
Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24
http://jivp.eurasipjournals.com/content/2014/1/24

RESEARCH Open Access

Locating moving objects in car-driving
sequences
Antonio Garcia-Dopico*, José Luis Pedraza, Manuel Nieto, Antonio Pérez, Santiago Rodríguez
and Luis Osendi

Abstract

This paper presents a system for the search and detection of moving objects in a sequence of images previously
captured by a camera installed in a conventional vehicle. The objective is the design and implementation of a
software system based on optical flow analysis to detect and identify moving objects as perceived by a driver, taking
into account that these objects could interfere with the driver’s behavior, either through distraction or by posing an
actual danger that may require an active response. The problem presents significant difficulties because the vehicle
travels on conventional roads, open to normal traffic. Consequently, the scenes are recorded with natural lighting,
i.e., under highly variable conditions (intensity, shadows, etc.). Furthermore, the use of a moving camera makes it
difficult to properly identify static objects such as the road itself, signals, buildings, landscapes, and moving objects of
the same speed, such as pedestrians or other vehicles. The proposed method consists of three stages. First, the optical
flow is calculated for each image of the sequence, as a first estimate of the apparent motion. In a second step, two
segmentation processes are addressed: the optical flow itself and the images of the sequence. Finally, in the last stage,
the results of these two segmentation processes are combined to obtain the movement of the objects present in the
sequence, identifying both their direction and magnitude. The quality of the results obtained with different
sequences of real images makes this software suitable for systems to study driver behavior and to help detect danger
situations, as various international traffic agencies consider in their research projects.

Keywords: Optical flow; Optical flow segmentation; Image segmentation; Real traffic; Driver behavior; Natural lighting

1 Introduction
This paper addresses the detection of moving objects
that could interfere with driver behavior, either through
distraction or by posing an actual danger. The scene is
recorded as seen by the driver, i.e., with a moving camera.
The optical flow obtained from these video sequences is
computed to obtain an estimate of the apparent motion
present in the scene. The camera is installed inside a
conventional vehicle driving on public roads. The mov-
ing camera and the variable natural lighting pose a seri-
ous challenge for calculating optical flow. Taking the
sequences while driving on actual roads also implies a
large number of objects captured by the images (vehicles,
vegetation, signs, buildings, etc.). This makes it difficult to
correctly determine optical flow.

*Correspondence: dopico@fi.upm.es
DATSI, Facultad de Informática, Universidad Politécnica de Madrid,
Boadilla del Monte 28660, Spain

The main novelty present in our solution is the
combined use of two independent and complementary
segmentation processes, optical flow segmentation and
raw image segmentation. Once both processes are fin-
ished, an additional computation stage is dedicated to
find matches between both segmented image results. This
stage also identifies objects with relatively high apparent
motion to detect and point out any danger situation. All
these processes require highly computing-intensive oper-
ations. Due to this fact, a parallel real-time version of this
system has been developed and implemented as described
in [1]. In this parallel version, all processing stages are car-
ried out at a 45-frames per second (fps) rate when applied
to 502 × 288 small images or at a 15-fps rate when high-
resolution 720 × 576 images are used. These data come
from a rather basic prototype, but we envisage running
these processes on a powerful up-to-date multi-core quad
processor PC to achieve 30 fps for full HD 1, 920 × 1, 080
images.

© 2014 Garcia-Dopico et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited.

mailto:dopico@fi.upm.es
http://creativecommons.org/licenses/by/2.0

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 2 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

Apparent motion identified in this way is similar to
apparent motion as estimated by a human driver. There-
fore, potential dangers that could be identified by a driver
who is aware of his activity can be identified by a system
based on the techniques described in this paper.
Once OF has been computed, all similar optical flow

vectors are grouped together, because they probably
belong to be the same object. The complexity of the pro-
cess is increased by the fact that the camera is also moving,
because all objects in the image sequence seem to move
away from a given point, the focus of expansion (FOE),
and there is no static object that can be used as a refer-
ence. In fact, depending on the movement of the camera
relative to the rest of the objects, three situations can be
distinguished:

1. Static camera with moving objects: this is the
simplest case since the images have a fixed
background, which helps differentiate the moving
objects more clearly. An example of this case could be
the sequences captured by roadside traffic cameras.

2. Moving camera with static objects: this scenario
presents more difficulties, since there is no static
background to easily determine the moving objects.
However, the knowledge that the objects in the scene
are static makes it easier to establish reference points
for movement. Examples of this case could be the
landscape sequences in commercial movies.

3. Moving camera with moving objects: this is the
special case addressed in this paper, in which both
the camera and the objects are moving in the scene.
It is the most complex case since there is no available
reference. The camera is installed on board a vehicle
traveling at a regular speed, ranging from a few
kilometers per hour to 120 km/h.

In the sequences taken with the moving camera, all of
the pixels seem to recede from a given point which is
known as the FOE. The FOE is the point on the horizon at
which the camera is aimed. It seems to be static and, there-
fore, does not generate optical flow. As the distance of the

pixels from the FOE increases, they create a higher optical
flow vector, i.e., if an object is near the edge of the image,
it appears to move faster than if it is close to the FOE. Even
the direction of the vector is affected, since all objects
appear to radially move away from the FOE. This means
that vectors from the same object could present differ-
ent magnitudes or directions, making the task of grouping
them highly complex.
Moreover, due to the camera movement, optical flow

can be rather high even when all the objects in the scene
are static. This optical flow can be determined and the
pattern of movement established, but it is not uniform or
constant because the vehicle speed and direction change
considerably. Depending on the speed of the camera and
on the direction of its motion, the apparent pixel move-
ment or movement pattern is obtained, determining the
velocity of a static object relative to the camera. Fur-
thermore, the images are taken outdoors with variable
light conditions, so shadows and reflections constantly
appear and disappear as the car moves, interfering with
the optical flow calculation.
In addition to calculating and segmenting the optical

flow, the image is also segmented in search of the objects
composing it. Although a specific kind of image sequences
is used, restrictions have not been applied, as the aim
is to obtain general solutions applicable to any kind of
sequences. The system tries to locate moving objects and
to assign them vectors with its velocity with respect to the
camera, based solely on the video sequences taken from
the inside of a moving car traveling along a road.
Two approaches were used in analyzing the images:

(1) static, i.e., the size and shape of the objects are
identified; and (2) dynamic, i.e., analyzing the motion
in the sequence to obtain velocity vectors. In a subse-
quent phase, these partial results are combined so that
the objects are mapped to velocity vectors as shown in
Figure 1.
By combining the best of each approach, satisfactory

results can be obtained, since only the edges of uni-
form objects generate optical flow. Consequently, correct
shapes of uniform objects can not be obtained using only

Figure 1 Joining of static and dynamic results to identify image objects.

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 3 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

Figure 2 Image (static) and optical flow (dynamic) stages of the proposed algorithm.

velocity vectors. On the other hand, static images alone do
not allow obtaining velocity vectors of moving objects.
The general approach followed is shown in Figure 2, in

which the stages of the process are represented by rectan-
gular shapes, and the results obtained by elliptical shapes.
The images used for this work have been taken with a
camera located inside the vehicle simulating the driver’s
point of view as shown in Figure 3.

2 Related work
This section briefly describes the basis on which the sys-
tem analyzed in this paper is supported. As indicated
earlier, the main novelty of our solution is the combined
use of optical flow segmentation and raw image segmen-
tation. Moreover, these processes should ideally be carried
out in real time. Consequently, several of the application
areas involved deserve to be placed in context, specifically,
algorithms for optical flow computation and their paral-
lelization, and segmentation of the optical flow results.

2.1 Algorithms for optical flow computation
There is a variety of algorithms to perform the computa-
tion of the optical flow. Most of them are based on the

Figure 3 Scene camera inside the vehicle. The picture is taken
from the driving seat, and the camera is located between the driver
and passenger seats.

classical and well-established algorithms analyzed in [2],
which usually have an initial premise for their correct
operation, the assumption that the illumination intensity
is constant along the analyzed sequence.
Each algorithm shows some advantages and disadvan-

tages; themain drawback ofmost of the algorithms is their
high computational and memory costs. Some of them try
to reduce these costs by sacrificing accuracy of results, i.e.,
they balance the cost of the algorithm against the level of
accuracy.
Over the years, a lot of research has been carried out

in the field of optical flow algorithms. It has been con-
tinuously improved, sometimes by concentrating on the
algorithm itself [3-6], sometimes by combining two of
them [7,8], and sometimes by combining with other tech-
niques [9-11].
Although most optical flow algorithms were designed

with the main objective of obtaining accurate results, the
trade-offs between efficiency and accuracy in optical flow
algorithms are highlighted in [12] as well as the impor-
tance of an efficient optical flow computation in many
real world applications. They also analyze several classi-
cal algorithms under both criteria. However, a search of
the literature did not identify any previous studies or com-
parisons of the efficiency of recent algorithms or of their
potential for parallelization or real-time capabilities.

2.2 Parallelization of optical flow
Over the last decades, the computation of optical flow has
always posed a challenge in terms of processor computing
power. Alternative algorithms, designed for implementa-
tion on computers with multiple processors, have been
proposed since the first steps of development of this
technique.
There have been many alternatives, and they have

evolved along with the technology. In some cases, single-
instruction multiple data (SIMD) processor arrays with
specific chips, either existing [13] or designed ad hoc
for the computation of optical flow [14], have been
used. General-purpose MIMD as the connection machine
[15,16], networks of transputers [17], or cellular neural
networks [18,19] were also used in the past.

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 4 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

In recent years, there have also been many implemen-
tations based on field-programmable gate array (FPGA)
[20-22] and graphic processor units (GPU) [23-25]. The
results of a comparative study of both technologies
for real-time optical flow computation are presented in
[26]. They conclude that both have similar performance,
although their FPGA implementation took much longer
to develop. A very thorough comparison of both tech-
nologies applied to real-time vision computing is done by
Pauwels et al. [27]. They examine several algorithms com-
mon in vision computing under many aspects, such as
speed, cost, accuracy, power consumption, design time,
and their general behavior on specific computations such
as Gabor filtering, optical flow, and warping. Although
the more adequate technology for each studied aspect
is suggested, they conclude that the GPU surpasses the
FPGA in most of their comparisons and agree with [26]
about the FPGA requiring much developing time than
the GPU. Some of the methods mentioned previously
for computing optical flow are based on the Lucas-
Kanade [28,29] method used in this paper or their appli-
cation appears to be similar to that described in this
paper.
A system for driving assistance is presented in [14]. It

detects vehicles approaching from behind and alerts the
driver when performing lane change maneuvers. The sys-
tem is based on images taken by a camera located in the
rear of a vehicle circulating through cities and highways,
i.e., under the same hostile conditions as those in our sys-
tem. However, their model is simpler because it is limited
to detecting large objects near the camera and moving
in the same direction and sense. Their method is based
on the determination of the vanishing point of flow from
the lane mark lines and calculating the optical flow along
straight lines drawn from the vanishing point. The opti-
cal flow is computed by a block matching method using
sum of absolute differences (SAD). The entire system is
based on a special-purpose SIMD processor called IMAP-
CAR implemented in a single CMOS chip that includes an
array of 1 × 128 8-bit VLIW RISC processing elements. It
processes 256 × 240 pixel images at 30 fps. Their experi-
mental results show 98% detection of overtaking vehicles,
with no false positives, during a 30-min session circulating
on a motorway in wet weather.
Another implementation of the Lucas-Kanade algo-

rithm is presented in [21]; this time, based on FPGA. Their
method is based on the use of high-performance cam-
eras that capture high-speed video streams, e.g., 90 fps.
Using this technology, they are able to reduce the motion
of objects in successive frames. Additionally, variations in
light conditions are smaller due to the high frame rate,
thus moving closer to meeting the constant illumination
condition. In summary, a high fps rate allows simplifying
the optical flow computation model and allows obtaining

accurate results in real time. The division of the Lucas-
Kanade algorithm into tasks is similar to that used in our
method, although in [21], the pipeline is implemented by
using specific and reconfigurable FPGA hardware (Virtex
II XC2V6000-4 Xilinx FPGA; Xilinx, Inc., San Jose, CA,
USA). Each pipeline stage is subdivided into simpler sub-
stages, resulting in over 70 substages using fixed-point
arithmetic for the most part. The throughput achieved
is one pixel per clock cycle. Their system is capable of
processing up to 170 fps with 800 × 600 pixel images
and, although its real time performance should be mea-
sured relative to the acquisition frame rate, it appears to
be significantly high for the current state of technology.
In recent years, cluster computing technology has

spread to the extent of becoming the basic platform for
parallel computing. In fact, today, most powerful super-
computers are based on cluster computing [30]. However,
it is unusual to find references to parallel optical flow
algorithms designed to exploit the possibilities offered by
clusters of processors to suit the size of the problems. In
[31-34], some solutions are presented based on clusters.
In [32] and [1], we present a parallelization of the Lucas-

Kanade algorithm applied to the computation of optical
flow on video sequences taken from a moving vehicle in
real traffic. These types of images present several sources
of optical flow: road objects (lines, trees, houses, panels,
etc.), other vehicles, and also highly variable light con-
ditions. The method described is based on splitting the
Lucas-Kanade algorithm into several tasks that must be
processed sequentially, each one using a different num-
ber of subimages from the video sequence. These tasks
are distributed among cluster nodes, balancing the load of
their processors, and establishing a data pipeline through
which the images flow. The method is implemented in
three different infrastructures, (shared, distributed mem-
ory, and hybrid) to show its conceptual flexibility and
scalability. A significant improvement in performance is
obtained in all three cases. The paper presents experi-
mental results using a cluster of 8 dual-processor nodes,
obtaining throughput values of 45 fps with 502 × 288
pixel images and 15 fps with 720 × 576 pixel images,
reaching speedups of 8.41. This is the parallel implemen-
tation of the Lucas-Kanade algorithm that we use in the
segmentation system described later in this paper.
In [34], the optical flow calculation with three-

dimensional images by an extension of the Horn-Schunck
model to 3D is used. They study three different multi-
grid discretization schemes and compare them with the
Gauss-Seidel method. Their experimental results show
that under the conditions of their application, the multi-
grid method based on Galerkin discretization very signif-
icantly improves the results obtained using Gauss-Seidel.
They also perform a parallelization of the algorithm aimed
at its execution in clusters and apply it to the calculation

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 5 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

of 3D motion of the human heart using sequences of two
256 × 256 × 256 and 512 × 512 × 512 images taken by
C-arm computed tomography. Their method is based on
subdividing the image into several 3D subsets and pro-
cessing each one in a different processor. The analyzed
method is well suited to the proposed application, because
the image just includes a single object (heart), with highly
localized relative movements of expansion and contrac-
tion. This fact, along with the uniformity of illumination,
requires a very low communication overhead due to par-
allelization. The speedupa using 8, 12, and 16 processors is
excellent: 7.8, 11.52, and 15.21, with an efficiency close to
one, but it starts to decrease when reaching 32 processors:
28.46. The experiments were performed on an eight-node
quad-processor cluster.

2.3 Segmentation of optical flow
Many authors have used the optical flow as a starting
point for the segmentation of moving objects in many
applications under different scenarios such as robotics,
collision avoidance, navigation, video coding, and driv-
ing assistance. Our system is devoted to helping with
driver behavior analysis [35]. Optical flow provides appar-
ent motion information, so it is usually combined with
other techniques to obtain accurate and useful results.
An early approach for detecting moving object seg-

menting the optical flow generated by moving cameras
is presented by Adiv in [36]. The first processing step
partitions the flow field into connected segments of flow
vectors that are consistent with a rigidmotion of a roughly
planar surface. Each segment is assumed to correspond to
a portion of only one rigid object. In the second process-
ing step, segments which are consistent with the same 3D
motion parameters are combined as induced by one rigid
object, either because of its real movement or because of
themoving camera. The results of itsmethod are analyzed
using synthetic and real 128×128 video images, according
to the technology of the time.
Thompsom and Pong [37] analyzed four techniques for

detecting moving objects based on optical flow with the
help of additional knowledge about camera motion or
scene structure. Each one being suitable for a specific situ-
ation, they suggested that a reliable detecting method will
require combining several techniques that were appropri-
ately selected.
In [38], Choia and Kim addressed optical flow segmen-

tation using a region growing technique, in which the
motion constraints are relaxed, applying a hierarchy of
motion models. They perform multi-stage processing to
detect uniform subregions, according to simple motion
models, which are grouped in uniform regions with
respect to a complex model. In a first stage, the optical
flow is segmented in subregions with similar motion vec-
tors, called 2D translational patch. Next, 2D translational

patches consistent with planar rigid motion are grouped
in a 3D planar patch. In the last stage, the 3D planar
patches are grouped into homogeneous regions gener-
ated by roughly parabolic rigid objects with 3D motion
(parabolic patches). A pre-processing stage is performed
to detect the static background combining null and near-
null optical flow fields with a change detection technique.
In [39], Chung et al. combined region-based and

boundary-based techniques on optical flow to perform
spatially coherent object tracking. Their approach uses
feed-forward inside frame-processing steps (region-based
information to boundary-based computations) and feed-
back between subsequent frames. The region-based tech-
nique is based on gradient-based motion constraints and
intensity-consistency constraints. The boundary-based
technique is based on the distance-transform active con-
tour improved by feed-forwarded intensity consistency
data. The motion constraints within the contour are fed
backed to be used as initial motion estimates in the region-
based module for the next frame. They report its method
as suitable for accurate segmentation in sequences with
a moving background or camera and multiple moving
objects, taking 1 to 2 s of processing time per frame using
MATLAB (The MathWorks, Inc., Natick, MA, USA) on a
2.6-GHz dual Xeon computer.
In [40], Klappstein et al. studied the detection of mov-

ing objects as a part of a driver assistant system using
either a monocular or a stereoscopic system that captured
real-world vehicle image sequences. Their approach tries
to detect and distinguish between the ‘static motion’ gen-
erated by the motion of the camera, usually known as
ego-motion, and the ‘dynamic objects motion’. It is based
on tracking feature points in sequential images and esti-
mating depth information from 3D reconstructed images.
Their method consists of five processing stages, in which
different techniques are performed according to the vision
system in use. The optical flow computation is the start-
ing point of both processing sequences, although an initial
3D reconstruction is also performed in the stereoscopic
system. In the second step, the ego-motion is estimated
based on optical flow and 3D information, which is nec-
essary to estimate or enhance the 3D reconstruction prior
to motion detection and final object segmentation. The
3D stereo reconstruction is enhanced by fusing the opti-
cal flow and stereo information using a Kalman filter.
The detection of moving objects is based on individual
tracked feature points. In the monocular system, this is
done by looking for inconsistencies of feature points in the
3D reconstructed image, according to several constraints
that must be satisfied by a static 3D point. In the stereo-
scopic system, this is done by analyzing the velocity of
feature points. The segmentation stage is based on a glob-
ally optimal graph-cut algorithm. The stereoscopic system
is reported to offer similar but more accurate results than

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 6 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

the monocular system; however, it suffers from a prob-
lem of decalibration of the stereo cameras and has higher
computational costs.
In [41], Pauwels et al. tried to reproduce the processes

carried out by the human brain while segmenting moving
objects. They identify six interdependent feature extrac-
tion stages and propose a GPU-based architecture that
emulate the processing tasks and the information flow in
the dorsal visual stream. The extracted features are Gabor
pyramid, binocular disparity, optical flow, edge structure,
egomotion and ego-flow, and independent flow segments.
They perform reliable motion analysis of real-world driv-
ing video sequences in real time achieving 30 fps with
320 × 256 pixels and 21 fps with 640 × 512 pixels.
In [42], Samija et al. addressed the segmentation of

dynamic objects in 360° panoramic image sequences from
an omnidirectional camera. They improve the segmenta-
tion results projecting the optical flow vectors geometri-
cally on a sphere centered in the camera projection center.
The camera is on a mobile robot where the movement on
the horizontal plane is known; hence, the ego-motion is
also known. Their approach is based on the differences
between the estimated optical flow generated by two sub-
sequent images and the expected optical flow computed
by applying the ego-motion to the first image.
In [43], Namdev et al. combined motion potentials

from optical flow and from geometry in an incremental
motion segmentation system for a vision-based simul-
taneous localization of moving objects and mapping of
the environment (SLAM). A dense tracking of features
from optical flow results in dense tracks for which multi-
view geometric constraints are calculated with the help of
the ego-motion supplied by the VSLAM module. Then,
motion potentials due to geometry are calculated using
the geometric constraints. The motion segmentation is
performed by a graph-based clustering algorithm that
processes a graph structure created using the geometric
motion potentials along with the optical flow motion
potentials. They show the results obtained from several
private and public datasets. A standard laptop running
MATLAB was used, taking up to 7 min of processing time
for each frame, which wasmainly due to the time required
by the optical flow computation.

3 The Lucas-Kanade algorithm
The Lucas-Kanade algorithm [28,29] takes a digital video
as the only data source and computes the optical flow
for the corresponding image sequence. The result is a
sequence of 2D arrays of optical flow vectors, each array
associated to an image of the original sequence and each
vector associated to an image pixel. The algorithm ana-
lyzes the sequence frame by frame and performs several
tasks. In some cases, a task may require a certain num-
ber of images preceding and following the image being

processed; therefore, the optical flow is not computed for
some of the images at the beginning and at the end of the
sequence.
The Lucas-Kanade algorithm computes the optical flow

using a gradient-based approach, i.e., it calculates the
spatio-temporal derivatives of intensity of the images.
This method assumes that image intensity remains con-
stant between the frames of the sequence, a common
assumption in many algorithms:

I (x, y, t) = I (x + u�t, y+ v�t, t + �t) (1)

This expression, using Taylor series and assuming dif-
ferentiability, can be expressed by the motion constraint
equation:

Ixuδt + Iyvδt + Itδt = O (
u2δt2, v2δt2

)
(2)

In a more compact form, taking δt as the time unit,

∇I (x, t) · v + It (x, t) = O (v2) (3)

where ∇I (x, t) and It (x, t) represent the spatial gradient
and temporal derivative of image brightness, respectively,
and O (v2) indicates second order and above terms of the
Taylor series expansion.
In this method, the image sequence is first convolved

with a spatio-temporal Gaussian operator to eliminate
noise and to smooth high contrasts that could lead to
poor estimates of image derivatives. Then, following from
the implementation in [2], the spatio-temporal deriva-
tives Ix, Iy, and It are computed with a four-point central
difference.
Finally, the two velocity components, v = (

vx, vy
)
, are

obtained by a weighted least squares fit with local first-
order constraints, assuming a constant model for v in each
spatial neighborhoodN and by minimizing∑

x∈N
W2 (x) [∇I (x, t) · v + It (x, t)]2 (4)

whereW(x) denotes a window function that assigns more
weight to the center. The resulting solution is

v = (ATW2A)−1ATW2b (5)

where for n points, xi ∈ N at a single time t

- A = [∇I (x1) , . . . ,∇I (xn)]T
- W = diag [W (x1) , . . . ,W (xn)]
- b = − (It (x1) , . . . , It (xn))T

The product ATW2A is a 2 × 2 matrix given by

ATW2A =
[∑W2 (x) I2x (x) ∑W2 (x) Ix (x) Iy (x)∑W2 (x) Iy (x) Ix (x) ∑W2 (x) I2y (x)

]

(6)

where all the sums used are points in the neighbor-
hoodN .

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 7 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

3.1 Implementation
In this section, the implementation of the Lucas-Kanade
algorithm proposed by Correia [44,45] is described
because this implementation has been used to com-
pute the optical flow prior to being segmented. All the
parameters used in this section are obtained from the
original sequential implementation by Correia presented
in [44,45].
This implementation starts by smoothing the image

sequence with a spatio-temporal Gaussian filter to attenu-
ate temporal and spatial aliasing, as shown in [2]. It applies
a smoothing Gaussian filter:

1√
2πσ

e−
x2
2σ2 (7)

In this implementation σ is 3.2, and therefore, 25 pixels
are required: the central one and 4σ [45] pixels at each
side. This one-dimensional (1D) symmetrical Gaussian
filter is applied three times, first on the temporal ‘t’ dimen-
sion, then on the spatial ‘X’ dimension, and finally on the
spatial ‘Y’ dimension.
The result of applying the Gaussian smoothing filter to

an image can be seen in Figure 4, which shows the original
image (Figure 4a) and three steps: the result for the tem-
poral filter (Figure 4b), for the spatial filters (Figure 4c),
and the final result (Figure 4d).
After smoothing, the next step of the Lucas-Kanade

algorithm is to compute the spatio-temporal derivatives

for the three dimensions: t, x, and y (It , Ix, Iy). Using
the previously computed image, smoothed on t, X and
Y, and applying a numerical approximation, the deriva-
tives (It , Ix, Iy) are separately computed making use of
the five-point central finite differences method, used to
compute the first order of derivative with fourth order of
accuracy on one-dimensional grid, based on central finite
differences [46]:

f ′ (x3) = f (x1) − 8f (x2) + 8f (x4) − f (x5)
12h

(8)

Taking h = 1 because the distance between two consec-
utive pixels is one, the one-dimensional array to be used
as the convolution coefficient mask in the computation of
the partial derivatives is obtained as follows:[

1
12 ,

−8
12 , 0,

8
12 ,

−1
12

]
(9)

The results of the convolutions are the estimates of
the partial derivatives, which are shown in Figure 5, and
represent the temporal (Figure 5a), horizontal (Figure 5b),
vertical (Figure 5c), and combined intensity changes
(Figure 5d).
Finally, the velocity vectors associated to each pixel of

the image are computed from the spatio-temporal partial
derivatives previously computed. This is done by using a
spatial neighborhood matrix of 5 × 5 pixels, centered on
each pixel and a one-dimensional weight kernel with the
following coefficients: (0.0625, 0.25, 0.375, 0.25, 0.0625)

(a) (b)

(c) (d)

Figure 4 Image smoothing in the t, x, and y dimensions. (a) Original image. (b) Smoothing in t. (c) Smoothing in x and y. (d) Smoothing in t, x,
and y.

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 8 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

(a) (b)

(c) (d)
Figure 5 Partial derivatives of an image in the t, x, and y dimensions. (a) Derivative in t. (b) Derivative in x. (c) Derivative in y. (d) Derivatives in
t, x, and y.

[2]. Noise parameters are σ1 = 0.08, σ2 = 1.0, and σp =
2.0 [47]. The estimated velocity vectors whose highest
eigenvalue of ATW 2A is less than 0.05 are considered
unreliable (noise) and are discarded [2].

3.2 Results of the optical flow algorithm
Figure 6 shows the optical flow computed for the image
of Figure 4a. The processing steps have been analyzed

Figure 6 Optical flow obtained for the image in Figures 4 and 5.

and are shown in Figures 4 and 5. The original image
corresponds to a three-lane highway. The vehicle car-
rying the camera is overtaking the vehicle on the right
while it is being overtaken (quite fast) by the vehicle
on the left. This introduces some noise in the results,
since it would require a higher temporal resolution
to correctly handle the movement of objects at such
speed.
Figure 7 shows two images of a video sequence that

has been processed with this algorithm and also the
corresponding optical flow. In this sequence, a vehicle
can be observed on the right going slower than the vehi-
cle carrying the camera, and a second vehicle on the
left is changing lanes. Also visible is a traffic informa-
tion panel on the upper-right corner of the image. The
optical flow generated by these three objects, road mark-
ings, and other elements in the image is also shown in
Figure 7.

4 Optical flow segmentation
Segmentation is performed once the optical flow has been
calculated and assuming that a speed vector has been
associated with each pixel of the image. During segmenta-
tion of the optical flow, nearby vectors with similar speeds
are combined in clusters. A cluster is a group of vectors
with similar properties which collects information on its
position within the image, its area, the average vector,

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 9 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

Figure 7 Frames for example session and optical flow. Frames 10 (upper left) and 20 (upper right) of an example session and the optical flow for
frame 15 (bottom center).

(a) (b)

(c) (d)

Figure 8Modulus and the angle of the optical flow vector. Image from an example session (a) and its optical flow result (b). Optical flow
components (c and d). (a) Image, (b) optical flow, (c)modulus, and (d) angle.

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 10 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

etc. The underlying assumption is that when a set of sim-
ilar and closely grouped vectors is found, they should
correspond to the same object.
The purpose of grouping similar vectors is the abil-

ity to assign a cluster to every object with independent
movement and associate the cluster’s average velocity
vector to that object. This makes it easier to study the
optical flow, since no multiple one-to-one vector com-
parisons are needed. Instead, representative vectors from
different clusters are compared.
Similar, in this context, means similar in both mag-

nitude and angle. Figure 8 shows the modulus and
the angle of the optical flow vector, thereby illustrat-
ing the complexity of the problem. In Figure 8c, colors
are applied according to the color bar in the upper-
left corner, with modulus ranging from zero in black
to its maximum value in red. In Figure 8d, the vec-
tor angle is colored according to the color circle in the
upper-left corner, with blue, yellow, red, and green cor-
responding to the directions left, top, right, and bottom,
respectively.

• Even within the same object, the vector modulus
varies according to the distance from the camera, i.e.,
the closer a pixel, the greater the modulus. This is as
expected, because considering similar velocity objects,
motion perception increases as the object approaches
the camera (i.e., as the depth Z coordinate decreases).

• Large differences can be found between different
optical flow vector moduli. This is due to large actual
differences in velocity between static objects and
vehicles traveling in the same or in opposite
directions.

• In general, the vector diverges by forming a conical
shape, in such a way that its focus is the FOE, i.e., the
imaginary point where the vectors originate and
which the camera is focusing on. Consequently, static
objects in the scene emerge from the FOE, and they
move away towards the image edges.

• The closer a vector is to the image edges, the higher
its modulus.

• Some very close vectors have rather different moduli
and angles, as is the case with most of the vectors
located inside the vehicle, i.e., close to the camera.
These vectors represent noise and should be
discarded.

4.1 Segmentationmethod implemented
The segmentation method implemented is based on an
iterative algorithm operating on the optical flow vector
matrix. This matrix consists of as many elements as there
are pixels in the image matrix. Each of these elements
is a vector which originates from a single pixel. Many
matrix elements will be null due to the absence of an

optical flow vector starting from the corresponding pixel.
The algorithm tries to identify optical flow vector clus-
ters by selecting those with similar properties and lying
close to each other. To this end, the array of optical flow
vectors is traversed from left to right and from top to
bottom, i.e., in the storage order, so that for each non-
zero vector, the distance - or similarity - to each of the
previously identified clusters is obtained and the current
vector is associated to the closest cluster. If none is found
with similar characteristics, the current vector is used
as the first element of a new cluster. To perform this
task, the similarity function described below has been
defined:

similVect
(−→u ,−→v)

.

4.1.1 Similarity of vectors
To calculate the distance or similarity between a vec-
tor and an optical flow vector cluster, every cluster is
represented by its average vector. The similarity is then
obtained by taking vector pairs, each pair being consti-
tuted by the vector candidate to be assigned to a cluster
and the vector representing the average of each clus-
ter previously created. Calculating the similarity between
vector pairs is based on the three magnitudes described
below. The general principle may be summarized as fol-
lows: the smaller the differences between these values, the
shorter the distance between vectors (and the higher the
similarity). They are as follows:

• Modulus difference.
m = ∣∣∣∣−→u ∣∣ − ∣∣−→v ∣∣∣∣ =

∣∣∣√u2x + u2y −
√
v2x + v2y

∣∣∣
• Minimum angle between the two vectors, given by its

scalar product.−→u · −→v = ∣∣−→u ∣∣ · ∣∣−→v ∣∣ · cosα and hence

α = arccos
(−→u ·−→v
|−→u |·|−→v |

)
= arccos

(
ux·vx+uy·vy√
u2x+u2y ·

√
v2x+v2y

)
• Euclidean distance between the positions of the two

vector origins in the image. The weight of this
magnitude in the calculation of similarity between
vectors should ideally be small. In fact, this
magnitude is considered as a rule to facilitate
discarding vectors located far from the cluster.

d =
√

(x2 − x1)2 + (y2 − y1)2

Given two vectors −→u and −→v , the similVect
(−→u ,−→v)

function returns a scalar value that is used as a similar-
ity measure. Like any other distance, it is zero when both
vectors are identical and grows as they become less sim-
ilar. A MaxGAP value is experimentally determined as
the maximum return value for this function. Vectors are
not considered as belonging to the same cluster if the
similVect function returns the MaxGAP value.

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 11 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

similVect
(−→u ,−→v) =

⎧⎪⎪⎨
⎪⎪⎩
if (d > thresholdDist ∨ α > thresholdAng ∨ m > thresholdMag)

then = (MaxGAP)

else = (α · kAng + m · kMag + d · kDist)

4.1.2 Algorithm
The algorithm used for building the vector clusters is as
follows:

1. The starting point is an optical flow vector matrix
mOpticalFlow(i, j) and an empty cluster list
lCluster = �.

2. For each non-empty optical flow vector −→v belonging
to themOpticalFlow(i, j) matrix, reading it from left
to right (j) and from top to bottom (i), the following
steps are performed:

(a) The function similVect
(−→u ,−→v)

is called for
each of the clusters of the list, so as to obtain
the cluster which is most similar to the
current vector. similVect is called with the
following parameters:
−→v : current optical flow vector
lCluster(k).−−−−−−→avgVector: average vector of the

cluster

(b) If the previous step does not return any value
smaller than MaxGAP, there are no matching
clusters for the current vector. This may be
because the vector is far from all clusters or
due to the lack of correspondence between
the two vectors in terms of their modulus or
angle. In this event, a new cluster −→v is
created containing only one vector. The new
cluster is registered on the cluster list.

(c) If similar clusters are found, the current
vector is associated to the maximum
similarity cluster, i.e., the cluster with the
smallest return value in similVect. Once
associated, the average vector and other
characteristic properties of this cluster are
recalculated.

To minimize the time spent on calculating the similar-
ity function, the algorithm avoids calculating the distance
of each vector −→v from all the other vectors within each
cluster. Instead, a cluster bounding box containing all the
vectors in the same cluster is defined and an initial filter-
ing step performed. If the vector distance from any of the
bounding box polygons is greater than a predefined value
peakDist, then MaxGAP is returned.
Not only peakDist but also the maximum thresholds

peakAng and peakMagmust be defined. If the comparison

returns values above these thresholds, the vectors are
not considered similar. It is also necessary to determine
the values of certain constant parameters to weight the
angle (kAng), magnitude difference (kMag), and distance
(kDist) between vectors.
Determining all these values formed part of an exper-

imental process considering different kinds of video
sequences. From these experiments, the values obtained
were as follows: the maximum distance or peakDist was
fixed as 10 pixels. This means that optical flow vectors
belonging to the same cluster are separated less than 10
pixels. A higher value for this parameter would lead to
interpret several clusters as being the same. A lower value
for the parameter would artificially lead to a cluster being
interpreted as several independent clusters.
The maximum value for the angle differences peakAng

was set to �
3 = 60°. Consequently, no optical flow vector

can be associated to a cluster if its angle difference from
the average cluster vector is greater than 60°. This peak
value may seem to be excessive, but it is derived from the
actual use of a moving camera. The camera movement
can generate optical flow vectors with fast changing direc-
tions, especially if the observed objects are close to the
optical axis of the camera.
The peak difference in terms of magnitude, peakMag,

is also experimentally set at a value of 2. This is justified
by the small differences observed when comparing the
optical flow vectors generated from different pixels of the
same object.
Finally, the weights used for the expression in

Section 4.1.1 have been assigned the following values:
kAng = 0.8, kMag = 0.15, and kDist = 0.05. This means
that a much greater importance is assigned to the differ-
ence between angles, while themagnitudes are considered
significantly less important and the distances within the
image almost negligible. The overall similarity measure is
thus established in the system as α · 0.8+m · 0.15+ d · 0.05.

4.1.3 Filtering
Once all of the optical flow vectors present in the orig-
inal matrix are grouped into clusters, the classification
using the algorithm can be considered completed. How-
ever, using this approach, without a post-filtering stage
can generate many clusters that are irrelevant to the study
of stationary or moving objects in the field of view of the
moving camera. These clusters are usually derived from
image noise, caused by shadows or differences in light-
ing. This noise can also be due to the detection of almost

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 12 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

completely static clusters, i.e., clusters moving with the
same speed and direction as the camera used, so presum-
ably are part of the vehicle itself, such as the dashboard
and mirror.
Based on these considerations, the segmentation

method includes a final step for cluster filtering. In this
step, clusters consisting of a small number of vectors are
interpreted as noise and consequently removed. Those
clusters whose average vector modulus is less than a pre-
set value are also removed, as they are interpreted as being
part of the vehicle in which the camera is installed.
Figure 9 shows the result of applying cluster filtering

with the following parameters:

• minimum number of vectors in a cluster = 180
• minimum value for the modulus of the average

vector = 0.2

Figure 9a shows the result prior to filtering, in which
2,149 clusters are identified. However, a significant pro-
portion of irrelevant clusters can be observed. By contrast,
Figure 9b shows the 31 clusters obtained after filtering.

4.2 Optical flow segmentation results
This section presents the results of applying the optical
flow segmentation method to multiple images from dif-
ferent video sequences, all of them taken with the camera
installed on board a moving car. Ideally, the best result
would be a single cluster for each object in the scene,
regardless of its shape or whether the cluster completely
covers the object. This is because the geometrical shape of
the object is derived from the segmentation of the image
itself, not from the segmentation of its optical flow. But,
this is not always possible, and several clusters for each
object with slight variations in direction or in the mod-
ulus are usually found. Furthermore, since the camera is
in motion, the same single object can provide optical flow
vectors with different directions, depending on their rela-
tive positions with respect to the FOE. For example, on a

straight road segment, a traffic sign in front of the camera
can take up the whole width of the scene, generating opti-
cal flow in all directions, though alwaysmoving away from
the FOE.

4.2.1 Highway with traffic in both directions
In this sequence, the vehicle is driving along a four-lane
highway in which other vehicles driving in both directions
can be seen. For vehicles moving in the same direction,
the closest vehicle to the camera is slower than the rest,
so it is overtaken in the initial images of the sequence.
The remaining vehicles move at a very similar pace as the
vehicle with the camera. For vehicles moving in the oppo-
site direction, a large truck and several small vehicles are
approaching the camera. The result of the segmentation
of the optical flow for this sequence is shown in Figure 10.
In this experiment, clusters are detected for the oncom-

ing truck and for the vehiclemoving in the same direction.
Clusters can not be obtained for the remaining vehicles,
or only intermittently. However, some clusters appear in
some frames, such as for the vehicles in the background
which are driving in the same direction as the camera.
For these vehicles, a cluster has been found as shown
in Figure 10a. This is mainly because the vehicle group
moves at a similar speed to the vehicle with the cam-
era, so perceived motion is negligible. In the last frame,
the vehicles behind the truck and driving in the opposite
direction are detected. This is because their distance from
the camera is shorter than those in the previous frames.
However, the vehicle group is treated as a single clus-
ter. Furthermore, certain clusters can be discontinuously
observed near the edges of the windshield throughout the
sequence. These clusters are clearly related to noise and
are removed during the cluster-object aggregation stage as
they are usually clearly separate from any objects.

4.2.2 Highway with traffic in both directions (2)
Once again, the vehicle is driving along a four-lane high-
way. However, this case is characterized by the presence

(a) (b)

Figure 9 Filtering stage to eliminate clusters consisting of a small number of vectors. (a) Clusters found without filtering. (b) Clusters after
filtering.

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 13 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

(a) (b)

(c) (d)

Figure 10 Optical flow segmentation of the first highway sequence example. (a) Image 1. (b) Image 2. (c) Image 3. (d) Image 4.

of a truck at close distance filling a great proportion of the
image. Both sides of the road are lined with trees, and a
bridge can be seen at a distance.
The bridge over the road can help us examine the impact

of a large object on the optical flow sequence. The result of
the optical flow segmentation for this sequence is shown
in Figure 11.
The first thing to note is that, as expected, the truck

is not interpreted as a single cluster, instead there are
several, up to eight in the first image. This is mainly
because the truck consists of several parts, and each one
generates a slightly different optical flow vector, espe-
cially in terms of its modulus. Moreover, given that optical
flow vectors are obtained only for the contours (or, more

specifically, for changes in the image intensity) of the parts
that comprise the truck and the differences in the direc-
tion of the optical flow vectors due to camera movement,
it is reasonable to obtain several clusters for a single large
vehicle.
Distant vehicles moving in the same direction as the

camera do not generate any cluster, precisely due to
their distance, their low relative speeds, and their small
apparent size. For vehicles approaching in the opposite
direction, clusters are continuously obtained throughout
the sequence, sometimes resulting in misinterpretations
of the bridge over the road. However, this should not
cause any problem once the clusters are combined with
the objects.

(a) (b)

(c) (d)

Figure 11 Optical flow segmentation of the second highway sequence example. (a) Image 1. (b) Image 2. (c) Image 3. (d) Image 4.

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 14 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

Finally, it can be noted that some clusters are obtained
near the windshield edges of the vehicle in which the cam-
era is installed. These clusters clearly represent noise due
to the high contrast between the vehicle and the road.
There are also clusters obtained for the trees located on
one side of the road. However, this is a correct detec-
tion because even though they are static, they present an
apparent motion with respect to the camera and, hence,
generate optical flow.

5 Image segmentation
In addition to segmenting the optical flow, the images are
also segmented since the optical flow does not preserve
the shape and size of objects, so this information has to
be retrieved from the original images. An edge-based seg-
mentation scheme using a modified Canny algorithm [48]
has been chosen with the following characteristics:

• It minimizes edge detection errors: this is important
to avoid false detections.

• Good edge location: minimizes distance between the
detected edge and the actual edge.

• A single answer for each edge: the transition that
conforms the edge may be large, but this scheme
seeks the maximum gradient to render a clearly
defined edge.

The segmentation scheme consists of six steps, as shown
in Figure 12. It takes the source image as input and gener-
ates a list of blobs as output. A blob represents a uniform
region of the image, containing information such as its
size in pixels, the smallest rectangle containing it, and
its average intensity. Segmentation is divided into the
following steps:

• Smoothing: the image is smoothed using a Gaussian
filter to remove noise.

• Edge extraction: a Sobel operator was chosen because
it has low computational cost and low noise sensitivity
(very important for the type of images used).

Figure 12 Canny scheme used in this system for segmenting
images.

• Thinning edges: the edges obtained have to be
homogenized by thinning them to a pixel’s width,
choosing only those with maximum intensity
gradient.

• Thresholding: in this step, the image is binarized, and
most of the edges generated by noise are eliminated
(although a few real edges are also eliminated). A
segmentation algorithm based on the k-means with
k = 2 is used. This algorithm, unlike the Bayesian
ones, does not need a priori information of the
classes, it only needs the number of classes (k) into
which to divide the histogram (bottom and edges).

• Closing contours: this avoids discontinuities in the
edges and facilitates subsequent detection of objects.
The Deriche and Cocquerez algorithm [49] is used,
which is based on the assumption that an open-edge
section can be closed following the direction of
maximum gradient. However, the search for the next
edge pixel is limited so that the maximum angle
between two consecutive edge pixels is 45°.

• Blob analysis: this last step identifies the objects. The
following recursive algorithm is used:

1. It starts from the binarized image and a mask for
each pixel indicating whether it has been
processed (initially, the mask values for the pixels
are all false).

2. The image is explored from left to right and top to
bottom.

(a) If the pixel has not been processed and
does not correspond to an edge, a blob is
created, initialized, and appended to the
list of blobs.

(b) A recursive search is started from the pixel
indicated.

(i) The pixel is marked as processed
and added to the blob.

(ii) The blob parameters are updated,
i.e., number of pixels, maximum
and minimum coordinates, center
of gravity, etc.

(iii) For each unprocessed pixel in the
neighborhood that is not an edge,
the search is repeated recursively,
i.e., it returns to step (b).

3. The result is a list of blobs.

Filtering the blobs based on their size is the next step.
Any blobs above or below certain size limits are
discarded, since small blobs are associated with noise,
and very large blobs are associated with background
details. As a consequence, some quite far away

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 15 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

vehicles can be discarded, but due to their distance,
they are not relevant for the driver.

5.1 Results of image segmentation
This section presents the results of applying the algorithm
to real images in different environments. The aim is to
obtain at least one blob for each vehicle in the image. If
a vehicle gives rise to several blobs, the latter are merged
at the stage that combines optical flow with blobs since
both present similar velocity vectors and are located in
close proximity. Undesired blobs (for example, inside the
car, in the sky, or on the sides of the road) do not present a
problem as many of these are later removed for having no
associated velocity vector.

5.1.1 Highwaywith two-way traffic
This sequence shows four vehicles traveling in the same
direction as the car camera (our vehicle) and an oncom-
ing truck. One of the vehicles (furthest to the right) travels
in the same direction at a medium distance, and the rest
are far away. Figure 13 shows the original image (a), the
result after applying the smoothing filter (b), the edges
once the contours have been closed (c), and finally, the
blobs obtained after the search for connected components
and the required filtering have been performed (d).
A single blob is obtained for the truck coming from

the opposite direction, containing everything but the
cabin. In the same lane, another blob is obtained that
merges various vehicles and some of the trees in the
area. Three blobs are obtained in our lane, one for the
nearest vehicle, one for the intermediate one, and one
that merges a truck and another vehicle that are close
together. Another blob is also obtained on the road, which

merges part of the shoulder with a white line. There
are also many blobs found inside the car and to the left
of the mirror, but they are clearly invalid and must be
removed.

5.1.2 Highwaywith heavy traffic in one direction
This sequence presents higher traffic density at different
distances as well as diverse vegetation on the sides, and
a bridge in the background, than the sequence described
in Section 5.1.1. It is not an easy sequence to segment,
although it also has the advantage that the vehicles closer
to the camera have colors that strongly contrast with the
background, making their contours easier to identify.
The segmentation result is shown in Figure 14, which

shows that at least one blob has been obtained for each of
the nearby vehicles, but in some cases, up to three blobs
have been found. A blob has been obtained correspond-
ing to a portion of the road’s left shoulder, another for a
house, and another for vegetation on the right side. As in
the previous sequence, blobs have been obtained inside
the vehicle and in the rearview mirror, which must be
removed.

6 Combination of clusters and blobs
To obtain the final results, the partial results obtained
from both the segmentation of the optical flow (clusters)
and the image segmentation (blobs) need to be merged,
assigning one, several or no blob to each cluster. The idea
is to use the clusters and blobs computed in the previous
steps to obtain sets of pixels with an associated velocity
vector. Each set of pixels identifies an object with apparent
movement. Each blob determines the shape, position, and
size of the object, and the cluster represents its dynamic

(a) (b)

(c) (d)

Figure 13 Simple example of an image (static) segmentation from a highway sequence. (a) Original image. (b) Smoothed image.
(c) Contours closed. (d) Blobs.

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 16 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

(a) (b)

(c) (d)

Figure 14 Complex example of an image (static) segmentation from a highway sequence. (a) Original image. (b) Smoothed image.
(c) Contours closed. (d) Blobs.

properties, i.e., the velocity vector. However, the associa-
tion between clusters and blobs is not trivial, since a single
object can consist several blobs and/or several clusters.
The strategy used to calculate the optical flow clusters of

an image is based on obtaining the smallest possible num-
ber of clusters, and if possible, only for moving objects,
without considering their shape or size, because the opti-
cal flow does not preserve these properties. However, the
strategy for the computation of blobs is completely differ-
ent; the idea in this case is to obtain potential blobs in the
image, in such a way that each group of pixels with rel-
atively homogeneous values should result in a blob. The
resulting large number of blobs does not pose a prob-
lem since any blobs clearly separated from any cluster are
subsequently discarded as image background. As clusters
necessarily need to be close to an object, any cluster with-
out at least one associated blob is interpreted as erroneous
and discarded. Therefore, according to the strategy used
for the computation of blobs and clusters, clusters lead the
combined process, as more importance and reliability is
assigned to them than to blobs. As the search is oriented
to finding objects in motion and this information is pro-
vided by the optical flow, the focus is on the clusters as
they are generated by the optical flow segmentation.
For the final results, the shape, position, and size of the

objects are derived from the blobs and only the velocity
vector from the clusters. Cluster positions are discarded
because the pixels inside uniform objects do not gener-
ate optical flow at all. Only their edges cause optical flow;
therefore, object shapes are not preserved. A cluster can
be associated to more than one blob and is associated
mainly by the size of their intersection area or by their
proximity. For reasons of efficiency, the intersection area
is not computed by using the actual pixels of the blob and

the cluster, but by an estimate based on the minimum
rectangle containing both.
The algorithm works through the full blob list, one at

a time, trying to associate the best possible cluster to
each blob, and if no suitable cluster is found, the blob is
discarded. Next, all the blobs associated with the same
cluster are grouped together in a single blob, recomput-
ing its mass center where the cluster velocity vector will
be placed. Finally, clusters with no associated blob are
discarded, too. To select the most appropriate cluster to
be associated with a blob, the following cases must be
considered:

1. The blob intersects with exactly one cluster: if the
rectangle overlying blob B intersects with the
rectangle of a single cluster C, the blob is associated
to this cluster, as shown in Figure 15, where I is the
intersection rectangle. The result, shown in
Figure 15, has the shape of the blob and the velocity

(a)

B

(b)
Figure 15 Combination of segmentation results: intersection of
a unique blob with one cluster. (a) Intersection of blob and cluster.
(b) Result.

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 17 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

vector of the cluster starting from the geometric
center of the blob.

2. The blob intersects with several clusters: if the
rectangle overlying blob B intersects with more than
one cluster, as shown in Figure 16 in which blob B
intersects with clusters C1 and C2, then the blob is
associated to the cluster with the largest intersection
area. In the example shown in Figure 16, area I1 is
greater than I2; therefore, blob B is associated to
cluster C1.

3. The blob does not intersect with any cluster: when
the rectangle covering blob B does not intersect with
any cluster, the nearest cluster is considered. If the
distance between the blob and cluster does not
exceed a certain threshold, blob B is associated to
this cluster; otherwise, the blob is discarded and not
associated to any cluster. The example in Figure 17
shows blob B not intersecting with any cluster, but
being close to clusters C1 and C2, so the distances to
both clusters d1 and d2 are calculated. As the
minimum distance is d2 and does not exceed the
maximum threshold, the blob is associated to cluster
C2, as shown in Figure 17.

This algorithm associates one or more blobs to each
cluster, because the usual case is a moving vehicle gen-
erating a single cluster but with many blobs, due to the
diversity of its component parts (wheels, windows, body,
etc.). All of the parts generate a similar optical flow but
different blobs. This algorithm is very efficient as the com-
putation of a rectangle intersection is almost trivial, the
result either being void or another rectangle.

6.1 Results of associating clusters and blobs
Figure 18 is an example of the association of clusters and
blobs. This figure shows five vehicles traveling in the same
direction as the vehicle carrying the camera, but driving
at a slower speed. One of them is quite close, and the
four others quite far from the camera. Figure 18a shows
the blobs found, one obtained for the closest car, and only

(a)

B

(b)

Figure 16 Combination of segmentation results: intersection of
a unique blob with more than one cluster. (a) Intersection of blob
and cluster. (b) Result.

 B

C1

C2
d2

d1

(a)

B

(b)

Figure 17 Combination of image and optical flow segmentation
results if there is no blob-cluster intersection. (a) Intersection of
blob and cluster. (b) Result.

three more for the four remote vehicles, because they are
quite close together. Two blobs are also found in the cen-
tral reservation. Figure 18b shows the clusters: one near
the first car and two more related to the remote vehi-
cles. Furthermore, a cluster is also found in the middle
of the road. After associating (Figure 18c), it can be seen
that all the blobs related to the distant vehicles have been
grouped and associated to a single cluster, the one closest,
while discarding the other cluster in spite of its proximity.
Another successful association was obtained for the close
car, and finally, the blobs and cluster related to the road
were removed as there is no association between them due
to their relative distances.
Figure 19 shows a more complex example. In addition

to the vehicles present on the road, there is vegetation on
the sides and a bridge in the background. There is a truck
driving very close to the vehicle with the camera in the
same direction, but at a slower speed, and two vehicles
in the background with a relative speed close to zero. In
the opposite direction, some small approaching vehicles
can be observed, with similar textures as the background
objects: central reservation, vegetation, or bridge.
The results after image segmentation, shown in

Figure 19a, consist of seven blobs related to the truck due
to its large size and the diversity of its component parts.
There is also another blob for the bridge, one more for a
truck close to one side of the bridge piers, and finally, one
more for the central reservation.
Regarding the results of the optical flow segmentation,

shown in Figure 19b, eleven clusters have been found.
There are four clusters related to the truck: one for the pier
on the right of the bridge, one for the car traveling in the
same direction, two for the pier on the left of the bridge

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 18 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

(a) (b)

(c)

Figure 18 Simple example of blob-cluster associations. (a) Blobs. (b) Clusters. (c) Association results.

(mixed with one of the trucks circulating in the opposite
direction), two for a tree on the left, and finally, a cluster
due to noise next to the windshield of the camera vehicle.
The association of clusters and blobs, Figure 19c, shows

the truck perfectly identified by two objects, obtained by
grouping several blobs together. Also, the distant bridge is
identified but with a small velocity vector due to its dis-
tance. Regarding the opposite lanes, one object has been
located near the left pier of the bridge, but it is mixed
with an object from the truck due to their similar distance
and texture. Finally, one blob in the central reservation has
been associated with a cluster generated by a vehicle trav-
eling in the opposite direction, leading to a false result.
This is mainly due to the absence of blobs for these vehi-
cles as they have a very small size and are very similar to
the background texture.

7 Results
This section looks at the segmentation of multiple
image sequences, in which all process steps are con-
sidered: image segmentation, blob computation, opti-
cal flow computation followed by segmentation, cluster

recognition, and finally, cluster-blob association. The pro-
cess followed is described below:

1. Starting from the original image, the segmentation
process described in Section 5 is applied, obtaining a
list of blobs in an XML file.

2. Optical flow is generated for the image sequence
using the Lucas-Kanade algorithm.

3. Optical flow segmentation is applied to obtain a list
of clusters in an XML file.

4. Blobs and clusters created in the previous steps are
associated.

The only input data is the image sequences to be ana-
lyzed. Several test sequences, around 50 images each, have
been recorded with a 25 interleaved frames per second
camera at 720 × 576 pixels. Therefore, every 40 ms, a
complete image frame is generated, after combining two
image fields provided by the interleaved camera at 20-ms
intervals. The main problem of using an interleaving
camera derives from the delay in capturing both image
fields, 20 ms, causing a mismatch in the final image. For
example, a car traveling at 90 km/h (25 m/s) will advance

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 19 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

(a) (b)

(c)
Figure 19 Complex example of blob-cluster associations. (a) Blobs. (b) Clusters. (c) Association results.

50 cm in 20 ms. One solution to fix this problem is to use
only the even or the odd image fields and to ignore the
other half of the original image, or to use a more expen-
sive full-frame camera. The results in this section analyze
both 720×576 interleaved and 720×288 non-interleaved
images.
The camera is placed inside the experiment vehicle,

and the images acquired include the road but also part of
the experimental vehicle such as the dashboard, steering
wheel, and roof areas. To simplify the localization pro-
cess, the search will only consider the area of the image
showing the road.

7.1 Two-way road
This sequence shows a two-way road with heavy traffic
including different sized vehicles, speeds, and distances
from the vehicle camera. In the image shown in
Figure 20a, a group of distant vehicles and a truck trav-
eling in the opposite direction can be seen. The result of
the image segmentation and blob searching algorithm is
shown in Figure 20b.
Vehicles traveling in the same direction as the camera

are grouped in two blobs, one which comprises a single

vehicle and another grouping of two vehicles. The truck
moving in the opposite direction is converted into one
blob, but including some parts of the horizon because
of its similar color. In this case, two more blobs appear,
but they are considered noise: the first one is close
to the truck, and the other represents the right road
shoulder.
In the optical flow segmentation shown in Figure 21,

several clusters are obtained for the vehicles traveling in
the same direction as the camera and for the oncoming
truck. Other clusters such as those near the edge of the
windshield as well as the one corresponding to the central
reservation are considered as noise.
The association of the partial results obtained in the pre-

vious steps shown in Figure 22 removes all noise clusters
and blobs. The objects are correctly identified for vehi-
cles traveling in the same direction as the experimental
vehicle. However, some are grouped, because they are far
away and the images acquired do not allow distinguish-
ing them clearly. Furthermore, an object is obtained for
the oncoming truck with an additional blob due to noise
because both objects are very close. Finally, the results are
considered satisfactory, because every moving vehicle is

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 20 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

(a)

(b)
Figure 20 Example of image segmentation results from a
two-way road sequence. (a) Original image. (b) Blobs found.

identified and the noise objects obtained in intermediate
steps are removed.

7.2 One-way highway
This example shows a one-way highway image in which
the vehicle with the camera is traveling faster than the
other vehicles. As shown in Figure 23a, there is a car
close to the right of the experimental vehicle preceded by
a small van, and there is another vehicle in front of the
experimental car driving on the same lane. All three vehi-
cles are approaching the experimental vehicle due to their
lower speeds. An added difficulty compared to the previ-
ous example is that the road sides are lined by a wall on
the right and a kind of overhanging roof on the left.
In the image segmentation result shown in Figure 23b,

several blobs are obtained for the car on the right side,
because of its large size. This effect does not cause a
problem, because a subsequent step will group all of the
blobs belonging to the same object and associate them to
a cluster. The other vehicles are correctly located: a blob
has been assigned for each one. Finally, some other blobs
appear on the roof structure and around the road lines.
Figure 24b shows the optical flow segmentation in

which the right-hand car is identified by two clusters,
because of its large size and the multiple parts compos-
ing it. Two distant vehicles are detected with a cluster

(a)

(b)
Figure 21 Optical flow segmentation results for the frame
shown in Figure 20. (a) Optical flow. (b) Clusters.

assigned to each one. Finally, several clusters are obtained
for the roof on the left side of the road, and even though
they do not represent actual movement, they do show
apparent motion, their detection thus being correct.
Figure 25 shows the final result after associating the

clusters and blobs obtained in the previous steps. Two
objects have been obtained for the car close on the right by
grouping a large number of blobs into two clusters. Sev-
eral blobs and clusters have been grouped for two distant
vehicles and for the roof structure on the left. In the lat-
ter case, the roof appears to be moving with respect to the

Figure 22 Final result for the combination of segmentation
results applied to the image shown in Figure 20.

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 21 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

(a)

(b)
Figure 23 Image segmentation result for a one-way highway
example. (a) Original image. (b) Blobs found in the previous image.

camera, resulting in several blobs being associated to their
corresponding clusters.
The results are satisfactory in spite of the great com-

plexity of the scene, because all vehicles except one have
been located. The exception is related to the small vehicle
on the left which is far from the experimental car and is
almost hidden by the background.

8 Conclusion
This paper has addressed the search and detection of
moving objects in an image sequence using a moving
camera. Starting from the optical flow and image segmen-
tation processes, the objects in the scene and their motion
(both direction and magnitude) are obtained.
To obtain an estimate of the apparent movement, the

optical flow of each image in the sequence is calculated.
This optical flow is then segmented, and similar vectors

(a)

(b)
Figure 24 Optical flow segmentation for the one-way highway
example of Figure 23. (a) Optical flow. (b) Clusters.

Figure 25 Final cluster and blob association for the one-way
highway example of Figure 23.

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 22 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

are grouped since they are expected to belong to the
same object. In a third step, the segmentation of images is
addressed to distinguish the objects present in the scene.
Finally, the results of the two kinds of segmentation are
grouped to associate each object to its apparent motion.
The method described has been applied to detect mov-

ing objects as perceived by a driver which could interfere
with the driver’s behavior, either by causing a distraction
or by posing real dangers that require immediate atten-
tion. The input data consists of video sequences recorded
by a camera mounted on a conventional vehicle driving on
public roads, implying several challenges when calculating
the optical flow: moving camera (all objects appear to
move) and variable natural lighting (constantly changing
shadows and reflections).
The results show that most of the relevant objects

from the scene are properly detected and associated to
their corresponding movement, while unrelated objects
are only grouped when they are quite far and very difficult
to distinguish, even to the human eye.

Endnote
aThe speedup is defined as the sequential execution

time divided by the parallel execution time to know how
much a parallel algorithm is faster than a corresponding
sequential algorithm.

Competing interests
The authors declare that they have no competing interests.

Received: 12 November 2013 Accepted: 11 April 2014
Published: 1 May 2014

References
1. A Garcia-Dopico, JL Pedraza, M Nieto, A Pérez, S Rodríguez, J Navas,

Parallelization of the optical flow computation in sequences from moving
cameras. EURASIP J. Image Video Process. 2014, 18 (2014)

2. J Barron, D Fleet, SS Beauchemin, Performance of optical flow techniques.
Int. J. Comput. Vis. 12(1), 43–47 (1994)

3. T Brox, A Bruhn, N Papenberg, J Weickert, ed. by T Pajdla, J Matas, High
accuracy optical flow estimation based on a theory for warping, in Lecture
Notes in Computer Science (LNCS): European Conference on Computer Vision
(ECCV), vol. 3024 (Springer Berlin, 2004), pp. 25–36

4. SN Tamgade, VR Bora, Motion vector estimation of video image by
pyramidal implementation of Lucas-Kanade optical flow. Paper presented
at the 2nd international conference on emerging trends in engineering
and technology (ICETET), Nagpur, 16–18 Dec 2009, pp. 914–917

5. K Pauwels, MM Van Hulle, Optic flow from unstable sequences through
local velocity constancy maximization. Image Vis. Comput. 27(5),
579–587 (2009)

6. A Doshi, AG Bors, Smoothing of optical flow using robustified diffusion
kernels. Image Vis. Comput. 28(12), 1575–1589 (2010)

7. A Bruhn, J Weickert, C Schnörr, Lucas/Kanade meets Horn/Schunck:
combining local and global optic flow methods. Int. J. Comput. Vis.
61(3), 211–231 (2005)

8. M Drulea, IR Peter, S Nedevschi, Optical flow a combined local-global
approach using L1 norm. Paper presented at the 2010 IEEE 6th
international conference on intelligent computer communication and
processing, Cluj-Napoca, 26–28 Aug 2010, pp. 217–222

9. T Brox, J Malik, Large displacement optical flow: descriptor matching in
variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell.
33(3), 500–513 (2011)

10. JS Zelek, Towards Bayesian real-time optical flow. Image Vis. Comput.
22(12), 1051–1069 (2004)

11. S Tan, J Dale, A Anderson, A Johnston, Inverse perspective mapping and
optic flow: a calibration method and a quantitative analysis. Image Vis.
Comput. 24(2), 153–165 (2006)

12. H Liu, TH Hong, M Herman, R Chellappa, ed. by B Buxton, R Cipolla,
Accuracy vs. efficiency trade-offs in optical flow algorithms, in LNCS: 4th
European Conference on Computer Vision, vol. 1065 (Springer Berlin, 1996),
pp. 271–286

13. B Buxton, B Stephenson, H Buxton, Parallel computations of optic flow in
early image processing. IEEE Proc. F: Commun. Radar Signal Process.
131(6), 593–602 (1984)

14. K Sakurai, S Kyo, S Okazaki, Overtaking vehicle detection method and its
implementation using IMAPCAR highly parallel image processor. IEICE
Trans. 91-D(7), 1899–1905 (2008)

15. H Bulthoff, J Little, T Poggio, A parallel algorithm for real-time
computation of optical flow. Nature. 337(6207), 549–553 (1989)

16. A Del Bimbo, P Nesi, Optical flow estimation on Connection-Machine 2.
Paper presented at the computer architectures for machine perception,
New Orleans, 15–17 Dec 1993, pp. 267–274

17. H Wang, J Brady, I Page, A fast algorithm for computing optic flow and its
implementation on a transputer array. Paper presented at the British
machine vision conference (BMVC90), Oxford, 24–27 Sept 1990,
pp. 175–180

18. C Colombo, A Del Bimbo, S Santini, A multilayer massively parallel
architecture for optical flow computation. Paper presented at the
11th IAPR international conference on pattern recognition, 1992. Vol. IV.
Conference D: architectures for vision and pattern recognition, The
Hague, 30 Aug–3 Sept 1992, pp. 209–213

19. MG Milanova, AC Campilho, MV Correia, Cellular neural networks for
motion estimation. Paper presented at the 15th international conference
on pattern recognition (ICPR‘00), Barcelona, 3–7 Sept 2000, pp. 819–822

20. J Sosa, J Boluda, F Pardo, R Gómez-Fabela, Change-driven data flow
image processing architecture for optical flow computation. J. Real-Time
Image Process. 2(4), 259–270 (2007)

21. J Díaz, E Ros, R Agís, JL Bernier, Superpipelined high-performance
optical-flow computation architecture. Comput. Vis. Image Underst.
112(3), 262–273 (2008)

22. N Devi, V Nagarajan, FPGA based high performance optical flow
computation using parallel architecture. Int. J. Soft. Comput. Eng.
2(1), 433–437 (2012)

23. Y Mizukami, K Tadamura, Optical flow computation on compute unified
device architecture. Paper presented at the the 14th international
conference image analysis and processing (ICIAP), Modena, 10–14 Sept
2007, pp. 179–184

24. M Gong, Real-time joint disparity and disparity flow estimation on
programmable graphics hardware. Comput. Vis. Image Underst.
113(1), 90–100 (2009)

25. MV Correia, AC Campilho, ed. by AC Campilho, MS Kamel, A pipelined
real-time optical flow algorithm, in LNCS: Image Analysis and Recognition,
vol. 3212 (Springer Berlin, 2004), pp. 372–380

26. J Chase, B Nelson, J Bodily, Z Wei, DJ Lee, Real-time optical flow
calculations on FPGA and GPU architectures: a comparison study. Paper
presented at the 16th international symposium on field programmable
custom computing machines, Palo Alto, 14–15 April 2008, pp. 173–182

27. K Pauwels, M Tomasi, JD Alonso, E Ros, NM Van-Hulle, A Comparison of
FPGA and GPU for real-time phase-based optical flow, stereo, and local
image features. IEEE Trans. Comput. 61(7), 999–1012 (2012)

28. B Lucas, T Kanade, An iterative image registration technique with an
application to stereo vision. Paper presented at 7th international joint
conference on artificial intelligence (IJCAI), Vancouver, 24–28 Aug 1981,
pp. 674–679

29. B Lucas, Generalized image matching by method of differences. PhD
Thesis, Department of Computer Science, Carnegie-Mellon University,
1984

30. Top 500 Supercomputer Sites (2014). http://www.top500.org.
Accessed 25 April 2014

31. M Fleury, AF Clark, AC Downton, Evaluating optical-flow algorithms on a
parallel machine. Image Vis. Comput. 19(3), 131–143 (2001)

32. A García Dopico, M Correia, J Santos, L Nunes, ed. by M Bubak, G van
Albada, P Sloot, and J Dongarra, Distributed computation of optical flow,

http://www.top500.org

Garcia-Dopico et al. EURASIP Journal on Image and Video Processing 2014, 2014:24 Page 23 of 23
http://jivp.eurasipjournals.com/content/2014/1/24

in LNCS: Computational Science, vol. 3037 (Springer Berlin, 2004),
pp. 380–387

33. T Kohlberger, C Schnorr, A Bruhn, J Weickert, Domain decomposition for
variational optical-flow computation. IEEE Trans. Image Process.
14(8), 1125–1137 (2005)

34. EM Kalmoun, H Köstler, U Rüde, 3D optical flow computation using a
parallel variational multigrid scheme with application to cardiac C-arm CT
motion. Image Vis. Comput. 25(9), 1482–1494 (2007)

35. A Pérez, MI García, M Nieto, JL Pedraza, S Rodríguez, J Zamorano, Argos:
an advanced in-vehicle data recorder on a massively sensorized vehicle
for car driver behavior experimentation. IEEE Trans. Intell. Transport. Syst.
11(2), 463–473 (2010)

36. G Adiv, Determining three-dimensional motion and structure from
optical flow generated by several moving objects. IEEE Trans. Pattern
Anal. Mach. Intell. 7(4), 384–401 (1985)

37. W Thompson, T Pong, Determining moving objects. Int. J. Comput. Vis.
4(1), 39–57 (1990)

38. JG Choia, SD Kim. Multi-stage segmentation of optical flow field.Signal
Process. 54(2), 109–118 (1996)

39. D Chung, WJ MacLean, S Dickinson, Integrating region and boundary
information for spatially coherent object tracking. Image Vis. Comput.
24(7), 680–692 (2006)

40. J Klappstein, T Vaudrey, C Rabe, A Wedel, R Klette, ed. by T Wada, F Huang,
and S Lin, Moving object segmentation using optical flow and depth
information, in LNCS: Advances in image and Video Technology, vol. 5414
(Springer Berlin, 2009), pp. 611–623

41. K Pauwels, N Krüger, F Wörgötter, NM Van-Hulle. J. Vis. 10(10), 18 (2010)
42. H Samija, I Markovic, I Petrovic, Optical flow field segmentation in an

omnidirectional camera image based on known camera motion. Paper
presented at the 34th international convention MIPRO, Opatija, 23–27
May 2011, pp. 805–809

43. R Namdev, A Kundu, K Krishna, C Jawahar, Motion segmentation of
multiple objects from a freely moving monocular camera. Paper
presented at the IEEE international conference on robotics and
automation (ICRA), Saint Paul, MN, USA, 14–18 May 2012, pp. 4092–4099

44. M Correia, A Campilho, J Santos, L Nunes, Optical flow techniques applied
to the calibration of visual perception experiments. Paper presented at
the 13th international conference on pattern recognition (ICPR), Vienna,
25–29 Aug 1996, pp. 498–502

45. M Correia, A Campilho, Implementation of a real-time optical flow
algorithm on a pipeline processor. Paper presented at the international
conference of computer based experiments, learning and teaching,
Szklarska Poreba. 28 Sept–1 Oct 1999

46. B Fornberg, Generation of finite difference formulas on arbitrarily spaced
grids. Math. Comput. 51, 699–706 (1988)

47. E Simoncelli, E Adelson, D Heeger, Probability distributions of optical flow.
Paper presented at the IEEE conference on computer vision and pattern
recognition, Maui, 3–6 June 1991, pp. 310–315

48. J Canny, A computational approach to edge detection. IEEE Trans. Pattern
Anal. Mach. Intell. 8(6), 679–698 (1986)

49. R Deriche, J Cocquerez, G Almouzny, An efficient method to build early
image description. Paper presented at the 9th international conference
on pattern recognition, Rome, 14–17 Nov 1988, pp. 588–590

doi:10.1186/1687-5281-2014-24
Cite this article as: Garcia-Dopico et al.: Locating moving objects in
car-driving sequences. EURASIP Journal on Image and Video Processing
2014 2014:24.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Abstract
	Keywords

	Introduction
	Related work
	Algorithms for optical flow computation
	Parallelization of optical flow
	Segmentation of optical flow

	The Lucas-Kanade algorithm
	Implementation
	Results of the optical flow algorithm

	Optical flow segmentation
	Segmentation method implemented
	Similarity of vectors
	Algorithm
	Filtering

	Optical flow segmentation results
	Highway with traffic in both directions
	Highway with traffic in both directions (2)

	Image segmentation
	Results of image segmentation
	Highway with two-way traffic
	Highway with heavy traffic in one direction

	Combination of clusters and blobs
	Results of associating clusters and blobs

	Results
	Two-way road
	One-way highway

	Conclusion
	Endnote
	Competing interests
	References

