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Abstract: In this article we prove a Sacks-Uhlenbeck/Struwe type global regularity
result for wave-maps @ : R>*! — M into general compact target manifolds M.

Contents
1. Introduction . . . . ... ... ... 232
1.1 The Questionof Blowup . . . ... ... ... ... ... ....... 234
1.2 The Question of Scattering . . . . . . . ... ... .. ... ...... 236
2. Overviewofthe Proof . . . . . . ... .. ... . ... ... ... ... 237
3. Weighted Energy Estimates for the Wave Equation . . . . . . ... ... .. 241
4. Finite Energy Self Similar Wave-Maps . . . . . . ... .. ... ... ... 246
5. A Simple Compactness Result . . . . . ... ... .. ... ......... 248
6. Proof of Theorems 1.3,1.5 . . . . . . . . . . . . . . . . . 249
6.1 Extension and scaling in the blowup scenario . . . . . ... ... ... 249
6.2 Extension and scaling in the non-scattering scenario . . . . . . . . . . . 251
6.3 Elimination of the null concentration scenario . . . . . ... ...... 253
6.4 Nontrivial energy in a time-likecone . . . . . . ... ... ... .... 255
6.5 Propagation of time-like energy concentration . . . . . ... ... ... 256
6.6 Finalrescaling . . . . . . . . ... .. ... 257
6.7 Concentrationscales . . . . . . . . .. ... e 258
6.8 The compactness argument . . . . . . . . . . . . ... 261
References . . . . . . . . . . 263

* The first author was supported in part by the NSF grant DMS-0701087.
** The second author was supported in part by the NSF grant DMS-0801261.


https://core.ac.uk/display/81831318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

232 J. Sterbenz, D. Tataru

1. Introduction

In this article we consider large data Wave-Maps from R>*! into a compact Riemannian
manifold (M, m), and we prove that regularity and dispersive bounds persist as long
as a soliton-like concentration is absent. This is a companion to our concurrent article
[27], where the same result is proved under a stronger energy dispersion assumption,
see Theorem 1.2 below.

The set-up we consider is the same as the one in [41], using the extrinsic formulation
of the Wave-Maps equation. Precisely, we consider the target manifold (M, m) as an
isometrically embedded submanifold of RY . Then we can view the M valued functions
as R" valued functions whose range is contained in M. Such an embedding always
exists by Nash’s theorem [20] (see also Gromov [8] and Giinther [9]). In this context the
Wave-Maps equation can be expressed in a form which involves the second fundamental
form S of M, viewed as a symmetric bilinear form:

S:TMXTM— NM, (S(X,Y),N)=(dxN,Y).
The Cauchy problem for the wave maps equation has the form:

Op% = —S ()3 0,0, (d',...,¢"N) =, (1a)
(0, x) Dp(x), 9,P(0,x) = Dy(x), (1b)

where the initial data (®g, ®1) is chosen to obey the constraint:

do(x) € M, ®y(x) € Topy)M, x € R%

In the sequel, it will be convenient for us to use the notation ®[r] = (P (z), 3, P(?)).
There is a conserved energy for this problem,

amm=%/m&ﬁﬂw¢ﬁw.

This is invariant with respect to the scaling that preserves the equation, ®(x, ) —
@ (1x, Ar). Because of this, we say that the problem is energy critical.

The present article contributes to the understanding of finite energy solutions with
arbitrarily large initial data, a problem which has been the subject of intense investiga-
tions for some time now. We will not attempt to give a detailed account of the history of
this subject here. Instead, we refer the reader to the surveys [40] and [15], and the refer-
ences therein. The general (i.e. without symmetry assumptions) small energy problem
for compact targets was initiated in the ground-breaking work of Klainerman-Machedon
[13,14], and completed by the work of Tao [36] when M is a sphere, and Tataru [41]
for general isometrically embedded manifolds; see also the work of Krieger [17] on the
non-compact hyperbolic plane, which was treated from the intrinsic point of view.

At a minimum one expects the solutions to belong to the space C(R; HYR?)) N
C! (R, L?(R?)). However, this information does not suffice in order to study the equa-
tion and to obtain uniqueness statements. Instead, a smaller Banach space S C C(R;
H'(R?) N C'(R, L%(R?)) was introduced in [36], modifying an earlier structure in
[39]. Beside the energy, S also contains Strichartz type information in various frequency

localized contexts. The full description of S is not necessary here. However, we do use
.11

the fact that § N L is an algebra, as well as the X* type embedding § C X é;,z. See

our companion paper [27] for precise definitions. The standard small data result is as

follows:
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Theorem 1.1 ([36,41,17]). There is some Ey > 0 so that for each smooth initial data
(D9, ®1) satisfying E[P](0) < Eq there exists a unique global smooth solution ® =
T (®g, ®1) € S. In addition, the above solution operator T extends to a continuous
operator from H' x L? to S with

[Plls S 1(Po, PO g1y g2

We call such solutions “strong finite energy wave-maps”. Furthermore, the following
weak Lipschitz stability estimate holds for these solutions for s < 1 and close to 1:

@ — \IJ”C(R;HS)QCI(R,HHI) 5 |P[0] — ‘*II[O]”HA'XHFL ()

Due to the finite speed of propagation, the corresponding local result is also valid, say
with the initial data in a ball and the solution in the corresponding domain of uniqueness.

The aim of the companion [27] to the present work is to provide a conditional S
bound for large data solutions, under a weak energy dispersion condition. For that, we
have introduced the notion of the energy dispersion of a wave map ® defined on an
interval /,

ED[®] = sup || PPl L 17,
keZ '

where Py are spatial Littlewood-Paley projectors at frequency 2. The main result in
[27] is as follows:

Theorem 1.2 (Main Theorem in [27]). For each E > 0 there exist F(E) > 0 and
€(E) > 0 so that any wave-map © in a time interval I with energy £[®] < E and
energy dispersion ED[®] < €(E) must satisfy ||®ls;n < F(E).

In particular, this result implies that a wave map with energy E cannot blow-up as
long as its energy dispersion stays below €(E).

In this article we establish unconditional analogs of the above result, in particular
settling the blow-up versus global regularity and scattering question for the large data
problem. We begin with some notations. We consider the forward light cone

C={0<t<oo, r=<t}
and its subsets
Clhon=f{to<t=<t, r <t}

The lateral boundary of Cyy, ;] is denoted by 9Cl,, s 1. The time sections of the cone are
denoted by

Sy ={t =10, |x] <t}
‘We also use the translated cones
CP=<t<oo, r<t—28)

as well as the corresponding notations Cfto n E)Cfst0 ;1 and S;SO for 1y > 6.
Given a wave map @ in C or in a subset C|s,, ;] of it we define the energy of ® on

time sections as

1
Es,[®] = 5/ (18, D1 + |V, ®|*)dx.
St
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It is convenient to do the computations in terms of the null frame
L=0,+0,, L=0—09,, §=r"0.

We define the flux of ® between ¢ and 1 as

1 2 1 2
Firo,n1[P] = Z|L©| + §|i5q>| dA.
3Cion]

By standard energy estimates we have the energy conservation relation
s, [@] = Es, [P+ Fiag, 1 [P]- 3)

This shows that £g,[P] is a nondecreasing function of .

1.1. The Question of Blowup. We begin with the blow-up question. A standard argu-
ment which uses the small data result and the finite speed of propagation shows that if
blow-up occurs then it must occur at the tip of a light-cone where the energy (inside the
cone) concentrates. After a translation and rescaling it suffices to consider wave maps
® in the cone Cy 7. If

lim &, [P] < Eo,
t—0
then blow-up cannot occur at the origin due to the local result, and in fact it follows that
lim &, [®] = 0.
t—0
Thus the interesting case is when we are in an energy concentration scenario

lin(l) Es,[®] > Ey. “)
r—

The main result we prove here is the following:

Theorem 1.3. Let & : C(o,17 — M be a C* wave map. Then exactly one of the follow-
ing possibilities must hold:

A) There exists a sequence of points (t,, x,) € Co,1] and scales r, with

. x| . TIn
(ty, xp) — (0, 0), lim sup <1, lim— =0

tn tl‘l

so that the rescaled sequence of wave-maps
DM (1, x) = D (ty + rat, Xp + 1), (5)

converges strongly in Hllo . 1o a Lorentz transform of an entire Harmonic-Map of
nontrivial energy:

PR > M, 0 < [ e < lim Eg[@].
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B) Foreach € > 0 there exists 0 < ty < 1 and a wave map extension
@ :R? x (0, 1] > M

with bounded energy

E[®] < (1 +€%) lim Es,[®] (6)
t—0
and energy dispersion,
sup sup (I P12 +2 I Py, @ (0)ll10) < €. )

te(0,10] keZ

We remark that a nontrivial harmonic map ®© : R? — M cannot have an arbi-
trarily small energy. Precisely, there are two possibilities. Either there are no such har-
monic maps (for instance, in the case when M is negatively curved, see [19]) or there
exists a lowest energy nontrivial harmonic map, which we denote by £y(M) > 0. Fur-
thermore, a simple computation shows that the energy of any harmonic map will increase
if we apply a Lorentz transformation. Hence, combining the results of Theorem 1.3 and
Theorem 1.2 we obtain the following:

Corollary 1.4. (Finite Time Regularity for Wave-Maps). The following statements hold:

A) Assume that M is a compact Riemannian manifold so that there are no nontrivial
finite energy harmonic maps ®©° : R> — M. Then for any finite energy data
®[0] : R? x R? — M x T M for the wave map equation (1) there exists a global
solution ® € S(0,T) for all T > 0. In addition, this global solution retains any
additional regularity of the initial data.

B) Let m : M — M be a Riemannian covering, with M compact, and such that
there are no nontrivial finite energy harmonic maps o) R? — M.If P[0] :
R? x R2 — M x T M is C®, then there is a global C™ solution to M with this
data.

C) Suppose that there exists a lowest energy nontrivial harmonic map into M with
energy Eo(M). Then for any data ®[0] : R?> x R> — M x T .M for the wave map
equation (1) with energy below Ey(M), there exists a global solution ® € S(0, T)
forall T > 0.

We remark that the statement in part B) is a simple consequence of A) and restricting
the projection 7 o @ to a sufficiently small section S; of a cone where one expects blowup
of the original map into M. In particular, since this projection is regular by part A), its
image lies in a simply connected set for sufficiently small z. Thus, this projection can
be inverted to yield regularity of the original map close to the suspected blowup point.
Because of this trivial reduction, we work exclusively with compact M in the sequel.
It should be remarked however, that as a (very) special case of this result one obtains
global regularity for smooth Wave-Maps into all hyperbolic spaces H”", which has been
along-standing and important conjecture in geometric wave equations due to its relation
with problems in general relativity (see Chapter 16 of [2]).

The statement of Corollary 1.4 in its full generality was known as the Threshold
Conjecture. Similar results were previously established for the Wave-Map problem via
symmetry reductions in the works [4,26,30], and [29]. General results of this type, as
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well as fairly strong refinements, have been known for the Harmonic-Map heat-flow
for some time (see [28] and [22]). As with the heat flow, Theorem 1.3 does not pre-
vent the formation of multiple singularities on top of each other. To the contrary, such
bubble-trees are to be expected (see [42]).

Finally, we remark that this result is sharp. In the case of M = S? there exists a lowest
energy nontrivial harmonic map, namely the stereographic projection Q. The results in
[16] assert that blow-up with a rescaled Q profile can occur for initial data with energy
arbitrarily close to [ Q]. We also refer the reader to [23] for blow-up results near higher
energy harmonic maps.

1.2. The Question of Scattering. Next we consider the scattering problem, for which
we start with a finite energy wave map ® in R? x [0, 0o) and consider its behavior as
t — o0. Here by scattering we simply mean the fact that & € §; if that is the case, then
the structure theorem for large energy Wave-Maps in [27] shows that ® behaves at co
as a linear wave after an appropriate renormalization.

We can select a ball B so that outside B the energy is small, Epc[P] < %Eo. Then
outside the influence cone of B, the solution ® behaves like a small data wave map.
Hence it remains to study it within the influence cone of B. After scaling and transla-
tion, it suffices to work with wave maps & in the outgoing cone C[ o) which have finite
energy, i.e.

lim &, [P] < 0. (8)
—00

We prove the following result:

Theorem 1.5. Let & : Cj1,o0) — M be a C* wave map which satisfies (8). Then
exactly one of the following possibilities must hold:

A) There exists a sequence of points (ty, x,) € C|1,00) and scales r,, with

|| In

t, —> 00, lim sup <1, lim =0
n tl’l
so that the rescaled sequence of wave-maps
DM (1, x) = D (ty + rat, Xn + X)), 9)

converges strongly in Hch to a Lorentz transform of an entire Harmonic-Map of
nontrivial energy:

(00) . R2 () . < i
[ RE> M, O0<|® ”HI(RZ) < tl_l)rgoé’st[@].
B) For each € > 0 there exists to > 1 and a wave map extension
@ : R? x [tg, 00) = M

with bounded energy

EL®] < (1+¢€%) lim 5[] (10)
and energy dispersion,
sup  sup (1| P® (D)l e + 27 [P (1) < e. an

telty,00) keZ
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Incase B) Theorem 1.2 then implies that scattering holds as t — oo. Thus if scattering
does not hold then we must be in case A). As a corollary, it follows that scattering can
only fail for wave-maps ® whose energy satisfies

E[@] = E(M). 12)
Thus Corollary 1.4 can be strengthened to

Corollary 1.6 (Scattering for Large Data Wave-Maps). The following statements
hold:

A) Assume that there are no nontrivial finite energy harmonic maps ®©° : R? — M.
Then for any finite energy data ®[0] for the wave map equation (1) there exists a
global solution ® € S.

B) Suppose that there exists a lowest energy nontrivial harmonic map, with energy
Eo(M). Then for any data ®[0] for the wave map equation (1) with energy below
Eo(M) there exists a global solution ® € S.

Ideally one would also like to have a constructive bound of the form
[®lls < F(E[P]).

This does not seem to follow directly from our results. Furthermore, our results do not
seem to directly imply scattering for non-compact targets in the absence of harmonic
maps (only scattering of the projection). Results similar to Corollary 1.6 were previously
established in spherically symmetric and equivariant cases, see [3] and [5].

Finally, we would like to remark that results similar in spirit to the ones of this paper
and [27] have been recently announced. In the case where M = H", the hyperbolic
spaces, globally regularity and scattering follows from the program of Tao [37,31-
33,35] and [34]. In the case where the target M is a negatively curved Riemann surface,
Krieger and Schlag [18] provide global regularity and scattering via a modification of
the Kenig-Merle method [12], which uses as a key component suitably defined Bahouri-
Gerard [1] type decompositions.

2. Overview of the Proof

The proofs of Theorem 1.3 and Theorem 1.5 are almost identical. The three main build-
ing blocks of both proofs are (i) weighted energy estimates, (ii) elimination of finite
energy self-similar solutions, and (iii) a compactness result.

Our main energy estimates are established in Sect. 3. Beside the standard energy
bounds involving the 9, vector field we also use the vector field

1
Xo=—(td; +ro,), o=+t —r2 (13)
0

as well as its time translates. This leads to a family of weighted energy estimates, see (26)
below, which has appeared in various guises in the literature. The first such reference
we are aware of is the work of Grillakis [7]. Our approach is closest to the work of Tao
[37] and [31] (see also Chap. 6.3 of [38]). These bounds are also essentially identical
to the “rigidity estimate” of Kenig-Merle [12]. It should be noted that estimates of this
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type are probably the only generally useful time-like component concentration bounds
possible for non-symmetric wave equations, and they will hold for any Lagrangian field
equation on (2 + 1) Minkowski space.

Next, we introduce a general argument to rule out the existence of finite energy self-
similar solutions to (1). Such results are essentially standard in the literature (e.g. see the
section on wave-maps in [25]), but we take some care here to develop a version which
applies to the setup of our work. This crucially uses the energy estimates developed in
Sect. 3, as well as a boundary regularity result of J. Qing for harmonic maps (see [21]).

The compactness result in Proposition 5.1, proved in Sect. 5, allows us to produce
the strongly convergent subsequence of wave maps in case A) of Theorems 1.3, 1.5. It
applies to local sequences ®" of small energy wave maps with the additional property
that X®™ — 0 in L? for some time-like vector field X. This estimate uses only the
standard small energy theory of [41], and is completely independent of the more involved
regularity result in our companion paper [27].

Given these three building blocks, the proof of Theorems 1.3 and 1.5 presented in
Sect. 6 proceeds as follows:

Step 1 (Extension and scaling). We assume that part B) of Theorem 1.3, respectively
Theorem 1.5 does not hold for a wave map ® and for some € > 0. We construct an
extension of ® as in part B) satisfying (6), respectively (10). Then the energy dispersion
relation (7), respectively (11) must fail. Thus, we can find sequences t,, x,, and k, so
that

| Py @ (1, x0)| + 2750 Py, 8, (1, )| > €,

with #, — O1inthe case of Theorem 1.3, respectively t,, — oo in the case of Theorem 1.5.
In addition, the flux-energy relation

‘7:[[1712][(1)] = 55,2 [P] - 55,1 [D]
shows that in the case of Theorem 1.3 we have

lim 0]:[[1,;2][®] =0

1,l1p—
and in the case of Theorem 1.5 we have

lim -7:[1‘1,[2][(1)] =0.

11,1p—> 00
This allows us also to choose €, — 0 such that
1
Flentn. ][] < €7 E[D].
Rescaling to r = 1 we produce the sequence of wave maps
M (1, x) = D(tyt, tyx)

in the increasing regions Ce, 1] so that
1
Fle, @™ < € E[D],
and also points x, € R? and frequencies k, € Z so that

| P, @ (1, x) | + 275 P, 8, 0™ (1, x,)| > . (14)
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From this point on, the proofs of Theorems 1.3,1.5 are identical.

Step 2 (Elimination of null concentration scenario). Using the fixed time portion of the
X0 energy bounds we eliminate the case of null concentration

|Xn| = 1, ky — 00

in estimate (14), and show that the sequence of maps ® at time = 1 must either
have low frequency concentration in the range:

m(e, E) <k, < M(e, E), |xn] < R(e, E)
or high frequency concentration strictly inside the cone:

ky, > M(e, E), lxnl < y(e, E) < 1.

Step 3 (Time-like energy concentration). In both remaining cases above we show that a
nontrivial portion of the energy of ® at time 1 must be located inside a smaller cone,

1

—/ (1802 + 1V, 0 2) dx = Ey,
2 Ji=tlxl<n

where E| = E1(€, E) and y; = y1(¢, E) < 1.

Step 4 (Uniform propagation of non-trivial time-like energy). Using again the X energy
bounds we propagate the above time-like energy concentration for @ from time 1 to
1 1

smaller times 7 € [e7, €],
] 1

11
—/ (100 2+ 1V, 001) dx = Eo(e, ). 1 €lei. €]
2 Jixi<pa(e.Ex

At the same time, we obtain bounds for X ®™ outside smaller and smaller neighbor-
hoods of the cone, namely

/ o [ Xo®"™|2dxdr < 1.
Cenl 1
lof et |
Step 5 (Final rescaling). By a pigeonhole argument and rescaling we end up producing

another sequence of maps, denoted still by ), which are sections of the original wave

1
map @ and are defined in increasing regions Cy1.7,), T, = e/™“!” and satisfy the
following three properties:

Es[®™]~ E, te[l, T,] (Bounded Energy),
& ((-nr [@M] > Ey, te[l,T,] (Nontrivial Time-like Energy),
t

1 (n) 2 _1 ..
1 — | Xo®"|“dxdt < |loge,|™ 2 (Decay to Self-similar Mode).
€n 1Y
C

[1.Tn]
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Step 6 (Isolating the concentration scales). The compactness result in Proposition 5.1
only applies to wave maps with energy below the threshold E( in the small data result.
Thus we need to understand on which scales such concentration can occur. Using sev-
eral additional pigeonholing arguments we show that one of the following two scenarios
must occur:

i) Energy Concentration. On a subsequence there exist (f,, x,) — (fo, x9), with
1

(to, xo) inside Cé , and scales r,, — 0 so that we have

00)
) 1
EBGn. ) [PV 1(t,) = —Eop,
10
1
Ee.r[@M1(ty) < TgEo x € B,

th+rn /2
! / / [Xo®™|?dxdt — 0.
ln*rn/2 B(xq,r)

ii) Non-concentration. For each j € N there exists an r; > 0 such that for every (7, x)
inside C; = C/y .,y N {2/ <1 <2/*!} one has
1
Epeerpl®M0) = {5Eo, V(0 €C,
55(17y2>t[<l>(")](t) > Eo,
t

// 1Xo®™ 2dxdt — 0,
Cj

uniformly in 7.

Step 7 (The compactness argument). In case i) above we consider the rescaled wave-
maps

WD (1 x) = ®D (1, + rot, Xy + FaX)

and show that on a subsequence they conver%e locally in the energy norm to a finite
energy nontrivial wave map W in R? x [—%, ] which satisfies X (fo, xo)¥ = 0. Thus
W must be a Lorentz transform of a nontrivial harmonic map.

In case ii) above we show directly that the sequence ®" converges locally on a
subsequence in the energy norm to finite energy nontrivial wave map W, defined in
the interior of a translated cone C[22, %) which satisfies Xo¥ = 0. Consequently, in

hyperbolic coordinates we may interpret W as a nontrivial harmonic map
W H? > M.

Compactifying this and using conformal invariance, we obtain a non-trivial finite energy
harmonic map

v:D? > M

from the unit disk D2, which according to the estimates of Sect. 3 obeys the additional
weighted energy bound:

d
/ IV, 02— < .
D2 l—r

But such maps do not exist via combination of a theorem of Qing [21] and a theorem of
Lemaire [19].
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3. Weighted Energy Estimates for the Wave Equation

In this section we prove the main energy decay estimates. The technique we use is the
standard one of contracting the energy-momentum tensor:

| o
Top[®] = m;j(P) [3a¢>’ Ipp’ — 5 8ap 379! 3y¢’} ; 5)

with well chosen vector-fields. Here ® = (¢1, ..., @") is a set of local coordinates on
the target manifold (M, m) and (g4g) stands for the Minkowski metric. The main two
properties of T,g[®] are that it is divergence free V*T,g = 0, and also that it obeys the
positive energy condition 7'(X, Y) > 0 whenever both g(X, X) < Oand g(¥,Y) < 0.
This implies that contracting Tyg[®] with timelike/null vector-fields will result in good
energy estimates on characteristic and space-like hypersurfaces.

If X is some vector-field, we can form its associated momentum density (i.e. its
Noether current)

XP, = Tupl®1XP.

This one form obeys the divergence rule
1
veXp, — ETaﬂ[Q](X)n“ﬁ, (16)

where (X )naﬂ is the deformation tensor of X,
O 0p = Vo Xp + Vg Xq.
A simple computation shows that one can also express
(X}T = ﬁxg.

This latter formulation is very convenient when dealing with coordinate derivatives.
Recall that in general one has:

(EXg)aﬂ = X(gaﬁ) + aa(Xy)gyﬁ + aﬂ(Xy)gay~

8

Our energy estimates are obtained by integrating the relation (16) over cones Cy;, ;.

Then from (16) we obtain, for § < ¢ < 1;:

1
/s" XPy dx + 5//(7S Top[ @15 dxdt = /Sa(X)PO dx +/ac‘3 YpdA,  (17)

n [11.12] 1 [11.12]

where d A is an appropriately normalized (Euclidean) surface area element on the lateral
boundary of the cone r =t — §.

The standard energy estimates come from contracting T,g[®] with Y = ;. Then we
have

1 1 1
=0, TP=_(00P+ V0P, TP = Lo+ [jOl.
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Applying (17) over C, +,] we obtain the energy-flux relation (3) used in the Introduction.
Applying (17) over C[SM] yields

1 1
/ac Z|Ld>|2+5|ad>|2dA < E[D]. (18)

8
1,11
It will also be necessary for us to have a version of the usual energy estimate adapted

to the hyperboloids p = /12 —r2 = const. Integrating the divergence of the Y')P,
momentum density over regions of the form R = {p > po, t < fo} we have:

/ Wpegy, < (@], (19)
{p=po}N{r<t0}

where the integrand on the LHS denotes the interior product of )P with the Minkow-
ski volume element. To express this estimate in a useful way, we use the hyperbolic
coordinates (CMC foliation):

t = pcosh(y), r = psinh(y), 6 =0. (20)
In this system of coordinates, the Minkowski metric becomes
—di? +dr? +r2d6* = —dp? + p* (dy2 + sinhz(y)d®2). Q1)
A quick calculation shows that the contraction on line (19) becomes the one-form
VP4V, = T(,, ) p*dAgp,  dAge = sinh(y)dyd®. (22)

The area element d Ay is that of the hyperbolic plane H?. To continue, we note that:

r

t
0 = —0p — — 0y,
! P) o ,02 y
s0 in particular
cosh sinh
7@y, 0) = S0 g g SO), 4 5 0

2 p

cosh

+ g” (|a},¢|2+7|a@¢|2),
2p sinh“(y)

Letting 19 — oo in (19) we obtain a useful consequence of this, namely a weighted
hyperbolic space estimate for special solutions to the wave-map equations, which will
be used in the sequel to rule out the existence of non-trivial finite energy self-similar
solutions:

Lemma 3.1. Let © be a finite energy smooth wave-map in the interior of the cone C.
Assume also that 3,® = 0. Then one has:

1
- / |V ®|? cosh(y)d A < E[®]. (23)
2 HZ

Here:

Vi ®|? = [3,®* + 106D,

sinh?(y)

is the covariant energy density for the hyperbolic metric.
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Our next order of business is to obtain decay estimates for time-like components of
the energy density. For this we use the timelike/null vector-field

X, = pi (C+)d +7d).  pe=+e)? -1 (24)

€

In order to gain some intuition, we first consider the case of X(. This is most readily
expressed in the system of hyperbolic coordinates (20) introduced above. One easily
checks that the coordinate derivatives turn out to be

3, = Xo, 3y =rd, +10,.

In particular, X is uniformly timelike with g(Xo, X¢) = —1, and one should expect it to
generate a good energy estimate on time slices t = const. In the system of coordinates
(20) one also has that

Lxog =2p (dy2 + sinhz(y)d®2).
Raising this, one then computes
Xo) o — % (ay ® 9y +sinh~2(y)de ® a@).
Therefore, we have the contraction identity:

1 1
3 Tapl @17 = Z1 X0 @I,

To compute the components of (X0)Py and X0)P; we use the associated optical functions
u=t—r, v=t+r.
Notice that p? = uv. Also, simple calculations show that

1 /1 1 1 1
Xo = ;(EUL+§ML), 0 = §L+§L 25)

Finally, we record here the components of T,g[®] in the null frame
T(L,L)=|L®P, T(L,L) =I[LO T(L,L) =Ipd]
By combining the above calculations, we see that we may compute

1 1 1 1 1 1 1
o= rxn = (5) 1wor g [(7) (7) Jwor e (7)o,

e 1 (uyt
Xopp, = T(L, Xo) = 5 (5)2 ILO* + 3 (%)2 PP

These are essentially the same as the components of the usual energy currents %Py and
()P, modulo ratios of the optical functions « and v.

One would expect to get nice space-time estimates for Xo® by integrating (16) over
the interior cone » < ¢ < 1. The only problem is that the boundary terms degenerate
rather severely when p — 0. To avoid this we simply redo everything with the shifted
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version X, from line (24). The above formulas remain valid with u, v replaced by their
time shifted versions

Ue = (t+€)—r, ve=({+e€)+r.

Furthermore, notice that for small 7 one has in the region r < ¢ the bounds

1 1
Ve \ 2 Ue \ 2
(_f) ~ 1, (i) ~1, 0O<t<e
Ue Ve
Therefore, one has in r < ¢ that
Xepy ~ WPy, 0<t<e

In what follows we work with a wave-map ® in Cj¢ 1. We denote its total energy
and flux by

E=E&[®], F =Fenl®l
In the limiting case F = 0, € = 0 one could apply (17) to obtain

/ (XOPOdH// —|X |2 dxdt = / Xpy dx.
50 Pe S0

tl ] 1

By (26), letting t; — 0 followed by € — 0 and taking the supremum over 0 < 7, < 1
we would get the model estimate

sup / Xopy dx +// |X()CI>|2 dxdt < E.
1€(0,1]J 80

However, here we need to deal with a small nonzero flux. Observing that
Xop, < e 20p,,
from (17) we obtain the weaker bound
/0 Xop, dx+// |X€<1>| dxdt </o Xpy dx +€ 2 F.
S rl ] Stl

Letting #; = € and taking supremum over € < f, < 1 we obtain

sup / <Xe)Pde+// —|X O dxdt < E+e¢ tF. (26)

te(e, 1]

A consequence of this is the following, which will be used to rule out the case of asymp-
totically null pockets of energy:

Lemma 3.2. Let ® be a smooth wave-map in the cone C(c 1] which satisfies the flux-
energy relation F < €7 E. Then

/ : Xpy dx < E. (27)
S
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Next, we can replace X by X in (26) if we restrict the integrals on the left to
r <t — €. In this region we have

Xelpy ~ X0y, pe = p.

Using the second member above, a direct computation shows thatinr < t — e,

1 1 €2

—[Xo®P S — XD + 0,0,

o Pe o
and also

2 3

€ €
/ — 10, ®*dxdt 5/ 19, ®*dxdt S E.
Cley Clem 12

Thus, we have proved the following estimate which will be used to conclude that rescal-
ing of ® are asymptotically stationary, and also used to help trap uniformly time-like
pockets of energy:

Lemma 3.3. Let ® be a smooth wave-map in the cone C(c 1] which satisfies the flux-

energy relation F < €7 E. Then we have

sup / Xolp, dx+//
re(e, 11 8¢ Ct

1 [e,1

1
;|X0<I>|2dxdt <E. (28)
]

Finally, we use the last lemma to propagate pockets of energy forward away from
the boundary of the cone. By (17) for Xo we have

/‘s Xopy dx < /‘s Xop, dx+/ Xop, dA, €e<é<ty<l.
S8 N

S
0 3Ch.11

We consider the two components of X0P; separately. For the angular component, by
(18) we have the bound

1 1 1
uy2 2 1) 2/ 5 5\?
N ppopaa< (2 o2dAa< () E.
/w (%) we N(to) [ peraas(Z

[19:11 111

For the L component a direct computation shows that
u 3 u
Lol 5 () 1x00l+ (=) ILel.
v v
Thus we obtain

1
§\2 1 3
/ Xop, dx < /<X0>PO dx + (—) E +/ ((3)2 Xogl2+ (=)’ |;q>|2) dA.
59 5;30 I ac? v v

[19.1]

For the last term we optimize with respect to § € [J¢, §1] to obtain:
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Lemma 3.4. Let ® be a smooth wave-map in the cone C(c 1] which satisfies the flux-
energy relation F < €7 E. Suppose that € < 80 K 81 < t9 < 1. Then

1
) 2
/51 Xopy dx < /50 Xopy dx + ((é) + (ln(81/80))_1) E. (29)
N S,

1 10

To prove this lemma, it suffices to choose § € [§¢, §1] so that

1 3
u\ 2 u\ 2 _
[ ) 1xoep+ (5) 1LoP | da < /sl E.
acﬁo_” v v

This follows by pigeonholing the estimate

/Cgo L [(%)é | Xogl” + (%)g |Lc1>|2} dxdt S E.

81 u
tr.11\Clrg. 11

The first term is estimated directly by (28). For the second we simply use energy bounds
since in the domain of integration we have the relation

1 ju\s 8
JORE
u \v 5

4. Finite Energy Self Similar Wave-Maps
The purpose of this section is to prove the following theorem:

Theorem 4.1 (Absence of non-trivial finite energy self similar wave-maps in 2D).
Let @ be a finite energy' solution to the wave-map equation (1) defined in the forward
cone C. Suppose also that 3, = 0. Then ® = const.

Remark 4.2. Theorems of this type are standard in the literature. The first such reference
we are aware of is in the work of Shatah—Tahvildar-Zadeh [26] on the equivariant case.
This was later extended by Shatah-Struwe [25] to disprove the existence of (initially)
smooth self-similar profiles. However, the authors are not aware of an explicit reference
in the literature ruling out the possibility of general (i.e. non-symmetric) finite energy
self-similar solutions to the system (1), although this statement has by now acquired the
status of a folk-lore theorem. It is this latter version in the above form that is necessary
in the context of the present work.

Remark 4.3. Itis important to remark that the finite energy assumption cannot be dropped,
and also that this failure is not due to interior regularity. That is, there are non-trivial C*°
self similar solutions to (1) in C but these solutions all have infinite energy. However,
the energy divergence is marginal, i.e. the energy in Sf only grows as | In(8)| as 6 — O.
Further, these solutions have finite energy when viewed as harmonic maps in H?.

! Thatisto say, aweak solution of (1) (in the sense of [10]), such thatess supy; || Vi, x P () || ;2 < 00.

(Jx[<t)
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Proof of Theorem 4.1. Writing out the system (1) in the coordinates (20), and canceling
the balanced factor of p~2 on both sides we have that ® obeys:

A @ = —gil, 85, (®)3; @70, °,

where in polar coordinates gp2 = dy? + sinh?(y)d ®? is the standard hyperbolic metric.
Thus, ®¢ is an entire harmonic map ® : H> — M. By elliptic regularity, such a map
is smooth with uniform bounds on compact sets (see [10]). In particular, ® is C* in
the interior of the cone C. Therefore, from estimate (23) of Lemma 3.1, ® enjoys the
additional weighted energy estimate:

/ |V @[ cosh(y)d Ap §2E(CI>):/ (|atc1>|2+|vxq>|2) dx,  (30)
H2

S

for any fixed t > 0.

To proceed further, it is convenient to rephrase all of the above in terms of the confor-
mal compactification of H2. Using the pseudo-spherical stereographic projection from
hyperboloids to the unit disk D? = {t = 0} N {x% + y? < 1} in Minkowski space (see
Chap. II of [6]):

2p(t +p, x1, x?)

1.2 -
]Tt, y = 1,0,0 ’
(tx,x%) = ( ) ((t+p,x1,xz),(Z+P,x17x2))

as well as the conformal invariance of the 2D harmonic map equation and its associ-
ated Dirichlet energy, we have from (30) that ® induces a finite energy harmonic map
® : D? — M with the additional property that

1/ IV, D2 L+r2Y, 31)
2 Jpe 1—2)r =

To conclude, we only need to show that such maps are trivial. Notice that the weight
(1 — r)~1is critical in this respect, for there are many non-trivial® finite energy har-
monic maps from D? — M, regardless of the curvature of M, which are also uniformly
smooth up to the boundary d1D* and may therefore absorb an energy weight of the form
(1—-r)y*witha < 1.

From the bound (31), we have that there exists a sequence of radii r,, /' 1 such that:

/ W Ldl = 0,(1).

From the uniform boundedness of ®(r) in L%(S!) and the trace theorem, this implies
that:

I ®lpz ll2eny < 00, N ®lap2 Iy ) =0,
so therefore ®|,p2 = const. In particular, ® : D> — M is a finite energy harmonic
map with smooth boundary values. By a theorem of J. Qing (see [21]), it follows that ®

2 For example, if M is a complex surface with conformal metric m = 22d®d®, then the harmonic map
equation becomes ;7P = —20¢ (In 1)3; Pz . Thus, any holomorphic function ® : D? — M suffices to
produce an infinite energy self similar “blowup profile” for (1). See Chap. I of [24].
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has uniform regularity up to ID?. Thus, ® is C* on the closure D? with constant bound-
ary value. By Lemaire’s uniqueness theorem (see Theorem 8.2.3 of [11], and originally
[19]) ® = const throughout D%, By inspection of the coordinates (20) and the fact that
0, ® = 0, this easily implies that @ is trivial inallof C. O

5. A Simple Compactness Result
The main aim of this section is the following result:

Proposition 5.1. Let Q be the unit cube, and let ®"™ be a family of wave maps in 3Q
which have small energy £ [®@M] < %EO and so that

3
for some smooth time-like vector field X. Then there exists a wave map ® € H27¢(Q)
with E[®] < 11—0E0 so that on a subsequence we have the strong convergence

o™ > o inHY Q).

Proof. The argument we present here is inspired by the one in Struwe’s work on
Harmonic-Map heat flow (see [28]). The main point there is that compactness is gained
through the higher regularity afforded via integration in time. For a parabolic equation,
integrating L? in time actually gains a whole derivative by scaling, so in the heat flow
case one can control a quantity of the form | [ |V2®|2dxdt which leads to control of
f |V2®|2dx for many individual points in time.

By the small data result in [41], we have a similar (uniform) space-time bound &
in any compact subset K of 3Q which gains us % a derivative over energy, namely

I ch(n) ”Xl% <1, supp x C 30, (33)

o0

1
where X é;? here denotes the £>° Besov version of the critical inhomogeneous X*-? space.
We obtain a strongly converging H,l’ . sequence of wave-maps through a simple fre-
quency decomposition argument as follows. The vector field X is timelike, therefore its
symbol is elliptic in a region of the form {t > (1 — 2§)|&|} with § > 0. Hence, given
a cutoff function x supported in 3Q and with symbol equal to 1 in 2Q, there exists a
microlocal space-time decomposition

X = Q—I(D)C,[s X, t)X + QO(DX,Ia X, t) + R(D)C,f9 X, t)v

where the symbols ¢g_; € S™! and g9 € S° are supported in 3Q x {r > (1 — 28)|£|},
respectively 30 x {t < (1 — 8)|&|}, while the remainder R has symbol r € S~ with
spatial support in 3Q. This yields a decomposition for y &,

x®™ = (Qo(D, x) + R(D, x))®™ + 0_1(D, x)Xd" = &) +R,. (34)
Due to the support properties of g, for the main term we have the bound

() )
Hq)bulk”H%fe 5 ” XCD . ”Xio% SJ 1.

1,x
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On the other hand the remainder decays in norm,
IR gy S NIXPP N 1230) —> 000 0.
Hence on a subsequence we have the strong convergence
x®" - & inH' (30).

In addition, ® must satisfy both

deH?>, X®=0in20.

It remains to show that @ is a wave-map in Q (in fact a “strong” finite energy wave-map
according to the definition of Theorem 1.1). There exists a time section 2Qy, close to
the center of 2Q such that both

| @[] ”<H1XL2)(2Qf0) < 00, II CD(”)[tO] — ®[1o] ||(H°‘><H5'*1)(2Q,0) -0,

for some s < 1. Letting ® be the solution to (1) with data ®[#g], from the weak stability
result (2) in Theorem 1.1 we have ®® — & in H$(Q,) at fixed time for s < 1. Thus
® = ®in H;,(Q) which suffices. O

We consider now the two cases we are interested in, namely when X = 9, or
X = 19, + x0x. If X = 0, (as will be the case for a general time-like X vector af-
ter boosting), then ® is a harmonic map

d:0—->M

and is therefore smooth (see [10]).

If X = 19, + xd, and 3Q is contained within the cone {t > |x|} then ® can be
interpreted as a portion of a self-similar Wave-Map, and therefore it is a harmonic map
from a domain

O HPDQ—> M

and is again smooth. Note that since the Harmonic-Map equation is conformally invari-
ant, one could as well interpret this as a special case of the previous one. However, in
the situation where we have similar convergence on a large number of such domains 2
that fill up H?, ® will be globally defined as an H? harmonic map to M, and we will
therefore be in a position to apply Theorem 4.1.

6. Proof of Theorems 1.3,1.5

We proceed in a series of steps:

6.1. Extension and scaling in the blowup scenario. We begin with Theorem 1.3. Let ®
be a wave map in C(g,1] with terminal energy

E = lim &, [®].
t—0

Suppose that the energy dispersion scenario B) does not apply. Let € > 0 be so that
B) does not hold. We can choose € arbitrarily small. We will take advantage of this to
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construct an extension of ® outside the cone which satisfies (6), therefore violating (7)
on any time interval (0, fp].
For this we use energy estimates. Setting

1 2 1 2
Fio[®@] = Z|L<I>| + §|aCD| dA
3C(0.,0]

it follows that as ro — 0 we have

Fipl®] = Es, [@] — E — 0. (35)
Then by pigeonholing we can choose #y arbitrarily small so that we have the bounds
8
Fol®] < €YE, / PoPds < < E. (36)
38y, 1o

The second bound allows us to extend the initial data for & at time 7y from Sy, to all of
R? in such a way that

E[P@](10) — &, [P] K SE.

We remark that by scaling it suffices to consider the case fo = 1. The second bound in
(36) shows, by integration, that the range of & restricted to 9.5, is contained in a small
ball of size €® in M. Thus the extension problem is purely local in M, and can be carried
out in a suitable local chart by a variety of methods.

We extend the solution @ outside the cone C between times #y and 0 by solving the
wave-map equation. By energy estimates it follows that for ¢ € (0, #p] we have

1
E[PI(1) — E5,[P] = E[P](10) — Es, [P+ Fip[P] — Fi[P] < EGSE- (37

Hence the energy stays small outside the cone, and by the small data result in Theo-
rem 1.1 there is no blow-up that occurs outside the cone up to time 0. The extension we
have constructed is fixed for the rest of the proof.

Since our extension satisfies (6) but B) does not hold, it follows that we can find a
sequence (t,, x,) with , — 0 and k,, € Z so that

| Pry ® (1, 20)] + 275 P, 8, B (1, x0)| = €. (38)
The relation (35) shows that 7;, — 0. Hence we can find a sequence ¢, — 0 such that

1
Fi, < € E. Thus

Flenty.1n] < € E. (39)
Rescaling we obtain the sequence of wave maps
M (1, x) = D(tyt, tyx)
in the increasing family of regions R? x [e,, 1] with the following properties:
a) Uniform energy size,

E[@M ~ E. (40)
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b) Small energy outside the cone,
E[®M] — &5, [@W] < EE. (41)

¢) Decaying flux,

1
Fie, [@™] < €2 E. (42)

d) Pointwise concentration at time 1,
| Pe, @ (1, x0)| + 275 | P, 8, @ (1, x,)| > € (43)

for some x, € R%, k, € Z.

6.2. Extension and scaling in the non-scattering scenario. Next we consider the case of
Theorem 1.5. Again we suppose that the energy dispersion scenario B) does not apply
for a finite energy wave map ® in C[j ). Let € > 0 be so that B) does not hold. Setting

1 1
E= lim & [P],  Fyl®] =/ (—|L<D|2+ -|a<1>|2) dA
to—> 00 3Ciy.00) 4 2

it follows that
Fipl @] = Es [@] = E5, [P] — 0. (44)
We choose 7y > 1 so that
Fiol®] < €8E.
We obtain our extension of @ to the interval [#(, co) from the following lemma:

Lemma 6.1. Let ® be a finite energy wave-map in C|1,o0) and E, to as above. Then there
exists a wave-map extension of ® to R? x [to, 00) which has energy E.

We remark that as + — oo all the energy of the extension moves inside the cone. It is
likely that an extension with this property is unique. We do not pursue this here, as it is
not needed.

Proof. By pigeonholing we can choose a sequence f; — 00 so that we have the bounds

Fy (@] — 0, rk/ 1§DI’PdA — 0.

k

The second bound allows us to obtain an extension ®®[#;] of the initial data ®[r] for
® at time # from the circle S, to all of R? in such a way that

E[oN() — Es, [@] — 0.

By rescaling, this extension problem is equivalent to the one in the case of Theorem 1.3.
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We solve the wave map equation backwards from time #; to time ¢y, with data d®[7,].
We obtain a wave map ®® in the time interval [70, t] which coincides with @ in Ciy, 1,1-
The above relation shows that

E[e®] - E. (45)
By energy estimates it also follows that for large k and ¢ € [7g, 7] we have
E[@N(1) — E5,[@W] = E[ON () — Es, [®]+ Fiuy [P1 S YE. (46)

Hence the energy stays small outside the cone, which by the small data result in
Theorem 1.1 shows that no blow-up can occur outside the cone between times #; and fy.

We will obtain the extension of @ as the strong limit in the energy norm of a subse-
quence of the ®®),

® = lim ®®  in C(t, 00; H') N €' (19, 003 L?). 47)
k— 00
We begin with the existence of a weak limit. By uniform boundedness and the Banach-
Alaoglu theorem we have weak convergence for each fixed time

o® 1] —~ @[r] weaklyin H' x L.

Within Clyy.00) all the @®)’s coincide, so the above convergence is only relevant
outside the cone. But by (46), outside the cone all ®*) have small energy. This places
us in the context of the results in [41]. Precisely, the weak stability bound (2) in Theo-
rem 1.1 and an argument similar to that used in Sect. 5 shows that the limit ® is a regular
finite energy wave-map in [fg, oo) x R2.

It remains to upgrade the convergence. On one hand, (45) and weak convergence
shows that £[®P] < &g, [P]. On the other hand E[P] > Es,[P], and the latter converges
to Es..[P]. Thus we obtain

E[P] = &5, [@] = lim E[d®.

From weak convergence and norm convergence we obtain strong convergence
o®[] — @[] in H' x L?

The uniform convergence in (47) follows by applying the energy continuity in the small
data result of Theorem 1.1 outside Cjyy,00). O

By energy estimates for @ it follows that
ELD] — E5,[@] = Fi[®] < Fy[@] < *E, 1 €[ty 00).

Hence the extended @ satisfies (10) so it cannot satisfy (11). By (35) we obtain the
sequence (t,, x,) and k, € Z with t, — 0o so that (38) holds. On the other hand from
the energy-flux relation we have

JJm Pl =0
This allows us to select again €, — 0 so that (39) holds; clearly in this case we must also
have €,1, — oco. The same rescaling as in the previous subsection leads to a sequence
@™ of wave maps which satisfy the conditions a)—d) above.
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6.3. Elimination of the null concentration scenario. Due to (41), the contribution of the
exterior of the cone to the pointwise bounds for ®™ is negligible. Precisely, for low
frequencies we have the pointwise bound

|Ped™ (1, %) + 27K Pea, @™ (1, x)| < (2k(1 + 2k x N +e4) E*, k=<0,

where the first term contains the contribution from the interior of the cone and the second
is the outside contribution. On the other hand, for large frequencies we similarly obtain

PO, 0]+ 24P @™ (1,0 S (425 = D~V + ) B k0.
(48)
Hence, in order for (43) to hold, k,, must be large enough,
2k > m(e, E),
while x, cannot be too far outside the cone,
X, < 1+27%g(e, E).

This allows us to distinguish three cases:

(i) Wide pockets of energy. This is when
2k < € < 0.
(i1) Sharp time-like pockets of energy. This is when
2""—)00, lxn] <y < 1.
(iii) Sharp pockets of null energy. This is when

2kn 00, [x,] — 1.

Our goal in this subsection is to eliminate the last case. Precisely, we will show that:

Lemma 6.2. There exists M = M(e, E) > 0and y = y (e, E) < 1 so that for any
wave map ®™ as in (40)—(43) with a small enough €, we have

2k > M = x| < y. (49)
Proof. We apply the energy estimate (27), with € replaced by ¢,, to ®™ in the time
interval [€,, 1]. This yields

/ (1= |x|+€)2 (|L<I>(”)|2 + |aq>(">|2) dx < E. (50)
N

The relation (49) would follow from the pointwise concentration bound in (43) if we
can prove that for k > 0 the bound (50), together with (40) and (41) at time ¢ = 1, imply
the pointwise estimate

1

|Ped® (1, 1) + 27K P, @™ (1, x)| < (((1 —x])y +27F +en)g +62) Ei. (51)
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In view of (48) it suffices to prove this bound in the case where % < |x| < 2. After a

rotation we can assume that x = (x, 0) with % <x; <2.
In general we have

(1= xDs < (1 = x1)s +23,

and therefore from (50) we obtain

1
/ : (|Lo1><">|2 + |ac1><">|2) dx < E. (52)
St (11— x1]+x3 +6€,)2

At the spatial location (1, 0) we have aCD(”) = 0», so we obtain the rough bound
1,0 < PO |+ (|xa] + |1 — x1 )|V D).
Similarly,
;@ — 31 @™ | S ILO™ |+ (|xa] + |1 — x1 )|V D).

Hence, taking into account (40) and (41), from (52) we obtain

1
/ : (|atq><"> 9™ 4 |azq>(">|2) dx < E. (53)
=1 (1 = x4+ X3 +6,)2 +€b

. . . k
Next, given a dyadic frequency 2% > 1 we consider an angular parameter 272 <
0 < 1 and we rewrite the multiplier Py in the form

Pe = Pl o1 + Py,

where Pk1 ¢ and P,i o are multipliers with smooth symbols supported in the sets {|§]| ~
2K, |&| < 2%6), respectively {|£] &~ 2K, |&| > 2%6). The size of their symbols is given
by

1
Iphe@®1S275  Ipte@®I S —-
B

Therefore, they satisfy the L?> — L> bounds
1

1 1 2 1
IPeoll2roe SO2, 1Pl SO72. (54)

In addition, the kernels of both Pklﬂ and sz, o decay rapidly on the 27k % 9127k scale.
Thus one can add weights in (54) provided that they are slowly varying on the same
scale. The weight in (52) is not necessarily slowly varying, but we can remedy this by
slightly increasing the denominator to obtain the weaker bound

1
/ 1 (|a,q><”)— oM+ |82d>(”)|2) dx <E. (55)
=1((1 = xp)s + x5 +27F +6,)2 + €8

Using (40), (55) and the weighted version of (54) we obtain
1Ped™ (1, )| <|PLydi @™ (1, x)| + | PZya @™ (1, %))
< (0% +67 (((1 e+ a2 42K et + 64)) E?.
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We set xo = 0 and optimize with respect to 6 € [27%¥/2, 1] to obtain the desired bound
(51) for ™,

1
! 1
1Ped™ (1, x1,0)] < (((1 —x1)++2_k+6,,)8 +62) E?, S <xm<2

A similar argument yields
1
27k P @™ (1, x1,0)] < (((1 R +en) s +62) Ei, —<x <2

On the other hand, from (55) we directly obtain

1

1
27K P8, — 9 @™ (1, x1, 0)] < (((1 —xp)s 427k +e,,)8 +62) E?, S <<l

Combined with the previous inequality, this yields the bound in (51) for 3, ®™. O

6.4. Nontrivial energy in a time-like cone. According to the previous step, the points
X, and frequencies k;, in (43) satisfy one of the following two conditions:

(i) Wide pockets of energy. This is when
c(e, E) <2k < C(e, E).
(1) Sharp time-like pockets of energy. This is when

W > Cle, E), |xal < y(e E) < 1.

Using only the bounds (40) and (41), we will prove that there exists y; = y;(€, E) < 1
and E| = E| (€, E) > 0 so that in both cases there is some amount of uniform time-like
energy concentration,

1

-/ (|a,<1><")|2 + |qu><">|2) dx > Ej. (56)
2 Ji=1,lxl<p

For convenience we drop the index # in the following computations. Denote

1
E(y) = —/ (1001 + V. 012) dx,
2 Ji=t.x1<n

where y; € (V—H, 1) will be chosen later. Here y is from line (49) of the previous sub-
section. Thus at time 1 the function ® has energy E(y)) in {|x| < y1}, energy < E
in {y1 < |x| < 1}, and energy < €% E outside the unit disc. Then we obtain different
pointwise estimates for P, ®[1] in two main regimes:

(a) 2¥(1 — y1) < 1. Then we obtain

1 1
IP@Mlle + 274 1PB MWLy S E0)? + (@A =y +e!) E7,

with a further improvement if both
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(al) 2%(1 —y1) <1 <251 — y) and |x| < y, namely

P10+ 27 P @ (1L 0] S B2+ (251 = )7 @ =y + ) E2,

(b) 2(1 — y1) > 1. Then

P10+ 27 P (L 0] S B + (@50 =y ™ e B2l <y

We use these estimates to bound E (y;) from below. We first observe that if 1 — y; is
small enough then case (i) above implies we are in regime (a), and from (43) we obtain

€ SEG?+((Cle. EX1 —y)? +¢*) EY,
which gives a bound from below for E(y;) if 1 — y; and € are small enough.

Consider now the remaining case (ii) above. If we are in regime (a) but not (al), then
the bound in (a) combined with (43) gives

1

1— )2
ESE(71)5+(—( J/l)l +e4)E5,

(I=»)2

which suffices if 1 — y; is small enough. If we are in regime (al) then we obtain exactly
the same inequality directly. Finally, if we are in regime (b) then we achieve an even

better bound
1 — N
€S E(J/l)% +((1 yl) +e4)E§.
-Y

Thus, (56) is proved in all cases for a small enough 1 — y;.

6.5. Propagation of time-like energy concentration. Here we use the flux relation (39)
to propagate the time-like energy concentration in (56) uniformly to smaller times ¢ €
1 1

[, € ]. Precisely, we show that there exists y» = y2(e, E) < land E; = Ex(e, E) > 0
so that

1 I
—/ (100 2+ V0P R)dx = s, 1€l €] (57)
2 i<yt

At the same time, we also obtain uniform weighted Ltz’ .. bounds for Xo®™ outside
smaller and smaller neighborhoods of the cone, namely

/ o Xo®™|2dxdt < E. (58)
c

1 1

[6,,2 ,e,f ]
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The latter bound (58) is a direct consequence of (28), so we turn our attention to
1 1

(57). Given a parameter y» = y2(y1, E1), and any #y € (€2, €], we define 8y and §;
according to

(I =)ty =80 K 81 < 1.

We apply Proposition 3.4 to ® with this set of small constants.
Optimizing the right-hand side in (29) with respect to the choice of §; it follows that

/1 Xopy[@™] dx < /5 Xopy[d™] dx + | In(to/80)| ' E.
s i
Converting the Xy momentum density into the d; momentum density it follows that
1 P 1 P
u—mﬂﬁm@%mwwmarwm7/QMMMWM+mu—mr%.
Sl SIO

Hence by (56) we obtain
(1= yD2Er £ (1= y2) 2E4[@" ]+ [In(1 — )| 'E.
10
We choose y; so that

_ 1
In(1 — )| 'E < (1 —y1)2E;.

Then the second right-hand side term in the previous inequality can be neglected, and
for

1 1
0<Ex < (I=y)2(1 —y)2E;

we obtain (57).

6.6. Final rescaling. The one bound concerning the rescaled wave maps ® which is
not yet satisfactory is (57), where we would like to have decay in n instead of uniform

11
boundedness. This can be achieved by further subdividing the time interval [€7, €,/ ].
1 1

For2 < N < e_% we divide the time interval [€,7, €, ] into about | In€,|/In N sub-
intervals of the form [#, Nt]. By pigeonholing, there exists one such subinterval which
we denote by [#,, Nt,] so that

1 In N
/ / ~1Xo®™ Pdxdt < —2_F. (59)
CEZ,NMJ [Ine,|

We assign to N = N,, the value

N, = e\/Tlnenl.

Rescaling the wave maps @™ from the time interval [#,, Nyz,] to the time interval
[1, N,] we obtain a final sequence of rescaled wave maps, still denoted by ®™ _ defined
on increasing sets C|1,7,], where T, — oo, with the following properties:
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a) Bounded energy,
Es,[@M(t) ~ E, tell, Tl (60)
b) Uniform amount of nontrivial time-like energy,
Eqionn[@WN(0) = Ea, 1 €[1, Ty, @y
c) Decay to self-similar mode,

1
// : ~1Xo®@™ 2dxdr < |logen| 2 E. (62)
€n 1%
C

[1.7n]

6.7. Concentration scales. We partition the set C[l1 00) into dyadic subsets

Ci={t.x)eCli o 2/ <t <2/*},  jeN
We also consider slightly larger sets

1
2
1

Cj=1{tx) e C

X 2/ <t <2/t j eN.

,00

[S']

Then we prove that

Lemma 6.3. Ler @™ be a sequence of wave maps satisfying (60), (61) and (62). Then
for each j € N one of the following alternatives must hold on a subsequence:

(i) Concentration of non-trivial energy. There exist points (t,, x,) € C j, a sequence
of scales r, — 0, and some r = rj with) < r < % so that the following three

bounds hold:
1
EBCr [@M (1) = To £ (63)
1
EBGrm [ @M (ty) < ToFe  ¥eBn, (64
th+rp /2
rn_l/ / |Xo®™ 2dxdt — 0. (65)
ta=ru/2 J B(xy.r)

(ii) Nonconcentration of uniform energy. There exists somer =r; withQ <r < % 50
that the following three bounds hold:

1
Epen @) < gFo V@0 EC, (66)
55;17V2>,[c1><”>](t) > Ey,  when B(0,(1—y)t) CClj ). (67)

/ / [Xo®™ *dxdt — 0. (68)
Cj
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Proof. The argument boils down to some straightforward pigeonholing, and is essen-
tially identical for all j € N, which is now fixed throughout the proof. Given any large
parameter N € N we partition the time interval [2/, 2/*!] into about N2/ equal intervals,

Iy = 2/ + (k — 1)/(1ON), 2/ +k/(10N)], k=1,10N2/.

Then it suffices to show that the conclusion of the lemma holds with C; and c j replaced
by

Ch=cinh xR, Ef:éjmkxk?

We begin by constructing a low energy barrier around C’;. To do this we partition Cf \ Cf
into N sets '

' =1a.x eck L=t |x|<1+l I=1,N
Y "4 4N 4 4N S

By integrating energy estimates we have

N
1
Exi[@M(n)dr < / Ex[®@M](1)dt < ——E.
;/,k € L 10N

Thus by pigeonholing, for each fixed n there must exist /,, so that

I+1

> Eaal@™@ydr <

I=l,—17 &k

E,
10N2

and further there must be some ¢,, € I so that

Jn+l

Z €~k1[q)(n)](tn) ==

J=in—1

For t € I} we have |t — t,| < 1/(10N), and therefore the ¢ section of Cf’l" lies within

=k,l,+1

the influence cone of the ¢, section of C Chin=1 n C Cln A C . Hence it follows that

one has the uniform bound
3
Eqn[®@M ()] < —E, tel.
ol [0 = k

We choose N large enough so that we beat the perturbation energy

3 1
—FE < —Ey.
N 20

Then the set Cf’l" acts as an energy barrier for @ within C 5?, separating the evolution

inside from the evolution outside with a small data region. We denote the inner region
by Ck <In and its union with C In by Ck =l We fix ro independent of n so that

(t,x) € Ck <l — (1} x B(x, 4rp) C c" =l
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To measure the energy concentration in balls we define the functions

Jo i 10,70l X Iy = RY,  fu(r, 1) = sup Epie.n [@™](1).
{x§{T}XB(x,r)C5./;vfln}

The functions f; are continuous in both variables and nondecreasing with respect to r.
We also define the functions

mtlo— Or0l, () = lmf{’ L0k St 2 5g) A 70 2 g
70, otherwise.

which measure the lowest spatial scale on which concentration occurs at time ¢. Due
to the finite speed of propagation it follows that the r,, are Lipschitz continuous with
Lipschitz constant 1,

[ru(t1) — ra()] < |t — 12].

The nonconcentration estimate (66) in case ii) of the lemma corresponds to the case
when all functions 7, admit a common strictly positive lower bound (note that (61) and
(62) give the other conclusions).

It remains to consider the case when on a subsequence we have

lim infr, =0
n—o0 [

and show that this yields the concentration scenario i). We denote “kinetic energy” in
C; by
J

a5=/~ 1 Xo®™ Pdxdt.
Cj

By (62) we know that «, — 0. Using «,, as a threshold for the concentration functions
ry, after passing to a subsequence we must be in one of the following three cases:

Case 1 (r, Dominates). For each n we have r,,(t) > «, in I;. Then we let t,, be the mini-
mum point for r,, in I and set r,? = ru(t,) — 0. By definition we have f, (t,, r,(t,)) =
Ey/10. We choose a point x;,, where the maximum of f; (¢, r,(t,)) is attained. This
directly gives (63). For (64) we observe that, due to the existence of the energy bar-

rier, x,, must be at least at distance 3r( from the lateral boundary of 6?’51”. Hence, if
x € B(xy,, ro) then x is at distance at least 2ro from 85?’51" and (64) follows. For (65)

it suffices to know that r;, (tn)_lozrzl — 0, which is straightforward from the assumptions
of this case.

Case 2 (Equality). For each n there exists t,, € Iy such that «, = r,,(¢,). This argument
is a repeat of the previous one, given that we define r,? = ry(t,) and set up the estimate
(64) around this #,, as opposed to the minimum of r, ().

Case 3 (a, Dominates). For each n we have r,,(t) < ay, in Ix. For t € I set

g(t) = / |Xo®™ (1)|dx.
E’;.Eln



Large Data Wave Maps 261
Then by definition

/ g(t) = a?.
Iy

Let I~k be the middle third of I, and consider the localized averages

1 t+r,(1)/2
= g(s)dsdt.
/1‘,( (@) Ji—r,))2

Since r,, () is Lipschitz with Lipschitz constant 1, if s € [t — r,(¢)/2, t + r,,(t) /2] then
%rn (s) < rp(t) < 2ry(s)and t € [s — ry(s), s + rp(s)]. Hence changing the order of
integration in Z we obtain

t+r,(1)/2
I< 2/ / g(s)dsdr < 4/ g(s)ds = 40:,2,.
Iy Jt

()2 rn(S) I

Hence by pigeonholing there exists some ¢, € I, so that

1 tn+7n (1) /2

g(s)ds < 42| |
Fn(tn) Jty—r(en) /2 !

Then let x;, be a point where the supremum in the definition of f(t,, r,) is attained.
The relations (63)-(66) follow as above. O

6.8. The compactness argument. To conclude the proof of Theorems 1.3,1.5 we consider
separately the two cases in Lemma 6.3:

(i) Concentration on small scales. Suppose that the alternative (i) in Lemma 6.3 holds
for some j € N. On a subsequence we can assume that (z,, x,) — (%o, x0) € C;.
Then we define the rescaled wave maps

v x) = cb(")(tn + Fnt, Xp + FpX)

in the increasing sets B(0, ro/ry) X [— 2] They have the following properties:
a) Bounded energy:

EWMr) < E[@], te [—% %1

b) Small energy in each unit ball:

1 11
v ) < —Ey, tel[-=, =]
Slipr(x,l)[ 1) < 1o o el 5 2]

¢) Energy concentration in the unit ball centered at t = 0, x = O:

1
Epo.n[¥™M1(0) = o Eo
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d) Time-like energy decay: There exists a constant time-like vector X¢ (o, x0)
such that for each x we have

// | X0 (t0, xo)¥ ™ 2dxdt — 0.
[~ Ix B, 1)

Note in part (d) we used the fact that (z,,, x,) — (9, x0).
By the compactness result in Proposition 5.1 it follows that on a subsequence we
have strong uniform convergence on compact sets,

) ) 1 11
v — W in Hy,. | B0, ro/(2r,) x [_5’ 5] ;

3_
where W € H,_ | “isa wave-map. Thus, we have obtained a wave map W defined
on all of [—%, %] x R2, with the additional properties that

ll—oEo = E[V¥] < E[P]

and
Xo(to, x0)¥ = 0.

Then W extends uniquely to a wave map in R x R? with the above properties (e.g.
by transporting its values along the flow of X¢(#y, x0)). After a Lorentz transform
that takes X(g, xo) to 9; the function W is turned into a nontrivial finite energy
harmonic map with energy bound £[WV] < E[D].

(i1) Nonconcentration. Assume now that the alternative (ii) in Lemma 6.3 holds for
every j € N. There there is no need to rescale. Instead, we successively use directly
the compactness result in Proposition 5.1 in the interior of each set C; N C, [22’ )"
We obtain strong convergence on a subsequence

®™ 5 ¥ in Hlloc(cﬁz’oo))

3_
with & € H? E(C2 ). From (67) and energy bounds (e.g. (61)) we obtain

loc [2,00)
0 < Ez < sup&po,—2)[¥]() < E[P].
=2

From (68) it follows also that
Xo¥ =0.

By rescaling (i.e. extending W via homogeneity), we may replace the interior of the
translated cone C [22 o) with the interior of the full cone ¢ > r and retain the assumptions
on W, in particular that it is non-trivial with finite energy up to the boundary ¢ = r. But
this contradicts Theorem 4.1, and therefore shows that scenario (i) above is in fact the
only alternative.
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