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1 Introduction

One of the interesting theoretical results of string theory is that it helps defining several

nontrivial quantum field theories in dimensions higher than four, which are hard to study

with traditional methods. For example, several five-dimensional superconformal field theo-

ries (SCFT5’s) have been defined, using D4-branes in type I’ [1, 2], M-theory on Calabi-Yau

manifolds with shrinking cycles [2, 3], (p, q)-fivebrane webs [4] (sometimes also including

(p, q)-sevenbranes [5]). These various realizations are dual to each other [5, 6]; some of

these theories are also related by compactification [7] to the four-dimensional “class S”

theories [8].

However, not too many AdS6 duals are known to these SCFT5’s. Essentially the reason

is that there is no D-brane stack whose near-horizon limit gives AdS6. Indeed the string

realizations quoted above originate from intersecting branes, whose localized metrics are
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notoriously difficult to find, as illustrated for example in [9]; even were they known, the

relevant near-horizon limit would probably be far from obvious. One exception is when

one of the branes is completely inside the other; in such cases some partially delocalized

solutions [10] become actually localized. This was used by Brandhuber and Oz [11] to

obtain the first AdS6 solution in string theory. (It was also anticipated to exist [12] as a

lift of a vacuum in the six-dimensional supergravity of [13].) It is in massive IIA, and it

represents the near-horizon limit of a stack of D4’s near an O8-D8 wall; thus it is dual to

the theories in [1]. The internal space is half an S4; the warping function A and the dilaton

φ go to infinity at its boundary. This is just a consequence of the presence of the O8-D8

system there, and it is a reflection of the peculiar physics of the corresponding SCFT5’s.

The fact that the dilaton diverges at the wall roughly corresponds to a Yang-Mills kinetic

term of the type φFµνF
µν ; the scalar φ plays the role of 1

g2YM
, and at the origin φ→ 0 one

finds a strongly coupled fixed point.

One can also study a few variations on the Brandhuber-Oz solution, such as orbifolding

it [14] and performing T-duality [15, 16] or even the more recently developed [17, 18]

nonabelian T-duality [16, 19]. The latter is not thought to be an actual duality, but

rather a solution-generating duality; thus the solution should represent some new physics,

although its global features are puzzling [19].

In this paper, we attack the problem systematically, using the “pure spinor” techniques,

emboldened by the recent success of this method for AdS7 solutions of type II supergrav-

ity [20]. In general, the procedure reformulates the equations for preserved supersymmetry

in terms of certain differential forms defining G-structures on the “generalized tangent

bundle” T ⊕ T ∗. It originates from generalized complex geometry [21, 22] and its first ap-

plication was to Minkowski4 or AdS4 ×M6 solutions of type II supergravity [23], in which

case the relevant G was SU(3) × SU(3). In [24] the method was extended (still in type II

supergravity) to any ten-dimensional geometry; in this paper we apply to AdS6 ×M4 the

general system obtained there. We work in IIB, since in massive IIA the Brandhuber-Oz

solution is unique [25], and in eleven-dimensional supergravity there are no solutions, as

we show in appendix B.

As in [20], the relevant structure on T ⊕ T ∗ is an “identity” structure (in other words,

G is the trivial group). Such a structure is defined by a choice of two vielbeine ea± (roughly

associated with left- and right-movers in string theory). Just as in [20], we actually prefer

working with a single “average” vielbein ea and with some functions on M4 encoding the

map between the two vielbeine ea±. We then use these data to parameterize the forms

appearing in the supersymmetry system. The supersymmetry equations then determine

ea in terms of the functions on M4, thus also determining completely the local form of the

metric. As usual for this kind of formalism, the fluxes also come out as an output; less

commonly, but again just as in [20], the Bianchi identities are automatically satisfied.

When the dust settles, it turns out that we have completely reduced the problem to a

system of two PDEs (see (4.12b), (4.13) below) on a two-dimensional space Σ. The metric

is that of an S2-fibration over Σ. This should not come as a surprise: a SCFT5 has an

SU(2) R-symmetry, which manifests itself in the gravity dual as the isometry group of the

S2. In [20], for similar reasons the internal space M3 was an S2-fibration over an interval.
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In AdS7 the problem was reduced in [20] to a system of first-order ODEs, which was

then easy to study numerically; in our present case of supersymmetric AdS6 solutions,

we have PDEs, which are harder to study even numerically. Using EDS techniques (see

for example [26, Chap. III] or [27, section 10.4.1]) we have checked that the system is

“well-formed”: the general solution is expected to depend on two functions of one variable,

which can be thought of as the values of the warping function A and the dilaton φ at the

boundary of Σ. (We expect regularity of the metric to fix those degrees of freedom as well,

up to discrete choices.) We do recover two explicit solutions to the PDEs, corresponding

to the abelian and nonabelian T-duals of the Brandhuber-Oz solution mentioned above.

Even though we do not present any new solutions in this paper, it seems likely that

our PDEs will describe (p, q)-fivebrane webs. For the AdS7 case, it was conjectured [28]

that the new solutions found in [20] arise as near-horizon limits of NS5-D6-D8 configura-

tions previously studied in [29, 30]. The fact that those solutions have cohomogeneity one

(namely, that all fields only depend on the coordinate on the base interval) matches with

the details of the configuration. The coordinates x0, . . . , x5 are common to all branes; the

NS5’s are located at x7 = x8 = x9 = 0, while their positions in x6 parameterize the tensor

branch of the SCFT6; the D6’s are located at x7 = x8 = x9 = 0, and extended along x6;

the D8’s are extended along x7, x8, x9, and located at various x6 = x6D8i
.

For AdS6, the natural analogue of this story would involve (p, q)-fivebranes whose

common directions would be x0, . . . , x4, and which would be stretched along a line in

the x5–x6 plane (such that x5

x6 = p
q ). It is natural to conjecture that the solutions to our

PDEs would correspond to near-horizon limits of such configurations, with the x5–x6 plane

somehow corresponding to our Σ; the remaining directions x7, x8, x9 would provide our

S2 (as well as the radial direction of AdS6). For such cases we would expect Σ to have a

boundary, at which the S2 shrinks; the (p, q)-fivebranes would then be pointlike sources at

this boundary. We hope to come back on this in the near future.

The paper is organized as follows. In section 2 we present the system (2.8) of differential

equations for supersymmetry, expressed in terms of differential forms Φ and Ψ describing

an identity structure onM4; the derivation from [24] is given in appendix A. In section 3 we

parameterize the differential forms in terms of a vielbein on M4 and of four functions. We

then plug this parameterization in the system, and obtain in section 4 our results on the

metric and fluxes, and the two PDEs (4.12a), (4.13) that one needs to satisfy. Finally, in

section 5, we make some general remarks about the PDEs, and recover the known examples.

2 Supersymmetry and pure spinor equations for AdS6

We will start by presenting the system of pure spinor equations that we need to solve.

Although this is similar to systems in other dimensions, there are some crucial differences,

which we will try to highlight.

The original example of the pure spinor approach to supersymmetry was found for

Mink4×M6 or AdS4×M6 solutions in type II supergravity [23], where the BPS conditions

were reformulated in terms of certain differential equations on an SU(3)× SU(3) structure

on the “generalized tangent bundle” TM6⊕T ∗M6. Other examples followed over the years;

– 3 –



J
H
E
P
1
1
(
2
0
1
4
)
0
9
9

for instance, [31] applied the strategy to Minkd×M10−d for even d (for d = 2 the situation

was improved in [32–34]); the case R×M9 was considered in [35].

Partially motivated by the need of generating quickly pure-spinor-like equations for

different setups, [24] formulated a system directly in ten dimensions, using the geometry of

the generalized tangent bundle of M10. This could have also been used in [20] to generate

a system for AdS7 ×M3 solutions in type II; in that case, however, it was more convenient

to derive the system from the one of [31] for Mink6 ×M4, via a cone construction. This

approach is not as readily available for our current case AdS6 ×M4; hence, we will attack

it directly from [24].

We describe the derivation of our system from the ten-dimensional one of [24] in

appendix A. The system in [24] contains two “symmetry” equations (3.1b) that usually

simply fix the normalizations of the pure spinors; two “pairing” equations (3.1c,d) that

often end up being redundant (although not always, see [33, 36]); and one “exterior”

equation (3.1a) that usually generates the pure spinor equations one is most interested

in. This pattern is repeated for our case. One important difference is that the spinor

decomposition we have to start with is clumsier than the one in other dimensions. Usually,

the ten-dimensional spinors ǫa are the sum of two (or sometimes even one) tensor products.

For AdS4 ×M6 in IIB, for example, we simply have ǫa = ζ4+ ⊗ ηa6+ + c.c.. The analogue

of this for Mink6 ×M4 in IIB would be

ǫ1 = ζ6+ ⊗ η14+ + ζc6+ ⊗ η1 c4+

ǫ2 = ζ6+ ⊗ η24∓ + ζc6+ ⊗ η2 c4±

(Mink6 ×M4; IIA/IIB) , (2.1)

where ( )c ≡ C( )∗ denotes Majorana conjugation. For AdS6×M4, however, such an Ansatz

cannot work: compatibility with the negative cosmological constant of AdS6 demands that

the ζ6 obey the Killing spinor equation on AdS6,

∇µζ6 =
1

2
γ(6)µ ζ6 , (2.2)

and solutions to this equation cannot be chiral, while the ζ6+ in (2.1) are chiral. This issue

does not arise in AdS4 because in that case (ζ4+)
c has negative chirality; here (ζ6+)

c has

positive chirality. This forces us to add “by hand” to (2.1) a second set of spinors with

negative chirality, ending up with the unpromising-looking

ǫ1 = ζ+η
1
+ + ζc+η

1
+
c
+ ζ−η

1
− + ζc−η

1
−
c

ǫ2 = ζ+η
2
∓ + ζc+η

2
∓
c
+ ζ−η

2
± + ζc−η

2
±
c (AdS6 ×M4; IIA/IIB) (2.3)

where we have dropped the 6 and 4 labels (and the ⊗ sign), as we will do elsewhere.

Attractive or not, (2.3) will turn out to be the correct one for our classification.

In the main text from now on we will consider the IIB case (unless otherwise stated).

This is because AdS6 ×M4 solutions in massive IIA were already analyzed in [25], where

it was found that the only solution is the one in [11]. We did find it useful to check

our methods on that solution as well; we sketch how that works in appendix C. As for

the massless case, we found it more easily attacked by direct analysis in eleven-dimensional
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supergravity, which we present in appendix B, given that it is methodologically a bit outside

the stream of our pure spinor analysis in IIB.

With the spinor Ansatz (2.3) in hand, we can apply the system in [24]; the details of the

derivation are described in appendix A. We first describe the forms appearing in the system.

If we were interested in the Minkowski case, the system would only contain the bispinors

η1+ ⊗ η2 †+ and η1+ ⊗ (η2 c+ )†.1 (As usual in the pure spinor approach, we need not consider

spinors of the type e.g. η1+ ⊗ η1 †+ to formulate a system which is necessary and sufficient.)

Mathematically, this would describe an SU(2) × SU(2) structure on TM4 ⊕ T ∗M4. Since

in (2.3) we also have the negative chirality spinors η1− and η1 c− , there are many more forms

we can build. We have the even forms:2

φ1± = e−Aη1± ⊗ η2 †± , φ2± = e−Aη1± ⊗ (η2 c± )† ≡ e−Aη1± ⊗ η2± ; (2.4a)

and the odd forms:

ψ1
± = e−Aη1± ⊗ η2 †∓ , ψ2

± = e−Aη1± ⊗ (η2 c∓ )† ≡ e−Aη1± ⊗ η2∓ . (2.4b)

The factors e−A are inserted so that the bispinors have unit norm, in a sense to be clarified

shortly; A is the warping function, defined as usual by

ds210 = e2Ads2AdS6 + ds2M4
. (2.5)

Already by looking at (2.4a), we see that we have two SU(2)×SU(2) structures on TM4⊕
T ∗M4. If both of these structures come for example from SU(2) structures on TM4, we see

that we get an identity structure on TM4, i.e. a vielbein. In fact, this is true in general:

(2.4a) always defines a vielbein on M4. We will see in section 3 how to parameterize

both (2.4a) and (2.4b) in terms of the vielbein they define.

In the meantime, we can already now notice that the (2.4a) and (2.4b) can be assembled

more conveniently using the SU(2) R-symmetry. This is the group that rotates
(

ζ
ζc

)

and each

of
( ηa±
ηa c
±

)

as a doublet. One can check that (2.3) is then left invariant, so it is a symmetry;

since it acts on the external spinors, we call it an R-symmetry. It is the manifestation of

the R-symmetry of a five-dimensional SCFT. Something very similar was noticed in [20] for

AdS7: the pure spinor system ((2.11) in that paper) naturally assembled into singlets and

one triplet of SU(2). (Recall that a six-dimensional SCFT also has an SU(2) R-symmetry.)

While in that paper the SU(2) formalism was only stressed at the end of the computations,

here the analysis is considerably more complicated, and SU(2) will be used from the very

beginning to yield more manageable results. Let us define

Φ± ≡
(

η1±
η1 c±

)

⊗
(

η2 †± η2±

)

=

(

φ1± φ2±
−(φ2±)

∗ (φ1±)
∗

)

= Reφ1±Id2 + i(Imφ2±σ1 +Reφ2±σ2 + Imφ1±σ3) ≡ Φ0
±Id2 + iΦα

±σα , (2.6a)

1As usual, we will identify forms with bispinors via the Clifford map dxm1 ∧ . . . ∧ dxmk 7→ γm1...mk .
2Notice that the 1 or 2 on φ has nothing to do with the 1 or 2 on the η’s; rather, it has to do with

whether the second spinor is Majorana conjugated (2) or not (1). Another caveat is that the ± does not

indicate the degree of the form, as it is often the case in similar contexts; all the φ’s in (2.4a) are even

forms. One can think of the ± as indicating whether these forms are self-dual or anti-self-dual.
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Ψ± ≡
(

η1±
η1 c±

)

⊗
(

η2 †∓ η2∓

)

=

(

ψ1
± ψ2

±

−(ψ2
±)

∗ (ψ1
±)

∗

)

= Reψ1
±Id2 + i(Imψ2

±σ1 +Reψ2
±σ2 + Imψ1

±σ3) ≡ Ψ0
±Id2 + iΨα

±σα . (2.6b)

σα, α = 1, 2, 3, are the Pauli matrices. Here and in what follows, the superscript 0 denotes

an SU(2) singlet, and not the zero-form part; the superscript α denotes an SU(2) triplet,

not a one-form. We hope this will not create confusion.

As we already mentioned, the forms Φ±, Ψ± will define an identity structure on M4.

However, not any random forms Φ±, Ψ± may be written as bispinors as in (2.6). In other

cases, such as for SU(3)× SU(3) structures in six dimensions [23], it is useful to formulate

a set of constraints on the forms that guarantee that they come from spinors; this allows to

completely forget about the original spinors, and formulate supersymmetry completely in

terms of some forms satisfying some constraints. In the present case, it would be possible

to set up such a fancy approach, by saying that Φ± and Ψ± should satisfy a condition on

their inner products. For example we could impose that the Φ’s and Ψ’s be pure spinors

on M4 obeying the compatibility conditions3

(Φα
±,Φ

β
±) = (Ψα

±,Ψ
β
±) = δαβ(Φ0

±,Φ
0
±) = δαβ(Ψ0

±,Ψ
0
±) . (2.7)

As in [20], this would however be an overkill, since in section 3 we will directly parameterize

Φ± and Ψ± in terms of a vielbein and some functions on M4. This will achieve the end of

forgetting about the spinors ηa± by different means.

We can finally give the system of equations equivalent to preserved supersymmetry:

dH

[

e3A−φ(Ψ− −Ψ+)
0
]

− 2e2A−φ(Φ− +Φ+)
0 = 0 , (2.8a)

dH

[

e4A−φ(Φ− − Φ+)
α
]

− 3e3A−φ(Ψ− +Ψ+)
α = 0 , (2.8b)

dH

[

e5A−φ(Ψ− −Ψ+)
α
]

− 4e4A−φ(Φ− +Φ+)
α = 0 , (2.8c)

dH

[

e6A−φ(Φ− − Φ+)
0
]

− 5e5A−φ(Ψ− +Ψ+)
0 = −1

4
e6A ∗4 λF , (2.8d)

dH

[

e5A−φ(Ψ− +Ψ+)
0
]

= 0 ; (2.8e)

||η1||2 = ||η2||2 = eA . (2.8f)

As usual, φ here is the dilaton; dH = d−H∧; A was defined in (2.5); λ is a sign operator

defined in footnote 3; F = F1 + F3 is the “total” allowed internal RR flux, which also

determines the external flux via

F(10) = F + e6Avol6 ∧ ∗4λF . (2.9)

Again, we remind the reader that the superscript 0 denotes a singlet part, and α a triplet

part, as in (2.6).

3The Chevalley-Mukai pairing is defined as (α, β) = (α ∧ λ(β))4, where on a k-form λωk = (−)⌊
k

2
⌋ωk.
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The last equation, (2.8f), can be reformulated in terms of Φ and Ψ. Since ‖ηa‖2 ≡
‖ηa+‖2 + ‖ηa−‖2, we can define ||η1+|| = eA/2 cos(α/2), ||η1−|| = eA/2 sin(α/2), ||η2+|| =

eA/2 cos(α̃/2), ||η2−|| = eA/2 sin(α̃/2), where α, α̃ ∈ [0, π]; we then get

(Φ0
+,Φ

0
+) =

1

8
cos2(α/2) cos2(α̃/2) , (Φ0

−,Φ
0
−) = −1

8
sin2(α/2) sin2(α̃/2) ;

(Ψ0
+,Ψ

0
−) =

1

8
cos2(α/2) sin2(α̃/2) , (Ψ0

−,Ψ
0
+) = −1

8
sin2(α/2) cos2(α̃/2) .

(2.10)

Just as (2.7), however, such a fancy formulation will be ultimately made redundant by our

parameterization of Φ and Ψ in section 3, which will satisfy (2.7) automatically, and where

we will take care to implement (2.8f), so that (2.10) will be satisfied too.

We can check immediately that (2.8) imply the equations of motion for the flux, by act-

ing on (2.8d) with dH and using (2.8e). The equations of motion for the metric and dilaton

are then satisfied (as shown in general in [37] for IIA, and in [38] for IIB); the equations of

motion for H are also implied, since they are [39] for Minkowski4 compactifications (which

include Minkowski5 as a particular case, and hence also AdS6 by a conical construction).

We will see later that the Bianchi identities for F and H are also automatically satisfied

for this case, as was the case for [20].

It is also interesting to compare the system (2.8) with the above-mentioned system for

Minkowski6 in [31]. First of all the second summands in the left-hand side of (2.8a)–(2.8d)

implicitly come with a factor proportional to
√
−Λ that we have set to one (since it can be

reabsorbed in the warping factor A). To take the Mink6 limit, we can imagine to restore

those factors, and then take Λ → 0. Hence all the second summands in the left-hand

side of (2.8a)–(2.8d) will be set to zero. This is not completely correct, actually, because

implicit in (2.8a)–(2.8c) there are more equations, that one can get by acting on them

with dH (before taking the Λ → 0 limit); we have to keep these equations as well. So far

the limit works in the same way as for taking the Λ → 0 limit from AdS4 to Minkowski4
in [23]. In the present case, however, there is one more thing to take into account. As

we have seen, in the Minkowski6 case the spinor Ansatz can be taken to be (2.1) rather

than the more complicated (2.3) we had to use for AdS6. To go from (2.3) to (2.1), we

can simply set η1− = 0 and η2± = 0. This sets to zero some of our bispinors; for the IIB

case on which we are focusing, it sets to zero everything but Φ+. This makes some of the

equations disappear; some others become redundant. All in all, we are left with

dH(e2A−φΦ0
+) = 0 , dH(e4A−φΦα

+) = 0 , dH(e6A−φΦ0
+) = −1

4
e6A ∗4 λF , (2.11)

which is [31, eq. (4.11)] in our SU(2)-covariant language. (In [20], this system was quoted

in a slightly different way: the last equation was mixed with the first, to yield eφF =

16 ∗4 λ(dA ∧ Φ0
+).)

In summary, in this section we have presented the system (2.8), which is equivalent

to preserved supersymmetry for backgrounds of the form AdS6 ×M4. The forms Φ and Ψ

are not arbitrary: they obey certain algebraic constraints expressing their origin as spinor

bilinears in (2.6), (2.4). We will now give the general solution to those constraints, and

then proceed in section 4 to analyze the system.
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3 Parameterization of the pure spinors

We have introduced in section 2 the even forms Φ± and the odd forms Ψ±

(see (2.6), (2.4a), (2.4b)). These are the main characters in the system (2.8), which is

equivalent to preserved supersymmetry. Before we start using the system, however, we

need to characterize what sorts of forms Φ± and Ψ± can be: this is what we will do in this

section.

3.1 Even forms

We will first deal with Φ±. We will actually first focus on Φ+, and then quote the results for

Φ−. The computations in this subsection are actually pretty standard, and we will be brief.

Let us start with the case η1+ = η2+ ≡ η+. Assume also for simplicity that ||η+||2 = 1.

In this case the bilinears define an SU(2) structure:

η+η
†
+ =

1

4
e−ij+ , η+η+ =

1

4
ω+ , (3.1)

where the two-forms j+, ω+ satisfy

j+ ∧ ω+ = 0 , ω2
+ = 0 , ω+ ∧ ω+ = 2j2+ = −vol4 . (3.2)

We can also compute

ηc+η
c †
+ =

1

4
eij+ , ηc+η

†
+ = −1

4
ω+ . (3.3)

Let us now consider the case with two different spinors, η1+ 6= η2+; let us again assume

that they have unit norm. We can define (in a similar way as in [40])

η0+ =
1

2
(η1+ − iη2+) , η̃0+ =

1

2
(η1+ + iη2+) . (3.4)

Consider now a+ = η2 †+ η1+, b+ = η2+η
1
+. {η2+, η2 c+ } is a basis for spinors on M4; a+, b+

are then the coefficients of η1+ along this basis. Since ηa+ have both unit norm, we have

|a+|2 + |b+|2 = 1. By multiplying ηa+ by phases, we can assume that a+ and b+ are

for example purely imaginary, and we can then parameterize them as a+ = −i cos(θ+),
b+ = i sin(θ+). Going back to (3.4), we can now compute their inner products:

η†0+η0+ = cos2
(

θ+
2

)

, η†0+η̃0+ = 0 , η0+η̃0+ =
1

2
sin(θ+) . (3.5)

From this we can in particular read off the coefficients of the expansion of η̃0+ along

the basis {η0+, ηc0+}. This gives η̃0+ = 1
||η0+||2

(η†0+η̃0+η0+ + η0+η̃0+η
c
0+) = tan

(

θ+
2

)

ηc0+.

Recalling (3.4), and defining now η0+ = cos
(

θ+
2

)

η+, we get

η1+ = cos

(

θ+
2

)

η+ + sin

(

θ+
2

)

ηc+ , η2+ = i

(

cos

(

θ+
2

)

η+ − sin

(

θ+
2

)

ηc+

)

. (3.6)

From this it is now easy to compute η1+η
2 †
+ and η1+η

2
+. Recall, however, that in the course

of our computation we have first fixed the norms and then the phases of ηa+. The norms
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of the spinors we need in this paper are not one; they were actually already parameterized

before (2.10), so as to satisfy (2.8f). The factor eA, however, simplifies with the e−A in the

definition (2.4a). Let us also restore the phases we earlier fixed, by rescaling η1± → eiu±η1±,

η2± → eit±η2±. All in all we get

φ1+ =
1

4
cos(α/2) cos(α̃/2)ei(u+−t+) cos(θ+) exp

[

− 1

cos(θ+)
(ij+ + sin(θ+)Reω+)

]

, (3.7a)

φ2+ =
1

4
cos(α/2) cos(α̃/2)ei(u++t+) sin(θ+) exp

[

1

sin(θ+)
(cos(θ+)Reω+ + iImω+)

]

. (3.7b)

The formulas for φ1,2− can be simply obtained by changing cos(α/2) → sin(α/2), cos(α̃/2)

→ sin(α̃/2), and + → − everywhere. The only difference to keep in mind is that the last

equation in (3.2) is now replaced with ω− ∧ ω− = 2j2− = vol4.

3.2 Odd forms

We now turn to the bilinears of “mixed type”, i.e. the ψ1,2
± we defined in (2.4b), which

result in odd forms. We will again start from the case where η1± = η2± ≡ η±.

There are two vectors we can define:

vm = η2 †− γmη
1
+ , wm = η2−γmη

1
+ . (3.8)

In bispinor language, we can compute

η+η
†
− =

1

4
(1 + γ)v , ηc+η

c †
− =

1

4
(1 + γ)v , (3.9a)

η−η
†
+ =

1

4
(1− γ)v , ηc−η

c †
+ =

1

4
(1− γ)v , (3.9b)

and

η+η
c †
− =

1

4
(1 + γ)w , ηc+η

†
− = −1

4
(1 + γ)w , (3.9c)

η−η
c †
+ = −1

4
(1− γ)w , ηc−η

†
+ =

1

4
(1− γ)w . (3.9d)

(In four Euclidean dimensions, the chiral γ = ∗4λ, so that (1 + γ)v = v + ∗4v, and so on.

See [24, appendix A] for more details.) For the more general case where η1± 6= η2±, we can

simply refer back to (3.6). For example we get

ψ1
+=

ei(u+−t−)

4
cos(α/2) sin(α̃/2)(1 + γ)

[

cos

(

θ++θ−
2

)

Rev+i cos

(

θ+−θ−
2

)

Imv + (3.10)

− sin

(

θ++θ−
2

)

Rew+i sin

(

θ+−θ−
2

)

Imw

]

.

For the time being we do not show the lengthy expressions for the other odd bispinors ψ2
+

and ψ1,2
− , because they will all turn out to simplify quite a bit as soon as we impose the

zero-form equations in (2.8).
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The v and w we just introduced are a complex vielbein; let us see why. First, a

standard Fierz computation gives

v · η+ = 0 , v · η+ = 2η− , (3.11)

where · denotes Clifford product. Multiplying from the left by η†−, we obtain

v2 = 0 , v x v = vmvm = 2 . (3.12)

Similarly to (3.11), we can compute the action of w:

w · η± = 0 , w · η± = ±2ηc∓ . (3.13)

Multiplying by η∓, we get

w2 = 0 , w xw = 2 . (3.14)

From (3.11) we can also get v · η+η− = 0, v · η+η− = 2η−η−, whose zero-form parts read

v xw = 0 = v xw . (3.15)

Together, (3.12), (3.14), (3.15) say that

{Rev, Rew, Imv, Imw} (3.16)

are a vielbein.

We can also now try to relate the even forms of section 3.1 to this vielbein. From (3.11)

we also see v · η+η+ = 0, which says v ∧ω+ = 0; similarly one gets v ∧ω− = 0. Also, (3.13)

implies that w · η+η+ = w · ω+ = 0, and thus that w ∧ ω± = 0. So we have ω+ ∝ v ∧ w,
ω− ∝ v ∧ w. One can fix the proportionality constant by a little more work:

ω+ = −v ∧ w , ω− = v ∧ w . (3.17a)

Similar considerations also determine the real two-forms:

j± = ± i

2
(v ∧ v ± w ∧ w) . (3.17b)

So far we have managed to parameterize all the pure spinors Φ±, Ψ± in terms of a

vielbein given by (3.16). The expressions for Φ+ are given in (3.7); Φ− is given by changing

(cos(α/2), cos(α̃/2)) → (sin(α/2), sin(α̃/2)), and + → − everywhere. The forms j±, ω± are

given in (3.17) in terms of the vielbein. Among the odd forms of Ψ±, we have only quoted

one example, (3.10); similar expressions exist for ψ2
+ and for ψ1,2

− . We will summarize

all this again after the simplest supersymmetry equations will allow us to simplify the

parameterization quite a bit.

4 General analysis

We will now use the parameterization obtained for Φ and Ψ in section 3 in the sys-

tem (2.8). As anticipated in the introduction, we will reduce the system to the two

PDEs (4.12a), (4.13), and we will determine the local form of the metric and of the fluxes

in terms of a solution to those equations.
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4.1 Zero-form equations

The only equations in (2.8) that have a zero-form part are (2.8a) and (2.8c):

(Φ+ +Φ−)
0
0 = 0 , (Φ+ +Φ−)

α
0 = 0 . (4.1)

The subscript 0 here denotes the zero-form part. (Recall that the superscripts 0 and α

denote SU(2) singlets and triplets respectively.) To simplify the analysis, it is useful to

change variables so as to make the SU(2) R-symmetry more manifest; this will lead us to

definitions similar to those made in [20, section 4.5].

In (3.7), apart for the overall factor cos(α/2) cos(α̃/2)/4, we have φ1+0 ∝
ei(u+−t+) cos(θ+), φ

2
+0 ∝ ei(u++t+) sin(θ+). The singlet is Reφ1+0 ∝ cos(θ+) cos(u+ − t+),

and it is a good idea to give it a name, say x+. On the other hand, the triplet is

{Imφ2+,Reφ2+, Imφ1+} ∝ {sin(θ+) sin(u+ + t+), sin(θ+) cos(u+ + t+), cos(θ+) sin(u+ − t+)}.
If we sum their squares, we obtain:

sin2(θ+) + cos(θ+)
2 sin2(u+ − t+) = x2+ tan2(u+ − t+) + sin2(θ+) = 1− x2+ . (4.2)

This suggests that we parameterize the triplet using the combination
√

1− x2+ y
α, where

yα should obey yαy
α = 1 and can be chosen to be the ℓ = 1 spherical harmonics on S2.

What we are doing is essentially changing variables on an S3, going from coordinates that

exhibit it as an S1 × S1 fibration over an interval to coordinates that exhibit it as an S2

fibration over an interval:

{

cos(θ+)e
i(u+−t+), sin(θ+)e

i(u++t+)
}

→
{

x+,
√

1− x2+y
α

}

. (4.3)

An identical discussion can of course be given for φ1,2− . Summing up, we are led to the

following definitions:

x± ≡ cos(θ±) cos(u± − t±) , sinβ± ≡ sin(θ+)
√

1− x2+

, γ± ≡ π

2
− u± − t± , (4.4)

and

yα± ≡
(

sin(β±) cos(γ±), sin(β±) sin(γ±), cos(β±)
)

, (4.5)

in terms of which

Φ+0 = cos(α/2) cos(α̃/2)

(

x+ + iyα+

√

1− x2+σα

)

,

Φ− 0 = sin(α/2) sin(α̃/2)

(

x− + iyα−

√

1− x2−σα

)

.

(4.6)

Going back to (4.1), summing the squares of all four equations we get

cos2(α/2) cos2(α̃/2) = sin2(α/2) sin2(α̃/2). Given that α and α̃ ∈ [0, π], this is uniquely

solved by

α̃ = π − α . (4.7)
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Now (4.1) reduces to

− x− = x+ ≡ x , −yα− = yα+ ≡ yα . (4.8)

In terms of the original parameters, this means θ+ = θ−, u− = u+, t− = t+ + π.

The parameterization obtained in section 3 now simplifies considerably:

φ1± = ±1

8
sinα cos θ ei(u−t) exp

[

− 1

cos θ
(ij± + sin θReω±)

]

, (4.9a)

φ2± = ±1

8
sinα sin θ ei(u+t) exp

[

1

sin θ
(cos θReω+ + iImω+)

]

; (4.9b)

ψ1
± = ∓1

8
(1± cosα)ei(u−t)(1± γ) [cos θRev ± iImv ∓ sin θRew] , (4.9c)

ψ2
± = ∓1

8
(1± cosα)ei(u+t)(1± γ) [sin θRev ± iImw ± cos θRew] . (4.9d)

We temporarily reverted here to a formulation where SU(2)R is not manifest; however, in

what follows we will almost always use the SU(2)-covariant variables x and yα introduced

above.

4.2 Geometry

We will now describe how we analyzed the higher-form parts of (2.8), although not in such

detail as in section 4.1.

The only equations that have a one-form part are (2.8b). From (4.9c), (4.9d), we

see that the second summand (Ψ+ + Ψ−)
α
1 is a linear combination of the forms in the

vielbein (3.16). The first summand consists of derivatives of the parameters we have

previously introduced. This gives three constraints on the four elements of the vielbein.

We used it to express Imv, Rew, Imw in terms of Rev;4 the resulting expressions are at this

point still not particularly illuminating, and we will not give them here. These expressions

are not even manifestly SU(2)-covariant at this point; however, once one uses them into

Φ± and Ψ±, one does find SU(2)-covariant forms. Just by way of example, we have

(Φ+ +Φ−)
α
2 = −1

3
e−3A+φ sinαRev ∧ d

(

yα sinα e4A−φ
√

1− x2
)

,

(Ψ− −Ψ+)
α
1 = yα

√

1−x2 sin2(α)Rev+1

3
e−3A+φ cosαd

(

yα sinα e4A−φ
√

1−x2
)

.

(4.10)

We chose these particular 2-form and 1-form triplet combinations because they are involved

in the 2-form part of (2.8c). The result is a triplet of equations of the form yαE2+dy
α∧E1 =

0, where Ei are i-forms and SU(2)R singlets. If we multiply this by yα, we obtain E2 = 0

(since yαdy
α = 0); then also E1 = 0 necessarily. The latter gives a simple expression for

Rev, the one-form among the vielbein (3.16) that we had not determined yet:

Rev = − e−A

sinα
d(e2A cosα) . (4.11)

Once this is used, the two-form equation E2 = 0 is automatically satisfied.

4Doing so requires x 6= 0; the case x = 0 will be analyzed separately in section 4.4.
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There are some more two-form equations from (2.8). The easiest is (2.8e), which gives

d

(

e4A−φ

x
cotαd(e2A cosα) +

1

3x
e2A
√

1− x2d
(

e4A−φ
√

1− x2 sinα
)

)

= 0 . (4.12a)

Locally, this can be solved by saying

xdz = e4A−φ cotαd(e2A cosα) +
1

3
e2A
√

1− x2d
(

e4A−φ
√

1− x2 sinα
)

(4.12b)

for some function z. The two-form part of (2.8a) reads, on the other hand,

e−8Ad(e6A cosα) ∧ dz = d(xe2A−φ sinα) ∧ d(e2A cosα) . (4.13)

If one prefers, dz can be eliminated, giving

3 sin(2α)dA ∧ dφ = dα ∧
(

6dA+ sin2(α)
(

−dx2 − 2(x2 + 5)dA+ (1 + 2x2)dφ
)

)

. (4.14)

We will devote the whole section 5 to analyze the PDEs (4.12a), (4.13) and we will also

exhibit two explicit solutions.

Taking the exterior derivative of (4.13) one sees that dα∧dA∧dz = 0. Wedging (4.12a)

with an appropriate one-form, one also sees dα ∧ dA ∧ dx = 0. Taken together, these

mean that only two among the remaining variables (α, x,A, φ) are really independent. For

example we can take α and x to be independent, and

A = A(α, x) , φ = φ(α, x) . (4.15)

We are not done with the analysis of (2.8), but there will be no longer any purely

geometrical equations: the remaining content of (2.8) determines the fluxes, as we will

see in the next subsection. Let us then pause to notice that at this point we have already

determined the metric: three of the elements of the vielbein (3.16) were determined already

at the beginning of this section in terms of Rev, and the latter was determined in (4.11).

This gives the metric

ds2 =
cosα

sin2(α)

dq2

q
+

1

9
q(1− x2)

sin2(α)

cosα

(

1

x2

(

dp

p
+ 3 cot2(α)

dq

q

)2

+ ds2S2

)

, (4.16)

where the S2 is spanned by the functions β and γ introduced in (4.5) (namely, ds2S2 =

dβ2 + sin2(β)dγ2), and we have eliminated A and φ in favor of

q ≡ e2A cosα , p ≡ e4A−φ sinα
√

1− x2 . (4.17)

These variables could also be used in the equations (4.12a), (4.13) above, with marginal

simplification. Notice that positivity of (4.16) requires |x| ≤ 1.

Thus we have found in this section that the internal space M4 is an S2 fibration over

a two-dimensional space Σ, which we can think of as spanned by the coordinates (α, x).
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4.3 Fluxes

We now turn to the three-form part of (2.8b). This is an SU(2)R triplet. It can be written

as yαH = ǫαβγyβdyγ ∧ Ẽ2 + yαvolS2 ∧ Ẽ1, where Ẽi are i-forms and SU(2)R singlets.

Actually, from (4.12a) and (4.13) it follows that Ẽ2 = 0; we are then left with a single

equation setting H = volS2 ∧ Ẽ1:

H = − 1

9x
e2A
√

1− x2 sinα

[

− 6dA

sinα
+ 2e−A(1 + x2)d(eA sinα) + sinαd(φ+ x2)

]

∧ volS2 .

(4.18)

As expected, H is a singlet under SU(2)R.

All the four-form equations in (2.8e), (2.8a), (2.8c) turn out to be automatically sat-

isfied. We can then finally turn our attention to (2.8d), which we have ignored so far. It

gives the following expressions for the fluxes:

F1 =
e−φ

6x cosα

[

12dA

sinα
+ 4e−A(x2 − 1)d(eA sinα) + e2φ sinαd(e−2φ(1 + 2x2))

]

; (4.19a)

F3 =
e2A−φ

54

√

1− x2
sin2(α)

cosα

[

36dA

sinα
+ 4e−A(x2 − 7)d(eA sinα) +

+ e2φ sinαd(e−2φ(1 + 2x2))

]

∧ volS2 . (4.19b)

The Bianchi identities

dH = 0 , dF1 = 0 , dF3 +H ∧ F1 = 0 , (4.20)

are all automatically satisfied, using of course the PDEs (4.12a), (4.13). As usual, this

statement is actually true only if one assumes that the various functions appearing in those

equations are smooth. As in [20], one can introduce sources by relaxing this condition.

4.4 The case x = 0

In section 4.2, we used the three-form part of (2.8b) to express Imv, Rew, Imw in terms

of Rev. This actually can only be done for x 6= 0: the expressions we get contain x in the

denominator, as can be seen for example in (4.12a). This left out the case x = 0; we will

analyze it in this section, showing that it leads to a single solution, discussed in [15, 16]

— namely, to a T-dual of the AdS6 solution found in [11] and reviewed in our language in

appendix C.

Keeping in mind that −x− = x+ = x (from (4.8)), from (4.4) we have x =

cos(θ) cos(u − t). Imposing x = 0 then means either θ = π
2 or u − t = π

2 . Of these

two possibilities, the first does not look promising, because on the S3 parameterized by

(cos(θ)ei(u−t), sin(θ)ei(u+t)) it effectively restricts us to an S1: only the function u+ t is left

in the game, and indeed going further in the analysis one finds that the metric becomes

degenerate.5 The second possibility, u− t = π
2 , restricts us instead to an S2 ⊂ S3; we will

now see that this possibility survives. It gives

β = θ , t = −1

2
γ , u =

π

2
− 1

2
γ . (4.21)

5At the stage of (4.22) below, one would find Rew ∝ Imv.
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This leads to a dramatic simplification in the whole system. The one-form equations

from (2.8b) do not involve Imv any more; we can now use them to solve for Rev, Rew,

Imw (rather than for Imv, Rew, Imw as we did in previous subsections, for x 6= 0). This

strategy would actually have been possible for x 6= 0 too, but it would have led to far more

involved expressions; for this reason we decided to isolate the x = 0 case and to treat it

separately in this subsection. We get

Rev =
e−3A+φ

3 cosα
d(sinαe4A−φ) , Rew =

eA

3
sinαdβ , Imw = −e

A

3
sinα sinβdγ . (4.22)

We now turn to the 2-form equation in (2.8c). As in the previous subsections of this

section, this can be separated into a 2-form multiplying yα and a 1-form multiplying dyα,

which have to vanish separately:

d(e5A−φRev) = 0 , e5A−φ(3− 4 sin2(α))Rev = d(e6A−φ sinα cosα) . (4.23)

Hitting the second equation with d and using the first, we find sinα cosαdα ∧ Rev = 0,

and hence, recalling (4.22), to sinαdα∧ d(4A−φ) = 0. Now, sinα is not allowed to vanish

because of (4.22) (recall that Rev, Rew, Imw are part of a vielbein); hence dα∧d(4A−φ) =
0. This can be interpreted as saying that 4A − φ is a function of α. On the other hand,

using (4.22) in the first in (4.23), we get d( e2A

cosα) ∧ d(sinαe4A−φ) = 0, which shows that

A = A(α), and hence also that φ = φ(α). Going back to the second in (4.23), it now reads

2(cos2(α) + 2)∂αA+ sin2(α)∂αφ = sin(2α) . (4.24)

Turning to (2.8e), its 2-form part reads

d(e5A−φImv) = 0 ⇒ Imv = e−(5A−φ)dz (4.25)

for some function z. This completes (4.22).

Finally, (2.8a) gives

(

d(e−2A cosα) + 2e−3A sinαRev
)

∧ Imv = 0 . (4.26)

In view of (4.25), the parenthesis has to vanish by itself; this leads to

4(7 cos2(α)− 4)∂αA+ 4 sin2(α)∂αφ = − sin(2α) . (4.27)

Notice that now (4.24) and (4.27) are two ordinary (as opposed to partial) differential

equations, which can be solved explicitly:

eA =
c1

cos1/6(α)
, eφ =

c2

sinα cos2/3(α)
, (4.28)

where ci are two integration constants. These are exactly the warping and dilaton presented

in [19, (A.1)], for c1 =
3
2Lm

−1/6, c2 = 4/(3L2m2/3). It is now possible to derive the fluxes,

as we did in subsection 4.3 for x 6= 0, and check that they coincide with those in [19, (A.1)].
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The metric can now be computed too, using the vielbein (4.23), (4.25); it also agrees

with the one given in [19, (A.1)]. It inherits the singularity at α = π
2 from the Brandhuber-

Oz solution [11]; moreover, it now has a singularity at α = 0. The latter is actually the

singularity one always gets when one T-dualizes along a Hopf direction in a S3 that shrinks

somewhere. It represents an NS5 smeared along the T-dual S1; one expects worldsheet

instantons to modify the metric so that the NS5 singularity gets localized along that direc-

tion, as in [41]. As for the singularity at α = π
2 , it now cannot be associated with an O8-D8

system as it was in IIA, since we are in IIB. It probably now represents a smeared O7-D7

system; it is indeed always the case that T-dualizing a brane along a parallel direction in

supergravity gives a smeared version of the correct D-brane solution on the other side, as we

just saw for the NS5-brane. It is possible that again instanton effects localize the singular-

ity, this time to an O7-D7 system. (Even more correctly, we should expect the O7 to split

into an (1, 1)-sevenbrane and an (1,−1)-sevenbranes, as pointed out in [5] following [42].)

Notice finally that, although we have found it convenient to treat the x = 0 case

separately from the rest, it is in fact a particular case of the general treatment (although a

slightly degenerate one). Indeed one can check that (4.12b) is satisfied by (4.28); in contrast

to the general case, this does not determine a function z, but we can use (4.14), where z

has been eliminated, instead of (4.13), which contains z. Thus the solution presented in

this subsection is already an example of our general formalism. In section 5.2 we will see

another, more elaborate example.

5 The PDEs

In section 4, we reduced the problem of finding AdS6 × M4 solutions to the two

PDEs (4.12a), (4.13). As anticipated in the introduction, we will not try to find the most

general solution to these equations in this paper. In this section we will make some general

remarks about the PDEs, and we will recover via a simple Ansatz the known solution [16],

originally obtained via nonabelian T-duality. (As we mentioned in that section, one can

also see the x = 0 case as a particular solution to the PDEs.)

5.1 General considerations

We derived in section 4.2 the two equations (4.12a), (4.13). Recall that z is an auxiliary

variable, defined by (4.12b). As we already remarked, among the four remaining variables

(α, x,A, φ), only two (for example α and x) are independent. The other two, A and φ,

can be taken to be dependent as in (4.15). The equations (4.12a) and (4.13) can then be

reexpressed as two scalar PDEs in the two dimensions spanned by α and x:

3 sin(2α)(Aαφx−Axφα)=6Ax + sin2 α
(

−2x− 2(x2 + 5)Ax + (1 + 2x2)φx
)

, (5.1a)

cosα(2+3xφx)+sinαAα=2x

(

3

sinα
+ (x2 − 4) sinα

)

(Aαφx −Axφα) + (5.1b)

− 2x cosα

(

3

sin2 α
−(5+x2)

)

Ax+2

(

3

sinα
−(1+x2) sinα

)

φα ,
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where Aα ≡ ∂αA etc. As we will see, they are actually easier to study in their original

form manifestations (4.12a) and (4.13).

These equations are nonlinear, and as such they are rather hard to study. Even so,

there are quite a few techniques that have been developed over the years to tackle such

systems. Perhaps the first natural question is how many solutions one should expect. For

a first-order system of ODEs, it is roughly enough to compare the number of equations to

the number of functions. If there are n equations and n functions, the system is neither

over- nor under-constrained: geometrically, the system gives a vector field in an open set in

R
n+1 (including time), and solving the system means finding integral curves to this vector

field. (When the system is “autonomous”, i.e. it does not depend explicitly on time, one

can more simply consider a vector field on R
n).

The picture is more complicated for a system of PDEs. In general, if we have k “times”

and m functions, the system will define a distribution of dimension k (namely, a choice of

subspaces Vx ⊂ TxR
k+m of dimension k for every point x ∈ R

k+m); solving the system then

means finding “integral submanifolds” for the distribution, namely submanifolds S ⊂ R
k+m

such that Vx is tangent to S for every x ∈ S. This distribution is in general however not

guaranteed to admit integral submanifolds. (A famous example is given by Frobenius

theorem: a distribution defined by the span of vector fields vi will only be integrable if

all the Lie brackets [vi, vj ] are linear combinations of the vi themselves.) Fortunately, the

machinery of “exterior differential systems” (EDS) has been developed to deal with these

issues, culminating in the Cartan-Kähler theorem (see for example [26, Chap.III], or [27,

section 10.4.1] in slightly more informal language).

Describing and applying such methods in detail is beyond the scope of this paper,

but here is a sketch. First one defines a “differential ideal”, namely a vector space of

the equations in the system and their exterior derivatives. In our case, denote by Ei

the two two-forms that have to vanish in (4.12a) and (4.13); the ideal is then the linear

span I = 〈E1, E2, dE2〉 (since dE1 = 0 automatically). We then want to construct the

distribution V on which the forms in I vanish, in the sense that each multi-vector built from

vectors in the distribution has zero pairing with the forms in I. One proceeds iteratively.

We first consider a single vector field e1 on which the forms vanish (in our case this is

trivial, since there are no one-forms in I; we can take for example e1 = ∂α). We then add

a second vector: this is done by solving the “polar equations” H(E1) ≡ {vxe1xEi = 0}.
The rank of this system is denoted by c1. (In general there might be a c0 too, but in

our case the first choice of a vector was free because there are no one-forms in I; c0 is

then considered to be 0.) For us it turns out that c1 = 2. In general one would go on

by choosing a solution e2 to the polar equations above, and would consider new polar

equations H(E2) ≡ {vxe1xEi = vxe2xEi = 0, vxe1xe2xdE2 = 0}; the rank of this new

system would be denoted by c2, which in our case also happens to be 2. However, solving

our PDEs means finding a two-dimensional integral manifold, and hence we can stop at the

second step and disregard the higher polar equations H(E2). (The general theory would

also show that for our system there is actually no three-dimensional integral manifold.) We

can then apply the so-called “Cartan test” and a corollary to the Cartan-Kähler theorem

(respectively Thm. 1.11 and Cor. 2.3 in [26]) to infer that an integral submanifold of
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dimension 2 actually does exist. The proof of the theorem also says that the general

solution depends on s1 = c1 − c0 = 2 functions of one variable. (si = ci − ci−1 are called

“Cartan characters”.) These two functions can be thought of as functions at the boundary

of the two-dimensional domain in α and x on which the solution exists.

Having determined the structure of the solutions, it would be nice to find as many

as possible of them. A strategy which is common in this context is to impose some extra

symmetry. This is less obvious than usual to implement. We cannot for example just

assume that A and φ do not depend on one of the coordinates α and x: the metric (4.16)

would become degenerate. Another perhaps more promising idea is to use the so-called

“method of characteristics” to reduce the problem to a system of ODEs. We plan to return

on this in the future.

Finally, let us point out that two solutions to our PDEs are already known. One is

the case x = 0, which we studied in section 4.4. Although we had to treat it separately,

we also mentioned that it is a solution of the general system of PDEs (once we eliminate

dz from (4.13), obtaining (4.14)).

We will now see another particular solution. Although the global properties of the

resulting M4 are even more puzzling than those of the solution in section 4.4, it might be

possible to generalize it to new solutions which are better-behaved; for example, one might

start by studying perturbations around it.

5.2 A local solution: nonabelian T-duality

Many PDEs are reduced to ODEs by a separation of variables Ansatz. For our nonlinear

PDEs, this does not work. However, we will now see that a particular case does lead to a

solution, namely:

φ = f(α) + log(x) , A = A(α) . (5.2)

Notice that this Ansatz restricts x to be in (0, 1]. (We already observed after (4.16) that

|x| ≤ 1 in general.)

We begin by considering (4.12b). With (5.2), after a few manipulations it reduces to

dz = d

(

e6A−f sinα

6x2

)

− 1

3
e2Ad(e4A−f sinα) +

+
1

x2

[

−1

6
e4Ad(e2A−f sinα) + e4A−f cotαd(e2A cosα)

]

.

(5.3)

The first line in (5.3) is manifestly exact, since everything is a function of α alone. The

second line is of the form 1
x2d(function(α)), and cannot be exact unless it vanishes, which

leads to

d(e2A−f sinα) = 6e−f cotαd(e2A cosα) . (5.4)

The first line in (5.3) then determines dz (and can be integrated to produce z). We can

now use this expression for dz in (4.13). Most terms in (4.13) actually vanish because

they involve wedges of forms proportional to dα; the only one surviving is of the form

d(e6A cosα) ∧ dx. In other words, we are forced to take

eA = c1(cosα)
−1/6 , (5.5)
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with c1 an integration constant. Plugging this back into (5.4) we get

ef = c2
(cosα)−1/3

sin3 α
(5.6)

for c2 another integration constant.

This is actually the solution found in [16]. To see this, one needs to identify

α = θ , x =
e2Â

√

r2 + e4Â
, (5.7)

where Â is the function denoted by A in [16]. One can check that indeed the

fluxes (4.18), (4.19) and metric (4.16) give the expressions in [16]. The metric one gets has a

singularity at α = π/2, just like the solution [11], and a new singularity at α = 0 [19]. More

worryingly, it is noncompact; it might be possible to find a suitable analytic continuation,

with the help of the PDEs (4.12a), (4.13) found in this paper.
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A Derivation of (2.8)

The starting point to obtain (2.8) is the system of equations (3.11) in [24], which was

shown in that reference to be equivalent to N = 1 supersymmetry on any M10; here we

will specialize the ten-dimensional spacetime M10 to AdS6 ×M4. Actually, the equations

appearing in (2.8) strictly derive from equations (3.1a) and (3.1b) in [24]. In section A.1

we show such derivation.

Furthermore, to prove the equivalence between the system (2.8) and the conditions

imposed by N = 1 supersymmetry on AdS6×M4, we need to show that the two remaining

“pairing” equations (3.1c,d) in [24] are completely redundant on such background: this is

done in subsection A.2.
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A.1 Derivation of the system

Let us quote equations (3.1a,b) of [24]:

dH(e−φΦ) = −(K̃ ∧+ιK)F(10) ; (A.1a)

LKg = 0 , dK̃ = ιKH . (A.1b)

Φ = ǫ1 ⊗ ǫ2 is the key ten-dimensional polyform,6 which is adapted to our background; g

is the ten-dimensional metric while K and K̃ are ten-dimensional one-forms which will be

defined momentarily.

The decomposition of the ten-dimensional spinors ǫa suggests we decompose accord-

ingly the ten-dimensional gamma matrices:

γ(6+4)
µ = eAγ(6)µ ⊗ 1 , γ

(6+4)
m+5 = γ(6) ⊗ γ(4)m . (A.2)

Here γ
(6)
µ , µ = 0, . . . , 5, are a basis of six-dimensional gamma matrices (γ(6) is the chiral

gamma), while γ
(4)
m , m = 1, . . . , 4 are a basis of four-dimensional gamma matrices. We can

now expand via Fierz identities (see formula (A.12) in [24]) the bilinear ǫ1⊗ǫ2, by plugging

in the decomposition (2.3) and (A.2). We get a sum of terms such as the following:

6
∑

k=0

1

8k!

(

ζ+γ
j
(6)γ

(6)
µk...µ1

ζ+

)

γµ1...µk

(6)

4
∑

j=0

1

4j!

(

η2†∓ γ
(4)
mj ...m1

η1+

)

γ
m1...mj

(4) = ∓ζ+ζ+ ∧ η1+η2†∓ .

(A.3)

What we mean by e.g. ζ+ζ+ is the six-dimensional polyform corresponding to this bilinear

via the Clifford map (see footnote 1). All in all we get:

Φ = ∓ζ+ζ+ ∧ η1+η2 †∓ ∓ ζ+ζc+ ∧ η1+η2∓ + ζ−ζ− ∧ η1−η2 †± + ζ−ζc− ∧ η1−η2± +

+ ζ+ζ− ∧ η1+η2 †± + ζ+ζc− ∧ η1+η2∓ ± ζ−ζ+ ∧ η1−η2 †∓ ± ζ−ζc+ ∧ η1−η2∓ + c.c. .
(A.4)

The presence of the complex conjugates (of all summands) is due to relations such as

ζc±ζ± = −(ζ±ζc±)
∗ and η1 c± η2 †± = −(η1±η

2
±)

∗.

Since we already know from (2.4a) and (2.4b) the forms defined by the bispinors along

the internal space M4, we just need to compute the bispinors along AdS6, as ζ+ζ+. The

structure of these bispinors actually depends on how ζ+ is chosen. One way to see this is to

notice that some of the algebraic relations depend on whether the bilinear ζ+ζ− vanishes

or not. A more invariant way to describe the situation is to notice that a pair ζ± of chiral

spinors has the same properties as another pair ζ ′± if they can be related via a Lorentz

transformation, ζ ′± = Λζ±; or in other words if they lie in the same orbit. The orbits for

SO(1, 5) have been studied in [43, section 2.4.5.2]. Two orbits correspond to the case where

either ζ+ or ζ− is zero; these are not compatible with the Killing spinor equation (2.2), and

are therefore not interesting to us. There is then a one-parameter family of orbits whose

stabilizer (i.e. the little group under the SO(1, 5) action) is the abelian group R
4; each of

these orbits has dimension 11. Finally, there is a four-parameter family of orbits whose

stabilizer is SU(2); each of these orbits has dimension 12.

6It should not be confused with the SU(2)-covariant internal even forms Φ±.
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The properties of the forms that one can define from spinor bilinears depend on whether

we consider an orbit with stabilizer R
4 or SU(2). The system in [24] will give systems of

equations which are superficially different for these two types of orbits. However, the

original system for supersymmetry is linear in the supersymmetry parameters ǫa. So its

solution space should be a linear space, which must in fact have dimension 8 (since this

is the smallest number of supercharges for a superalgebra in this dimension). Even if two

choices of spinor pairs on this linear space might give superficially different systems of

equations, eventually these two different systems must agree. So we can choose the spinor

pair in such a way as to get the most convenient system of equations. It turns out that

this is one of the orbits with R
4 stabilizer.

To get more concrete, let us decompose the external spinors splitting the external index

µ into a “lightcone” part, a = +,−, and a four-dimensional Euclidean part, m = 1, . . . , 4:

γa(6) = σa ⊗ 1(4) =
1

2
(γ0(6) ± γ1(6)) , γm(6) = σ3 ⊗ γm(4) , (A.5)

with σ± = 1
2(±σ1 + iσ2). The matrices γµ(6) satisfy the algebra Cl(1, 5) with lightcone

metric η̃µν =

[

0 − 1
2

− 1
2

0

]

⊕ δmn
(4) , so that γ

(6)
± = −2γ∓(6) and γ

(6)
m = γm(6).

Using this decomposition, we choose now a spinor pair of the form

ζ± ≡
(

1

0

)

⊗ χ± , (A.6)

with χ± a chiral spinor in four dimensions. This corresponds to an orbit with R
4 stabilizer.

(Orbits with SU(2) stabilizer would correspond to taking ζ+ =
(

1
0

)

⊗ χ+, ζ− =
(

0
1

)

⊗ χ−.)

One consequence of this (which would not be true for the SU(2) orbit) is that the one-form

part of the bilinears ζ+ζ+ and ζ−ζ− coincide; we will call it z. It is light-like, and it only has

components in the two-dimensional part of the decomposition (A.5). As for the bilinears

in the four dimensions 1, . . . , 4, they can be evaluated in the same way as those along M4,

in terms of two one-forms that we will call V and W and which satisfy exactly the same

properties as the forms v and w introduced in (3.8).

z and the real and imaginary parts of V andW are independent, and in fact orthogonal.

They are not quite a vielbein: if we think of z as of the element of a vielbein in the null

direction −, we are missing another element in direction +. As stressed in [24], this cannot

be obtained as a bilinear of the supersymmetry parameters; we will see in section A.2 that

the remaining equations in the ten-dimensional system of [24] require picking such a null

vector as an auxiliary piece of data. In conclusion,

{z = e−, e+,ReV, ImV,ReW, ImW} (A.7)

is a vielbein in AdS6.

We will also define Ω+ = −V ∧W , Ω− = V̄ ∧W , J± = ± i
2(V ∧ V̄ ±W ∧ W̄ ), just as

in (3.17), (3.17b) for M4. With all these definitions, we can evaluate

ζ±ζ± = z ∧ e−iJ± , (A.8a)

ζ+ζ− = −z ∧ (V + ∗4V ) , (A.8b)
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ζ−ζ+ = −z ∧ (V − ∗4V ) , (A.8c)

ζ±ζc± = z ∧ Ω± , (A.8d)

ζ±ζc∓ = ∓z ∧ (W ± ∗4W ) . (A.8e)

Specializing to IIB from now on, we can now plug (A.8) into (A.4); we have:

ΦIIB = eA
[

(z ∧ e−iJ+) ∧ φ1+ + (z ∧ e−iJ−) ∧ φ1−
+ z ∧ Ω+ ∧ φ2+ + z ∧ Ω− ∧ φ2−
− z ∧ (V + ∗4V ) ∧ ψ1

+ + z ∧ (V − ∗4V ) ∧ ψ1
−

− z ∧ (W + ∗4W ) ∧ ψ2
+ − z ∧ (W − ∗4W ) ∧ ψ2

− + c.c.
]

.

(A.9)

This is an odd form, as should be the case for IIB.

To evaluate (A.1a), we need to compute the ten-dimensional exterior derivative of

e−φΦ; schematically, it takes the form:

dH(e−φΦ) = dH

(

∑

ext ∧ eA−φ int
)

=
∑

d6ext∧eA−φ int+(−)deg(ext)ext∧dH(eA−φ int) .

(A.10)

d6 is the differential along the AdS6 coordinates, while dH = d4−H∧ in the last identity is

a combination of the exterior differential d4 along M4 and of the NS three-form H (which

only has components alongM4). Since we are looking for vacuum solutions to (A.1a) which

are compatible with supersymmetry on AdS6, we need to take the external spinors ζ± to be

the chiral components of a Killing spinor ζ on this spacetime, i.e. ∇µζ = 1
2µγµζ. The norm

of the complex constant µ (which is proportional to
√
−Λ) can be reabsorbed in the warping

function A; its phase can be reabsorbed by multiplying ηa± by e±iθ. Hence in what follows

we will set µ = 1, resulting in the equation (2.2) that we already quoted in the main text.

Exploiting (2.2) we can now compute the derivatives of the external forms (A.8):

d6(ζ±ζ±) = −2z ∧ (ReV + 2i ∗4 ImV ) , (A.11a)

d6(ζ±ζ∓) = ±3iz ∧ ReV ∧ ImV ± 5z ∧ Rev ∧ ImV ∧ ReW ∧ ImW , (A.11b)

d6(ζ±ζc±) = −4z ∧ ∗4W , (A.11c)

d6(ζ±ζc∓) = ±3z ∧ ReV ∧W . (A.11d)

As an illustration, (A.11a) is computed as follows:

d6(ζ+ζ+) =
1

2

[

γµ(6),∇µ(ζ+ζ+)
]

=
1

4
(γµγµζ−ζ+ − γµζ+ζ−γµ − γµζ−ζ+γ

µ + ζ+ζ−γµγ
µ)

=
1

2
(−3z ∧ (V − ∗4V )− 3z ∧ (V + ∗4V ) + z ∧ (V − ∗4V ) + z ∧ (V + ∗4V ))

= −2z ∧ (ReV + 2i ∗4 ImV ) , (A.12)

having used the formula γµωkγµ = (−)k(D − 2k)ωk for a k-form ωk in D dimensions.

The left-hand side dH(e−φΦ) of (A.1a) then contains only unknown derivatives of

the internal forms, since those of the external forms have been traded for the right-hand

sides of (A.11). Once we compute its right-hand side, the complete equation will only
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involve internal forms and will be valid for any of the sixteen independent components of

ζ = ζ+ + ζ−, as appropriate for an N = 1 vacuum in six dimensions.

Before computing the right-hand side of (A.1a), namely −(K̃ ∧ +ιK)F , we will look

at the simpler (A.1b): as it happens in other dimensions, they imply that the norms of the

internal spinors are related to the warping function A. Let us see how. First, recall the

definitions of K and K̃ [24]:

K =
1

64
(ǫ1γ

(10)
M ǫ1 + ǫ2γ

(10)
M ǫ2) dx

M , K̃ =
1

64
(ǫ1γ

(10)
M ǫ1 − ǫ2γ

(10)
M ǫ2) dx

M . (A.13)

Plugging in these formulas the decomposition (2.3), we obtain:

K =
e−A

4
z (‖η1‖2 + ‖η2‖2) , K̃ =

e−A

4
z (‖η1‖2 − ‖η2‖2) . (A.14)

The external part of the second equation in (A.1b) gives e−Ad6z (‖η1‖2 − ‖η2‖2) = 0

(the right-hand side vanishes since H is purely internal). One can explicitly compute

d6z, recalling that z is the one-form part of ζ±ζ±; using (2.2), one can show that it is

nonvanishing. Thus we get:

‖η1‖2 = ‖η2‖2 . (A.15)

Hence K = e−A

2 z ‖η1‖2 and K̃ = 0. On the other hand, the first equation in (A.1b) says

that K is a Killing vector with respect to the ten-dimensional metric g: its external part

says that z is Killing with respect to gAdS6 (this is obvious, since z is a bilinear constructed

out of Killing spinors), while its internal part implies ∂m

(

e−A

2 ‖η1‖2
)

= 0, which upon

integration gives

‖η1‖2 = eA , (A.16)

where without loss of generality we have set to one a possible integration constant.

Putting (A.15) and (A.16) together we get (2.8f). Moreover K = z/2. Recalling (2.9)

we now have:

−(K̃ ∧+ιK)F(10) = −ιK(e6Avol6 ∧ ∗4λF ) = −e
6A

2
∗6 z ∧ ∗4λF

=
e6A

2
(z ∧ ReV ∧ ImV ∧ ReW ∧ ImW ) ∧ ∗4λF . (A.17)

Putting everything together, we can now separate the various terms in (A.1a) that

multiply different wedge products of the one-forms in (A.7); since those forms are a vielbein

in AdS6, they are linearly independent, and each term has to be set to zero separately.

In particular, we see from (A.17) that the RR flux only contributes to one equation. This

gives rise to many equations that can then be arranged in SU(2)R representations by

recalling the definitions (2.6) of the SU(2)-covariant forms Φ± and Ψ±. This finally results

in the system (2.8).
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A.2 Redundancy of pairing equations

We will now show that equations (3.1c,d) in [24],7

(

e+1 · Φ · e+2 , γ
MN
(10)

[

±dH(e−φΦ · e+2) +
1

2
eφd†(e−2φe+2)Φ− F(10)

])

= 0 , (A.18a)

(

e+1 · Φ · e+2 ,

[

dH(e−φe+1 · Φ)−
1

2
eφd†(e−2φe+2)Φ− F(10)

]

γMN
(10)

)

= 0 , (A.18b)

are completely redundant when specialized to AdS6 ×M4 solutions in IIB, i.e. they are

automatically satisfied by the expressions for bispinors and fluxes we found in section 4.

Since the analysis of the case at hand is similar to the ones presented in [24] and [33] (for

four- and two-dimensional Minkowski vacua respectively), we will briefly describe the main

computations and point out the novelties arising for an AdS vacuum.

Firstly, we need to choose the vectors e+a
. Intuitively, these auxiliary vectors are

needed because the form Φ is not enough by itself to specify a vielbein; for more details,

see [24]. The e+a
can be chosen quite freely, provided they satisfy the constraints

e2+a
= 0 , e+a

·Ka =
1

2
. (A.19)

Since K1 = K2 = K = 1
2z has only external indices, we will set

e+1 = e+2 ≡ e+ , (A.20)

and we will consider e+ to be purely external as well. This is just the one-form that

in (A.7) we had to leave undetermined; as we anticipated there, it is an auxiliary piece

of data and cannot be determined as a bilinear of ζ±. For Minkowski vacua, K is a

constant vector, and one can then simply take e+ to be constant too. In AdS, however,

the requirement that K be a Killing vector does not imply that it is constant, and hence

there is no reason to have e+ constant either. However, we will argue that e+ can be

chosen in such a way to at least make the d†6e+ terms in (A.18) vanish. To this end, let

us first define the spinors ζ̃± along the lines of (A.6):

ζ̃± ≡
(

0

1

)

⊗ χ± , (A.21)

and the one-form

e+ ≡ (ζ̃+ζ̃+)one-form ∝ ζ̃+γ
(6)
µ ζ̃+ dxµ , (A.22)

which satisfies e2+ = 0, e+ ·K 6= 0; thus, by appropriate rescaling, taking (A.20) and (A.22)

will indeed satisfy (A.19). Since (A.21) now also satisfies the Killing spinor equations (2.2),

d†6e+ vanishes.

7The Clifford action from the left (right) of a ten-dimensional gamma matrix on a k-form ωk is given

by [24]:

γ
M
(10) ωk = (dxM ∧+g

MN
ιN )ωk , ωk γ

M
(10) = (−)k(dxM ∧ −g

MN
ιN )ωk .
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Another difference with respect to the Minkowski case comes from the term dH(e−φΦ ·
e+). Using the formula

{

d, · e+(−)deg
}

= e−A∂+ + dA ∧ e+·, we can write it as

dH(e−φΦ · e+) = (dH(e−φΦ)) · e+ − e−φdA ∧ e+ · Φ− e−(A+φ)∂+Φ . (A.23)

As usual, the first term on the right hand side vanishes inside a pairing,8 while the last

one does not (contrary to the Minkowski case), and we must evaluate it. Since ∂+Φ =

δ+µ∇µΦ = δ+µ∇µ(ǫ1ǫ2), we can use the decomposition (2.3) and the equations (2.2) to

conclude that

∂+Φ =
1

2
e+ · Φ̂ + . . . , (A.24)

where the dots denote terms that vanish in the pairing in (A.18a), and where we defined

Φ̂ ≡ (ǫ̂1ǫ2) , ǫ̂1 ≡ ζ−η
1
+ + ζc−η

1 c
+ + ζ+η

1
− + ζc+η

1 c
− . (A.25)

To sum up, for type IIB AdS6 ×M4 vacua we can rewrite (A.18a) as

(

e+ · Φ · e+, γMN
(10)

[

e−φdA ∧ (e+ · Φ) + e−(A+φ)

2
e+ · Φ̂− 2F

])

= 0 ; (A.26)

to rewrite the flux term we have made use of the formula

(

e+ · Φ · e+, F(10)

)

= 2 (e+ · Φ · e+, F ) . (A.27)

From now on the analysis parallels the one for Minkowski vacua, and we will not

repeat it here. Specializing (A.18a), (A.18b) to the case M = m, N = n does not give any

equations; specializing them to the cases M = µ, N = ν and M = m, N = ν gives9

(

Ψ0
+ +Ψ0

−, F
)

= e−φ , (A.29a)
(

Ψα
+ −Ψα

−, F
)

= 0 , (A.29b)
(

dxm ∧ (Φ0
+ − Φ0

−), F
)

= −eA−φ∂mA , (A.29c)
(

ιm(Φ0
+ − Φ0

−), F
)

= 0 . (A.29d)

It can be shown that these equations transform into identities upon plugging in the ex-

pressions for the solutions to the system (2.8). This completes the proof of the redundancy

of (A.18a) and (A.18b) for AdS6 ×M4 vacua in type IIB.

8This is because e2+ = 0. Just replace C with (dH(e−φΦ)) · e+ in the formula [24, section B.4]

(e+ · Φ · e+, C) = − (−)deg(Φ)

32
ǫ1e+Ce+ǫ2 .

9As a curiosity, notice that (A.29c) can also be written as

√
g ∗

(

(Φ0
+ − Φ0

−) ∧ λ(F )
)

= −e
A−φ

dA . (A.28)
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B AdS6 solutions in eleven-dimensional supergravity

We will show here that there are no AdS6×M5 solutions in eleven-dimensional supergrav-

ity.10 This case is easy enough that we will deal with it by using the original fermionic form

of the supersymmetry equations, without trying to reformulate them in terms of bilinears

as we did in the main text for IIB.

The bosonic fields of eleven-dimensional supergravity consist of a metric g11 and a

three-form potential C with four-form field strength G = dC. The action is

S =
1

(2π)8ℓ9p

∫

R ∗11 1−
1

2
G ∧ ∗11G− 1

6
C ∧G ∧G , (B.1)

with ℓp the eleven-dimensional Planck length. We take the eleven-dimensional metric to

have the warped product form

ds211 = e2Ads2AdS6 + ds2M5
. (B.2)

In order to preserve the SO(2, 5) invariance of AdS6 we take the warping factor to be a

function of M5, and G to be a four-form on M5. Preserved supersymmetry is equivalent

to the existence of a Majorana spinor ǫ satisfying the equation

∇M ǫ+
1

288

(

γ
(11)NPQR
M − 8δNMγ

PQR
(11)

)

GNPQR ǫ = 0 . (B.3)

We may decompose the eleven-dimensional gamma matrices via

γ(6+5)
µ = eAγ(6)µ ⊗ 1 , γ

(6+5)
m+5 = γ(6) ⊗ γ(5)m . (B.4)

Here γ
(6)
µ , µ = 0, . . . , 5 are a basis of six-dimensional gamma matrices (γ(6) is the chiral

gamma), while γ
(5)
m , m = 1, . . . , 5 are a basis of five-dimensional gamma matrices. The

spinor Anzatz preserving N = 1 supersymmetry in AdS6 is

ǫ = ζ+η+ + ζ−η− + c.c. (B.5)

where ζ± are the chiral components of a Killing spinor on AdS6 satisfying

∇µζ± =
1

2
γ(6)µ ζ∓ , (B.6)

while η± are Dirac spinors on M5.

Substituting (B.5) in (B.3) leads to the following equations for the spinors η±:

1

2
e−Aη∓ ± 1

2
γm(5)∂mAη± +

1

12
∗5 Gmγ

m
(5)η± = 0 , (B.7a)

∇mη± ± 1

4
∗5 Gmη± ∓ 1

6
∗5 Gnγ

(5)
m γn(5)η± = 0 . (B.7b)

Using (B.7) it is possible to derive the following differential conditions on the norms η†±η± ≡
eB± of the internal spinors:

∗5G = ∓6 d5B± , (B.8)

10This conclusion was also reached independently by F. Canoura and D. Martelli.
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B+ = −B− + const. . (B.9)

We can absorb the constant in a redefinition of η− so that B+ = −B− ≡ B; thus

∗5 G = −6 d5B . (B.10)

The equation of motion for G is then automatically satisfied; in absence of sources, the

Bianchi identity reads d5G = 0, resulting in ∗5G being harmonic. This is in contradiction

with ∗5G being exact. This still leaves open the possibility of adding M5-branes extended

along AdS6, which would modify the Bianchi identity to d5G = δM5. However, we will now

show that even that possibility is not realized.

Defining η̃± ≡ e−B/2η± we can rewrite (B.7b) as

∇mη̃± ± ∂nB γ
n
mη̃± = 0 . (B.11)

Upon rescaling the metric ds2M5
→ e−4Bds2M ′

5
the equation for η̃+ becomes

∇′
mη̃+ = 0 . (B.12)

In five dimensions the only compact manifold admitting parallel spinors is the torus T 5, so

we are forced to set ds2M ′
5
= ds2T 5 . Similarly if we rescale the metric ds2M5

→ e4Bds2M ′′
5
the

equation for η̃− becomes

∇′′
mη̃− = 0 , (B.13)

so that ds2M ′′
5
= ds2T 5 .

11 We are thus led to the relation

e−4Bds2M ′
5
= e4Bds2M ′′

5
. (B.14)

Since ds2M ′
5
= ds2M ′′

5
= ds2T 5 , this implies B = 0, and hence G = 0 (from (B.10)). This

makes the whole system collapse to flat space.

C The massive IIA solution

We have shown in appendix B that there are no AdS6 solutions in eleven-dimensional

supergravity — and hence in massless IIA. As for massive IIA, it was shown in [25] that

the only solution is the one in [11]. In this section, we show how that solution fits in the

IIA version of the formalism presented in the main text.

For the bispinors Φ and Ψ, we will keep using the definitions given in section 2 and the

parameterizations given in section 3. The main difference is the system for supersymmetry,

which in IIB was (2.8), and in IIA reads instead

dH

[

e3A−φ(Φ− +Φ+)
0
]

+ 2e2A−φ(Ψ− −Ψ+)
0 = 0 , (C.1a)

dH

[

e4A−φ(Ψ− +Ψ+)
α
]

+ 3e3A−φ(Φ− − Φ+)
α = 0 , (C.1b)

11One might try to avoid this conclusion by setting η̃− to zero. However, (B.7a) would then also set η̃+

to zero.
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dH

[

e5A−φ(Φ− +Φ+)
α
]

+ 4e4A−φ(Ψ− −Ψ+)
α = 0 , (C.1c)

dH

[

e6A−φ(Ψ− +Ψ+)
0
]

+ 5e5A−φ(Φ− − Φ+)
0 = −1

4
e6A ∗4 λF , (C.1d)

dH

[

e5A−φ(Φ− − Φ+)
0
]

= 0 ; (C.1e)

||η1||2 = ||η2||2 = eA . (C.1f)

The bispinors Φ and Ψ can be easily extracted from the supersymmetry parameters:

in terms of the vielbein {eα, e4},

eα = −w−1/6 1

2
sinα êα , e4 = −w−1/6dα , w ≡ 3

2
F0 cosα , (C.2)

where êα are the left-invariant one-forms on S3, satisfying

dêα =
1

2
ǫαβγ ê

β ∧ êγ , (C.3)

we have

Φ± =
1

8
(±1− cosα)

(

(1± vol4)Id2 + i

(

1

2
ǫαβγe

β ∧ eγ ∓ eα ∧ e4
)

σα

)

; (C.4a)

Ψ± =
1

8
sinα (1± ∗4)

(

∓ e4Id2 + ieασα

)

, (C.4b)

being σα the Pauli matrices.

The physical fields then read:

eφ = w−5/6 , eA =
3

2
w−1/6 , ds2M4

= eαeα + e4e4 , F4 =
10

3
w vol4 . (C.5)
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