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nomenological treatment partly known and partly proposed vacuum expectation values

of the scalar Higgs fields play a dominant role. All Higgs fields are taken to be flavor

singlets, all flavon fields trinification singlets. We need two flavor (generation) matrices.

One determines the mass hierarchy of all fermions, the second one is responsible for all

mixings including the CP-violating phase in the CKM matrix. The mixing with higher

states contained in the group representation provides for an understanding of the differ-

ence between the up quark and the down quark spectrum. There is a close connection

between charged and neutral fermions. An inverted neutrino hierarchy is predicted. Ex-

amples for the tree-level potential of the Higgs fields are given. To obtain an acceptable

spectrum of scalar states, the construction of the potential requires the combination of

matrix fields that differ with respect to fermion couplings and flavor-changing properties.

As a consequence bosons with fermiophobic components or, alternatively, flavor-changing

components are predicted in this model. Nevertheless, the Higgs boson at 125 GeV is very

little different from the Standard Model Higgs boson in its couplings to fermions but may

have self-coupling constants larger by a factor 2.

Keywords: Higgs Physics, Beyond Standard Model

ArXiv ePrint: 1403.2714

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP08(2014)139

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81830815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:B.Stech@ThPhys.Uni-Heidelberg.DE
http://arxiv.org/abs/1403.2714
http://dx.doi.org/10.1007/JHEP08(2014)139


J
H
E
P
0
8
(
2
0
1
4
)
1
3
9

Contents

1 The model 1

2 Charged fermion masses and mixings 5

2.1 The up quark mass matrix 5

2.2 The down quark masses and the Cabibbo-Kobayashi-Maskawa matrix 6

2.3 The charged lepton masses and their (not directly observable) mixings 7

3 Neutrino masses and mixings 7

4 The scalar sector and the Higgs boson 9

4.1 The fermiophobe model 9

4.1.1 Potentials with logarithmic terms 10

4.1.2 Potential without logarithmic terms 14

4.2 The flavophile model 14

5 Summary 15

1 The model

According to present experimental results at the Large Hadron Collider supersymmetry has

not been observed [1]. It may not be relevant at the weak scale. The hierarchy problem

still persists. This is a serious problem for the vacuum expectation values (vevs) of scalar

fields. These important momentum independent (apart from wave function renormaliza-

tion) quantities are presently not understood. They may have their origin at a very high

scale. In the Standard Model the vev of the Higgs field is the cause of all particle masses.

Also the well-known quadratic divergence of the Higgs self-energy caused by fermion loops

is related to this vev. Thus the vacuum expectation value can be viewed as the physics

origin of the Higgs and fermion masses. In this article we try to keep this feature by dealing

with the vevs of extended models.

We treat all vacuum expectation values of scalar fields as fundamental fine-tuned pa-

rameters. In addition, only dimensionless coupling constants are used. All masses are

obtained in terms of these vevs and these dimensionless coupling constants. The idea is

to start with a massless Lagrangian. By introducing vevs for the scalar fields, linear field

components show up which have to be canceled. In a simple φ4 model this cancellation is

performed by adding a term φ2 multiplied by the square of the corresponding vev:

λ φ4 → λ φ4 − 2λ 〈φ〉2 φ2. (1.1)
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Now the shift φ→ 〈φ〉+ φ′ can be applied and no linear term in φ′ appears anymore.

The second derivative of this expression provides the Higgs mass in terms of the vev 〈φ〉 :

m2
H = 4λ〈φ〉2 .

If log terms can be used more possibilities are open. For instance the modified form

λ φ4 → λ

1 + log
[
φ4

〈φ〉4

] φ4 (1.2)

has no linear term in φ′ either. The mass at the minimum of this potential is m2
H = 8λ〈φ〉2.

The embedding of the Standard Model into a larger group allows us to connect the

properties of quarks and charged leptons and their mixings with the properties of neutrinos

and their different mixings. It also implies a Higgs sector with more scalar bosons. Here we

extend the Standard Model symmetry group SU(2)L×U(1)×SU(3)C to SU(3)L×SU(3)R×
SU(3)C , the trinification group [2–4], which is a subgroup of E6 [5–8]. In this report we

are guided by articles using E6 [9–11] but restrict ourselves to the simpler trinification

subgroup. See-saw formulae for quarks and leptons given there can be used. Some details

are different and numerical updates are performed. Two Higgs fields with antisymmetric

flavor couplings need special attention. We treat the fermion and the scalar sectors and

discuss their connections. The model contains a large number of scalar fields. In spite of

these numbers tree-level potentials providing phenomenologically acceptable mass values

can be obtained which is hardly possible in a full E6 model. Suggestions in [12–14] are

used and explored. But at present only examples for the scalar particle spectrum and state

mixings can be given. However, they show highly interesting qualitative properties: almost

all scalar states have fermiophobic or flavor-changing components.

The group SU(3)L × SU(3)R × SU(3)C can be unbroken only at and above the scale

where the two electroweak gauge couplings g1 and g2 combine. According to the scale

dependence of the Standard Model couplings this happens at a scale of about 1013 to

1014 GeV. Interestingly, this is just the scale relevant for the small values of the neutrino

masses by applying the seesaw mechanism. It is also the place where the self coupling of

the Higgs field approaches zero [15]. In this article we do not consider the possible complete

unification of g1, g2 and g3 expected at a still higher scale.

All fermions are described by two-component (left-handed) Weyl fields. As abstracted

from the 27 representation of E6 [9, 10]. they occur in singlet and triplet SU(3) represen-

tations of the trinification group with the quantum number assignments

Quarks : q(x) = (3, 1, 3̄),

Leptons : L(x) = (3̄, 3, 1),

Antiquarks : q̂(x) = (1, 3̄, 3). (1.3)

For each generation one has

qai =

 ua

da

Da

 , iLk =

 1L1 E
− e−

E+ 2L2 ν

e+ ν̂ 3L3

 , q̂ka =
(
ûa, d̂a, D̂a

)
, (1.4)
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where i, k, a = 1, 2, 3. In this description SU(3)L acts vertically (index i) and SU(3)R
horizontally (index k) and a is a color index.

As proposed in the articles quoted earlier we use also the generation (flavor) group

SO(3)G and require all fermions to be 3-vectors in generation space. The coupling matrices

for fermions are vevs of flavon fields. In our phenomenological treatment these couplings

are considered as parameters of the model, without regarding the flavon potential from

which they originate. We take all Higgs fields to be singlets with respect to the flavor

symmetry and all flavon fields to be singlets with respect to the trinification group.

Generation (flavor) indices will be denoted by α, β = 1, 2, 3. The coupling matrices

occurring in the Yukawa interaction originating from trinification singlet flavon fields are

taken to be hermitian 3 × 3 matrices. Two coupling matrices are needed: the symmetric

matrix Gα,β and the antisymmetric matrix Aα,β. By a SO(3) symmetry redefinition Gα,β
can be taken to be a diagonal matrix. It is responsible for the flavor hierarchy of all fermion

masses. The antisymmetric matrix Aα,β determines the fermion mixings.

The scalar bosons (Higgs fields) are described by the matrix fields H, HA, HAl and H̃.

They transform under the trinification group as (3̄, 3, 1) except for HAl which transforms

according to (3̄, 6̄, 1). These matrix fields differ with respect to their Yukawa couplings:

H is coupled to fermions with the symmetric coupling matrix Gα,β whereas HA and HAl

couple to fermions with the antisymmetric flavor matrix Aα,β. As deduced from E6, HA

acts on quarks, HAl on leptons only [9, 10]. H̃, on the other hand, does not couple to

fermions . The latter property can be achieved by an additional parity-like symmetry PG
with a positive value for H, HA, HAl and a negative value for the fermiophobic H̃. In order

to obtain a spectrum of the scalar fields with non-vanishing masses (besides the would-be-

Goldstone states) the potential has to be formed from at least two different matrix fields.

This fact leads us to consider two distinguished cases:

A) The fermiophobe model: the potential is formed by H and H̃ while the fields in

HA, HA,l are assumed to have a negligible influence on the lower part of the mass spectrum

of the scalars. In this case most states will have fermiophobic components.

B) The flavophile model: here we take H̃ = 0 and construct the potential out of the

fields H and HA. The contribution of HAl to the potential is assumed not to be relevant

for the low mass eigenstates, or HAl has its own additional potential independent of H. In

this case the scalar bosons can cause flavor-changing transitions as we will see.

All scalar fields that are neutral and color singlets can in general have vaccuum ex-

pectation values with different magnitudes. 〈H〉 as well as 〈H̃〉 have then the form of the

lepton matrix (1.4) with the charged components set to zero i.e. five non-zero elements.

Biunitary SU(3)L and SU(3)R U -spin transformations can then be applied to bring the

matrix 〈H〉 to a diagonal form. This defines D, D̂ as well as the other fermions in (1.4)

to be eigenstates of 〈H〉 after symmetry breaking. With the vev of H being a diagonal

matrix the vev of H̃ will in general have 5 non-zero elements.

〈H〉 =

 v1 0 0

0 b 0

0 0 MI

 , 〈H̃〉 =

 v2 0 0

0 b2 b3
0 MR M3

 . (1.5)
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The vev of the matrix field HA also has 5 non-zero elements in general. We write

them in the form ifk. Here i is again a left-handed index and k a right-handed one

with i, k = 1, 2, 3. The matrix field HAl can have 8 non zero elements occurring in the

expression if{kl}. (For brevity these indices will often be omitted hereafter). A number of

these vevs for HA and HAl are taken to be zero since all mixings are supposed to originate

from the mixings of Standard Model fermions with the high-mass fermions present in the

representation (1.3). Since the top has no higher partner we take 1fk = 1f{kl} = 0. MI

together with MR and/or 3f2 break the trinification group down to the Glashow-Weinberg-

Salam group. They have to be large compared to the weak scale. MI is presumably close to

the meeting point of g1 and g2 mentioned above. The vevs in the first and second rows are

assumed to be of the order of the weak scale or smaller. They break the Standard Model

group down to the electromagnetic Ue(1) symmetry. As a consequence of our scheme it is

seen that v1 and b are related to the top mass and the (unmixed) bottom quark mass:

mt = gt v1, m0
b = gt b i.e.

b

v1
=
m0
b

mt
. (1.6)

The known value v = 174 GeV (= 246√
2

GeV) for the vev of the Higgs field of lowest mass is

related to vevs of H, H̃, HA and HAl :

v2 = v2
1 + v2

2 + b2 + b22 + b23 + (2f2)2 + (2f3)2 + (2f{1,3})2 + (2f{1,2})2. (1.7)

Thus, if the bj and fj are similarly small as b, (b ≈ mb ' 2.85 GeV at the scale mZ) the

vevs v1 and v2 are restricted according to v2
1 + v2

2 ' v2.

With the flavor matrices G and A and the flavor singlet Higgs fields H, HA and HAl

the Yukawa interaction [10, 11] is

L1
Y = gtGαβ

(
ψαTH ψβ

)
+Aαβ

(
ψαTHA ψβ

)
+Aαβ

(
ψαTHAl ψ

β
)

+ h.c. (1.8)

Here ψ stands for a column vector consisting of all fermions described in (1.3). But as

mentioned before, HA acts only on quarks and HAl on leptons only. The first term gives

the up quarks their masses. It also describes parts of the down quark and lepton mass

matrices (with Dirac masses for the neutrinos). The second term in (1.8) performs the

mixings of the Standard Model quarks as well as their mixings with the heavier quark

states occurring in the model. Together, the first and the second term should achieve

satisfactory results for the masses of up quarks, down quarks and the Cabibbo-Kobayashi-

Maskawa matrix including its CP-violating phase. Similarly, the first term together with

the third term should describe masses and mixings of the leptons.

At this stage, however, the neutrinos are still Dirac neutrinos with masses comparable

to the quark masses. Moreover, neutral leptons that are singlets with respect to Standard

Model gauge transformations are still massless. An important assumption of our model is

therefore the addition of an effective Yukawa interaction Leff,2.

Leff,2 =
1

MN

(
G2
)
αβ

(
(ψαTH†)1(H̃†ψβ)1

)
+ h.c.

or Leff,2 =
1

MN

(
G2
)
αβ

(
(ψαTH†)1(H†A ψβ)1

)
+ h.c.

(1.9)
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mu = 1.24± 0.06 MeV mc = 624± 14 MeV mt = 171.55± 0.90 GeV

md = 2.69± 0.09 MeV ms = 53.8± 1.4 MeV mb = 2.85± 0.023 GeV

me = 0.510 MeV mµ = 105.4 MeV mτ = 1772.5 MeV

Table 1. Fermion masses at scale µ = mZ in the MS scheme calculated in [16] using the masses

from [24] except for the u−, d−, and s−quark masses taken from [25] at µ = 2 GeV.

As indicated by the index 1 (1.9) couples fermions with H† and similarly with H̃†

and H†A to form trinification singlets . Since H , H̃ and HA are matrices with left and

right-handed indices this coupling clearly involves leptons only. It could originate from

the exchange of a very heavy trinification singlet neutrino with mass MN ≈ MI and

an appropriate U(1)G structure. The first form is relevant for the fermiophobe model,

the second is taken for the flavophile model where H̃ = 0. Here H̃ is replaced by HA.

Obviously, (1.9) provides masses for neutral leptons only. In particular, they provide a

mass matrix with large eigenvalues (because of the large vevs MI , MR, 3f2) to the neutrinos

ν̂ = 3L2 and 3L3 which are not part of the Standard Model. Through the mixing of these

heavy neutrinos with the Standard Model neutrinos the seesaw mechanism takes place.

The corresponding flavor matrix in (1.9) must be symmetric. Because of the second order

form of (1.9) we choose the matrix G2. As a consequence, the mass hierarchy of the heavy

neutrinos is a very strong one [10, 11]. Thus, depending on the masses MN and MI the

first generation of the leptons ν̂ = 3L2 and 3L3 can have masses in or below the TeV

region.

The effective Yukawa interaction Leff = L1 + Leff,2 with G, A in (1.8), (1.9) and

the vev configurations of H, HA, HAl and H̃ contain all the necessary information about

the generation structure and the fermion spectrum. We will show in section 2 that the

properties of quarks and charged leptons, their masses and mixings are well described by

only a few parameters. The flavor matrices G and A determined in this section are then

used in section 3 for the determination of the mass matrix for neutrinos. A generalized

seesaw mechanism leads to an inverted hierarchy. Finally, in section 4, tree-level potentials

are constructed which give rise to spontaneous symmetry breaking and determine the mass

spectrum of the Higgs-like bosons. The corresponding mass eigenstates of the scalar fields

will in general have either fermiophobic or flavor-changing components.

2 Charged fermion masses and mixings

2.1 The up quark mass matrix

The experimentally known up quark masses can be used to construct the flavor matrix G.

All experimentally determined masses used here and in the following are running masses

taken at the scale mZ . The numerical values based on recent determinations have been

provided by Matthias Jamin [16] and are presented in table 1.

Since G and 〈H〉 can be chosen to be diagonal matrices, one has from (1.8)

gtv1G =

mu 0 0

0 mc 0

0 0 mt

 (2.1)
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By introducing the small parameter σ =
√
mu/mc = 0.045, a good phenomenological

ansatz for Gu for the up quark masses at the weak scale is

Gu =

 ptσ
4 0 0

0 ptσ
2 0

0 0 1

 . (2.2)

It contains the factor pt. Interpreting this factor as a renormalization factor [10] suggests

that at a very high scale one has mu/mc = mc/mt = σ2. The up quark masses are well

represented setting pt = 1.8. In the next sections we need the matrix Gd for the down

quarks and Gl for the charged leptons. For the down quarks the factor pt is replaced by

p
1/3
t = 1.22 and for the charged leptons by 1. The small parameter σ = 0.045 introduced

here can also be used to describe the particle mixing matrix A and the neutrino properties.

2.2 The down quark masses and the Cabibbo-Kobayashi-Maskawa matrix

The first two parts of the effective Yukawa interaction determine the down quark mass

matrix. Here one needs the antisymmetric flavor matrix A. It can be described by 3 real

parameters. We choose the element A1
2 = iσ and absorb the remaining multiplication

factor into the vev parameter of HA. This leaves 2 parameters for A. But in the form for

A that we will use here, only one real parameter (τ) appears:

A = i

 0 σ −σ
−σ 0 τ

σ −τ 0

 . (2.3)

If σ/τ would be equal to 1, even (odd) permutations of generations would lead to A→ +A

(A → −A). The permutation symmetry with respect to the second and third generation

survives for any value of τ . By fitting the CKM matrix the value τ = 0.50 turns out to be

a good choice.

Besides the down quarks of the Standard Model there exists — according to (1.3) —

also a state which is a singlet with respect to Standard Model gauge group transformations.

Thus, the down quark mass matrix is a 6×6 matrix. This new quark D with SU(3)L index

i = 3 is very heavy due to the vev MI of H. One can integrate out this heavy state if

the contributions from HA are taken to be small compared to MI . This way one finds the

wanted 3 × 3 mass matrix for the Standard Model particles. The mixings with the high

mass state cannot be neglected. It is seen to be essential for our understanding of the CKM

matrix and the deviations of the mass pattern of down quarks from the mass pattern of

the up quarks. The light down quark mass matrix is

md = m0
b Gd + fdA+ fd0 σ3A (Gd)

−1A . (2.4)

Here m0
b = gtb is the value of mb before mixing, fd is equal to the vev of 2(HA)2 and

fd0 a parameter resulting from integrating out the heavy D-quark masses. The factor σ3

serves to cancel the negative powers of σ in A(Gd)
−1A and thus allows a smooth formal

limit σ → 0. Taking m0
b = 2.78 GeV, fd = −0.280 GeV and fd0 = 1.40 GeV (together with

– 6 –
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the values for mt, σ and τ) an almost perfect representation for all up and down-quark

properties is achieved. The masses at the scale mZ agree within error limits with the

experimental ones [16]. Also the calculated CKM elements describe the data [17] quite

well. The angles of the unitarity triangle come out to be α ' 94o, β ' 22o, γ ' 64o.

2.3 The charged lepton masses and their (not directly observable) mixings

Like the down quarks the charged leptons have heavy partners as well and mix with them

via the flavor matrix A. Again, by integrating out these heavy states the 6×6 mass matrix

is reduced to the 3×3 matrix for the usual leptons. Apart from a sign, its form is the same

as for the down quarks.

me = −m0
τ Gl − feA− fe0 σ3A (Gl)

−1A . (2.5)

Here m0
τ is the value of mτ before mixing. m0

τ , fe and fe0 are now used to fit the masses of

τ , µ and the electron. A good fit is obtained by setting m0
τ = 1.62 GeV, fe = −0.2082 GeV,

fe0 = 2.58 GeV. These values are not simply related to the corresponding values for the

down quarks since for leptons matrix elements of HAl instead of HA have to be taken [9].

The charged lepton mass matrix obtained this way allows to calculate the charged lepton

mixings, which is a necessary ingredient for the discussion of the neutrino properties.

3 Neutrino masses and mixings

According to the lepton assignments in (1.3) one has to deal with 5 neutral leptons in each

generation. Thus, the matrix for neutral leptons is a 15× 15 matrix. Again, leptons that

obtain high masses because of the large vevs in the effective Yukawa interaction (1.8), (1.9)

can be integrated out giving rise to a generalized seesaw mechanism. According to our

Yukawa interaction the Dirac matrix for the light neutrinos is mtGl, while the heavy

neutrinos have masses proportional to G2
l . Therefore, a unit matrix is part of the light

neutrino mass matrix. Together with a further contribution due to the particle mixing

matrix A one obtains the 3× 3 matrix for the light neutrinos [10, 11] in terms of the two

parameters κ and m0

mν '
m2
t

MI
κ 1 +m0 σ

3

(
A

1

Gl
− 1

Gl
A

)
. (3.1)

Taking the neutrino mass matrix mν only up to first order in the small parameter σ, one

can write mν in a very simple form: setting κ
m2

t
MI

= m0 ρ one obtains

mν ' m0

 ρ −i i

−i ρ −iτσ

i −iτσ ρ

 (3.2)

with τ = 0.50 and σ = 0.045 as used for quarks and charged leptons. The eigenvalues of

mν .m
†
ν to first order in σ are

(m2)2 ' (ρ2 + 2 +
√

2 τ σ) m2
0 ,

(m1)2 ' (ρ2 + 2−
√

2 τ σ) m2
0 ,

(m3)2 ' ρ2m2
0 . (3.3)

– 7 –
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It is now easy to see the following properties of the light neutrinos:

• The neutrino mass spectrum has the form of an inverted hierarchy.

• The ratio between the solar and the atmospheric mass squared differences is inde-

pendent of the two neutrino parameters m0 and ρ. This ratio is
√

2 τ σ = 0.031 in

good agreement with experiment.

• The experimentally observed atmospheric mass squared difference can be used to fix

the mass parameter m0 for the light neutrinos. Then ρ is determined by the lightest

neutrino mass m3.

m0 '
1√
2

√
∆m2

atm ' 0.035 eV ,

m3 ' m0 ρ ' 0.035 ρ eV. (3.4)

• Without taking account of effects from diagonalizing the charged lepton mass matrix

and renormalization, the neutrino mass matrix mν leads to almost strict bimaximal

mixing.

Including the charged lepton mixings obtained from (2.5) a better, but still not satisfactory

agreement with the experimentally determined neutrino mixing angles is achieved. Detailed

renormalization group calculations would be necessary, but are not performed here. Instead

we introduce a parameter which may in part simulate these effects. It should not change

the successful mass pattern obtained so far and is therefore taken to be an orthogonal

transformation in generation space. Mixing the first with the third generation by the angle

φ one gets with c = cos φ, s = sin φ the modified neutrino mass matrix:

mν ⇒ m0

 ρ+ 2ics −i(c+ τσs) i(c2 − s2)

−i(c+ τσs) ρ −i(τσc− s)
i(c2 − s2) −i(τσc− s) ρ− 2ics

. (3.5)

Since m0, τ and σ are fixed, this matrix depends, for a given mass of the lightest neutrino,

only on the angle φ. Of course, the mixing matrix of charged leptons, obtainable from

section 2, has yet to be included.

As an illustrative example we take ρ = 1 and choose φ to fit the third neutrino mixing

angle θν13 ≈ 9o in accord with data analysis [17]. This leads to φ ' π/14. One then finds

for the neutrino masses and angles:

m2 = 0.06012 eV, m1 = 0.05948 eV, m3 = 0.03456 eV

θν12 ' 36o, θν23 ' 49o, θν13 ' 9.4o. (3.6)

The CP-violating phase δ, the Majorana angles and the mass parameter for the neutrinoless

double β-decay in this example are

δ ' −11o,
α21

2
' −81o,

α31

2
' 90o,

|〈mββ〉| ' 0.032 eV. (3.7)

– 8 –
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The phase and angles are given according to the standard parametrization [18]. For

different values for ρ and even for ρ → 0 the mixing angles shown in (3.6), (3.7) are al-

most unaffected. For ρ = 0 the largest mass is m2 = 0.0492 eV. In view of our simple

approach these results for the mixing angles and the mass squared differences are satisfac-

tory. Nevertheless, in case the inverted hierarchy predicted here turns out to be established

by experiment, a more detailed study of the model will be necessary. By integrating out

heavy states renormalization group effects and the violation of unitarity of the mixing

matrices must certainly be incorporated before any final judgement is possible.

4 The scalar sector and the Higgs boson

The embedding of the Standard Model into a larger group implies an extended Higgs

structure formed by numerous scalar fields. This is difficult to deal with since only the

information about the just discovered Higgs boson [19, 20] can be incorporated. Our aim

is to construct in a phenomenological way examples of tree-level potentials for the scalar

fields and to calculate the corresponding boson mass spectrum. The tree potential has to

be formed from SU(3)L × SU(3)R invariants. As mentioned in section 1 our input consists

of vacuum expectation values only. They determine the spontaneous symmetry breaking

pattern and fix the position of the minimum of the potential. Clearly, the hierarchy problem

is not solved this way but appears in a somewhat different light. The vevs, which are not

understood anyhow, have to be partly taken from experiment and partly to be postulated.

They are fine-tuned with respect to radiative corrections.

The presence of Higgs fields with different properties and the necessity of combining

gauge group invariants in order to get non-zero masses leads to interesting properties of the

obtained bosons. Some will drastically differ from the Standard Model Higgs-like states.

We will discuss here two scenarios of interest.

4.1 The fermiophobe model

The potential responsible for the scalar particle spectrum is constructed from invariants of

the fields in H and H̃. From these 36 real fields 21 of them should become massive while

leaving 15 would-be-Goldstone particles massless. The remaining fields HA and HAl are

supposed to have little influence on the scalar particle spectrum, at least not in the TeV

region or below. Starting from a massless Lagrangian the individual invariants for H and

H̃ are

J1 = (Tr[H† ·H])2, J2 = Tr[H† ·H ·H† ·H],

J3 = (Tr[H̃† · H̃])2, J4 = Tr[H̃† · H̃ · H̃† · H̃]. (4.1)

with the vevs shown in (1.5). But in the following we will restrict the vevs MR and M3 by

M2
R +M2

3 = M2
I and later take M3 = 0.

Only J1 and J3 can be modified as in (1.1) in order to have no linear terms after the

appropriate shift H → 〈H〉 + H and a similar shift for H̃. But the masses obtained from

these two invariants and combinations of them are of order MI , MR. None of them are of
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order v like the Higgs boson observed at the LHC. Thus one has either to use a different

form or to add immediately new invariants which combine the fields of H and H̃.

4.1.1 Potentials with logarithmic terms

Let us first remain with the four important invariants (4.1) but allow a logarithmic de-

pendence on J/〈J〉 as in (1.2). Even though a good justification for the form (1.2) cannot

be given, we can nevertheless use it for our phenomenological potentials. The reason is

that by expanding the potential (after shifting the fields) in terms of the very large vevs

occurring in our model and by neglecting inverse powers of these vevs, the so obtained

effective potential has scalar fields up to the fourth power only.

A naive Ansatz for the potential constructed from the four invariants shown above is

V0 =
4∑
i=1

λi
Ji

1 + log
[
Ji
〈Ji〉

] . (4.2)

The second derivatives of each term in (4.2) (considered independently) give a mass matrix

with a single non-zero eigenvalue M2
i that in the limit of a large value for MI (MR) is

dominated by MI (MR):

M2
i → 8 λi M

2
I(R) (4.3)

If the differences between MI(R) and the masses generated remain finite for MI(R) →∞
, i.e. M2

i → M2
I(R), one gets the interesting result

λ1 = λ2 = λ3 = λ4 =
1

8
. (4.4)

The limit Mi →MI(R) was speculatively assumed in [12]. The corresponding tree-level

potential provided a prediction of the Higgs mass m2
Higgs '

v√
2
' 123 GeV not far from

the experimental value found later. A similar ansatz for V0 containing only a single log

function has been described in [14]. In the following we use λ1 = λ2 = λ3 = λ4 = c0
8

allowing thereby for a correction factor c0 sightly different from one [13].

From the second derivatives of 1
2 V0 with respect to all 36 fields at the point H = H̃ = 0

of the shifted fields one gets the 36× 36 mass matrix whose eigenvalues — shown here for

large MI , MR = MI — are

m2
1 =

c0

2
(v2

1 + b2), m2
2 =

c0

2
(v2

2 + b23), m2
3 = 2 c0 M

2
I , m2

4 = 2 c0 M
2
I ,

m2
i = 0 i = 5 . . . . . . . . . . . . . . . 36 (4.5)

We note that this result can also be obtained by expanding V0 (after the shift of fields)

in terms of MI and neglecting inverse powers of MI . In (4.5) we have 2 scalars with low

masses [13]. The first one can be identified with the Higgs boson found at the LHC. It is

coupled to fermions and gauge bosons. Its mass is m2
Higgs = c0

2 (v2
1 +b2). The second boson

is fermiophobic. It is not directly coupled to fermions, only to gauge bosons. Its properties

and mass are sensitive to invariants not yet used.
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v1 and v2 are strongly constrained by (1.7). Taking bj , fj in (1.7) to be small (≈ mb)

one can write v1 = v cos β̃ and v2 = v sin β̃. β̃ = 0 implies gtv = mt (gt ' 1) as in the

Standard model. Comparing then the value of the Higgs mass measured at the LHC with

the expression for m1 in (4.5), c0 is determined to be ' 1.04 which is indeed close to 1 as

expected from the potential (4.2) with (4.4). An interesting but less likely case would be

β̃ = π/4 and therefore m1 = m2, i.e. a twin structure of the Higgs particle [14]. Its mass

requires however the correction factor to be c0 ' 2. Moreover, further contributions to the

potential will in general remove this degeneracy as we will see below.

The 32 massless states in (4.5) can be divided into 15 massless Goldstone states and

17 additional states of mass zero. One massless state is due to the so far unbroken general

phase transformation of H and H̃. The remaining 16 massless states are due to our

provisional neglecting of invariants that connect the fields in H with the fields in H̃.

Without them H or H̃ can be independently transformed by SU(3)L × SU(3)R matrices.

There are a number of different invariants containing the fields of both multiplets H

and H̃ [4]. The vevs proposed and the parameters for the invariants have to be restricted to

guarantee that all scalar masses are positive and not in conflict with the data. We cannot

perform this task in general since the vevs and the allowed range of the dimensionless

parameters depend on each other in a complicated way. Moreover, the addition of a new

vev, or even a slight change of the ratio of two vevs, can abruptly distort the spectrum.

These properties provide strong restrictions for the vevs and couplings that have not yet

been explored.

Here we confine ourselves to the possible close connection between the vevs of H and

H̃, namely the correspondence

MR = MI , M3 = 0, b2 = 0 and b3 of order b (4.6)

(MR = MI , b2 = 0 and b3 = −b correspond to a π
2 UR-spin rotation of the vev of H̃ with

respect to the vev of H).

The potential to be added to V0 needs at least 3 new invariants of dimension 4. In

order to have no linear terms in the shifted form of the potential one has to add “induced”

invariants of dimension 2 and 3 quite similar as in (1.1). The coefficients of these latter

invariants are not free but determined by the vevs and couplings of the basic invariants of

dimension 4 (and vanish for vanishing vevs).

The new invariants we take are

J5 = Tr[H† · H̃ · H̃† ·H], J6 = Tr[H† ·H · H̃† · H̃],

J7 = Tr[H† · H̃ ·H† · H̃] + Tr[H̃† ·H · H̃† ·H],

J8 = Tr[H†H], J9 = Tr[H̃†H̃],

J10 = detH + detH†, J11 = det H̃ + det H̃†.

(4.7)

Here the second line contains the “induced” invariants with dimension 2 and 3. The

potential reads

V = V0 + VS ,
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VS = r1J1 + r2J2 + r3J3 + r4J4 + r5J5 + r6J6

+r7J7 + µ2
1J8 + µ2

3J9 + µd1J10 + µd2J11. (4.8)

The coefficients r1 . . . r4 are required to be very small since the corresponding invariants

appear already in V0. The first ten invariants J1 to J10 do not change under the PG
transformation H → H and H̃ → −H̃, while J11 changes sign. J10 and J11 break the

invariance under a common phase transformation of the fields. The total potential V

should now provide non-zero masses for all fields except the Goldstone ones.

After requiring the vanishing of all first derivatives of V at the proposed minimum,

µ2
1, µ2

3, µd1 and µd2 are determined by our vevs and the dimensionless couplings. For

simplicity, and also to avoid near-by negative eigenvalues of the mass matrix, we set in the

following r5 = −2r1 − 2r2 and in addition r2 = r1. Let us consider the cases a) β̃ = 0 i.e.

v1 = v, v2 = 0 with c0 ' 1 and b) β̃ = π
4 i.e. v1 = v2 = v√

2
with c0 ' 2.

Case a) By setting v2 = 0 the minimum condition for V fixes r6, r7, µ2
1, µ2

3, µd1, µd2

in terms of r1, r3 and r4. In this example we take MI = MR = 1013 GeV, b = 2.85 GeV

and b3 = 1 GeV. For r4 = 0 and almost independent of r1, r3, the Higgs boson obtained

in (4.5) appears again, this time together with an acceptable mass spectrum for the other

20 bosons. For r1 & v2/M2
I it is the lowest scalar state. Its mass is

√
c0 · 123 GeV.

This Higgs field is to 99.9% composed of the field 1H1 with an admixture of 2H2 in

the ratio b/v = 0.016. Only a tiny 0.57% admixture of the fermiophobic field 2H̃3 can be

noticed. The coupling to t and b quarks (the latter due to the appearance of the Higgs

eigenstate in the field 2H2 with the factor b/v) is identical to the one of the Standard Model.

On the other hand, the Higgs self-coupling constants for H3
Higgs and H4

Higgs are twice as

large as in the Standard Model. This increase is due to the logarithmic terms occurring in

V0. For large values of MI this potential gets a polynomial form generating these couplings.

These self-coupling constants and the tiny admixture with the fermiophobic field (vanishing

for b3 → 0) are the only deviations from Standard Model properties. Their determination

can be used to reject or support this potential.

The properties of the higher states, however, are strikingly different from conventional

Higgs particles. For r1 = 6v2/M2
I , for example, the next states are 4 almost degenerate

scalars at ' 852 GeV. It is a complex SU(2)L doublet ˜iH1 (i = 1, 2) and thus purely fermio-

phobic. The next 4 states at 1205 GeV are again degenerate. They are the members of the

SU(2)L doublet ˜iH2−iH3 with an equal amount of normal and fermiophobic components.

See table 2. Taking r1 to be very small (f.i. r1 = 0.01v2/M2
I ) the pure fermiophobic states

are shifted below the Higgs at 125 GeV.

Interestingly, it is also possible to have a solution with µ2
1 = µ2

3 = 0. Here r3 and r4

have to have special values to achieve this result. J11 is then the only term with dimension

different from 4 appearing in the potential (4.8). Its coefficient µd1 is fixed by the vevs and

dimensionless couplings of the invariants with dimension 4. µd2 remains 0.

Case b) For v1 = v2 = v√
2

and c0 ' 2 we take as before MI = MR = 1013 GeV,

b = 2.85 GeV and this time b3 = ±b. We also set r5 = −2r1 − 2r2, keep r3 = 0 and choose

as an example r2 = 10−5, r6 = 1. This leaves the parameter r1. For values r1 & 2v2/M2
I
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masses [GeV] field composition (i=1,2)√
c0
2 v = 125.5 Re[0.999 1H1 + 0.0164 2H2 + 0.0057 2H̃3]

852 (4 states) iH̃1

1205 (4 states) 1√
2

(
−iH3 + iH̃2

)
31667 (4 states) ' 1√

2

(
iH2 + iH̃3

)
44766 Re

[
1√
2

(
3H2 + 3H̃3

)]
45680 (4 states) ' 1√

2

(
iH2 − iH̃3

)
64591 Im

[
1√
2

(
3H2 − 3H̃3

)]
1.4× 1013 Re

[
3H3

]
2.5× 1013 Re

[
3H̃2

]
Table 2. Scalar mass spectrum v1 = v, v2 = 0. The minimum conditions fix then the remaining

r coefficients: r6 = 1.54 × 10−17, r7 = −2.71 × 10−18, µ2
1 = −2.22 × 10−20 GeV2, µ2

3 = −2.00 ×
1026 GeV2, µd1

= −2.22× 10−6 GeV, µd2
= 0.

mass [GeV] field composition
√
c0

v1√
2

= 125 Re[0.7069 1H1 + 0.7069 1H̃1 + 0.0161 2H2 + 0.0161 2H̃3]

615 Re[0.7071 1H1 − 0.7071 ˜1H1]

Table 3. Higgs boson at 125 GeV and the next higher state at 615 GeV for v1 = v2 and b3 = b.

The coefficients resulting from the minimum condition are: r7 = −0.50, µ2
1 = −5.5 · 10−27 GeV2,

µ2
3 = 3.0 · 105 GeV2, µd1 = −µd2 = −1.57 · 10−6 GeV.

the 125 GeV Higgs is the lowest state separated by a sizable mass gap from scalars with

higher masses.

However, this particle is now different from a normal Higgs: it is an equal admixture

of the fields H and H̃ (see table 3). But even though this structure is quite different from

a normal Higgs and the top coupling mt/v1 to the field 1H1 is larger by the factor
√

2,

the couplings of this boson to fermions remain equal to the Standard Model couplings.

The reason is that only the 1/
√

2 part of the field 1H1 forms the Higgs eigenstate and

thus compensates these effects. The calculation shows that the invariant J11 has now a

non-vanishing coefficient. Thus, the chosen vevs together with the dimensionless couplings

enforce a breaking of the PG symmetry. For r1 = 6v2/M2
I used in table 3 its magnitude is

µd2 = 1.57 · 10−6 GeV. To force it to be zero would imply the existence of several massless

bosons. Due to the logarithmic parts in the potential the Higgs self-couplings are, as in the

examples given before, a factor 2 larger than in the Standard Model. All higher states differ

drastically from the Standard Higgs boson because of their very different field components.

For a special choice of the parameter r1 (r1 ' 10−3v2/M2
I ) and b3 = +b a twin structure

for the Higgs (mass degenerate twins) can be achieved. One member has the orthogonal

admixture of normal and fermiophobic scalars as compared to the second member. Our

model allows this degeneracy but does not favor it. To exclude or verify a mass degeneracy
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125 GeV, β̃, r1 field composition

β̃ = 0, r1 = 6.71 · 10−2 Re[0.999 1H1 + 0.016 2H2 + 0.0057 2H̃3]

β̃ = π
8 , r1 = 1.82 · 10−4 Re[0.9237 1H1 + 0.3826 ˜1H1 + 0.0161 2H2 + 0.00575 2H̃3]

β̃ = π
4 , r1 = 1.552 · 10−4 Re[0.7070 1H1 + 0.7070 ˜1H1 + 0.0161 2H2 + 0.00575 2H̃3]

Table 4. Composition of Higgs scalars (mHiggs = 125 GeV) for V0 = 0, V = VS . v1 = v cos β̃ ,

v2 = v sin β̃, r1 = r2, r5 = −4r1, r3 = 1. We use r4 = 3.01 · 10−4 for all 3 β̃ values and fit r1 for

each case.

the method of ref [21] could be applied. This twin is the lowest state, but by going further

down with r1 other states can lie below.

4.1.2 Potential without logarithmic terms

We now turn to an example for a potential without the logarithmic terms occurring in

V0. We simply leave out V0 in (4.8). As before the minimum condition determines the

coefficients of the invariants of dimension 2 and 3. We take MI = MR = 1013 GeV,

b = 2.85 GeV, b3 = 1 GeV and v1 = v cos β̃, v2 = v sin β̃. This time the particle

corresponding to the Higgs boson found at the LHC does no longer stick out within large

ranges of the r parameters as in the cases treated above. Now these parameters have to be

carefully fine-tuned to obtain the relevant field composition with the correct mass. They

also depend strongly on the value taken for β̃. Still r3 can be set equal to 1 since it affects

mainly the highest masses. Taking again r1 = r2, r5 = −4r1 the boson corresponding

to the Higgs found at the LHC can then be fixed by the parameters r1 and r4. They

need fine-tuning to avoid negative mass squared values for one or more of the other 20

states. For β̃ = 0 the Higgs field is composed of the field 1H1 + b
v

2H2 as before. Its

largest fermiophobic component 2H̃3 is again only 0.57% of the Higgs field. Its coupling

to top and b quarks and now also its self-coupling constants are practically identical to

the Standard Model couplings.Thus, this boson differs only minimally from the Standard

Model Higgs boson. Unfortunately, all higher states are far away at about 1010− 1013 GeV

as a consequence of the high value we took for MI . The composition of the Higgs field for

3 different values of β̃ and the corresponding values of r1 and r4 are shown in table 4.

4.2 The flavophile model

Here we set H̃ = 0 and thus have no fermiophobic components in the scalar particle

spectrum. Instead, the potential is constructed from the fields occurring in H and HA.

This is another way to obtain a boson spectrum with no vanishing masses except the 15

would-be-Goldstone bosons. Unavoidably, it will lead to flavor-changing contributions.

The fields from HAl are supposed either not to be relevant for low-lying states and/or to

have their own additional potential not involving the other fields. This is required because

the existence of a state coupled to leptons having simultaneously flavor conserving and

flavor changing components would hardly be consistent with the known strong limits [22]

on the decay µ→ e γ .
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For the scalar potential we take the same approach as in the fermiophobe model and

simply replace H̃ by HA. Now we have to set v1 ' v, v2 → 1f1 → 0 , b2 → 2f2, b3 → 2f3,

MR → 3f2 and M3 → 3f3. As in (4.6) we use again 3f2 = MI ,
3f3 = 0, 2f2 = 0 and

2f3 = 1 GeV.

Apart from the completely different interpretation one can copy the results from the

fermiophobe model. In analogy to case a) above there is a large range of values for the

parameters r1 and r3 for which the state at ' 125 GeV coincides with the low mass Higgs

boson in (4.5). It is barely affected by the heavier bosons. The additional field component

(2(HA)3) that can lead to flavor-changing transitions via the matrix A is again only ' 0.57%

of the field 1H1. This boson can hardly be distinguished from the Standard Model Higgs.

Nevertheless, a careful analyses of the decay amplitudes resulting from flavor-changing

components of the Higgs field, like the one performed in [23], would be highly desirable.

For almost all other states our model predicts field components from HA with similar

strength as the fields from H. Such neutral and charged fields could also lie below the

Higgs. If such states exist one could look for their decays to two quarks of different flavors,

for instance to a jet with a leading bottom quark and a jet with a leading strange quark.

An intensive search for such decays as well as for low-energy processes induced by virtual

boson exchange (in analogy to penguin-type processes) is suggested. Flavor-violating Higgs

bosons would be of significance for an increased understanding of the CKM matrix. With

regard to potentials without the V0 part of the potential in (4.8) one can see that here the

obtained boson also coincides very nearly with the Standard Model Higgs while all other

states differ considerably from normal Higgs fields.

5 Summary

In this work we considered the generalization of the Standard Model to the trinification

group SU(3)L × SU(3)R × SU(3)C augmented by the generation symmetry SO(3)G under

which all fermions are 3-vectors in generation space. In our phenomenological approach

essential use is made of the vacuum expectation values of scalar Higgs fields. They provide

the spontaneous symmetry breaking down to the Standard Model and finally to U(1)e.

As in [10, 11] an effective Yukawa interaction is proposed that, beside flavor singlet Higgs

fields, contains two flavor (generation) matrices G and A. G determines the mass hierarchy

of all fermions and A all mixings. The difference between the up quark spectrum and the

spectrum of down quarks as well as the structure of the CKM matrix are related to the

mixing of fermions with heavy states present in the group representation. The form of the

neutrino mass matrix is determined by this mixing as well. Our model leads to an inverted

neutrino hierarchy. With the measured atmospheric mass squared difference as input and

having only one fit parameter, a satisfactory result for the experimentally observed solar

neutrino mass difference and the neutrino mixing pattern is achieved.

Concerning the Higgs sector only simple examples could be dealt with due to the

many scalar fields in the representation of the trinification group. Phenomenological tree-

level potentials have been constructed giving mass to all fields apart from the 15 would-be

Goldstone particles. Due to the combination of different matrix fields required to obtain
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finite masses, the mass eigenstates have either fermiophobic components or parts that

induce flavor changing processes. A notable exception is the Higgs-like state at 125 GeV

which appears independent of a wide range of parameter values. It has the same gauge and

fermion couplings as the Standard Model Higgs and barely differs from it in this respect.

A strong difference only occurs in the self-coupling constants: the logarithmic part of the

potential advocated here enforce them to be larger by a factor 2 compared to the Standard

Model.

In contrast to this particle all other scalar states strongly differ from usual Higgs-like

bosons. These new bosons, if existing at all, have interesting properties and would allow

the study of exciting new processes.
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