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Abstract

Regularizing the least-squares criterion with the total number of coefficient changes, it is possible to estimate time-
varying (TV) autoregressive (AR) models with piecewise-constant coefficients. Such models emerge in various
applications including speech segmentation, biomedical signal processing, and geophysics. To cope with the
inherent lack of continuity and the high computational burden when dealing with high-dimensional data sets, this
article introduces a convex regularization approach enabling efficient and continuous estimation of TV-AR models.
To this end, the problem is cast as a sparse regression one with grouped variables, and is solved by resorting to
the group least-absolute shrinkage and selection operator (Lasso). The fresh look advocated here permeates
benefits from advances in variable selection and compressive sampling to signal segmentation. An efficient block-
coordinate descent algorithm is developed to implement the novel segmentation method. Issues regarding
regularization and uniqueness of the solution are also discussed. Finally, an alternative segmentation technique is
introduced to improve the detection of change instants. Numerical tests using synthetic and real data corroborate
the merits of the developed segmentation techniques in identifying piecewise-constant TV-AR models.

1. Introduction
Autoregressive (AR) models have been the workhorse for
parametric spectral estimation since they form a dense
set in the class of continuous spectra and, in many cases,
they approximate parsimoniously the spectrum of a given
random process [1], Chap. 3]. These are among the main
reasons why AR models have been widely adopted in var-
ious applications as diverse as speech modeling [2-5],
electroencephalogram (EEG) signal analysis [6], and geo-
physics [7]. While AR modeling of stationary random
processes is well appreciated, a number of signals
encountered in real life are non-stationary. This justifies
the growing interest toward non-stationary signal analysis
and time-varying (TV) AR models, which arise naturally
in speech analysis due to the changing shape of the vocal
tract as well as in EEG signal analysis due to the changes
in the electrical activity of neurons. If the TV-AR coeffi-
cient trajectories can be well approximated by superim-
posing a small number of basis sequences, non-stationary
modeling reduces to estimating via, e.g., least-squares
(LS), the basis expansion coefficients [7]. On the other

hand, it has been well-documented that piecewise-
constant AR systems excited by white Gaussian noise are
capable of modeling real-world signals such as speech
and EEG [6-8]. Piecewise-constant AR models constitute
a subset of TV-AR models wherein AR coefficients
change abruptly. In this case, basis expansion techniques
fall short in estimating the change points [8].
Exploiting the piecewise constancy of TV-AR models,

several methods are available to detect the changing
instants of the AR coefficients, and thus facilitate what is
often referred to as signal segmentation. The literature on
signal segmentation is large since the topic is of interest in
signal processing, applied statistics, and several other
branches of science and engineering. Recent advances can
be mainly divided in two categories. The first class adopts
regularized LS criteria in order to impose piecewise-
constant AR coefficients. To avoid “oversegmentation,” the
LS cost is typically regularized with the total number of
changes [6]. The resulting estimator can be implemented
via dynamic programming (DP), which incurs computa-
tional burden that scales quadratically with the signal
dimension. For large data sets, such as those considered in
speech processing, this burden refrains practitioners from
applying DP to segmentation, and heuristics are pursued
instead based on the generalized likelihood ratio test
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(GLRT), or, approximations of the maximum likelihood
approach [2], [[7], p. 401], [9]. The second class of methods
relies on Bayesian inference and Markov Chain Monte
Carlo (MCMC) methods [3-5]. A distinct advantage of this
class is that model order selection can be performed auto-
matically, and a variable model order can be chosen per
segment. However, Bayesian techniques are known to
require large computational resources.
The algorithm for change detection of piecewise-

constant AR models developed in this article belongs to
the first class of methods, and its first novelty consists
in developing a new regularization function which
encourages piecewise-constant TV-AR coefficients while
being convex and continuous; hence, it can afford effi-
cient convex optimization solvers. To this end, it is
shown that the segmentation problem can be recast as a
sparse regression problem. The regularization function in
[6] is then relaxed with its tightest convex approxima-
tion. It turns out that the resultant change detector is a
modification of the group least-absolute shrinkage and
selection operator (Lasso) [10].
With the emphasis placed on large data sets, a candidate

algorithm for implementing the developed change detector
is a block-coordinate descent iteration, which is provably
convergent to the group Lasso solution. Surprisingly, it
turns out that each iteration of the block-coordinate des-
cent can be implemented at complexity that scales linearly
with the signal dimension, thus encouraging its application
to large data sets. Regularization tuning and uniqueness of
the group Lasso solution are also discussed.
The second novelty of the present study is an alternative

change-point retrieval algorithm based on the smoothly-
clipped absolute deviation (SCAD) regularization. The
associated non-convex problem is tackled by resorting to a
local linear approximation (LLA), which yields iterated
weighted group Lasso minimization problems that can be
solved via block-coordinate descent. Numerical tests using
synthetic and real (speech and sound) data are performed
to corroborate the capability of the developed algorithms
to identify piecewise-constant TV-AR models.
The remainder of the article is structured as follows.

Section 2 deals with piecewise-constant TV-AR model
estimation preliminaries. In Section 3, the problem at
hand is recast as a sparse linear regression, and the novel
group Lasso approach is introduced. An efficient block-
coordinate descent algorithm is developed in Section 4,
while tuning issues and uniqueness of the group Lasso
solution are addressed in Section 5. Section 6 introduces a
non-convex segmentation method based on the SCAD
regularization to enhance the sparsity of the solution,
which translates to retrieving more precisely the change
instants. Numerical tests are presented in Section 7, and
concluding remarks are summarized in Section 8. The
Appendix is devoted to technical proofs. Notation:

Column vectors (matrices) are denoted using lower-case
(upper-case) boldface letters; calligraphic letters are
reserved for sets; (·)T stands for transposition, N (μ, σ 2)
denotes the Gaussian probability density function
with mean μ and variance s2; ⊗ denotes the Kronecker
product; 0L is the L-dimensional column vector with all
zeros, and IL is the L-dimensional identity matrix. The ℓp
norm of x := [x1, . . . , xL]T ∈ R

L is defined as

‖x‖p :=
(∑L

l=1
|xl|p

) 1
p
..

2. Preliminaries and problem statement
Let
{
yn
}N
n=−L

denotes the realization of an Lth order TV-

AR process obeying the discrete-time input-output rela-
tionship

yn =
L∑
l=1

al,nyn−l + vn, n = 0, 1, . . . ,N (1)

where vn denotes the zero-mean white input noise at
time n with variance σ 2 := E

[
v2n
]

< +∞, and aℓ,n is the
ℓth TV-AR coefficient at time n. With
hn := [yn−1, yn−2, . . . , yn−L]T ∈ R

L and
an := [a1,n, a2,n, . . . , aL,n]

T ∈ R
L, (1) can be rewritten as

yn = hT
nan + vn, n = 0, 1, . . . ,N. (2)

Suppose that abrupt changes in the spectrum of {yn}
occur, due to piecewise-constant changes of an; that is,

an = ak, nk ≤ n ≤ nk+1 − 1 (3)

for k = 0,1,..., K, where K denotes the number of abrupt
changes in the TV-AR spectrum, and nk the time instant
of the kth abrupt change. The interval [nk, nk+1 - 1] is
referred to as the kth segment. Without loss of generality,
n0 = 0 and nK+1 - 1 = N.
The goal is to estimate the instants {nk}Kk=1 where the

given time series {yn} is split into K + 1 (stationary) seg-
ments, and also the constant AR coefficients per segment,
i.e., {ak}Kk=0. The number of abrupt changes, namely K, is
not necessarily known.

2.1. Optimum segmentation of TV-AR processes
Modeling real world signals using AR processes is well
motivated because, for a given continuous spectral density
S(f), it is possible to find an AR process (of high enough
order) whose spectral density is arbitrarily close to S(f)
[11], p. 130]. On the other hand, depending on the under-
lying non-stationary phenomena, variations of the AR
coefficients can be either slow or abrupt. The problem sta-
ted in Section 2 is often referred to as signal segmentation,
and emerges in numerous applications ranging from
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speech processing [2-5] to EEG signal analysis [6]. Regu-
larized LS has been the workhorse approach for analyzing
this kind of non-stationary processes [12-15]. Denoting
with μ a positive tuning constant, a Schwarz-like regulari-
zation is typically adopted to estimate jointly the change
points and the AR coefficients, i.e.,

{ân}Nn=0 := arg min
{an}Nn=0

[
1
2

N∑
n=0

(yn − hT
nan)

2
+ μ

N∑
n=1

δ0L(an − an−1)

]
(4)

where δ0L
(·) : RL → {0, 1} is defined as

δ0L(a) :=
{
0, if a = 0L
1, otherwise.

(5)

The non-convex regularization term
∑N

n=1 δ0L(an − an−1)

not only captures the total number of changes, but also
encourages piecewise-constant {ân}Nn=0. Clearly, the larger
the μ, the smaller the total number of changes. The estima-
tor in (4) is optimal in the maximum a posteriori (MAP)
sense when the change occurrences are modeled as Ber-
noulli random variables, and vn ∼ N (0, σ 2)[6]. In some
problems, the total number of changes is known, and the
following constrained version of (4) is adopted instead:

{ân}Nn=0 = arg min
{an}Nn=0

N∑
n=0

(yn − hT
nan)

2

s.t.
N∑
n=1

δ0L(an − an−1) = K.

(6)

From a practical point of view, the minimization in (4)
or (6) is challenging since an exhaustive search over all
possible sets of change instants has to be performed.
However, several techniques based on DP, simulated
annealing and interactive conditional model algorithms
have been developed to evaluate (4) [6,16]. Despite the
fact that DP approaches solve (4) in polynomial time,
the computational complexity is quadratic in N, which
limits their applicability to signal segmentation in prac-
tice. In typical applications, N can be very large (up to
several thousands), and even quadratic complexity can-
not be afforded. On the other hand, when applied to
real data, the performance of the estimator in (4) is not
satisfactory [17].
To overcome these limitations of (4), heuristic

approaches based on the GLRT are used in real world
applications [[7], p. 401], [9,18,19]. However, GLRT-
based change detectors are sensitive to modeling errors,
and require fine tuning of the associated detection
thresholds.
In what follows, a convex relaxation of the cost in (4)

is advocated based on recent advances in sparse linear
regression and compressive sampling. To this end, (4) is
first reformulated to a sparse regression problem with

non-convex regularization that is successively relaxed
through its tightest convex approximation. The conse-
quent optimization rule will yield sparse vector estima-
tors which result in surprisingly accurate retrieval of
change-points. Those are obtained by an efficient block-
coordinate descent iteration that incurs only linear com-
putational burden and memory storage. Unlike (4),
based on well-established results in statistics, it will be
further argued that the resultant TV-AR model esti-
mates are a continuous function of the data.

3. Sparse linear regression and group lassoing
Let y := [y0, y1, . . . , yN]T ∈ R

N+1 denotes the observation

vector, a :=
[
aT0,a

T
1, . . . , a

T
N

]T ∈ R
(N+1)L,

mn := [0TL , . . . , 0
T
L︸ ︷︷ ︸

n

,hT
n , 0

T
L , . . . , 0

T
L︸ ︷︷ ︸

N−n

]T ∈ R
(N+1)L

for n =

0,1,..., N, and M := [m0,m1, . . . ,mN]T ∈ R
N+1×(N+1)L,

such that

N∑
n=0

(yn − hT
nan)

2
=
∥∥y - Ma

∥∥2
2 . (7)

Define the “difference” vector dn ∈ R
L as

dn =
{
an, if n = 0
an − an−1, otherwise

(8)

and d :=
[
dT
0, d

T
1, . . . , d

T
N

]T
∈ R

(N+1)L. Observe that dn

= 0L for n >0 if and only if there is no change in the
TV-AR coefficients between time instants n - 1 and n.
Clearly, it is possible to recover {an}Nn=0 from { dn} N

n=0
since

an =
n∑
n′

dn′ . (9)

Let T ∈ R
N+1×N+1 denotes a lower triangular matrix

with all nonzero entries equal to one and
X := M(T ⊗ IL) ∈ R

(N+1)×(N+1)L, having the following
structure:

X =

⎡⎢⎢⎢⎢⎢⎣
hT
0 0TL · · · · · · 0TL

hT
1 hT

1 0TL · · · 0TL
...

...
...

. . .
...

hT
N−1 hT

N−1 hT
N−1 hT

N−1 0TN
hT
N hT

N hT
N hT

N hT
N

⎤⎥⎥⎥⎥⎥⎦ . (10)

Since a = (T ⊗ IL)d, an equivalent formulation of (4)
in terms of { dn} N

n=0 can be given as [cf. (7)]

{d̂n}Nn=0 := arg min
{dn}Nn=0

[
1
2

∥∥y − Xd
∥∥2
2 + μ

N∑
n=1

δ0L(dn)

]
.(11)
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What makes the formulation in (11) attractive but also
challenging is the non-convex and discontinuous Schwarz-
like regularization term. The latter “pushes” most of the
{dn}Nn=1 vectors toward 0L, while d0 is not penalized. As a

consequence, the vector d̂ :=
[
d̂
T
0, d̂

T
1, . . . , d̂

T
N

]T
is group

sparse, and the non-zero group indexes correspond to the
change instants of the TV-AR coefficients. Recently, a con-
vex model selector with grouped variables was put forth by
[10], and successfully applied to biostatistics and compres-
sive sampling [20]. It generalizes the (non-grouped) least-
absolute shrinkage and selection operator (Lasso) [21] to
regression problems where the unknown vector exhibits
sparsity in groups; hence, its name group Lasso. The crux
of group Lasso is to relax the Schwarz-like regularization
in (11) with its tightest convex approximation.
The group Lasso is advocated here for catching

change points by estimating the difference vectors as

{̂dn}Nn=0 = arg min
{dn}Nn=0

[
1
2

∥∥y − Xd
∥∥2
2 + λ

N∑
n=1

∥∥dn
∥∥
2

]
1(12)

where l is a positive tuning parameter. It is known
that the group Lasso regularization encourages group
sparsity; that is, d̂n = 0L for most n >0 [10]. Again, the
larger the l, the sparser the d̂.
The role of the regularization term in (12) is illustrated

next through a simple example. Select L = 2 for simplicity,
and let d:= [d1, d2]

T. Consider the family of penalties

‖d‖p2 = (d21 + d22)
p
2, where 0 <p ≤ 2. Figure 1 depicts the

penalties ‖d‖p2 for p = 2,1,0.5, and 0.1. Clearly, ‖d‖p2 is con-
vex for 1 ≤ p ≤ 2. On the other hand, ‖d‖p2 is non-convex
for 0 <p < 1 but it comes close to δ0L(d)(d) as p approaches
0. This demonstrates that ║dn║2 is the tightest convex
approximation of δ0L(dn) (dn). Furthermore, ║dn║2 is non-
differentiable at dn = 0L, which enables group Lasso to
encourage group sparsity. Needless to say that convexity
of the regularizing functions avoids the presence of local
minima, and allows for solving the resulting optimization
problem efficiently. To this end, an efficient block-coordi-
nate descent algorithm is developed next, with computa-
tional complexity per iteration that scales linearly with N.
But first two remarks are in order.
Remark 1. Different from Schwarz-like regularization,

Figure 1 illustrates that the group Lasso one grows
unbounded. This makes the resultant estimator biased.
Nevertheless, unlike the Schwarz-like regularization, the
group Lasso one is continuous which renders the resulting
estimator more stable when applied to real data; see also
[10,22]. A continuous regularization function that reduces
the bias of the group Lasso will be discussed in Section 6.
Remark 2. Convex relaxation for detecting changes in

the mean of non-stationary processes was recently men-
tioned in [12], and analyzed in [17]. For the mean-change
problem, the tightest convex approximation of the
Schwarz-like regularized LS is provided by the Lasso,
which can afford efficient solvers such as the least-angle
regression (LARS) algorithm [23]. However, for the group
Lasso cost proposed here to catch changes in TV-AR
models, an exact LARS-like solver is not available [10];
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Figure 1 Regularization family‖d‖p2 for L = 2 and (a)p = 2, (b)p = 1, (c)p = 0.5, and (d)p = 0.1.
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thus, the pursuit of efficient algorithms for solving (12) is
well motivated. This is the theme of the ensuing section.

4. Block-coordinate descent solver
The crux of block-coordinate descent is to iterate mini-
mizations of the function of interest over a group of
variables, while keeping the rest fixed. Consider the
objective function

J(d) :=
1
2

∥∥y − Xd
∥∥2
2 + λ

N∑
n=1

∥∥dn∥∥2 (13)

and let d(i−1) := [d(i−1)T

0 , d(i−1)T

1 , . . . , d(i−1)T

N ]T denotes

the provisional solution at iteration i-1. The nth step of
the ith block-coordinate descent iteration entails mini-
mization of J(d) only with respect to dn, while retaining
the provisional estimates at iteration i-1, namely

{d(i−1)
n′ }Nn′=n+1

, and the newly updated blocks at iterations

i, namely {d(i)
n′ }n−1

n′=0
. Thus, block-coordinate descent at

the nth step of the ith iteration yields

d(i)n = argmin
dn

J
([

d(i)0 , . . . , d(i)n−1, dn, d
(i−1)
n+1 , . . . , d(i−1)

N

])
(14)

for n = 0,1,..., N, and i >0. Skipping constant terms, J
(d) in (13) can be rewritten as

J(d) =
1
2
dTXTXd − dTXTy + λ

N∑
n=1

∥∥dn
∥∥
2 =

1
2
dTRd − dTr + λ

N∑
n=1

∥∥dn
∥∥
2 (15)

where R := XTX, and r := XTy. Upon defining

Rn:n′ :=
∑n

′

m=n hmh
T
m
and rn:n′ :=

∑n
′

m=n hmym for n’ ≥ n , it

holds that

R =

⎡⎢⎢⎢⎢⎢⎣
R0:N R1:N · · · RN−1:N RN:N

R1:N R1:N · · · RN−1:N RN:N
...

...
. . .

...
...

RN−1:N RN−1:N · · · RN−1:N RN:N

RN:N RN:N · · · RN:N RN:N

⎤⎥⎥⎥⎥⎥⎦ (16)

and

r =

⎡⎢⎢⎢⎢⎢⎣
r0:N
r1:N
...

rN−1:N

rN:N

⎤⎥⎥⎥⎥⎥⎦ . (17)

While for n = 0 (14) reduces to an LS problem, for n
>0, omitting again irrelevant terms, it can be rewritten
as

d(i)
n = arg min

dn∈RL

[
1
2
dTnRn:Ndn + dT

ng
(i)
n + λ

∥∥dn
∥∥
2

]
(18)

with

g(i)n := Rn:N

⎛⎝n−1∑
n′=0

d(i)
n′

⎞⎠ +
N∑

n′=n+1

Rn′ :Nd
(i=1)
n′ − rn:N . (19)

The problem in (18) is a convex second-order cone
program (SOCP). Typically, L ≪ N and (18) can be
solved with fast optimization solvers based on interior
point methods [24], at worst-case complexity O(L3.5).
Recently, it has been shown that the solution of (18) can
be obtained as a function of the solution of the follow-
ing scalar problem

γ
(i)
n := argmin

γ≥0

[
γ

(
1 − 1

2
g(i)n

T
(

γRn:N +
λ2

2
IL

)−1

g(i)n

)]
(20)

whose solution is given by [25]

γ
(i)
n =

⎧⎪⎨⎪⎩
0, if

∥∥∥g(i)n ∥∥∥
2

≤ λ

γ > 0 :

∥∥∥∥ λ
2

(
γRn:N + λ2

2 IL
)−1

g(i)n

∥∥∥∥2
2
= 1, otherwise.

(21)

Finally, d(i)
n in (18) can be obtained from γ

(i)
n in (21) as

d(i)n =

⎧⎨⎩0L, if
∥∥∥g(i)n ∥∥∥

2
≤ λ

−γ
(i)
n

(
γ
(i)
n Rn:N + λ2

2 IL
)−1

g(i)n , otherwise.
(22)

Notice that if
∥∥∥g(i)n ∥∥∥

2
≤ λ, the solution of (18) is

d(i)
n = 0L. Since it is expected that the solution of (12) is

sparse, solving (18) is trivial most of the time. If∥∥∥g(i)n ∥∥∥
2

> λ, d(i)
n can be obtained via interior point meth-

ods or by (numerically) solving the scalar equation in
(21), which admits fast solvers via, e.g., Newton-Raphson
iterations, as in [25].
Despite the fact that block-coordinate descent is typi-

cally adopted for large-size sparse linear regression,
what makes it particularly appealing for catching
change-points is the fact that the vector g(i)n can be
updated recursively in n due to the special structure of
R in (16). Upon defining

c(i)n :=
n=1∑
n′=0

d(i)
n′ (23)

s(i)n :=
N∑

n′=n+1

Rn′ :Nd
(i−1)
n′ (24)

it follows from (19) that

g(i)n = Rn:Nc
(i)
n + s(i)n − rn:N (25)
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which shows that evaluating g(i)n requires the vectors

c(i)n and s(i)n Given {d(i−1)
n }Nn=0 from the (i - 1)st iteration,

and initializing c(i)n and s(i)n at n = 0 as c(i)0 = 0L and

s(i)0 =
∑N

n=1 Rn:Nd
(i−1)
n , it is possible to recursively evalu-

ate c(i)n and s(i)n given c(i)n−1, s
(i)
n−1 and d(i)

n−1 from step n-1

for n >0 as

c(i)n = c(i)n−1 + d(i)
n−1

(26)

s(i)n = s(i)n−1 − Rn:Nd
(i−1)
n . (27)

The block-coordinate descent algorithm is summarized
in Algorithm 1. Interestingly, matrix X ∈ R

(N+1)×(N+1)L in
(12) does not have to be stored since only {Rn:N}Nn=0 and
{rn:N}Nn=0 suffice to implement Algorithm 1. Thus, the
memory storage and complexity to perform one block-
coordinate descent iteration grow linearly with N. This
attribute renders the block-coordinate descent appealing
especially for large-size problems where DP approaches
tend to be too expensive.
Regarding convergence, the ensuing assertion is a

direct consequence of the results in [26].
Proposition 1. The iterates

d(i) :=
[
d(i)T

0 , d(i)T

1 , . . . , d(i)T

N

]T
obtained by Algorithm 1

converge to the global minimum of (12); that is,

limi→∞d(i) = d̂.
Block-coordinate descent will also be the basic build-

ing block for solving the non-convex problem intro-
duced in Section 6 to improve the retrieval of change-
points. But first, it is useful to consider two issues of the
group Lasso change detector for TV-AR models.
Given {Rn:N, rn:N}Nn=0
Initialize with d(0)

n = 0L for n = 1, ... , N
for i > 0 do
for n = 0,1,..., N do
if n = 0 then

c(i)0 = 0L
s(i)0 =

∑N
n=1 Rn:Nd

(i−1)
n−1

g(i)0 = s(i)0 − r0:N
d(i)
0 = −R−1

0:Ng
(i)
0

else

c(i)n = c(i)n−1 + d(i)
n−1

s(i)n = s(i)n−1 − Rn:Nd
(i−1)
n

g(i)n = Rn:Nc
(i)
n + s(i)n − rn:N

if
∥∥∥g(i)n ∥∥∥

2
≤ λthen

d(i)
n = 0L

else

d(i)
n = argmindn∈RL

[
1
2
dTnRn:Ndn + dT

ng
(i)
n + λ

∥∥dn
∥∥
2

]
Algorithm 1: Block-coordinate descent

algorithm

5. Regularization and uniqueness issues
Performance of model selection with grouped variables
via group Lasso and related approaches has been ana-
lyzed in [10,20,27], while asymptotic analysis has been
pursued in [28,29]. In this section, a couple of issues are
investigated regarding the group Lasso cost function,
and the uniqueness of its minimum.

5.1. Tuning the regularization parameter
Selection of l is a critical issue since larger l’s promote
sparser solutions, which translate to fewer changes in
the TV-AR spectrum. However, larger l’s increase the
estimator bias as well. If the number of changes present
are known a priori by other means, or, if a certain level
of segmentation can be afforded, l can be tuned accord-
ingly by ‘trial and error,’ or by cross-validation. But in
general, analytic methods to automatically choose the
“best” value of l are not available. In essence, selecting
the regularization parameters is more a matter of engi-
neering art, rather than systematic science.
In this section, heuristic but useful guidelines are pro-

vided to choose l based on rigorously established lower
bounds of this parameter. Given X ∈ R

N+1×(N+1)L in
(10), define Xn ∈ R

N+1×L,n = 0, 1, . . . ,N such that X =
[X0, X1,..., XN]. To bound l, we will rely on the follow-
ing result; see Appendix 1 for the proof.
Proposition 2. If X0 has full column rank, then

d̂ = [d T
0,c, 0

T
L , . . . , 0

T
L ]

T with d 0,c := (XT
0X0)−1XT

0y, if and

only if λ ≥ λ∗ : maxn=1,...,N
∥∥XT

n(X0d 0,c − y )
∥∥
2

If l exceeds a threshold, which is specified by the
regression matrix and the observations, Proposition 2
asserts that d̂0 = d 0,c and d̂n = 0L for n = 1,..., N. This,
along with (9), implies that ân = d 0,c for n = 0, 1,..., N;
that is, no change occurs in the coefficients of the TV-
AR process. To avoid this trivial (change-free) solution,
the guideline provided by Proposition 2 is that l must
be chosen strictly less than l*. Our extensive simula-
tions suggest that setting l equal to a small percentage
of l*, say 5-20%, results in satisfactory estimates.

5.2. Uniqueness of the sparse solution
Uniqueness of sparse linear regression with non-
grouped variables has been studied in [30-32]. Next,
uniqueness issues in recovering sparse vectors with
group-variables are explored by exploiting the determi-
nistic structure of the regression matrix in (12). The
cost function in (12) is not strictly convex since X is a
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fat matrix, and the regularization term is not strictly
convex; see also Figure 1. On the other hand, the block-
coordinate descent algorithm developed in Section 4 is
guaranteed to converge to a global minimum. In the fol-
lowing, a criterion is introduced to check a posteriori
whether the obtained solution is unique for a given
group-sparsity level.
Traditionally, the support of a sparse vector is defined as

the set of indexes corresponding to the non-zero entries.
In the group-sparsity framework herein, a different defini-
tion of support is required. Indeed, the vector of interest
here, namely d = [d T

0, d
T
1, . . . , d

T
N]

T comprises N + 1
groups of L-dimensional variables. Since the term d0 is
not penalized in (12), d̂0 �= 0L almost surely. Define the
group support (g-support) of d̂ to be the set containing the
indexes relative to the nonzero group of variables; that is,

g - supp(d̂) := {n ∈ {1, . . . ,N} : d̂n �= 0L} In the following,
when G := {s1, . . . , s|G|} ⊂ {1, . . . ,N} denotes the g-sup-
port of d, the set G is assumed ordered; i.e., sj < sk for each
j < k.
The following lemma establishes a property of the

matrix X in (10); see Appendix 2 for the proof.
Lemma 1. If any L out of N + 1 vectors {h n}Nn=0 are line-

arly independent, for any g-support G = {s1, . . . , s|G|} such
that (|G| + 1)L ≤ N + 1, s1 ≥ L, s|G| ≤ N − L + 1, and |sj -
sk| ≥ L for each j ≠ k, the matrix

XG := [X0, Xs1,...,Xs|G| ] ∈ R
N+1×(|G|+1)L has full column

rank.
Lemma 1 asserts full column rank of the submatrix

XG, if it is formed by the columns of X corresponding to
the non-zero indexes of any sparse vector whose g-sup-
port is sufficiently small, and the non-zero groups are
sufficiently distant from each other.
Next, Lemma 1 is exploited to establish an interesting

property for the solutions of (12); see Appendix 3 for
the proof.
Proposition 3. If any L out of N+1 vectors {h n}Nn=0

are linearly independent, for any g-support
G = {s1, . . . , s|G|} ⊂ {1, . . . ,N} such that
(|G| + 1)L ≤ N + 1, s1 ≥ L, s|G| ≤ N − L + 1, and |sj - sk|
≥ L for each j ≠ k, there exists at most one solution of
(12) g-supported in G.
Proposition 3 ensures that if d̂ is g-supported in G,

and is sufficiently sparse with non-zero groups suffi-
ciently far apart, then d̂ is the only solution of (12)
g-supported in G.
Remark 3. Analysis of the group Lasso and its modifi-

cations has revealed that its performance can be close to
the Schwarz-regularized LS either when the regression
matrix is sufficiently block incoherent, or, when the
block restricted isometry property holds [10,27]. If the
regression matrix can be chosen by the designer, and it
is randomly drawn from selected distributions (e.g.,

Gaussian or Bernoulli), these analyzes provide useful
connections between problems (11) and (12). In the pro-
blem at hand however, the regression matrix is fixed,
and its blocks [X0, X1,..., XN] are highly correlated. In
this case, the relationship between the solutions of (11)
and (12) is much less understood, and constitutes an
interesting future research direction.

6. Continuity, bias and the group SCAD
As already pointed out, convex relaxation of the
Schwarz-like regularization was developed in [12,17] for
the mean-change problem using the (non-grouped)
Lasso. Numerical results in [17] reveal that the Lasso
tends to detect a “cloud” of small change points around
an actual change. Post-processing via DP to select a few
of the estimated change instants was proposed in [17].
Moreover, due to the bias introduced by the Lasso, once
the change points are obtained, another step is required
to re-estimate the mean within a segment. In the follow-
ing, a novel change detector is developed based on
recent advances in model selection via non-convex regu-
larization. The resulting estimator reduces the bias of
group Lasso and can afford a convergent optimization
solver. The corresponding algorithm is based on itera-
tive instantiations of weighted group Lasso, which is
capable of enhancing the sparsity of the solution [33,34],
and thus improving the precision of the detected change
points.
Attributes of a “good” regularization function are deli-

neated in [22], and three properties are identified to this
end:

• Unbiasedness. The estimator has to be unbiased
when the true unknown parameter has large
amplitude.
• Sparsity. The estimator has to set small-amplitude
coefficients to zero to reduce the number of
variables.
• Continuity. The estimator has to be continuous in
the data to avoid instability when estimating (non-)
zero variables.

To appreciate these properties, a simple setting is pre-
sented next. Consider estimating a scalar parameter, call
it d, in additive noise v, based on the scalar observation
y = d + υ. In its general form, the regularized LS
approach yields

d̂ = argmin
d

[
1
2
(y − d)2 + pλ(|d|)

]
(28)

where pl(|d|) is the regularization function. The Lasso
regularization is pLassoλ (|d|) = λ |d| while the Schwarz-like
regularization is
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pSchwarzλ (|d|) =
{
0, if d = 0
λ, otherwise.

(29)

In both cases, the estimate d̂ can be found in closed
form, and the dependence of d̂ on y is given as

d̂Lasso =
{
0, if

∣∣y∣∣ < λ

sign(y)
(∣∣y∣∣− λ

)
, otherwise

(30)

d̂Schwarz =
{
0, if

∣∣y∣∣ < √
2λ

y, otherwise.
(31)

The non-linear estimation rules in (30) and (31) are
depicted in Figure 2a,b, respectively, for l = 2. Observe
that both regularization functions effect sparsity, since
coefficients with small amplitude are set to 0. The
Schwarz-like regularization yields unbiased estimates,
but the solution is not continuous with respect to y.
Hence, small variations of y or l may result in large var-
iations of d̂ (this happens when one is uncertain whether
to set the coefficient to 0 or not). On the other hand,
the Lasso regularization possesses continuity but the
estimates are biased, because in addition to small, large-
amplitude coefficients are “shrunk” too.
To overcome the limitations of these regularization

functions, the following smoothly clipped absolute devia-
tion (SCAD) regularization can be used with a >2 [22]

pSCADλ (|d|) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λ |d| , if |d| ≤ λ

−d2 − 2 |d| aλ + λ2

2(a − 1)
, ifλ < |d| ≤ aλ

λ2

2
(a + 1), |d| > aλ

(32)

to obtain estimates given by

d̂SCAD =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if

∣∣y∣∣ ≤ λ

sign(y)(
∣∣y∣∣− λ), if λ < |d| ≤ 2λ

(a − 1)y − sign(y)aλ
a − 2

, if 2λ <
∣∣y∣∣ ≤ aλ

y,
∣∣y∣∣ > aλ.

(33)

The data dependence of d̂SCAD is depicted in Figure 2c
for l = 2 and a = 3.7. Observe that the SCAD enjoys
the three aforementioned attributes of a desirable regu-
larization function.
Motivated by this scalar example, we propose as an

alternative to (12), the following group SCAD approach
for catching change-points:

{d̂n}Nn=0 = arg min
{d n}Nn=0

[
1
2

∥∥y − Xd
∥∥2
2 +

N∑
n=1

pSCADλ (
∥∥d n

∥∥
2)

]
. (34)

The problem in (34) is non-convex and its exact mini-
mization is challenging due to the presence of local
minima. Nevertheless, it is possible to generalize the
iterated local linear approximation (LLA) of [34] in
order to ensure converge to a stationary point of the
cost in (34). Let pSCAD

′
λ (d) denote the derivative of

pSCADλ (d)for d≥0; that is,

pSCAD
′

λ (d) :=

⎧⎪⎪⎨⎪⎪⎩
λ, if d ≤ λ
aλ − d
(a − 1)

, if λ < d ≤ aλ

0, d > aλ.

(35)

The idea behind the LLA is to approximate pSCAD
′

λ (|d|)
with its linear expansion around do; that is

pSCADλ (|d|) ≈ pSCADλ (|do|) + pSCAD’
λ (|do|)(|d| − |do|). (36)

Given a provisional estimate of
{
dn
}N
n=0

at iteration j -

1, namely
{
d̂
[j−1]
n

}N
n=0

, the iterated LLA of (34) is

{
d̂
[j]
n

}N
n=0

= arg min
{d n}Nn=0

[
1
2

∥∥y − Xd
∥∥2
2 +

N∑
n=1

pSCAD
′

λ

(∥∥∥∥d̂[j−1]
n

∥∥∥∥
2

)∥∥d n
∥∥
2

]
(37)

for j = 1,..., J. Since pSCAD
′

λ

(∥∥∥∥d̂[j−1]
n

∥∥∥∥
2

)
are non-nega-

tive constants, the cost in (37) is convex, and can be
minimized using the block-coordinate descent algorithm

of Section 4. The role of the weights pSCAD
′

λ

(∥∥∥∥d̂[j−1]
n

∥∥∥∥
2

)
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Figure 2 Regularized LS estimation rules in the scalar case: (a) (group) Lasso, (b) Schwarz-type regularization, and (c) SCAD.
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is to avoid penalizing terms that, most likely, are non-
zero. Function pSCAD

′
λ (|d|) is depicted in Figure 3 for l =

2, a = 3.7, and d ≥ 0. It is clearly a decreasing function
of its argument. More precisely, if 0 ≤ d ≤ l, then
pSCAD

′
λ (d) = λ hence, the regularization parameter is as
large as the group Lasso. If l ≤ d ≤ al, the regulariza-
tion parameter is linearly decreasing until d ≥ al, where
the regularization parameter is zero. Thus, the expres-
sion in (37) represents an iterated weighted group Lasso.

Furthermore, if initialized with d̂
[0]

= 0(N+1)L = 0(N+1)L,

the first iteration of (37) corresponds to the
(unweighted) group Lasso, and few iterations of the type
in (37) are required for convergence.
Remark 4. In principle, one could also apply a block-

coordinate descent iteration to minimize (34) directly.
The resulting iterates converge to a local minimum of
(34) that depends on the starting points; see also [26].
In general, it is impossible to assess properties of this
solution. Instead, the solution of the LLA in (37) has
provable merits in estimating the true support of sparse
signals [34].
Remark 5. Recently, greedy algorithms such as the

matching pursuit and the orthogonal matching pursuit
have been shown to approach the performance of (11)
and (12) when the regression matrix is sufficiently block
incoherent, or, when the block restricted isometry prop-
erty holds [27]. In the problem at hand, wherein the
regression matrix exhibits correlation among blocks,
simulated tests have shown that greedy algorithms suffer
from severe error propagation. In fact, a cloud of change
points is typically declared around a true change point.
For these reasons, greedy algorithms will not be consid-
ered hereafter.
Remark 6. As already mentioned in the Introduction,

one advantage of Bayesian techniques is that automatic
model selection can be performed on a per-segment

basis at the price of increasing computational cost. The
convex relaxation developed in Section 3 can be modified
to perform model selection too. Indeed, setting L to a
prescribed upper bound on the model order, one may
further regularize the cost in (12) to impose sparse AR
coefficient vectors; that is,

{ân}Nn=0 = arg min
{a n}Nn=0

[
1
2

∥∥y − Ma
∥∥2
2 + λ

N∑
n=1

‖a n − a n−1‖2 + γ ‖a ‖1
]
. (38)

The cost function in (38) is convex and effects a piece-
wise-constant and sparse TV-AR model. It is different
from model order selection criteria in the sense that the
selected non-zero AR coefficients do not necessarily have
to be consecutive. A challenge associated with the optimi-
zation in (38) is that block-coordinate descent algorithms
do not converge, since the differentiable part is not separ-
able group-wise [26]. The cost function in (38) resembles
the fused Lasso developed in [35]. Efficient algorithms
exploiting this link, and the structure of the problem at
hand are currently under investigation.

7. Simulated tests
The merits of the novel approaches to catching change-
points in TV-AR processes are assessed via numerical
simulations using synthetic and real data.

7.1. Synthetic data
The signal of interest here is a realization of a TV-AR
process with N + 1 = 500, order L = 4, vn ∼ N (0, σ 2),
and s2 = 10-2, exhibiting K = 2 abrupt changes in the
spectrum at time n1 = 100, and n2 = 350. The AR model
during the first segment (n Î [0,99]) has coefficients a0 =
[-0.8000, -0.1500, 0.1940, -0.0280]T, while in the second
segment (n Î [100,349]) the AR coefficients are a1 =
[0.1200, 0.0245, -0.2787, -0.0693]T. In the third segment
(n Î [350, 499]), a0 is in act. Figure 4 shows the true sig-
nal along with the group Lasso, group SCAD, and DP-
based estimates of the TV-AR coefficients obtained via
(12), (37), and (6) with K = 2, respectively. The regulari-
zation parameter l of the group Lasso and group SCAD
was selected to return 2 change points. The block-coordi-
nate descent algorithm of Section 4 was used to solve
(12) up to a maximum of 103 iterations or when∥∥d (i) − d (i−1)

∥∥2
2∥∥d (i)

∥∥2
2

≤ 10−8 The same stopping rule is used

for each iteration in (37), and J = 5 outer iterations are
run (the same stopping rules are adopted henceforth).

Figure 5 depicts the variation of
∥∥∥d̂n

∥∥∥
2
across time.

Clearly, the instants where
∥∥∥d̂n

∥∥∥
2

> 0 represents the

change points retrieved. While the DP has detected
change-points at n̂1 = 105 and n̂2 = 349 the group Lasso
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0.5

1

1.5

2

2.5
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p
S

C
A

D
λ

′ (x
)

Derivative of the SCAD regularization

Figure 3 Derivative of the SCAD function.
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and the group SCAD have detected changes at n̂1 = 103
and n̂2 = 356 confirming that the results returned by the
DP programming, by the group Lasso, and by group
SCAD are comparable. Since {yn} was generated as in (1),
any L out of N + 1 vectors {h n}Nn=0 are linearly indepen-
dent almost surely, which means that Proposition 3 can
be invoked to ensure uniqueness of the group Lasso TV-
AR model estimate. Notice from Figure 4 and Figure 5

that the
∥∥∥d̂n

∥∥∥
2
s estimated by the group Lasso are much

smaller than the true ones due to the bias, which results
in poor estimates of the AR coefficients. However, those
estimated by the group SCAD are closer to the true one.

7.2. Real data: piano sound
Next, a piano sound of 0.5 s comprising three mono-
chromatic notes is sampled at 8 kHz to obtain N + L +
1 = 4000 samples. The signal is depicted in Figure 6. A
TV-AR model with L = 1 is adopted, and l is selected
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a
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a
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Dynamic Programming estimated AR coefficients

Figure 4 Synthetic data. From top to bottom: True signal, estimated of the TV-AR coefficients by group Lasso, group SCAD, and DP,
respectively.
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to be l*/10. Figure 7 depicts the TV-AR coefficients
estimated by the group Lasso and the group SCAD. The

estimated
∥∥∥d̂n

∥∥∥
2
over time is displayed in Figure 8.

Observe that the group Lasso captures the correct
changes at time instants n̂1 = 1632 and n̂2 = 3155 along
with a small false change at time instant nf = 2770.
Instead, the group SCAD retrieves two changes at time
instants n̂1 = 1632 and n̂2 = 3155 Notice also that group

SCAD exhibits a reduced bias in the estimated
∥∥∥d̂n

∥∥∥
2

which results in better estimates of the TV-AR
coefficients.

7.3. Real data: speech
Here, a speech signal of 0.5 s is sampled at 8 kHz, to
obtain N + L + 1 = 4000 samples. The resultant time
series depicted in Figure 9 comprises a descent
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Figure 5 Synthetic data. From top to bottom: True TV-AR coefficients change, changes detected by group Lasso, group SCAD, and DP,
respectively.
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diphthong /ai/ followed by an /o/, pronounced by
another party. A TV-AR model with L = 8 is adopted,
and l is selected to be l*/10. The change of vocoid in
the diphthong occurs approximately at time instant n1 =
1500, while the /o/ occurs approximately at n2 = 3000.
Figure 10 shows the TV-AR coefficients estimated by
the group Lasso and group SCAD. In agreement with
[17], the group Lasso tends to declare a cloud of change
points in the proximity of an actual change, while the
jumps of the group SCAD estimates are very sharp. Fig-
ure 11 depicts ║dn║2 over time. The group SCAD
detects four segments with change points at n̂1 = 1065,
n̂3 = 2993 and n̂3 = 2993. Clearly, the first segment

corresponds to the /a/, the second, which is the shortest,
to the transition of the diphthong, the third to the /i/,
and the forth to the /o/. Observe that the group Lasso
exhibits peaks around the actual change instants, and
requires post-processing via either DP as advocated in
[17], or, by simply peak picking.
Further tests are performed on a sampled speech that

has been widely adopted for TV-AR speech segmenta-
tion [3-5,7]. According to [7, p. 401], this signal belongs
to a database designed by the French National Agency
for Telecommunications (CNET) for testing and evalu-
ating speech recognition algorithms. It consists of a
noisy French speech recorded in a car at sampling
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Figure 6 Piano sound comprising three monochromatic notes.
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Figure 7 Piano sound. Estimated of the TV-AR coefficients by group Lasso (top), and group SCAD (bottom).
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frequency 8 kHz, prefiltered by a highpass filter with
cutoff frequency equal to 150 Hz, and quantized with 16
bits per sample. The time series is shown in Figure 12
along with the changes caught by the group SCAD
change detector, and the GLR algorithm of [18] whose
results are reported in [3-5] for L = 2. The group SCAD
is tuned to return the same number of changes as the
GLR. The detected change instants are listed in Table 1.
The first change detected by the GLR is at sample

445, while this change is not detected by the group
SCAD. Interestingly, it is reported in [3] that this
change is not relevant for segmentation purposes, and
this fact is apparent by inspection of the true signal.
Both algorithms have detected changes around samples

1750, 2100, 2800, and 3650. The group SCAD success-
fully removed the false change detected by the GLR at
sample 3400. By inspecting the original signal, this
change does not seem to be relevant. The group SCAD
had detected a change instant around sample 1300
unlike the GLR. This change is also detected by
advanced Bayesian techniques reported in [3-5]. The
group SCAD has detected a change at sample 779, while
the GLR at sample 645. Indeed, inspection of the origi-
nal signal suggests that the detection of the GLR is pre-
ferable. Surprisingly, the group SCAD, unlike the GLR
and the Bayesian techniques of [3-5], has detected a
change at sample 2359. Observing the original signal
around this point, there is a clear amplitude modulation
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Figure 8 Piano sound. Changes detected by group Lasso (top), and group SCAD (bottom).
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Figure 9 Speech signal: /ai//o/.
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that may cause a change in the TV-AR coefficients,
which existing algorithms have passed undetected.
A way to univocally compare the two algorithms is via

the segmented prediction error (SPE). Assuming that K
changes have been detected at instants {n̂k}Kk=1, let âk
denotes the LS estimates of the AR model in the kth

segment, i.e., âk = argmina ∈RL
∑n̂k+1−1

n=n̂k

(
yn − h na

)2.
The SPE is defined as SPE :=

∑K
k=0

∑n̂k+1−1
n=n̂ (yn − hnâk)

2,

and represents the error in approximating the original
signal {yn} with a TV-AR model exhibiting abrupt
changes at instants {n̂k}Kk=1. The GLR segmentation
entails SPEglr = 0.2638, while SPEg-scad = 0.2578 for the
group SCAD. Clearly, the group SCAD based segmenta-
tion seems preferable to that of the GLR algorithm.

Finally, since general analysis of the convergence rate for
the block-coordinate descent algorithm is not available, a
simulated test assessing its converge speed is performed.
Figure 13 depicts the normalized step size amplitude varia-

tions, namely
∥∥d (i) − d (i−1)

∥∥2
2 /(
∥∥d (i)

∥∥2
2), across the

iteration index (i) for the first LLA of the group SCAD

(which amounts to a group Lasso since d̂
[0]

= 0(N+1)L

for the speech signal in Figure 12. Observe that after a
few hundred iterations, the normalized step amplitude
size drops below 10-6. For practical purposes, the solution
at this stage might be acceptable. Progressively, the
speed of convergence slows down since the algorithm
has to decide whether some components are truly zero
or have small amplitudes, and large jumps in∥∥d (i) − d (i−1)

∥∥2
2 /(
∥∥d (i)

∥∥2
2) correspond to iteration

indexes where the small components are set to zero. Once
the correct vector support is determined, the speed of con-
verge is fast. It is worth pointing out that only 10 min are
required to perform 5,000 iterations of the block-coordi-
nate descent (implemented with Matlab) for the problem
at hand, whereas advanced Bayesian techniques might
require several hours (see e.g., [3]).

8. Concluding remarks
Novel estimators were developed in this article for iden-
tification of piecewise-constant TV-AR models by
exploiting recent advances in variable selection and
compressive sampling. While traditional techniques con-
sist in regularizing a LS criterion with the total number
of coefficient changes, the novel estimator relies on a
convex regularization function, which resembles the
group Lasso and can afford efficient implementation
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Figure 10 Speech signal. Estimated of the TV-AR coefficients
by group Lasso (top), and group SCAD (bottom).
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Figure 11 Speech signal. Changes detected by group Lasso
(top), and group SCAD (bottom).

0 500 1000 1500 2000 2500 3000 3500 4000
−0.1

−0.05

0

0.05

0.1

time

y n

True signal and detected changes

Figure 12 French speech signal and changes detected by the
group SCAD (dot) and GLR (dash) change TV-AR detectors forL = 2.

Table 1 Change instants detected by the group SCAD
and GLR algorithm

Group SCAD 799 1217 1570 1742 2017 2359 2814 3668

GLR 445 645 1550 1750 2151 2797 3400 3626
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using block-coordinate descent iterations. The latter
incurs computational burden that scales linearly with
the number of data samples, thus being particularly
attractive for large-size problems. Regularization tuning
issues are discussed along with conditions for unique-
ness of the estimated piecewise-constant AR model. An
alternative group smoothly-clipped absolute deviation
regularization is also introduced, and an algorithm
based on iterative weighted group Lasso minimizations
is developed. Numerical tests using synthetic and real
data confirm that the developed algorithms can effec-
tively identify piecewise-constant AR models of large
size at manageable complexity, and outperform heuristic
alternatives that are based on the GLRT.

Appendix 1: proof of proposition 2
The necessary and sufficient first-order optimality con-
dition for d̂ to be the (unconstrained) minimum of (12),
is that the subgradient of J(d) in (13) evaluated at d̂ con-
tains the zero vector [[36], p. 92]; i.e.,

�∇J(d̂) � 0(N+1)L. (39)

Defining w ∈ R
(N+1)L as w := XT(Xd - y) and

w = [w T
0, w

T
1, . . . , w

T
N]

T, with wn ∈ R
L for n = 0,1,...,

N, the subgradient of J(d) evaluated at d̂ is given by
�∇J(d̂) = w + λb (40)

where b := [bT0, b
T
1, . . . , b

T
N]

T ∈ R
(N+1)L and

bn :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0L, n = 0
d̂n∥∥∥d̂n∥∥∥2 ,n = 1, . . . ,N, d̂n �= 0L

sn, n = 1, . . . ,N. d̂n �= 0L

(41)

with sn ∈ R
L such that ║sn║2 ≤ 1. Using (40) and (41),

Equation (39) translates to the following conditions:
(c1) w0 = 0l; and,

(c2)

⎧⎪⎪⎨⎪⎪⎩
w n + λ

d̂n∥∥∥d̂n

∥∥∥
2

= 0L, if d̂n �= 0L

‖w n‖2 ≤ λ if d̂n �= 0L

for n = 1, . . . ,N.

The change-free solution corresponds to having

d̂n = 0L for n = 1,..., N. Thus, (c1) implies that

X T
0(X 0d̂0 − y) = 0L, which is uniquely satisfied by

d̂0 = d 0,c, since X0 has full column rank. Hence,

d̂0 = d 0,c and d̂n = 0L for n = 1,..., N hold if and only if
(c2) is satisfied, which corresponds to ║wn║2 ≤ l for n =
1,..., N. Since w n = XT

n(X0d 0,c − y ), condition (c2) is
satisfied if and only if
λ ≥ λ∗ := maxn=1,...,N

∥∥X T
n(X 0d 0,c − y)

∥∥
2.

Appendix 2: proof of lemma 1
Observe that

XT
GXG =

⎡⎢⎢⎢⎣
Rs|G| :N Rs|G| :N · · · Rs|G|:N
Rs|G| :N Rs|G| :N · · · Rs|G|:N

...
...

. . .
...

Rs|G| :N Rs|G| :N · · · Rs|G|:N

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
Rs|G|−1:s|G|−1 · · · Rs|G|−1:s|G|−1 0L×L

...
. . .

...
...

Rs|G|−1:s|G|−1 · · · Rs|G|−1:s|G|−1 0L×L

0L×L 0L×L · · · 0L×L

⎤⎥⎥⎥⎦

+ · · · +

⎡⎢⎢⎢⎢⎢⎣
R0:s1−1 0L×L · · · 0L×L

0L×L 0L×L · · · 0L×L
...

...
. . .

...
0L×L 0L×L · · · 0L×L

0L×L 0L×L · · · 0L×L

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
hs|G|
hs|G|
...

hs|G|
hs|G|

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
hs|G|
hs|G|
...

hs|G|
hs|G|

⎤⎥⎥⎥⎥⎥⎦

T

+ · · · +

⎡⎢⎢⎢⎢⎢⎣
hN

hN
...
hN

hN

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
hN

hN
...
hN

hN

⎤⎥⎥⎥⎥⎥⎦

T

︸ ︷︷ ︸
N−s|G|+1

+

⎡⎢⎢⎢⎢⎢⎣
hs|G|−1

hs|G|−1
...

hs|G|−1

0L

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
hs|G|−1

hs|G|−1
...

hs|G|−1

0L

⎤⎥⎥⎥⎥⎥⎦

T

+ +

⎡⎢⎢⎢⎢⎢⎣
hs|G|−1

hs|G|−1
...

hs|G|−1

0L

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
hs|G|−1

hs|G|−1
...

hs|G|−1

0L

⎤⎥⎥⎥⎥⎥⎦

T

︸ ︷︷ ︸
s|G|−s|G|−1

+ +

⎡⎢⎢⎢⎢⎢⎣
h0

0L
...
0L
0L

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
h0

0L
...
0L
0L

⎤⎥⎥⎥⎥⎥⎦

T

+ +

⎡⎢⎢⎢⎢⎢⎣
hs1−1

0L
...
0L
0L

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
hs1−1

0L
...
0L
0L

⎤⎥⎥⎥⎥⎥⎦

T

︸ ︷︷ ︸
s1

.

(42)

Notice that the first sub-sum in (42) comprises
N − s|G| + 1 rank-1 matrices, the last sub-sum com-
prises s1 rank-1 matrices, while the gth sub-sum com-
prises s|G|−g+2 − s|G|−g+1 rank-1 matrices for g = 2, . . . , |G|.
Since G is such that s1 ≥ L, s|G| ≤ N − L + 1, and |sj -
sk| ≥ L for each j ≠ k, and any L out of N + 1 vectors
{hn}Nn=0 are linearly independent, each of the summands
in (42) has rank L. Thus, it is possible to find L line-
arly independent vectors {h1,�}L�=1 ⊂ R

L such that the

first sub-sum in (42) equals to
∑L

�=1 h̃1,�h̃
T
1,�

with

h̃1,� := [hT
1,�, . . . , h

T
1,�]

T ∈ R
(|G|+1)L. Analogously, it is

possible to find L linearly independent vectors
{hg,�}L�=1 ⊂ R

L such that the gth sub-sum in (42) can be

written as
∑L

�=1
h̃g,�h̃

T
g,� with h̃g,� := [hT

g,�, . . . ,h
T
g,�︸ ︷︷ ︸

|G|−g+2

, 0TL , . . . , 0
T
L︸ ︷︷ ︸

g−1

]T ∈ R
(|G|+1)L

for g = 2, . . . , |G|. Finally, it is possible to find L linearly
independent vectors {h|G|+1,�}L�=1 ⊂ R

L such that the last

sub-sum in (42) can be written as
∑L

�=1 h̃|G|+1,�h̃
T
|G|+1,�

with h̃|G|+1,� := [hT
|G|+1,�,0

T
L , . . . ,0

T
L ]

T ∈ R
(|G|+1)L. Thus,

XT
G XG =

∑|G|+1
g=1

∑L
�=1 h̃g,�h̃

T
g,�, and since {h̃g,�} are (|G| +
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Figure 13 Speed of the block-coordinate descent for the first
LLA of the group SCAD.
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1) linearly independent vectors, XG has full-column
rank.

Appendix 3: proof of proposition 3
Suppose that d̂ and d̂

′
are two solutions of (12) with the

same g-support G. Let XG denotes the matrix obtained
by selecting the columns of X relative to the nonzero
indexes dictated by the set {0} ∪ G. The minimization of
(13) over the vector having g-support in G amounts to

û := arg min
u :=[u T

0 ,u
T
0 ,...,u

T
G ]T∈R(|G|+1)L

[
1
2

∥∥y − X Gu
∥∥2
2 + λ

G∑
s=1

‖u s‖2
]
. (43)

From Lemma 1, XG has full column rank which

implies that
1
2

∥∥y − X Gu
∥∥2
2
is strictly convex, and so is

1
2

∥∥y − X Gu
∥∥2
2 + λ

∑G
s=1 ‖us‖2. Thus, (43) admits a

unique solution.
Since both d̂ and d̂

′
are g-supported in G by hypoth-

esis, and their restrictions to {0} ∪ G are equal to û, it
follows readily that d̂ = d̂

′
.
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