: increase by 10%; -0.10 means: decrease by 10%). The values are indicated as mean ± 95% confidence intervals. Panel 1: 
Portal flow. Panel 2: Portal pressure. The values are indicated as mean ± 95% confidence intervals. The curves at different 
doses are marked by colours.
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Course of relative changes of systemic hemodynamic parameters after slow intravenous injection of 10 g/kg sildenafil or var-denafil or 0.9% NaClFigure 2
Course of relative changes of systemic hemodynamic parameters after slow intravenous injection of 10 g/kg 
sildenafil or vardenafil or 0.9% NaCl. Ordinate: time (minutes). Abscissa: relative change (e.g. 0.00 means baseline; 0.10 
means: increase by 10%; -0.10 means: decrease by 10%). The values are indicated as mean ± 95% confidence intervals. Signifi-
cant changes at 60 min (p < 0.05; Wilcoxon rank sum test) are marked with black stars. Panel 1: Mean arterial pressure. Panel 
2: Systemic vascular resistance. Panel 3: Cardiac output.
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Course of relative changes of hepatic hemodynamic parameters after slow intravenous injection of 10 g/kg sildenafil or varde-nafil or 0.9% NaClFigure 3
Course of relative changes of hepatic hemodynamic parameters after slow intravenous injection of 10 g/kg 
sildenafil or vardenafil or 0.9% NaCl. Ordinate: time (minutes). Abscissa: relative change (e.g. 0.00 means baseline; 0.10 
means: increase by 10%; -0.10 means: decrease by 10%). The values are indicated as mean ± 95% confidence intervals. Signifi-
cant changes at 60 min (p < 0.05; Wilcoxon rank sum test) are marked with black stars. Panel 1: Hepatic arterial flow. Panel 2: 
Parenchymal flow. Panel 3: Fractional liver flow.
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a decrease (Figure 1). From the data we calculated the frac-
tional liver flow (portal venous + hepatic arterial blood
flow/cardiac output = proportion of cardiac output pass-
ing through the liver, Figure 3, panel 3). In sil10 it
increased at 10, 30, and 60 min by 16%, 30%, and 23%.
In var10 it increased by 14%, 24%, and 26%.

Discussion
This is the first experimental study in which the effect of
different low doses of two inhibitors of phosphodieste-

rase 5 on hepatic and systemic hemodynamics was inves-
tigated up to 60 min after intravenous injection. We
showed a distinct effect of the PDE-5 inhibitors, sildenafil
and vardenafil, at low doses on the hemodynamics of the
liver: 1. Portal venous, hepatic arterial, and hepatic paren-
chymal blood flow increased. 2. Portal venous and
hepatic arterial resistance decreased. 3. Portal pressure
showed a trend towards decreasing. 4. Sildenafil decreases
mean arterial pressure by <4% and vardenafil by  11%.
5. Heart rate, central venous pressure and cardiac output

Table 1: Baseline parameters and relative changes after 60 min, expressed as % of the baseline value

parameter control sildenafil
100 g/kg

sildenafil
10 g/kg

sildenafil
1 g/kg

vardenafil
100 g/kg

vardenafil
10 g/kg

vardenafil
1 g/kg

MAP

(mmHg)

84.19
[80.3-
88.0]

-0.3
[-3.8-
3.2]

85.0
[80.2-
89.7]

-2.6
[-6.5-
1.2]

84.9
[81.7-
88.2]

-3.9 ✸
[-7.6 - 
-0.0]

83.9
[81.2-
86.5]

1.1 ✸
[0.4-
1.9]

82.9
[79.7-
86.2]

-7.4
[-16.3-

1.4]

80.9
[77.5-
84.3]

-8.7 ✸
[-15.0 
- -2.4]

88.0
[82.5-
93.5]

-11.0 
✸

[-16.7 
- -5.3]

HR
(1/min)

366.4
[348.8-
384.1]

-1.1
[-2.9-
0.7]

375.0
[351.0-
399.0]

-1.9
[-3.0-
6.7]

375.7
[364.3-
387.2]

3.2
[-0.0-
0.1]

366.0
[332.2-
399.8]

2.9
[-2.1-
3.9]

368.3
[353.3-
383.4]

2.4
[-1.3-
6.2]

362.9
[353.3-
372.4]

5.2
[-3.4-
13.7]

346.0
[324.3-
367.7]

1.3
[-3.4-
6.0]

SVR
(mmHg/
ml·min)

0.7
[0.6-
0.8]

-4.0
[-10.1-

2.1]

0.7
[0.61-
0.77]

-2.0
[-7.8-
3.8]

0.8
[0.68-
0.90]

-7.7 ✸
[-12.1 
- -3.3]

0.8
[0.7-
0.9]

-0.7
[-8.5-
7.1]

0.7
[0.6-
0.8]

-8.7 ✸
[-13.6 
- -3.8]

0.7
[0.5-
0.8]

-11.6 
✸

[-20.6 
- -2.7]

0.7
[0.5-
0.8]

-11.6 
✸

[-22.1 
- -1.1]

CO

(ml/min)

116.7
[98.4-
135.0]

4.4
[-2.2-
10.9]

120.3
[108.6-
131.9]

-0.8
[-4.5-
2.9]

106.7
[90.0-
123.4]

3.7
[-0.1-
7.5]

104.1
[85.33-
122.9]

2.3
[7.0-
11.6]

113.0
[100.0-
126.0]

1.3
[-3.8-
6.4]

119.7
[99.1-
140.4]

3.5
[-2.0-
9.1]

127.5
[103.8-
151.2]

0.4
[-6.0-
6.9]

A hep 
Resist
(mmHg/
ml·min)

20.8
[15.9-
25.8]

0.8
[-13.9-
15.5]

20.3
[14.8-
25.8]

-17.4 
✸

[-32.8 
- -2.1]

25.1
[19.3-
30.9]

-32.2 
✸ 

[-47.8 
- -

16.7]

23.3
[16.1-
30.5]

-1.8
[-6.9-
3.2]

23.4
[18.6-
28.2]

-21.8 
✸ 

[-35.2 
- -8.4]

20.7
[16.5-
24.9]

-30.1 
✸

[-41.2 
- -

18.9]

16.9
[13.5-
20.2]

-18.8 
✸

[-28.1 
- -9.5]

A hep Flow

(ml/min)

4.1
[3.2-
5.1]

0.9
[-12.0-
13.9]

4.4
[3.1-
5.6]

21.3
[-0.0-
42.6]

3.5
[2.6-
4.4]

47.5 
✸

[17.8-
77.2]

3.7
[2.7-
4.7]

3.3
[-2.6-
9.1]

3.5
[2.8-
4.3]

20.2 
✸

[3.2-
37.2]

3.9
[3.2-
4.6]

33.5 
✸

[11.6-
55.5]

5.1
[4.2-
6.1]

9.6
[-5.4-
24.7]

Port Resist
(mmHg/
ml·min)

0.2
[0.1-
0.2]

2.8
[-1.9-
7.5]

0.1
[0.11-
0.14]

-20.3
[-34.5 
- -6.2]

0.1
[0.1-
0.2]

-33.8 
✸

[-46.8 
- -

20.8]

0.2
[0.1-
0.2]

0.8
[-7.0-
8.5]

0.1
[0.1-
0.2]

-22.0 
✸

[-34.0 
- -

10.0]

0.2
[0.1-
0.2]

-31.0 
✸

[-40.6 
- -

21.4]

0.2
[0.1-
0.2]

-38.6 
✸

[-61.1 
- -

16.0]
Port Flow

(ml/min)

23.3
[20.1-
26.5]

-1.3
[-0.5-
2.9]

25.0
[21.7-
28.3]

18.3 
✸

[2.0-
34.5]

25.3
[22.9-
27.7]

24.1 
✸

[13.3-
34.9]

21.7
[17.6-
25.7]

3.3
[-2.4-
8.9]

22.7
[20-6 - 
24-8]

23.9 
✸

[12.5-
35.4]

24.1
[21.1-
27.1]

29.2 
✸

[22.5-
35.9]

24.0
[21.1-
26.9]

15.9
[-4.6-
36.5]

Parench 
Flow

(ml/min)

135.2
[121.0-
149.4]

-3.9
[-14.0-

6.2]

151.8
[130.5-
173.0]

12.4 
✸

[2.5-
22.2]

133.7
[115.4-
151.9]

15.3 
✸

[9.8-
20.8]

131.3
[122.2-
140.5]

6.3 ✸
[-1.9-
14.5]

126.3
[103.2 

-
.149.4]

28.8 
✸

[10.4-
47.3]

146.2
[118.2-
174.1]

15.0 
✸

[1.8-
28.2]

130.1
[114.1-
146.0]

6.8
[-10.0-
23.6]

Port 
Pressure

(mmHg)

6.3
[5.7-
6.9]

-0.8
[-5.7-
4.1]

6.1
[5.5-
6.7]

-1.3
[-6.9-
4.3]

6.1
[5.9-
6.3]

-6.2
[-13.6-

1.3]

5.7
[4.8-
6.6]

1.0
[-1-8 - 
3-9]

6.3
[5.8-
6.7]

-6.8
[-15.0-

1.3]

6.4
[5.7-
7.1]

-7.5
[-14.2 
- -0.1]

6.3
[5.3-
7.4]

-11.2
[-24.8-

2.4]

Fract Liver 
Flow
(%)

23.8
[20.6-
27.0]

-4.8
[-12.6-

3.0]

24.5
[21.7-
27.3]

19.3 
✸

[5.6-
32.9]

27.5
[23.7-
31.3]

22.9 
✸

[11.6-
34.2]

24.5
[19.5-
29.6]

1.4
[-8.6-
11.4]

23.6
[19.2-
28.0]

22.0 
✸

[10.9-
33.2]

23.7
[21.3-
26.0]

25.5 
✸

[15.9-
35.1]

23.3
[18.1-
28.5]

14.5
[-3.7-
32.7]

Significant changes (p < 0.05; Wilcoxon rank sum test) are marked with ✸. MAP = mean arterial pressure (mm Hg), HR = heart rate (1/min), SVR = 
systemic vascular resistance (mm Hg·ml-1·min-1), CO = cardiac output (ml/min), A Hep Resist = hepatic arterial resistance (mm Hg·ml-1·min-1), A 
Hep Flow = hepatic arterial flow (ml/min), Port Resist = portal venous resistance (mm Hg·ml-1·min-1), Port Flow = portal venous flow (ml/min), 
Parench Flow = parenchymal flow (ml/min), Port Pressure = portal venous pressure (mm Hg). Fract Liver Flow = fractional liver flow (arterial liver 
flow + portal liver flow/cardiac output) (%).
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remained constant. 6. Fractional liver blood flow
increased. Combining the data from Figure 1 and Table 1
we may conclude, that the 10 g/kg dose is optimal for a
more or less selective effect on hepatic hemodynamics,
because it only slightly affects systemic hemodynamics
parameters. These results contribute to the understanding
of the physiology of liver hemodynamics and have poten-
tial implications for the treatment of portal hypertension.

About 25% of the cardiac output passes through the liver.
Liver blood supply is provided by the hepatic artery (25 -
30%) and the portal vein (up to 75%) [3-5]. Blood flow
rates in both vessels closely correlate and are regulated by
multiple factors. A decline in portal venous blood flow
enhances hepatic arterial flow by reducing hepatic arterial
vascular resistance and vice versa. This mechanism known
as hepatic arterial buffer response maintains the total liver
blood supply [45].

Our data show that PDE-5 inhibitors - after intravenous
application - increase both arterial and portal liver blood
flow. The local vasodilation induced by these drugs abol-
ishes - at least in this experimental setting - the hepatic
buffer response. However, this effect is more than com-
pensated by the decrease of portal resistance. This is
reflected by the fact that the parenchymal liver flow is
increased by >15% and that the portal pressure does not
increase but rather shows a tendency towards decrease
(almost significant in the var10 group). Even if there is a
dilation of splanchnic vessels leading to an increased
blood flow towards the liver, all effects of PDE-5 inhibi-
tors on extrahepatic arterial vessels are more than com-
pensated by their intrahepatic effects. There are conflicting
data whether or not an increase of portal flow alone
increases portal pressure. Lee et al. [46] clearly demon-
strated that a postprandial increase of portal flow leads to
an increase of portal pressure even in normal liver. This
increase was much more pronounced in cirrhotics. How-
ever, even in cirrhotic liver organic nitrates can modulate
the postprandial increase of portal pressure [47]. Jiao et al.
[48] observed a dramatic increase of portal pressure fol-
lowing increase of portal flow in the isolated perfused
porcine liver. Recently, Zipprich et al. [49] investigated the
effect of a selective increase of flow in the hepatic artery or
the portal vein on portal pressure in normal and cirrhotic
rat liver. Their system with in-situ perfused rat liver is in
many respects comparable to our model. They found, that
an increase of arterial perfusion increases portal pressure
both in normal and in cirrhotic liver, whereas an increase
of portal flow increases portal pressure only in cirrhotic
liver. Despite an increase of both arterial and portal
hepatic perfusion we observed no increase of portal pres-
sure. Therefore, our data suggest that PDE-5 inhibitors act
on intrahepatic structures beyond the point where portal
and arterial flows merge. It may be speculated that even

low levels of PDE-5 inhibitors increase the local cGMP
concentration in the stellate cells and induce a dilation of
the sinusoids.

There are only few papers which dealt with hemodynamic
effects of PDE-5 inhibitors in animals or humans with cir-
rhosis [50-52]. However, these authors focused on sys-
temic or renal effects, the hepatic hemodynamics were not
investigated. In addition, the authors used very high doses
of the PDE-5 inhibitors.

Loureiro-Silva et al. investigated the effect of sildenafil on
hepatic hemodynamics in normal and cirrhotic rat liver
[23]. They found an increased expression of both PDE-5
and soluble guanylate cyclase in cirrhotic liver. For func-
tional studies they used perfused liver, methoxamine was
used for preconstriction of the intrahepatic circulation.
Endogenous NO production was inhibited by the NO
synthase inhibitor L-NMMA (N-monomethyl-L-arginine)
and vasodilation was induced by the NO donor SNAP (S-
Nitroso-N-Acetylpenicillamine). In this setting a reduced
vasodilatory response to SNAP in cirrhosis could be dem-
onstrated, which is corrected (or even overcompensated)
by 10-8 M sildenafil. While this approach yields informa-
tion on the regulation of the sinusoidal tonus, it is diffi-
cult to translate these data to patients with portal
hypertension.

Our data partially confirm the data obtained by Colle et
al. [41] who studied the effect of sildenafil on mesenteric
blood flow, mean arterial pressure, and portal venous
pressure at doses ranging from 10 - 10,000 g/kg injected
into the mesenteric artery or intravenously. In contrast to
our experimental protocol, the authors monitored the
parameters for up to 10 min after the injection only and
used repetitive doses after 10 min washout. In this exper-
imental setting it was not possible to detect the changes in
hemodynamic parameters that we describe. Nevertheless,
they also found the transient dip in arterial blood pressure
after injection of the drug. At the lowest doses of 10 and
100 g/kg given intravenously the relative decrease of
mean arterial pressure was about 3%. The relative increase
of mesenteric blood flow was  10%, and no change of
portal venous pressure was observed. The initial drop of
MAP and SVR in our study occurred presumably due to a
transiently higher drug concentration immediately after
intravenous injection. From the results obtained with
high doses (1000 and 10000 g/kg given intraarterially or
intravenously) used in the study by Colle and coworkers
no conclusions can be drawn whether or not PDE-5 inhib-
itors may be a risk for variceal bleeding in liver cirrhosis.

The present study in rats with normal liver demonstrates
the influence of low-dose PDE-5 inhibitors on hepatic
blood flow. In this setting they marginally interfere with
Page 8 of 10
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systemic hemodynamics. With regard to cardiac output
we calculated the values for fractional hepatic blood flow
after drug injection (Figure 3, panel 3). These results
revealed an increase in selective liver blood supply com-
pared to baseline by 20 - 30%. To the best of our knowl-
edge to date this has not been shown for any other drug.
In our animal study the ideal dose for short term use is in
the range of 10 g/kg. This is much less than the standard
dose of vardenafil (10 mg) or sildenafil (50 mg) used for
therapy of erectile dysfunction in the clinical setting. With
a dose in the range of 10 g/kg the systemic hemody-
namic effects of PDE-5 inhibitors could be neglected.

Our data are well in line with those of Lee et al [39]. These
authors described an increase of cGMP levels in liver veins
of cirrhotics after oral administration of 50 mg sildenafil
but not in peripheral veins leading to a significant
decrease of sinusoidal resistance but not of peripheral vas-
cular resistance. Therefore it can be concluded that condi-
tions may exist (oral vs. intravenous applications, low
doses) in which hemodynamic effects of PDE 5 inhibitors
prevail in the liver leaving systemic circulation more or
less unaffected. Comparing oral administration to intrave-
nous application, a suspended arterial buffer response
was demonstrated in rats in this study. In healthy and cir-
rhotic human livers, we have shown that after oral admin-
istration the buffer response stays intact [37].

Our findings suggest a distinct effect of PDE-5 inhibitors
on hepatic hemodynamics. However, we cannot defini-
tively answer the question whether or not PDE-5 inhibi-
tors can be used to treat portal hypertension (or other
conditions such as ischemia/reperfusion injury). We are
presently examining the responses to low doses of PDE-5
inhibitors in animals with portal hypertension. If PDE-5
inhibitors are beneficial in this model, patients with liver
cirrhosis should be evaluated. The measures of efficacy
should be the hepatovenous pressure gradient and clinical
end points, such as bleeding or re-bleeding from esopha-
geal varices.

Conclusion
PDE-5 inhibitors at low doses have distinct effects on liver
hemodynamics. Portal flow and parenchymal flow
increase without enhancement of portal pressure in nor-
mal rat liver. The compromised NO-bioavailability in the
cirrhotic liver leads to a constriction of the sinusoids,
which contributes to the functional component of portal
hypertension. It may be anticipated that this effect can be
reversed by application of PDE-5 inhibitors.
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