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Abstract Rainfall is one of the most significant parameters in a hydrological model. Several
models have been developed to analyze and predict the rainfall forecast. In recent years, wavelet
techniques have been widely applied to various water resources research because of their time-
frequency representation. In this paper an attempt has been made to find an alternative method
for rainfall prediction by combining the wavelet technique with Artificial Neural Network
(ANN). The wavelet and ANNmodels have been applied to monthly rainfall data of Darjeeling
rain gauge station. The calibration and validation performance of the models is evaluated with
appropriate statistical methods. The results of monthly rainfall series modeling indicate
that the performances of wavelet neural network models are more effective than the ANN
models.

Keywords Rainfall . Training . Decomposition . Neural network and wavelet

1 Introduction

Rainfall is a complex atmospheric process, which is space and time dependent and it is not easy to
predict. Due to the apparent random characteristics of rainfall series, they are often described by a
stochastic process (Chinchorkar et al. 2012). For water resources planning purposes, a long-term
rainfall series is required in hydrological and simulationmodels (Tantanee et al. 2005). There have
been many attempts to find the most appropriate method for rainfall prediction for example,
coupling physical, marine, and meteorological or satellite data with a forecasting model, or even
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applying several techniques such as the artificial neural network or fuzzy logic as a forecasting
approach (Hsu et al. 1995; Dawson and Wilby 2001; Hettiarachchi et al. 2005). In recent years,
several numerical weather forecasts have been proposed for weather prediction but most of these
models are limited to short period forecasts. This paper introduces a new approach for prediction
of rainfall series.

Several time series models have been proposed for modeling monthly rainfall series (Bhakar
et al. 2006) and annual rainfall series such as the autoregressive model (AR) (Yevjevich 1972),
the fractional Guassian noise model (Matalas andWallis 1971), autoregressive moving-average
models (ARMA) (Carlson et al. 1970) and the disaggregation multivariate model (Valencia and
Schaake 1973).Moustris et al. (2011) examine the possibility of long term precipitation forecast
(four consecutive months) by the application of ANNs, using long monthly precipitation time
series of four meteorological stations in Greece.

In the past decade, wavelet theory has been introduced to signal processing
analysis. In recent years, the wavelet transform has been successfully applied to wave
data analysis and other ocean engineering applications (Massel 2001; Teisseire et al.
2002; Huang 2004). The time-frequency character of long-term climatic data is
investigated using the continuous wavelet transform technique (Lau and Weng 1995;
Torrence and Compo 1997; Mallat 1998) and wavelet analysis of wind wave mea-
surements obtained from a coastal observation tower (Huang 2004). Chou (2011) used
wavelet denoising method in linear perturbation models (LPMs) and simple linear
models (SLMs) for rainfall and runoff time series data. Wang and Li (2011) used a
new wavelet transform method for developing the synthetic generation of daily stream
flow sequences. Wu et al. (2004) used a combination of neural networks and wavelet
methods to predict underground water levels.

Dynamical Recurrent Neural Network (DRNN) on each resolution scale of the
sunspot time series resulting from the wavelet decomposed series with the Temporal
Recurrent Back propagation (TRBP) algorithm (Aussem and Murtagh 1997). There are
some appreciable studies of wavelet transform based neural network models (Wang
and Ding 2003; Anctil and Tape 2004; Cannas et al. 2006; Kisi 2008; Wang et al.
2009). The wavelet transform is also integrated with multiple linear regression (Kucuk
and Agiralioğlu 2006; Kisi 2009, 2010) and support vector machine approach (Kisi
and Cimen 2011). Adamowski and Sun (2010) compared the relative performance of
the coupled wavelet-neural network models (WA–ANN) and regular artificial neural
networks (ANN) for flow forecasting at lead times of 1 and 3 days for two different
non-perennial rivers in semiarid watersheds of Cyprus. Kisi (2011) investigated the
performance of the wavelet regression (WR) technique in daily river stage forecasting
and determined the WR model was improved combining two methods, discrete
wavelet transform and a linear regression model. Sang (2013), developed a method
for discrete wavelet decomposition and an improved wavelet modeling framework,
WMF for short was proposed for hydrologic time series forecasting. By coupling the
wavelet method with the traditional AR model, the Wavelet-Autoregressive model
(WARM) is developed for annual rainfall prediction (Tantanee et al. 2005). Partal
and Kisi (2007) used a conjunction model (wavelet-neuro-fuzzy) to forecast the
Turkey daily precipitation. The observed daily precipitations are decomposed to some
sub series by using Discrete Wavelet Transform (DWT) and then appropriate sub
series are used as inputs to neuro-fuzzy models for forecasting of daily precipitations.
Each of these studies showed that different black box models trained or calibrated
with decomposed data resulted in higher accuracy than the single models that were
calibrated with an undecomposed and noisy time series. In this paper, a Wavelet
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Neural Network (WNN) model, which is the combination of wavelet analysis and ANN, has
been proposed for rainfall forecast Darjeeling station, India.

2 Wavelet Analysis

The wavelet analysis is an advanced tool in signal processing that has attracted much
attention since its theoretical development (Grossmann and Morlet 1984). Its use has
increased rapidly in communications, image processing and optical engineering applications
as an alternative to the Fourier transform in preserving local, non-periodic and multiscaled
phenomena. The difference between wavelets and Fourier transforms is that wavelets can
provide the exact locality of any changes in the dynamical patterns of the sequence, whereas
the Fourier transforms concentrate mainly on their frequency. Moreover, Fourier transform
assume infinite length signals, whereas wavelet transforms can be applied to any kind
and any size of time series, even when these sequences are not homogeneously sampled in
time (Antonios and Constantine 2003). In general, wavelet transforms can be used to
explore, denoise and smoothen time series which aid in forecasting and other empirical
analysis.

Wavelet analysis is the breaking up of a signal into shifted and scaled versions of the original
(or mother) wavelet. In wavelet analysis, the use of a fully scalable modulated window solves
the signal-cutting problem. The window is shifted along the signal and for every position the
spectrum is calculated. Then this process is repeated many times with a slightly shorter (or
longer) window for every new cycle. In the end, the result will be a collection of time-frequency
representations of the signal, all with different resolutions. Because of this collection of
representations we can speak of a multiresolution analysis. By decomposing a time series into
time-frequency-space, one is able to determine both the dominant modes of variability and how
those modes vary in time. Wavelets have proven to be a powerful tool for the analysis and
synthesis of data from long memory processes. Wavelets are strongly connected to such
processes in that the same shapes repeat at different orders of magnitude. The ability of the
wavelets to simultaneously localize a process in time and scale domain results in representing
many dense matrices in a sparse form.

2.1 Discrete Wavelet Transform (DWT)

The basic aim of wavelet analysis is to determine the frequency (or scale) content of a signal and
then it assess and determine the temporal variation of this frequency content. This property is in
complete contrast to the Fourier analysis, which allows for the determination of the frequency
content of a signal but fails to determine frequency-time dependence. Therefore, the wavelet
transform is the tool of choice when signals are characterized by localized high frequency events
or when signals are characterized by a large numbers of scale variable processes. Because of its
localization properties in both time and scale, the wavelet transform allows for tracking the time
evolution of processes at different scales in the signal.

The wavelet transform of a time series f(t) is defined as

f a; bð Þ ¼ 1ffiffiffi
a

p
Z
−∞

∞

f tð Þφ t−b
a

� �
dt ð1Þ

whereφ (t) is the basic wavelet with effective length (t) that is usually much shorter than the target
time series f(t). The variables ‘a’ is the scale or dilation factor that determines the characteristic
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frequency so that its variation gives rise to a spectrum and ‘b’ is the translation in time so that its
variation represents the ‘sliding’ of the wavelet over f(t). Thewavelet spectrum is thus customarily
displayed in time-frequency domain. For low scales i.e. when |a|<<1, the wavelet function is
highly concentrated (shrunken compressed) with frequency contents mostly in the higher fre-
quency bands. Inversely, when |a|>>1, the wavelet is stretched and contains mostly low frequen-
cies. For small scales, we obtain thus a more detailed view of the signal (also known as a “higher
resolution”) whereas for larger scales we obtain a more general view of the signal structure.

The original signal X(n) (Fig. 1) passes through two complementary filters (low pass and
high pass filters) and emerges as two signals as Approximations (A) and Details (D). The
approximations are the high-scale, low frequency components of the signal. The details are the
low-scale, high frequency components. Normally, the low frequency content of the signal
(approximation, A) is the most important part. It demonstrates the signal identity. The high-
frequency component (detail, D) is nuance. The decomposition process can be iterated, with
successive approximations being decomposed in turn, so that one signal is broken down into
many lower resolution components (Fig. 1).

2.2 Mother Wavelet

The choice of the mother wavelet depends on the data to be analyzed. The Daubechies and
Morlet wavelet transforms are the commonly used “Mother” wavelets. Daubechies wavelets
exhibit good trade-off between parsimony and information richness, it produces the identical
events across the observed time series and appears in so many different fashions that most
prediction models are unable to recognize them well (Benaouda et al. 2006). Morlet wavelets,
on the other hand, have a more consistent response to similar events but have the weakness of
generating many more inputs than the Daubechies wavelets for the prediction models.

3 Artificial Neural Networks

An ANN, can be defined as a system or mathematical model consisting of many nonlinear
artificial neurons running in parallel, which can be generated, as one or multiple layered.
Although the concept of artificial neurons was first introduced by McCulloch and Pitts, the
major applications of ANN’s have arisen only since the development of the back-propagation
method of training by Rumelhart (Rumelhart et al. 1986). Following this development, ANN
research has resulted in the successful solution of some complicated problems not easily solved
by traditional modelingmethods when the quality/quantity of data is very limited. ANNmodels
are ‘black box’models with particular properties, which are greatly suited to dynamic nonlinear

Fig. 1 Diagram of multiresolution analysis of signal

3700 R. Venkata Ramana et al.



system modeling. The main advantage of this approach over traditional methods is that it does
not require the complex nature of the underlying process under consideration to be explicitly
described in mathematical form. ANN applications in hydrology vary, from real time to event
based modeling.

The most popular ANN architecture in hydrologic modeling is the multilayer perceptron
(MLP) trained with BP algorithm (ASCE(2000a, b)). A multilayer perceptron network consists
of an input layer, one or more hidden layers of computation nodes, and an output layer. The
number of input and output nodes is determined by the nature of the actual input and output
variables. The number of hidden nodes, however, depends on the complexity of the mathemat-
ical nature of the problem, and is determined by the modeler, often by trial and error. The input
signal propagates through the network in a forward direction, layer by layer. Each hidden and
output node processes its input bymultiplying each of its input values by a weight, summing the
product and then passing the sum through a nonlinear transfer function to produce a result. For
the training process, where weights are selected, the neural network uses the gradient descent
method to modify the randomly selected weights of the nodes in response to the errors between
the actual output values and the target values. This process is referred to as training or learning.
It stops when the errors are minimized or another stopping criterion is met. The Back
Propagation Neural Network (BPNN) can be expressed as

Y ¼ f
X

WX−θ
� �

ð2Þ

where X = input or hidden node value; Y = output value of the hidden or output node; f (.) =
transfer function;W = weights connecting the input to hidden, or hidden to output nodes; and θ =
bias (or threshold) for each node.

3.1 Method of Network Training

Levenberg-Marquardt method (LM) was used for training of the given network. It is a
modification of the classic Newton algorithm for finding an optimum solution to a minimi-
zation problem. In practice, LM is faster and finds better optima for a variety of problems
than most other methods (Hagan and Menhaj 1994). The method also takes advantage of the
internal recurrence to dynamically incorporate past experience in the training process (Coulibaly
et al. 2000).

The Levenberg-Marquardt Algorithm (LMA) is given by

X kþ1 ¼ X k− JT J þ μI
� �−1

J te ð3Þ

where, X is the weights of neural network, J are the Jacobian matrix of the performance
criteria to be minimized, ‘μ’ is a learning rate that controls the learning process and ‘e’ is
residual error vector. If scalar μ is very large, the above expression approximates gradient
descent with a small step size, while if it is very small; the above expression becomes Gauss-
Newton method using the approximate Hessian matrix. The Gauss-Newton method is faster
and more accurate near an error minimum. Hence we decrease μ after each successful step
and increase only when a step increases the error. LMA has great computational and memory
requirements, and thus it can only be used in small networks. It is faster and less easily
trapped in local minima than other optimization algorithms.
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3.2 Selection of Network Architecture

Increasing the number of training patterns providemore information about the shape of the solution
surface, and thus increases the potential level of accuracy that can be achieved by the network. A
large training pattern set, however can sometimes overwhelm certain training algorithms, thereby
increasing the likelihood of an algorithm becoming stuck in a local error minimum. Consequently,
there is no guarantee that adding more training patterns leads to improve solution. Moreover,
there is a limit to the amount of information that can be modeled by a network that
comprises a fixed number of hidden neurons. The time required to train a network increases
with the number of patterns in the training set. The critical aspect is the choice of the number
of nodes in the hidden layer and hence the number of connection weights.

Based on the physical knowledge of the problem and statistical analysis, different combina-
tions of antecedent values of the time series were considered as input nodes. The output node is
the time series data to be predicted in one step ahead. Time series data was standardized for zero
mean and unit variation, and then normalized into 0 to 1. The activation function used for the
hidden and output layer was logarithmic sigmoidal and pure linear function respectively. For
deciding the optimal hidden neurons, a trial and error procedure started with two hidden neurons
initially, and the number of hidden neurons was increased up to 10 with a step size of 1 in each
trial. For each set of hidden neurons, the network was trained in batch mode to minimize the
mean square error at the output layer. In order to check any over fitting during training, a cross
validation was performed by keeping track of the efficiency of the fitted model. The training was
stopped when there was no significant improvement in the efficiency, and the model was then
tested for its generalization properties. Figure 2 shows the multilayer perceptron (MLP) neural
network architecture when the original signal taken as input of the neural network architecture.

3.3 Method of Combining Wavelet Analysis with ANN

The decomposed details (D) and approximation (A) were taken as inputs to neural network
structure as shown in Fig. 3, where ‘i’ is the level of decomposition varying from 1 to I and j
is the number of antecedent values varying from 0 to J and N is the length of the time series.

Fig. 2 Signal data based multilayer perceptron (MLP) neural network structure
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To obtain the optimal weights (parameters) of the neural network structure, LM back
propagation algorithm was used to train the network. A standard MLP with a
logarithmic sigmoidal transfer function for the hiddenlayer and linear transfer function
for the output layer were used in the analysis. The number of hidden nodes was determined
by trial and error procedure. The output node will be the original value at one step
ahead.

4 Linear Auto-Regressive (AR) Modeling

A common approach for modeling univariate time series is the autoregressive (AR) model:

X t ¼ δ þ ϕ1X t−1 þ ϕ2X 2−1 þ⋯⋯þ ϕ2X 2−1 þ At ð4Þ

where Xt is the time series, At is white noise, and

δ ¼ 1−
Xp
i−1

ϕi

 !
μ ð5Þ

where ‘μ’ is the mean of the time series. An autoregressive model is simply a linear regression
of the current value of the series against one or more prior values. AR models can be analyzed
with linear least squares technique. They also have a straightforward interpretation. The
determination of the model order can be estimated by examining the plots of Auto Correlation
Function (ACF) and Partial Auto Correlation Function (PACF). The number of non-zero terms
(i.e. outside confidence bands) in PACF suggests the order of the AR model. An AR (k) model
will be implied by a sample PACF with k non-zero terms, and the terms in the sample ACF will
decay slowly towards zero. From ACF and PACF analysis for rainfall, the order of the AR
model is selected as 1.

Fig. 3 Wavelet based multilayer perceptron (MLP) neural network structure
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5 Performance Criteria

The performance of various models during calibration and validation were evaluated by
using the statistical indices: the Root Mean Squared Error (RMSE), Correlation Coefficient
(R) and Coefficient of Efficiency (COE).

The definitions of different statistical indices are presented below:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
t¼1

yot −y
c
t

� �2" #

N

vuuuut ð6Þ

R ¼

XN
i¼1

yot −yo
� �

yct −yc
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
t¼1

yot −yo
� �2" # XN

t¼1

yct −yc
� �2" #vuut

ð7Þ

COE ¼ 1�

XN
t¼1

yot −y
c
t

� �2" #

XN
i¼1

yot −yo
� �2" # ð8Þ

where yt
o and yt

c are the observed and calculated values at time t respectively, yo and yc are
the mean of the observed and calculated values.

6 Study Area and Data Collection

Darjeeling is a small town in the Himalayan foot hills (Fig. 4), lying at an altitude of 2,130 m
above mean sea level and known as the Queen of the Hills. It is located in Darjeeling District
in the extreme north of West Bengal State in the east of India. The district extends from
tropical plains at about 91 m above sea level to an altitude of 3,658 m on the Sandakfu-
Phalut ridge. The hills of Darjeeling are part of the Mahabharat Range or Lesser Himalaya.
Kanchenjunga, the world’s third-highest peak, 8,598 m (28,209 ft) high, is the most
prominent mountain visible from Darjeeling.

To forecast the rainfall at Darjeeling rain gauge station (Fig. 4), monthly rainfall, minimum
and maximum temperature data of 74 years from 01 January 1901 to 01 September 1975 was
used. The first 44 years (60 % data) from 01 January 1901 to 01 November 1945 was used for
calibration of the model, and the remaining 26 years (40 % data) from 01 December 1945 to 01
September 1975 data were used for validation. The annual mean maximum temperature is
14.9 °Cwhile themeanminimum temperature is 8.9 °C, with monthlymean temperatures range
from 5–17 °C. The lowest temperature recorded was −3.7 °C in the month of February 1905.
The average annual precipitation is 3,092 mm, with an average of 126 days of rain in a year. The
highest rainfall occurs in July.
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Table 1 shows the statistics of the calibration, validation and total data for monthly rainfall,
minimum temperature and maximum temperature. The recorded monthly maximum rainfall is
1,401 mm, while the mean monthly rainfall was 2,350 mm. The observed monthly rainfall
shows low positive skewness (1.2) and indicates that the data has less scattered distribution. The
minimum of the maximum temperature is 5.5 °C, while the maximum of the maximum
temperature is 21.5 °C.

Location of Raingauge

Fig. 4 Location of the study area

Table 1 Statistical properties of rainfall, minimum and maximum temperatures

Variable Data Minimum Maximum Mean Standard Deviation Skewness

Rainfall (mm) Total 0.00 1401.8 235.0 284.42 1.20

Calibration 0.00 1231.3 240.1 286.61 1.19

Validation 0.00 1401.8 226.5 276.10 1.23

Minimum temperature (°C) Total data −3.70 15.8 8.9 4.67 −0.29
Calibration −1.70 15.4 8.9 4.66 −0.27
Validation −3.70 15.8 9.0 4.68 −0.33

Maximum temperature (°C) Total 5.50 21.5 15.6 3.95 −0.65
Calibration 5.50 21.5 15.3 4.04 −0.57
Validation 6.10 21.4 16.2 3.74 −0.75
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6.1 Development of Wavelet Neural Network Model

The original time series was decomposed into Details and Approximations to certain number of
sub-time series {D1, D2…. Dp, Ap} by wavelet transform algorithm. These play different role in
the original time series and the behavior of each sub-time series is distinct (Wang and Ding 2003).
So the contribution to original time series varies from each successive approximations being
decomposed in turn, so that one signal is broken down into many lower resolution components,
tested using different scales from 1 to 10 with different sliding window amplitudes. In this
context, dealing with a very irregular signal shape, an irregular wavelet, the Daubechies wavelet
of order 5 (DB5), has been used at level 3. Consequently, D1, D2, D3 were detail time series, and
A3 was the approximation time series. The decomposed sub series of details and approximations
along with original series for rainfall was shown in Fig. 5.

An ANN was constructed in which the sub-series {D1, D2, D3, A3} at time t are input of
ANN and the original time series at t+T time are output of ANN,where T is the length of time to
forecast. The input nodes for the WNN are the decomposed subsets of antecedent values of the
rainfall, minimum and maximum temperatures and were presented in Table 2. The Wavelet
Neural Network model (WNN) was formed in which the weights are learned with Feed forward
neural network with Back Propagation algorithm. The number of hidden neurons for BPNN
was determined by trial and error procedure.

7 Results and Discussion

To forecast the rainfall at Darjeeling rain gauge station, the monthly rainfall, is minimum
temperature and maximum temperature data of 74 years was used. The first 44 years data were
used for calibration of the model, and the remaining 26 years data were used for validation. The

Fig. 5 Decomposed wavelet sub-time series of rainfall from 1901 to 1974
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model inputs (Table 2) were decomposed bywavelets and decomposed sub-series were taken as
input to ANN. ANN was trained using back propagation with LM algorithm. The optimal
number of hidden neurons for WNN and ANN was determined as six by trial and error
procedure. The final structure of the WNN model is the number of inputs used in ANN
Multiplied by 4 sub-series for every input neuron as obtained by wavelet decomposition, 6
hidden neurons and 1 output neuron. Whereas, the final structure of the ANN model is the
number of inputs used in ANN, 6 hidden neurons and 1 output neuron. The performance of
various models estimated to forecast the rainfall was presented in Table 3.

From Table 3, it is found that low RMSE values (63.01 to 117.39 mm) for WNN models
when compared to ANN and ARmodels. It has been observed that WNNmodels estimated the
peak values of rainfall to a reasonable accuracy (peak rainfall in the data series is 1401.80 mm).
Further, it is observed that the WNN model having two antecedent values of the rainfall, one

Table 2 Model Inputs for ANN

Model Input Variables

I R(t)=f (R [t-1])

II R(t)=f (R [t-1], R [t-2])

III R(t)=f (R [t-1], R [t-2], TM [t-1])

IV R(t)=f (R [t-1], R [t-2], TM [t-1], TX [t-1])

V R(t)=f (R [t-1], R [t-2], TM [t-1], TM [t-2], TX [t-1])

VI R(t)=f (R [t-1], R [t-2], TM [t-1], TM [t-2], TX [t-1], TX [t-2])

R rainfall, TM minimum temperature, TX maximum temperature

Table 3 Goodness of fit statistics of the calibration and validation for the forecasted rainfall

Model Calibration Validation

RMSE R COE(%) RMSE R COE(%)

WNN

I 102.26 0.934 87.19 117.39 0.906 81.78

II 52.78 0.983 96.58 63.92 0.973 94.60

III 40.97 0.989 97.94 81.51 0.955 91.24

IV 35.12 0.992 98.48 63.01 0.974 94.78

V 34.74 0.993 98.51 84.79 0.953 90.57

VI 35.75 0.992 98.43 82.24 0.955 91.10

ANN

I 205.96 0.695 48.38 203.98 0.672 45.01

II 176.56 0.788 62.05 171.15 0.784 61.35

III 145.43 0.861 74.24 178.31 0.783 58.10

IV 123.23 0.902 81.49 163.79 0.807 64.73

V 116.75 0.913 83.36 178.08 0.786 58.42

VI 114.66 0.916 83.98 176.84 0.784 58.89

AR

226.00 0.659 37.70 221.82 0.642 34.91
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minimum temperature and maximum temperature estimated minimum RMSE (63.01 mm),
high correlation coefficient (0.9736) and highest efficiency (>94 %) during the validation
period. The model IV (Bold) of WNN was selected as the best fit model to forecast the rainfall
in 1 month advance.

Figures 6 and 7, shows the observed and modeled graphs for ANN and WNN models
during calibration and validation respectively. It is found that values modeled from WNN
model properly matched with the observed values, whereas ANN model underestimated the
observed values. From this analysis, it is evident that the performance of WNN was much
better than ANN and AR models in forecasting the rainfall.

The distribution of error along the magnitude of rainfall computed by WNN and ANN
models during the validation period has been presented in Fig. 8. From Fig. 8, it was observed
that the estimation of peak rainfall was very good as the error is minimum when compared with
ANN model. Figure 9 shows the scatter plot between the observed and modeled rainfall by
WNN and ANN. It was observed that the rainfall forecasted by WNN models were very much
close to the 45° line. From this analysis, it was worth to mention that the performance of WNN
was much better than the standard ANN and AR models in forecasting the rainfall in 1-month
advance.

Fig. 6 Plot of observed and modeled rainfall for ANN model during (a) calibration and (b) validation

Fig. 7 Plot of observed and modeled rainfall for WNN model during (a) calibration, and (b) validation
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8 Conclusions

This paper reports a hybrid model called wavelet neural network model (WNN) for time series
modeling of monthly rainfall. The proposed model is a combination of wavelet analysis and
artificial neural network. Wavelet decomposes the time series into multilevel of details and it
can adopt multiresolution analysis and effectively diagnose the main frequency component of

Fig. 8 Distribution of error plots along the magnitude of monthly rainfall for (a) ANN model and (b) WNN
model during validation period

Fig. 9 Scatter plot between observed and modeled monthly rainfall for (a) ANN model and (b) WNN model
during validation period
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the signal and abstract local information of the time series. The proposedWNNmodel has been
applied to monthly rainfall of Darjeeling rain gauge station. The time series data of rainfall was
decomposed into sub series by DWT. Appropriate sub-series of the variable used as inputs to
the ANN model and original time series of the variable as output. Model parameters are
calibrated using 44 years of data and rest of the data is used for model validation. From this
analysis, it was found that efficiency index is more than 94 % for WNN models whereas it is
64 % for ANN models respectively.

Overall analysis indicates that the performance of ANN are relatively lower compared to that
of WNN models; this may be plausibly due to the variation in nonlinear dynamics of
temperature which plays a predominant role in hilly areas included in rainfall process that
mapped effectively byWavelet based models. It may be noted that hydrological data used in the
WNN model has been decomposed in details and approximation, which may lead to better
capturing the rainfall processes. The study only used data from one rain gauge station and
further studies using more rain gauges data from various areas may be required to strengthen
these conclusions.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.
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