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Abstract Recently, there have been several new developments in discrepancy theory
based on connections to semidefinite programming. This connection has been useful
in several ways. It gives efficient polynomial time algorithms for several problems for
which only non-constructive results were previously known. It also leads to several
new structural results in discrepancy itself, such as tightness of the so-called determi-
nant lower bound, improved bounds on the discrepancy of the union of set systems
and so on. We will give a brief survey of these results, focussing on the main ideas
and the techniques involved.
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Algorithms
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1 Introduction

The field of combinatorial discrepancy deals with the following type of question. There
is a set-system (V,S) specified by the elements V = {1, . . . , n} and a collection of
subsets S = {S1, . . . , Sm} of V . Find a red-blue coloring of V such that each set in S
is colored as evenly as possible.

Formally, let us use −1 and +1 to denote the colors red and blue. Then, given a
set-system (V,S), the discrepancy of a coloring X : V → {−1,+1}n is defined
as discX (S) = max j∈[m] |X (S j )|, where X (S) = ∑

i∈S X (i) for any S ⊆ V .
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6 N. Bansal

The discrepancy of the system (V,S) is the minimum discrepancy over all possi-
ble colorings, i.e.

disc(S) = min
X

max
j∈[m] |X (S j )|.

Another very useful concept is that of hereditary discrepancy of a set system (V,S),
which is defined as the maximum value of discrepancy over all restrictions W of V .
Specifically, given W ⊆ V , let S|W denote the collection {S ∩ W : S ∈ S}. Then, the
hereditary discrepancy of (V,S) is defined as

herdisc(S) = max
W⊆V

disc(S|W ).

We will identify a set-system (V,S) with its incidence matrix A, and interchangeably
use disc(A) and herdisc(A) to denote disc(S) and herdisc(S).

The concept of discrepancy is intimately related to several fundamental questions
in mathematics and theoretical computer science. Roughly speaking, the discrepancy
and hereditary discrepancy of a set system are useful measures of its inherent complex-
ity, and understanding them can give several important insights. In computer science
for example, discrepancy has a range of applications in topics such as probabilistic
and approximation algorithms, computational geometry, numerical integration, deran-
domization, communication complexity, machine learning, data structures and so on.
It is far beyond the scope of this article to discuss these connections and applications
here and we refer the interested reader to several excellent books [10,12,21] on the
subject. We state below one application that arises often in combinatorial optimization
and approximation algorithms.

1.1 Application to rounding

Suppose we are given a fractional solution x ∈ R
n , to a linear system Ax = b on n

variables and m constraints. How well can we round x to an integral solution x̃ such
that the error in each of the m equations is as low as possible, i.e. find x̃ ∈ Z

n that
minimizes |A(x − x̃)|∞.

It turns out that the answer to this question is closely related to the hereditary
discrepancy of the matrix1 A. In particular, Lovász et al. [18] showed that,

Theorem 1 ([18]) There is a rounding x̃ of x (i.e. x̃ ∈ Z
n with |x̃ − x |∞ < 1) such

that |A(x − x̃)|∞ ≤ herdisc(A)

This bound has been further improved to (1 − 1/2m)herdisc(A) by Doerr [11].
It is useful to contrast this with the commonly used randomized rounding technique.

Recall that in randomized rounding, each xi is rounded independently to either �xi	
with probability 
xi� − xi or to 
xi� otherwise. If A is a {0, 1} matrix, then a standard
application of probabilistic tail bounds gives an error bound of O((n log m)1/2) for

1 While we only defined hereditary discrepancy for incidence matrices of set systems, the definition extends
to arbitrary matrices in the natural way.
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Semidefinite optimization in discrepancy theory 7

randomized rounding. This follows as for each row i , the expected value of Ai x̃ is
bi and by standard probabilistic tail bounds Pr[|Ai x̃ − bi | ≥ c

√
n] = exp(−Ω(c2)).

Choosing c = Ω((log m)1/2) and taking the union bound over the m rows gives the
claimed bound. Simple examples also show that randomized rounding cannot do better
in general.

Interestingly, it turns out that Theorem 1 (together with the known results for dis-
crepancy) always implies a better guarantee. Let us first consider the case when A is
the incidence matrix of a general set system. In his celebrated “six standard deviations
suffice” result, Spencer [26] showed that

Theorem 2 ([26]) Any set system with m = n sets has discrepancy is at most 6
√

n.
More generally, for m > n, the discrepancy is O((n log(m/n))1/2).

Together with Theorem 1, this implies a rounding with error O((n log(m/n))1/2) (vs.
O((n log m)1/2) for randomized rounding). Spencer’s result is tight up to constant
factors, and there exist set systems for which one cannot do better. We shall study
Spencer’s result in more detail later in Sect. 3. While Theorem 2 guarantees the exis-
tence of a good coloring, no efficient (polynomial time) algorithm was known until
recently to find such a coloring. In fact, as far as polynomial time algorithms are con-
cerned, nothing better than randomized rounding was known for rounding a general
matrix A. This was also true for Theorem 1, i.e. while a good rounding is guaran-
teed to exist, in most cases it was unclear how to do anything better than randomized
rounding.

If the matrix A has more structure and better bounds can be shown on the heredi-
tary discrepancy, then of course Theorem 1 implies better guarantees. One particularly
interesting case is that of bounded degree set systems, where each element lies in a
bounded number of sets. Beck and Fiala [6] showed that

Theorem 3 ([6]) If A is a set system where each element lies in at most t sets, then
disc(A) ≤ 2t − 1.

A slightly improved bound of 2t − 3 is also known [7]. However, it is believed that
this bound can be improved and a well-known conjecture of Beck and Fiala is that the
discrepancy of such systems is O(

√
t). If a dependence on n is allowed, bounds of

O(
√

t log n) due to Srinivasan [27] and O(
√

t log n) due to Banaszczyk [2] are also
known.

We remark here that Theorem 1 also has several other useful consequences. For
example, together with the result that totally unimodular (TU) matrices have heredi-
tary discrepancy at most 1 [15], this implies the well known result that if A is TU and
b is integral, then the system Ax = b has as integral solution.

1.2 Bounding discrepancy

Upper bounds: Given the various applications, there has been a lot of work on bound-
ing the discrepancy of various types of set systems, and several techniques have been
developed for this purpose. One of the most powerful and widely used tools here is
the so-called Partial coloring method due to [5] and its refinements [26] based on the
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8 N. Bansal

so-called entropy method (we will discuss this in Sect. 3). For example, both Theorem
2 above and the O(

√
t log n) bound [27] for bounded-degree systems are based on the

entropy method.
It turns out however that both the partial coloring method and the entropy method

seem inherently non-constructive. In particular, they are based on a clever application
of the pigeonhole principle to the space of all 2n possible colorings (we recommend
the unfamiliar reader to see for e.g. [1]), and only prove the existence of a low discrep-
ancy coloring, without giving any algorithmic insight on how to find them efficiently.
This is problematic for applications such as Theorem 1 above.

Note that Theorems 2 and 3 above only give worst-case bounds on discrepancy
for specific classes of set systems. A question that arises naturally is whether the
discrepancy of a given set system can be computed or approximated efficiently. Not
much was known here until the recent work of Charikar et al. [9], who showed that
discrepancy is very hard to approximate in general. Among other results, they show
that it is NP-Hard to distinguish whether the discrepancy of a set system on m = O(n)

sets is 0 or Ω(
√

n).

Lower bounds: A variety of techniques have also been developed for proving lower
bounds on discrepancy. Many of these are based on deep results and connections to
various areas of mathematics (see for e.g. [10,21]). One of the strongest known results
in this direction is the following determinant lower bound due to Lovász et al. [18].
For a real matrix A, define detlb(A) := maxk maxB | det B|1/k, where the maximum
is over all k × k submatrices B of A. For a set system S, we will also use detlb(S) to
denote detlb(A) where A is the incidence matrix of S.

Theorem 4 ([18]) For every set system S, herdisc(S) ≥ 1
2 detlb(S).

Lovász et al. [18] conjectured that herdisc might also be upper bounded by some
function of detlb, i.e., herdisc(S) ≤ f (detlb(S)) for all S. But, this was refuted
by Hoffman who gave an elegant example (see for e.g. [21]) of a set system where
detlb(S) = O(1) and disc(S) ≈ (log n)/(log log n). Recently, Pálvölgyi [24] gave an
improved example with an Ω(log n) gap for the same. However, until recently, there
was no non-trivial result upper bound on the gap between the determinant lower bound
and the hereditary discrepancy.

1.3 Some recent results

Recently, several important advances have been made in discrepancy theory. First,
many previous results that were based on the entropy method and hence non-con-
structive, can now be made algorithmic. In particular, Bansal [3] showed the following
algorithmic version of Spencer’s result.

Theorem 5 [3] For any set system S on m = O(n) sets,2 there is a randomized
polynomial time algorithm to find a coloring with discrepancy O(

√
n).

2 For m � n, the algorithm of [3] gives the bound O(
√

n log(m/n)), which has a worse dependence on
(m/n) than in Spencer’s result.
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Semidefinite optimization in discrepancy theory 9

This result is based on a new and general method for rounding SDPs and several other
results based on the entropy method (such as Srinivasan’s result [27]) can also be
similarly made constructive. This method for rounding SDPs also gives an algorithm
to find a low discrepancy coloring for systems with low hereditary discrepancy. In
particular,

Theorem 6 ([3]) For any set system S on m sets and n elements, there is a randomized
polynomial time algorithm to find a coloring with discrepancy O((log m log n)1/2 ·
herdisc(S)).

Theorem 6 implies the following algorithmic version of Theorem 1.

Corollary 1 Given any fractional solution x ∈ R
n to the linear system Ax = b on

m equations, there is a polynomial time algorithm to round x to an integral solution
x̃ ∈ Z

n such that |A(x − x̃)|∞ = O((log m log n)1/2 · herdisc(A)).

In another surprising result based on this connection, Matoušek [19] gave the first
non-trivial upper bound on the gap between the determinant lower bound and heredi-
tary discrepancy.

Theorem 7 ([19]) For any set system (V,S), herdisc(S) ≤ O(log n
√

log m) ·
detlb(S).

This result is remarkably tight, as shown by the examples of Hoffman and Pálvölgyi
mentioned previously. Among other things, this result also implies the following new
structural results about discrepancy [19]: for any two set systems (V,S1) and (V,S2),

herdisc(S1 ∪ S2) ≤ max(herdisc(S1), herdisc(S2)) · O(log n
√

log m).

Previously such a result was known only for the special case when S2 consists of a
single set [17]! A further extension of this result to union of t sets can be found in
[19].

In addition to these results, there have been several other recent developments.
Eisenbrand et al. [13] made a surprising connection between discrepancy and the well
known bin-packing problem in combinatorial optimization. In particular, they show
that an O(1) discrepancy bound for the three permutation problem, which was a long
standing conjecture of Beck, would imply an O(1) additive integrality gap for a natural
linear programming formulation for bin packing when all items have size more than
1/4. Interestingly, the three permutation conjecture itself was recently disproved by
Newman and Nikolov [23]. Recently, Rothvoss [25] showed how the entropy method
can also be used in the design of approximation algorithms. His technique for example,
gives an alternate discrepancy based proof of the celebrated O(log2 n) additive guar-
antee of Karmarkar and Karp for bin-packing. Even though it does not improve the
bound for general bin-packing, his technique seems interesting as it gives improved
results for several cases where previous techniques do not seem to help.
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10 N. Bansal

Recently, Chandrasekharan and Vempala [8] have shown how ideas from discrep-
ancy, and in particular a variant of Theorem 5, can be useful in integer programming.

Main ideas: The algorithmic results mentioned above are based on rounding the
natural SDP relaxation for discrepancy. However, there are some important new ideas.
First, instead of using a single SDP solution and rounding it (as is typically done in
other problems), these algorithms produce the solution gradually over time by con-
sidering several SDPs. Indeed, the hardness result of Charikar et al. [9] rules out the
possibility of finding a good coloring based on rounding a single SDP relaxation. To
see this, recall that Charikar et al. [9] show that it is NP-Hard to distinguish whether
the discrepancy of a set system is 0 or Ω(

√
n) is NP-Hard. This implies that there exist

instances with discrepancy Ω(
√

n) for which the SDP relaxation returns the value 0.
So, any rounding procedure applied to this SDP solution must lose an additive Ω(

√
n)

term.
The second interesting aspect of the algorithm is that the non-constructive entropy

method itself is used crucially in its design. In particular, the various SDPs used over
time by the algorithm are determined by the entropy method.

The proof of Theorem 7 is based on SDP duality, and a clever connection between
the sub-determinants of the incidence matrix and a dual SDP solution via the use of
eigenvalues.

1.4 Organization

The rest of the article is organized as follows. First in Sect. 2, we prove Theorem 6. This
is a relatively simple result and illustrates most of the algorithmic ideas involved. Then
in Sect. 3, we show how these algorithmic ideas can be refined and combined with
the entropy method to obtain Theorem 5. However, instead of describing the optimum
O(

√
n) bound, we will show a (slightly) weaker bound of O((n log log log n)1/2). This

weaker bound illustrates all the ideas involved without getting into the tedious calcu-
lations required for the O(

√
n) bound. Finally, in Sect. 4, we will prove Matoušek’s

result on the determinant lower bound.

2 Systems with low hereditary discrepancy

In this section we prove Theorem 6. We will describe the algorithm completely, but
only sketch the analysis. The interested reader can find the details in the recent book
by Gärtner and Matoušek [14] or in [3].

Before we begin, let us quickly recall some basic facts about semi-definite program-
ming. A semi-definite program (SDP) can be viewed as an arbitrary linear program
on variables of the form Yi j = 〈wi , w j 〉 where wi , for 1 ≤ i ≤ n, are vectors and 〈, 〉
denotes the standard inner product. Any such SDP can be solved to arbitrary accuracy
in time polynomial in the input size, provided the dimension m of the vectors wi is
allowed to be arbitrarily large (in general m can be as large as n). For more details
about semidefinite programming (see [28]).

The natural SDP relaxation for the problem of finding a ±1 coloring with discrep-
ancy at most λ is the following.
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Semidefinite optimization in discrepancy theory 11

∥
∥
∥
∥
∥
∥

∑

i∈S j

vi

∥
∥
∥
∥
∥
∥

2

2

≤ λ2 for each set S j (1)

‖vi‖2
2 = 1 (2)

Here, as usual, ‖v‖2 = (〈v, v〉)1/2 denotes the length of v. The first constraint says
that the discrepancy of each set S j must be at most λ, and the second constraint says
that each vi must be a unit vector. Clearly, this is a valid relaxation as any ±1 coloring
with discrepancy λ is a feasible solution. We will call any feasible solution to this
SDP, a vector-coloring for S, and the smallest value of λ for which it is feasible as the
vector discrepancy of S, denoted by vecdisc(S).

Before we describe our algorithm, let us try the most natural approach that does not
quite work, and see what we can use from it. First, we can assume that the algorithm
knows the value of λ, as it can try all values 0, 1, . . . , n and pick the smallest λ for
which the SDP is feasible. Now let us consider some vector-coloring vi obtained by
solving this SDP. In this solution, the vectors vi are nicely correlated such that for
any set S j , the vector

∑
i∈S j

vi has length at most λ. Our goal then is to convert these
vectors vi into the numbers ±1 without increasing

∑
i∈S j

v j too much. So we can first
try to convert vi into real numbers (that are hopefully not too far from ±1) without
substantially violating the sums

∑
i∈S j

v j . This seems particularly promising as the
correlations among the vi ’s are preserved upon taking projections. In particular, for
an arbitrary vector g ∈ R

n , the real numbers yi = 〈g, vi 〉 satisfy

∑

i∈S j

yi =
∑

i∈S j

〈g, vi 〉 =
〈

g,
∑

i∈S j

vi

〉

≤ ‖g‖2 ·
∥
∥
∥
∥
∥
∥

∑

i∈S j

vi

∥
∥
∥
∥
∥
∥

2

,

implying that
∑

i∈S j
yi is likely to be small if ‖∑

i∈S j
vi‖ is small.

To this end, let us take g as a random Gaussian vector in R
n , i.e. each coordinate

of g is chosen independently from the standard Gaussian distribution N (0, 1), with
mean 0 and variance 1. The crucial property of such a g is the following:

Lemma 1 For a random Gaussian g ∈ R
n, and an arbitrary vector v ∈ R

n, the
random variable 〈g, v〉 is (a real number) distributed as N (0, ‖v‖2

2), i.e. as a Gauss-
ian with mean 0, and variance ‖v‖2

2.

Proof Recall that if g1 and g2 are two independent N (0, 1) random variables, then
the sum ag1 + bg2 is distributed as N (0, a2 + b2). As 〈g, v〉 = ∑

i g(i)v(i), where
g(i) and v(i) denote the i th coordinate of g and v, and as the g(i)′s are independent,
〈g, v〉 is distributed as N (0,

∑
i v(i)2) = N (0, ||v||22).

In our situation, choosing a random Gaussian g and setting yi = 〈g, vi 〉, Lemma 1
implies that (i) Each yi is distributed as N (0, 1). This follows as ‖vi‖2

2 = 1, and (ii)
For each j , the discrepancy

∑
i∈S j

yi is distributed as N (0,≤ λ2), i.e. as a gaussian

with mean 0 and variance at most λ2. This follows as ‖∑
i∈S j

vi‖2 ≤ λ2.
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12 N. Bansal

This seems quite close to what we would like. As yi ∼ N (0, 1), we have that
yi/(c(log n)1/2) ∈ [−1, 1] with high probability (for some large enough constant c),
and that the yi ’s are typically bounded away from 0. Moreover, for any j , the dis-
crepancy |∑i∈S j

yi | = O(λ(log n)1/2) with high probability. Perhaps, one could
now hope to round these yi ’s to ±1 without increasing the discrepancy substantially.
Unfortunately it turns out that this cannot be done (recall that the hardness result of
[9] implies that there are instances with discrepancy Ω(

√
n) but vector-discrepancy

0, which rules out the existence of the desired rounding procedure).
So, we adopt a different approach. Instead of trying to round the yi ’s into ±1 and

incurring large discrepancy, we will obtain a ±1 solution by combining several dif-
ferent collections of correlated y′

i s. This is also where we will really use the upper
bound of λ on the hereditary discrepancy.

Main idea: As mentioned above, instead of trying to obtain a coloring using a single
SDP solution, we will gradually produce a solution by using several SDPs over time.
At time 0, we start with the “empty” coloring x0 = (0, . . . , 0) where each element
is colored 0. We slowly modify it over time as follows: suppose xt−1 denotes the
coloring of elements at time t − 1, we obtain the coloring xt by adding a small per-
turbation vector ut to xt−1, i.e. xt (i) = xt−1(i) + ut (i) for each element i . As the
perturbations are added, the color of the elements will evolve over time. Whenever an
element’s color reaches −1 or +1, we freeze that element’s color and it is not longer
updated. It remains to specify how to generate the updates ut . This is done exactly
using the Gaussian rounding mentioned above. In particular, at time t , we consider the
SDP given by (1)–(2) (but only restricted to elements i that are still unfrozen). As the
hereditary discrepancy is at most λ, no matter which variables are unfrozen at time t ,
the SDP is always feasible. We take such a solution vt , scale it by a small constant γ

(it suffices to choose γ = 1/n) and apply the Gaussian rounding, i.e. ut
i = γ 〈g, vt

i 〉.

Formal Algorithm: We now state the algorithm formally.

1. Let xt denote the coloring at time t . Let γ = 1/n and � = 8 log n/γ 2. We initial-
ize, x0(i) = 0 for all i ∈ [n]. The Ft denote the set of frozen variables by time
t , where we initialize F0 = ∅.

2. For each time step t = 1, 2, . . . , � repeat the following steps:
(a) Find a feasible solution to the following semidefinite program:

∥
∥
∥
∥
∥
∥

∑

i∈S j

vi

∥
∥
∥
∥
∥
∥

2

2

≤ λ2 for each set S j

‖vi‖2
2 = 1 ∀i /∈ Ft−1

‖vi‖2
2 = 0 ∀i ∈ Ft−1

(b) Pick a random Gaussian gt ∈ R
n .

(c) For each i ∈ [n], update xt (i) = xt−1(i) + γ 〈gt , vt
i 〉.

(d) Set Ft = Ft−1. For each i , freeze i if |xt (i)| > 1, and update Ft = Ft ∪{i}.
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Semidefinite optimization in discrepancy theory 13

3. After time t = �, if some |x�(i)| < 1 (i.e. some element is still not frozen), return
fail.

4. For each i , set x�
i = −1 if x�

i < −1, and set x�
i = 1 if x�

i > 1. Output the final
coloring x�.

Remark We note that the SDP in step 2(a) changes only when the set of frozen vari-
ables F changes. Moreover, the SDP is always feasible irrespective of the set F as
herdisc(S) ≤ λ.

Analysis:

Theorem 8 The algorithm described above produces a coloring with discrepancy
O(λ(log m log n)1/2) with probability at least 1/2.

Proof (Sketch) Let us consider an element i and see how its color xt (i) evolves over
time until it crosses ±1 and is frozen. Starting from 0, at each step the update ut (i) =
γ 〈vt

i , gt 〉 is added. As ‖vt
i ‖ = 1 we have that ut

i is distributed as N (0, γ 2). Moreover,
as gt is chosen independently at each time step, ut (i) is independent3 of all previous
increments ut ′(i), where t ′ < t . As the increments are N (0, γ 2), with constant prob-
ability xt (i) will reach ±1 in O(1/γ 2) steps, and standard probabilistic tail bounds
imply that it will reach ±1 by time � = O(log n/γ 2) with probability at least 1−1/n2.
So, with probability at least 1 − 1/n, all elements will be frozen by time �.

Let us now see how the discrepancy xt (S j ) = ∑
i∈S j

x t (i) of a set S j evolves

over time. Clearly, it is 0 initially at t = 0. At each step t , it is updated by ut (S j ) =∑
i∈S j

γ 〈gt , vt
i 〉. Let us denote λt = ‖∑

i∈S j
vt

j‖2. The SDP constraint ensures that

λt ≤ λ. Now, λt may depend on the previous choices gt ′ for t ′ ≤ t −1 (as these choices
affect the SDP at time t), but as gt is chosen independently at time t , conditioned on
the previous random choices gt ′ , the update ut (S j ) ∼ N (0, γ 2λ2

t ). Thus, xt (S j ) forms
a martingale with increments N (0,≤ γ 2λ2). Again, standard martingale tail bound
arguments imply that after � steps,

Pr[x�(S j ) > c(log m)1/2 · √
� · γ λ] ≤ 1/m2

for some suitable constant c. Thus, with probability at least 1 − 1/m

disc(S) = O((log m)1/2 · √
� · γ λ) = O(λ · (log m log n)1/2).

Finally, we note that truncating x�(i) to ±1 in the last step introduces very low
error. Indeed, since |xt

i | < 1 holds just before it is frozen, it must hold that |xt
i | <

1 + γ · O((log n)1/2) with high probability when it is frozen. Thus, the truncation can
add an additional discrepancy of at most n · γ · O((log n)1/2) = O((log n)1/2) to any
set.

3 Strictly speaking, this is not true as the previous choices of gt ′ determine whether i is frozen by time t or
not, and hence determine whether ut (i) = 0 or not. More precisely, xt (i) forms martingale with N (0, γ 2)

increments, until it is absorbed at ±1.
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14 N. Bansal

2.1 An extension

In a nutshell, the above algorithm works by gradually producing a coloring over time,
and at each time step the low hereditary discrepancy ensures that regardless of which
variables are frozen, there is a low discrepancy solution to the SDP relaxation.

It turns out that this algorithm can be modified to work with a weaker condition,
instead of a bound on the hereditary discrepancy. To motivate this condition, let us
consider the Beck-Fiala setting. Here, while it is conjectured that the hereditary dis-
crepancy is O(

√
t), the best bound that we currently know of is only O((t log n)1/2)

[2], and hence Theorem 6 only guarantees a O(
√

t log3/2 n) discrepancy coloring. It
turns out that one can do better, and find a coloring with discrepancy O(

√
t log n) by

using the fact that there always exists a partial coloring with discrepancy O(
√

t).4

Formally, let us define the partial hereditary discrepancy of a system as the smallest
number λ such that given any sub-system, there is a partial coloring (say that colors at
least half the elements in that sub-system) with discrepancy λ. The algorithm above
can modified to obtain a coloring with discrepancy at most O((log n log m)1/2) times
the partial hereditary discrepancy as follows. Consider the algorithm that is defined
exactly as before, except that instead of the SDP (1)–(2) above, one considers the
following SDP.

∥
∥
∥
∥
∥
∥

∑

i∈S j

vi

∥
∥
∥
∥
∥
∥

2

2

≤ λ2 for each set S j (3)

∑

i /∈F

‖vi‖2
2 ≥ |Fc|/2 (4)

‖vi‖2
2 ≤ 1 ∀i ∈ Fc (5)

‖vi‖2
2 = 0 ∀i ∈ F (6)

Here Fc denotes the complement of F (i.e. unfrozen variables) and λ is the partial
hereditary discrepancy. Note the difference here is that constraint (2) is replaced by the
constraints (4) and (5), which only require that at least half of the unfrozen variables
be colored.

While the algorithm is same as before, the analysis needs some more care. The
problem is that the unfrozen variables do not necessarily satisfy ‖vi‖2 = 1 anymore,
but only the weaker condition (4). So, a priori it is possible that some variable always
has |vi | ≈ 0 and hence never makes progress towards reaching ±1. To get around this,
one needs a more careful “energy increment” argument to show that after every 1/γ 2

time steps, a constant fraction of the variables do reach ±1 in expectation. One can
then show that all elements are eventually colored ±1 in O(log n/γ 2) time steps with
reasonable probability. The details can be found in [3].

4 In fact this is how Srinivasan’s bound of O(
√

t log n) is obtained: by iteratively finding a partial coloring
over the remaining uncolored elements. As at least half the elements are colored in each step, there are
O(log n) steps each of which adds discrepancy O(

√
t).
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Semidefinite optimization in discrepancy theory 15

3 Algorithm version of Spencer’s result

Here we consider Theorem 5, which is much more subtle. Actually, to keep the presen-
tation clean, we will only describe a weaker algorithm, that given an arbitrary set system
on m = O(n), finds a coloring efficiently with discrepancy O((n log log log n)1/2).
Note that is already substantially better than randomized rounding.

The reason why this setting is more tricky is the following. First, unlike previ-
ously, it is not at all clear whether semidefinite programming can help. In particular,
let us again consider the SDP given by (1)–(2). For Theorem 5, the natural thing5

is to set λ = O(
√

n) and hope to round the SDP solution (over time). However,
when λ = √

n, it turns out that this SDP always has the trivial solution vi = ei

for i ∈ [n], where ei denotes the unit vector in the i th direction. This is feasible
as the vi ’s are unit vectors and hence (1) holds, and the orthogonality of the vi ’s
implies that ‖∑

i∈S j
vi‖2 = (|S j |)1/2 ≤ n1/2 and hence (2) holds. Thus, the SDP

does not reveal any useful information. A second problem is that in the previous
algorithm, the discrepancy for each set performs a random walk and hence some
sets are likely to deviate from their expected discrepancy by a factor of Ω(

√
log n).

As we must set λ = Ω(
√

n) in general, this would suggest that we cannot do
better than (n log n)1/2 (which is what randomized rounding would give us any-
ways).

Main idea: To get around the above problems, the main idea is to let the discrepancy
bound λS (in the SDP) depend upon the set S. As we shall see, the entropy method says
that there always exists a partial coloring even if the discrepancy bounds λS are chosen
non-uniformly, provided that these λS’s are Ω(

√
n) in a certain “average” sense.

So the algorithm works as follows: it starts with the all-zero coloring, and considers
the partial coloring SDP [(3)–(6)] requiring that λ be O(

√
n) for each set (so initially,

this SDP could just return the trivial all-orthogonal solution mentioned above). As
previously, it projects the SDP solution on to a random gaussian vector, scales it by γ ,
and then adds it to the current coloring. As this process continues for T = O(1/γ 2)

steps, the discrepancy of each set does a random walk which is expect to stay O(
√

n).
However, the random walk for some sets will get unlucky and they will start to incur
a discrepancy of much larger than the desired O(

√
n). At this point, we reduce the λS

for such sets to something much smaller than
√

n, thereby ensuring that their random
walk has low variance henceforth and will not cause problems any more. Of course,
we cannot reduce λS for all sets, so the key point is to show that λS is only reduced
for a few sets, and that λS can still be kept O(

√
n) on “average” (in the sense needed

by the entropy method), so that the SDPs remain feasible.
Before describing the algorithm formally, we first describe the entropy method, and

also see how Spencer’s original result [26] follows from it.

5 One cannot set λ = o(
√

n) in general, as the Hadamard set system (see [21]) has vector discrepancy
Ω(

√
n).
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16 N. Bansal

3.1 The entropy method

The following result is known as the partial coloring lemma. Its proof is based on a
clever pigeonhole principle argument, often referred to as the entropy method, and
seems inherently non-constructive. The form we present below is from [20]. More
details can be found in [1].

Lemma 2 (Partial Coloring via the Entropy Method) Let S be a set system on an
n-point set V , and let a number �S > 0 be given for each set S ∈ S. Suppose �S

satisfy the condition

∑

S∈S
g

(
�S√|S|

)

≤ n

5
(7)

where

g(λ) =
{

K e−λ2/9 if λ > 0.1
K ln(λ−1) if λ ≤ 0.1

and K is some absolute constant. Then there is a partial coloring X that assigns ±1
to at least n/2 variables (and 0 to the rest), and satisfies |X (S)| ≤ �S for each S ∈ S.

Proof of Spencer’s (non-constructive) result [26]: The coloring is constructed in
phases. In phase i , for i = 0, . . . , log n, the number of uncolored elements left is
at most ni ≤ n/2i . In phase i , we apply Lemma 2 to these ni elements with �i

S =
c(ni log(2m/ni ))

1/2 and verify that (7) holds when c is a large enough constant. This
gives a partial coloring on at least ni/2 elements, with discrepancy for any set S at
most �i

S . Summing up over the phases, the overall discrepancy for any set is at most

∑

i

�i
S =

∑

i

c

(

n2−i log

(
2m

n2−i

))1/2

= O((n log(2m/n))1/2).

For our purposes below, we only need the following corollary of the above lemma.

Corollary 2 Let S be any set system on m = O(n) sets, and S ′ ⊂ S be any subcol-
lection of O(n/(log log n)2) sets. Then there exists a partial coloring where each set
in S ′ has discrepancy O(

√
n/ log n) and O(

√
n) otherwise.

Proof This is a simple computation. For each set in S ′, the contribution to the left hand
side of (7) is g(log n) log O(log log n). Now, as |S ′| = O(n/ log log2 n), the overall
entropy contribution due to such sets is o(n). On the other hand, choosing λS = c

√
n

for a large enough constant c, ensures that the contribution of any set S to (7) is � 1.
As m = O(n), this ensures that (7) holds and the partial coloring with the desired
properties exists.
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Semidefinite optimization in discrepancy theory 17

3.2 Algorithmic subroutine and analysis

We now describe our algorithm. We only describe the first phase when the number
of uncolored variables reduces from n to n/2. This is the hardest phase and conveys
all the ideas we need. The problem only gets easier in subsequent phases when fewer
uncolored variables remain (e.g. when only n/ log n variables remain, randomized
rounding only adds O(

√
n) discrepancy).

The algorithm in the first phase works as follows: we start with the all 0 coloring,
and consider the following partial coloring SDP.

∥
∥
∥
∥
∥

∑

i∈S

vi

∥
∥
∥
∥
∥

2

2

≤ λ2
S for each set S = S1, . . . , Sm (8)

∑

i /∈F

‖vi‖2
2 ≥ |Fc|/2 (9)

‖vi‖2
2 ≤ 1 ∀i /∈ F (10)

‖vi‖2
2 = 0 ∀i ∈ F (11)

Initially we set each λS = cn1/2 for c large enough c such that (7) is satisfied easily
with some slack. As previously, for each time step t , we obtain ut

i = γ 〈gt , vt
i 〉 for

i = 1, . . . , n and add it to the coloring thus far. We repeat this for O(1/γ 2) steps, at
which point we expect half the colors to reach ±1.

During these steps, if the discrepancy |xt (S)| exceeds 2(n log log log n)1/2 for some
set S, we label S dangerous and set λS = n1/2/ log n for it in the SDP. This ensures
that its discrepancy increment ut (S) will have standard deviation O(γ · (n1/2/ log n))

henceforth, making S extremely unlikely to incur an additional Ω(n1/2) discrepancy
over the remaining O(1/γ 2) steps.

Thus, at the end of the algorithm, each set has O((n log log log n)1/2) discrep-
ancy with high probability. So, it only remains to show that the SDP never becomes
infeasible. We show that this happens with, say, probability at least 1/2. Indeed,
since the discrepancy of any set forms a martingale with Gaussian increments with
standard deviation O(

√
n), the probability of a set ever becoming dangerous is

O(exp (−2 log log log n) = O(log log n)−2. So, with probability at least, say 3/4,
the number of dangerous sets does not exceed O(n(log log n)−2). Let us condition on
this event. As we set λS = n1/2/ log n for the dangerous sets and O(

√
n for others,

Corollary 2 implies that the SDP does not become infeasible. This gives the desired
result.

We remark that the O(n1/2) bound in Theorem 5 is simply obtained by refining this
idea, where we choose multiple danger levels and set the bounds λS appropriately for
each danger level.

4 Matoušek’s lower bound

We now prove Theorem 7, which says that the determinant lower bound is within
poly-logarithmic factors of the hereditary discrepancy.
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18 N. Bansal

Main idea: The proof uses several interesting ideas. First, one observes that for any
set system (V,S), the proof of Theorem 6 implies that there must be some subset J
of elements such that the vector discrepancy of the system S|J satisfies

vecdisc(S|J ) = Ω(herdisc(S)/(log m log n)1/2) (12)

To see this, suppose that (12) does not hold for any J . Then, the algorithm for Theorem
6 can be used to color any system S|J ′ , for J ′ ⊆ V with discrepancy strictly less then
herdisc(S), contradicting the definition of hereditary discrepancy.

Now, the key idea is to show that if vecdisc(S|J ) is large, then detlb(S|J ) is also
large (Theorem 9 below has the formal statement). This is done by considering the
dual for the SDP (1)–(2), which gives a witness for the large vector discrepancy of S|J .
This witness is then used to show that the incidence matrix of S|J has a sub-matrix
with large eigenvalues, which in turn implies that it has a large determinant.

Details: As vecdisc(S) is an optimum solution to a semidefinite program, one can
use the duality of semidefinite programming to lower bound vecdisc(S) in the follow-
ing way.

Lemma 3 For any set system (V,S), we have vecdisc(S) ≥ D if and only if there
are nonnegative reals w1, . . . , wm with

∑m
i=1 wi ≤ 1 and reals z1, . . . , zn with∑n

j=1 z j ≥ D2 such that for all x ∈ R
n,

m∑

i=1

wi

⎛

⎝
∑

j∈Si

x j

⎞

⎠

2

≥
n∑

j=1

z j x2
j . (13)

Computing the dual formally needs some work (and we refer the reader to [19] for
details). However, this dual has a rather intuitive interpretation. Suppose one could
construct a convex combination wi of the set discrepancy constraints (

∑
j∈Si

x j )
2

such that this sum always exceeds
∑n

j=1 z j x2
j no matter what real values are assigned

to x j ’s. Or, in other words,
∑m

i=1 wi (
∑

j∈Si
x j )

2 − ∑n
j=1 z j x2

j is a positive quadratic

form. Then, indeed
∑n

j=1 z j x2
j = ∑

j z j for any ±1 assignment to the x j ’s and hence
this certifies that

∑n
j=1 z j is a lower bound on the discrepancy. The duality says that

this is also a lower bound on the vector discrepancy, and moreover, if the vector dis-
crepancy is D, then there always exists a choice of witnesses wi ’s and z j ’s of this
form.

We are now ready to prove the following theorem, which directly implies Theo-
rem 7.

Theorem 9 Let A = {A1, . . . , Am} be a set system on [n] with vecdisc(A) = D.
Then detlb(A) = Ω(D/

√
log n ).

Before proving Theorem 9, we first show how it implies Theorem 7. Applying
Theorem 9 to A = S|J (on the universe J , which satisfies |J | ≤ n) implies that
detlb(S|J ) = Ω(vecdisc(S|J )/

√
log n). Together with (12), this gives
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Semidefinite optimization in discrepancy theory 19

detlb(S) ≥ detlb(S|J ) ≥ 1√
log n

· Ω

(
herdisc(S)

(log m log n)1/2

)

,

where the first inequality follows as any sub set system of S|J is also a sub set system
of S.

Proof (Theorem 9) Let us consider the dual formulation of vector discrepancy from
Lemma 3. For more convenient notation, let us write the nonnegative weight wi as
β2

i . Moreover, let L ⊆ [n] consist of the indices j with z j > 0. We will only consider
the inequality (13) in Lemma 3 with x j = 0 whenever j /∈ L . Writing z j = γ 2

j for
j ∈ L , we obtain

m∑

i=1

β2
i

⎛

⎝
∑

j∈Ai ∩L

x j

⎞

⎠

2

≥
∑

j∈L

γ 2
j x2

j (14)

for all x ∈ R
L , where ‖β‖ ≤ 1 and ‖γ ‖ ≥ D.

Next, we select K ⊆ L with ‖γ [K ]‖ = Ω(D/
√

log n) and such that all entries
of γ [K ] are within a factor of 2 of each other (here γ [K ] denotes the vector γ

restricted to coordinates in K ). Such a subset K exists for the following reason: let
γmax = max j |γ j |. For i = 0, 1, 2, . . ., let Ki = { j : |γ j | ∈ (2−i−1γmax, 2−iγmax]}.
The contribution to ‖γ ‖ of the components of γ with indices in Ki for i ≥ 2 log n, say,
is negligible, and so there exists some i0 for which

∑
j∈Ki0

γ 2
j = Ω(‖γ ‖2/ log n).

Let us denote k = |K | and D̃ = 1
2‖γ [K ]‖. As

∑
j∈K γ 2

j = 4D̃2, and all these γ j

are within twice of each other, we have that γ j ≥ D̃/
√

k for all j ∈ K . So, restricting
(14) to vectors x with x j = 0 for j �∈ K , we have that

m∑

i=1

β2
i

⎛

⎝
∑

j∈Ai ∩K

x j

⎞

⎠

2

≥ D̃2

k

∑

j∈K

x2
j . (15)

Let C = A[∗, K ] be the m × k incidence matrix of the system A|K and let Č be
the m × k matrix obtained from C by multiplying the i th row by βi . Then (15) can be
rewritten as

xT ČT Čx = ‖Čx‖2 ≥ D̃2

k
‖x‖2 for all x ∈ Rk .

This, by the usual variational characterization of eigenvalues, tells us that the small-
est eigenvalue of the k ×k matrix ČT Č is at least D̃2/k. Now, as the determinant is the
product of eigenvalues, this implies that det(ČT Č) ≥ (D̃2/k)k . By the Binet–Cauchy
formula we obtain

det(ČT Č) =
∑

I

det(Č[I, ∗])2, (16)
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20 N. Bansal

where the summation is over all k-element subsets I ⊆ [m] and Č[I, ∗] consists of
the rows of Č whose indices lie in I . Setting M := maxI | det(C[I, ∗])| and noting
that det(Č[I, ∗]) = det(C[I, ∗])∏

i∈I βi , we can bound the right-hand side of (16) as

∑

I

det(Č[I, ∗])2 =
∑

I

det(C[I, ∗])2
∏

i∈I

β2
i ≤ M2

∑

I

∏

i∈I

β2
i

≤ M2

(∑m
i=1 β2

i

)k

k! ≤ M2

k! ,

where the second inequality follows as every term
∏

i∈I β2
i occurs k! times in the

multinomial expansion of (β2
1 + · · · + β2

m)k . Letting B := C[I, ∗] for an I maximiz-
ing | det C[I, ∗]|, we have

det(B)2 ≥ k! det(ČT Č) ≥ k!(D̃2/k)k ≥ (k/e)k(D̃2/k)k = Ω(D/
√

log n)2k .

So the k ×k matrix B witnesses detlb(F) = Ω(D/
√

log n ), and the lemma is proved.

5 Concluding remarks

While all the algorithms that we described were randomized, these results can also be
made deterministic [4]. Surprisingly, this turns out to be non-trivial and the entropy
method plays a key role here. To derandomize, instead of a picking a random gaussian
vector g at each time step, one needs to deterministically pick a vector on which to
project the SDP solution. However, it is not apriori clear why a vector that simulta-
neously guarantees low increase in discrepancy and that the energy of the solution
increases sufficiently (to make progress towards reaching a ±1 coloring) should exist,
even though these properties hold in expectation for a random gaussian vector. The
fix is to add some additional constraints to the SDP formulation that help ensure that
such a vector will exist. However, one now needs to argue that the resulting SDP with
these extra constraints is still feasible, and the entropy method plays a key role here.

Even though we now have a constructive algorithm for Spencer’s result, recall that
this algorithm crucially relies on the non-constructive entropy method. In particular,
it does not give a different non-counting based proof of Spencer’s result. This is quite
different from, say, Moser’s constructive algorithm [22] for Lovász Local Lemma,
which can be viewed as giving an alternate algorithmic proof of the Local Lemma. It
would be interesting to find a truly constructive proof of Spencer’s result.

While we now have algorithmic results for many discrepancy problems, several
related problems are still open. In particular, while the best known non-constructive
bound for the Beck-Fiala problem is O((t log n)1/2) [2], the best known constructive
bound is only O(

√
t log n). One reason for this is that the result of [2] is based on

techniques from convex-geometry and does not use the partial coloring lemma. To
this end, a more combinatorial proof of the O((t log n)1/2) result would also be very
interesting. Of course, it is an outstanding open question to obtain an O(

√
t) bound.

Another open question is to improve the O(λ(log n log m)1/2) guarantee in Theorem 6.
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It may be possible to remove the factor of O(log1/2 n). In particular, we do not know
of any instance where the discrepancy exceeds the vector hereditary discrepancy by a
factor of Ω(log1/2 m).

Finally, it would be extremely interesting to see if similar techniques can be helpful
for other problems where the existence of good solutions is always guaranteed using
some non-constructive argument, but it is unclear how to find them. Some well known
examples of such problems include Minkowski’s first theorem on the existence of
short vectors in lattices, and the existence of perfect matchings in hypergraphs [16].

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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