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1 Introduction

One of the interesting theoretical results of string theory is that it helps defining several
nontrivial quantum field theories in dimensions higher than four, which are hard to study
with traditional methods. For example, several five-dimensional superconformal field theo-
ries (SCFT5’s) have been defined, using D4-branes in type I’ [1, 2], M-theory on Calabi-Yau
manifolds with shrinking cycles [2, 3], (p, ¢)-fivebrane webs [4] (sometimes also including
(p, q)-sevenbranes [5]). These various realizations are dual to each other [5, 6]; some of
these theories are also related by compactification [7] to the four-dimensional “class S”
theories [8].

However, not too many AdSg duals are known to these SCFT5’s. Essentially the reason
is that there is no D-brane stack whose near-horizon limit gives AdSg. Indeed the string
realizations quoted above originate from intersecting branes, whose localized metrics are



notoriously difficult to find, as illustrated for example in [9]; even were they known, the
relevant near-horizon limit would probably be far from obvious. One exception is when
one of the branes is completely inside the other; in such cases some partially delocalized
solutions [10] become actually localized. This was used by Brandhuber and Oz [11] to
obtain the first AdSg solution in string theory. (It was also anticipated to exist [12] as a
lift of a vacuum in the six-dimensional supergravity of [13].) It is in massive ITA, and it
represents the near-horizon limit of a stack of D4’s near an O8-D8 wall; thus it is dual to
the theories in [1]. The internal space is half an S*; the warping function A and the dilaton
¢ go to infinity at its boundary. This is just a consequence of the presence of the O8-D8
system there, and it is a reflection of the peculiar physics of the corresponding SCFT5’s.
The fact that the dilaton diverges at the wall roughly corresponds to a Yang-Mills kinetic
term of the type ¢F),, F'*"; the scalar ¢ plays the role of ﬁ, and at the origin ¢ — 0 one
finds a strongly coupled fixed point.

One can also study a few variations on the Brandhuber-Oz solution, such as orbifolding
it [14] and performing T-duality [15, 16] or even the more recently developed [17, 18]
nonabelian T-duality [16, 19]. The latter is not thought to be an actual duality, but
rather a solution-generating duality; thus the solution should represent some new physics,
although its global features are puzzling [19].

In this paper, we attack the problem systematically, using the “pure spinor” techniques,
emboldened by the recent success of this method for AdS7 solutions of type II supergrav-
ity [20]. In general, the procedure reformulates the equations for preserved supersymmetry
in terms of certain differential forms defining G-structures on the “generalized tangent
bundle” T'@® T*. It originates from generalized complex geometry [21, 22] and its first ap-
plication was to Minkowskis or AdSs x Mjg solutions of type II supergravity [23], in which
case the relevant G was SU(3) x SU(3). In [24] the method was extended (still in type II
supergravity) to any ten-dimensional geometry; in this paper we apply to AdSg x My the
general system obtained there. We work in IIB, since in massive ITA the Brandhuber-Oz
solution is unique [25], and in eleven-dimensional supergravity there are no solutions, as
we show in appendix B.

As in [20], the relevant structure on 7'@ T is an “identity” structure (in other words,
G is the trivial group). Such a structure is defined by a choice of two vielbeine €% (roughly
associated with left- and right-movers in string theory). Just as in [20], we actually prefer
working with a single “average” vielbein e® and with some functions on M, encoding the
map between the two vielbeine e}. We then use these data to parameterize the forms
appearing in the supersymmetry system. The supersymmetry equations then determine
e in terms of the functions on My, thus also determining completely the local form of the
metric. As usual for this kind of formalism, the fluxes also come out as an output; less
commonly, but again just as in [20], the Bianchi identities are automatically satisfied.

When the dust settles, it turns out that we have completely reduced the problem to a
system of two PDEs (see (4.12b), (4.13) below) on a two-dimensional space ¥. The metric
is that of an S?-fibration over . This should not come as a surprise: a SCFT5 has an
SU(2) R-symmetry, which manifests itself in the gravity dual as the isometry group of the
S2. In [20], for similar reasons the internal space Mz was an S2-fibration over an interval.



In AdS7 the problem was reduced in [20] to a system of first-order ODEs, which was
then easy to study numerically; in our present case of supersymmetric AdSg solutions,
we have PDEs, which are harder to study even numerically. Using EDS techniques (see
for example [26, Chap. III] or [27, section 10.4.1]) we have checked that the system is
“well-formed”: the general solution is expected to depend on two functions of one variable,
which can be thought of as the values of the warping function A and the dilaton ¢ at the
boundary of . (We expect regularity of the metric to fix those degrees of freedom as well,
up to discrete choices.) We do recover two explicit solutions to the PDEs, corresponding
to the abelian and nonabelian T-duals of the Brandhuber-Oz solution mentioned above.

Even though we do not present any new solutions in this paper, it seems likely that
our PDEs will describe (p, ¢)-fivebrane webs. For the AdS; case, it was conjectured [28]
that the new solutions found in [20] arise as near-horizon limits of NS5-D6-D8 configura-
tions previously studied in [29, 30]. The fact that those solutions have cohomogeneity one
(namely, that all fields only depend on the coordinate on the base interval) matches with
the details of the configuration. The coordinates 2V, ..., 2% are common to all branes; the
NS5’s are located at 27 = 2% = 2° = 0, while their positions in 2® parameterize the tensor
branch of the SCFTg; the D6’s are located at 27 = 2® = 2° = 0, and extended along 25;

8 6

the D8'’s are extended along 27, z%, 2%, and located at various x

= xﬁD&"

For AdSg, the natural analogue of this story would involve (p,q)-fivebranes whose
common directions would be z¥,..., 2% and which would be stretched along a line in
the z°-2% plane (such that i—z = g). It is natural to conjecture that the solutions to our
PDEs would correspond to near-horizon limits of such configurations, with the z°-2% plane

somehow corresponding to our ¥; the remaining directions z7, 2%, 2°

would provide our
52 (as well as the radial direction of AdSg). For such cases we would expect X to have a
boundary, at which the S? shrinks; the (p, q)-fivebranes would then be pointlike sources at
this boundary. We hope to come back on this in the near future.

The paper is organized as follows. In section 2 we present the system (2.8) of differential
equations for supersymmetry, expressed in terms of differential forms ® and ¥ describing
an identity structure on My; the derivation from [24] is given in appendix A. In section 3 we
parameterize the differential forms in terms of a vielbein on My and of four functions. We
then plug this parameterization in the system, and obtain in section 4 our results on the
metric and fluxes, and the two PDEs (4.12a), (4.13) that one needs to satisfy. Finally, in

section b, we make some general remarks about the PDEs, and recover the known examples.

2 Supersymmetry and pure spinor equations for AdSg

We will start by presenting the system of pure spinor equations that we need to solve.
Although this is similar to systems in other dimensions, there are some crucial differences,
which we will try to highlight.

The original example of the pure spinor approach to supersymmetry was found for
Minky x Mg or AdSy x Mg solutions in type II supergravity [23], where the BPS conditions
were reformulated in terms of certain differential equations on an SU(3) x SU(3) structure
on the “generalized tangent bundle” T'Mg®T* Mg. Other examples followed over the years;



for instance, [31] applied the strategy to Mink, x Mjo_q4 for even d (for d = 2 the situation
was improved in [32-34]); the case R x My was considered in [35].

Partially motivated by the need of generating quickly pure-spinor-like equations for
different setups, [24] formulated a system directly in ten dimensions, using the geometry of
the generalized tangent bundle of Mjo. This could have also been used in [20] to generate
a system for AdS7 x M3 solutions in type II; in that case, however, it was more convenient
to derive the system from the one of [31] for Minkg x My, via a cone construction. This
approach is not as readily available for our current case AdSg x My; hence, we will attack
it directly from [24].

We describe the derivation of our system from the ten-dimensional one of [24] in
appendix A. The system in [24] contains two “symmetry” equations (3.1b) that usually
simply fix the normalizations of the pure spinors; two “pairing” equations (3.1c,d) that
often end up being redundant (although not always, see [33, 36]); and one “exterior”
equation (3.1a) that usually generates the pure spinor equations one is most interested
in. This pattern is repeated for our case. One important difference is that the spinor
decomposition we have to start with is clumsier than the one in other dimensions. Usually,
the ten-dimensional spinors ¢, are the sum of two (or sometimes even one) tensor products.
For AdSy x Mg in IIB, for example, we simply have ¢, = (4 + ® 7§, + c.c.. The analogue
of this for Minkg x My in IIB would be

€1 = C6+ ®77i+ +<60+ ®77i3_

(Minkg x My; IIA/IIB), (2.1)
2= (ot @Mix+ (5L @M

where ()¢ = C( )* denotes Majorana conjugation. For AdSg x My, however, such an Ansatz
cannot work: compatibility with the negative cosmological constant of AdSg demands that
the (s obey the Killing spinor equation on AdSg,

1
Ve = §7£6)C6 ; (2.2)

and solutions to this equation cannot be chiral, while the (s in (2.1) are chiral. This issue
does not arise in AdSy because in that case ({44 )¢ has negative chirality; here ((s+)¢ has
positive chirality. This forces us to add “by hand” to (2.1) a second set of spinors with
negative chirality, ending up with the unpromising-looking

er =Gk +CEny T+ ¢ent + ¢t

o e (AdSg x My; TTA/TIB) (2.3)
€ = Cprr + CnE + Gl + (Ent

where we have dropped the g and 4 labels (and the ® sign), as we will do elsewhere.
Attractive or not, (2.3) will turn out to be the correct one for our classification.

In the main text from now on we will consider the IIB case (unless otherwise stated).
This is because AdSg x My solutions in massive ITA were already analyzed in [25], where
it was found that the only solution is the one in [11]. We did find it useful to check
our methods on that solution as well; we sketch how that works in appendix C. As for
the massless case, we found it more easily attacked by direct analysis in eleven-dimensional



supergravity, which we present in appendix B, given that it is methodologically a bit outside
the stream of our pure spinor analysis in IIB.

With the spinor Ansatz (2.3) in hand, we can apply the system in [24]; the details of the
derivation are described in appendix A. We first describe the forms appearing in the system.
If we were interested in the Minkowski case, the system would only contain the bispinors
ni ® niT and n}r ® (nic)T.l (As usual in the pure spinor approach, we need not consider
spinors of the type e.g. n}r ® nf to formulate a system which is necessary and sufficient.)
Mathematically, this would describe an SU(2) x SU(2) structure on T'My @& T My. Since
in (2.3) we also have the negative chirality spinors 7 and 5'¢, there are many more forms

we can build. We have the even forms:?2

_ 2 _ _ Y
o= Mptont, = lomi) =l ond; (2.4a)

and the odd forms:

_ 2 _ _ 5
pl=eion, ¢l=ecplem) = ien. (2.4b)

A

The factors e~ are inserted so that the bispinors have unit norm, in a sense to be clarified

shortly; A is the warping function, defined as usual by
ds%o = eQ‘L‘dsids6 + ds?\h ) (2.5)

Already by looking at (2.4a), we see that we have two SU(2) x SU(2) structures on T M, &
T*My. If both of these structures come for example from SU(2) structures on 7'My, we see
that we get an identity structure on T'My, i.e. a vielbein. In fact, this is true in general:
(2.4a) always defines a vielbein on My. We will see in section 3 how to parameterize
both (2.4a) and (2.4b) in terms of the vielbein they define.

In the meantime, we can already now notice that the (2.4a) and (2.4b) can be assembled
more conveniently using the SU(2) R-symmetry. This is the group that rotates ( fp) and each

of (7;7:%) as a doublet. One can check that (2.3) is then left invariant, so it is a symmetry;
since it acts on the external spinors, we call it an R-symmetry. It is the manifestation of
the R-symmetry of a five-dimensional SCFT. Something very similar was noticed in [20] for
AdS7: the pure spinor system ((2.11) in that paper) naturally assembled into singlets and
one triplet of SU(2). (Recall that a six-dimensional SCFT also has an SU(2) R-symmetry.)
While in that paper the SU(2) formalism was only stressed at the end of the computations,
here the analysis is considerably more complicated, and SU(2) will be used from the very

beginning to yield more manageable results. Let us define

_ [k - I
Py = (77¥> ® (ni ni) ((92521)* (¢L)*

= Re¢LIdy + i(Im¢2 o1 + Regios 4+ Imolos) = ®Y1dy +i®% 0, , (2.6a)

! As usual, we will identify forms with bispinors via the Clifford map dz™! A ... A dz™* s y™1™Mk,

2Notice that the ! or ? on ¢ has nothing to do with the * or ? on the n’s; rather, it has to do with
whether the second spinor is Majorana conjugated (%) or not (*). Another caveat is that the + does not
indicate the degree of the form, as it is often the case in similar contexts; all the ¢’s in (2.4a) are even
forms. One can think of the 4+ as indicating whether these forms are self-dual or anti-self-dual.



— s 21 37\ _ 21 {1
Y= <n§5> @ (o' ) (wi)* (vh)*

= ReylIdy + i(Imy2 o1 + Red oy + Imyplos) = UIdy + i¥% 0, . (2.6b)

Oa, @ = 1,2,3, are the Pauli matrices. Here and in what follows, the superscript  denotes
an SU(2) singlet, and not the zero-form part; the superscript * denotes an SU(2) triplet,
not a one-form. We hope this will not create confusion.

As we already mentioned, the forms &, ¥, will define an identity structure on Mj.
However, not any random forms ®, Uy may be written as bispinors as in (2.6). In other
cases, such as for SU(3) x SU(3) structures in six dimensions [23], it is useful to formulate
a set of constraints on the forms that guarantee that they come from spinors; this allows to
completely forget about the original spinors, and formulate supersymmetry completely in
terms of some forms satisfying some constraints. In the present case, it would be possible
to set up such a fancy approach, by saying that &4 and W4 should satisfy a condition on
their inner products. For example we could impose that the ®’s and ¥’s be pure spinors
on My obeying the compatibility conditions®

(@2, 07) = (we,¥]) = 5% (0%, 0Y) = 5% (WY, ¥l). (2.7)

As in [20], this would however be an overkill, since in section 3 we will directly parameterize
@, and V4 in terms of a vielbein and some functions on My. This will achieve the end of
forgetting about the spinors n¢ by different means.

We can finally give the system of equations equivalent to preserved supersymmetry:

dy [e3A—¢(xp, . \11+)0] — 22475+ 0,)0 =0, (2.8a)
dn [64/**‘1’(@_ - <1>+)a] —33AO (T L) =0, (2.8D)
dy [e“—d’(\p, - m)a] 4D+ L) =0, (2.8¢)
dy [eGA—¢(<I>_ — <1>+)0] — 54U+, )0 = —ieﬁA w4 AF (2.8d)
dy [e5A—¢(\I/_ T, )] =0; (2.8¢)

|12 = 1In?I]” = e (2.8f)

As usual, ¢ here is the dilaton; dg = d — HA; A was defined in (2.5); A is a sign operator
defined in footnote 3; F' = F + F3 is the “total” allowed internal RR flux, which also
determines the external flux via

F(lO) =F+ 66AV016 A g AF . (29)

Again, we remind the reader that the superscript © denotes a singlet part, and @ a triplet

part, as in (2.6).

3The Chevalley-Mukai pairing is defined as (a, 8) = (a A A(8))4, where on a k-form Awy, = (—)ngwk.



The last equation, (2.8f), can be reformulated in terms of ® and W. Since ||n?|? =

In%1* + In%]|*, we can define |lni[| = e*/?cos(a/2), [[nL|| = e*?sin(a/2), [[n2|| =
eM2 cos(a/2), ||n?|| = e*/?sin(@/2), where a, & € [0, 7]; we then get
1 1
(29,9%) = gCOSQ(Oé/Q) cos?(@/2), (@, %) = ~3 sin?(ar/2) sin?(&/2) ; 2.10)
2.10
1 1
(00, 00) = 3 cos?(ar/2) sin’(@/2), (0, 09) = -3 sin?(ar/2) cos®(a/2) .

Just as (2.7), however, such a fancy formulation will be ultimately made redundant by our
parameterization of ® and W in section 3, which will satisfy (2.7) automatically, and where
we will take care to implement (2.8f), so that (2.10) will be satisfied too.

We can check immediately that (2.8) imply the equations of motion for the flux, by act-
ing on (2.8d) with dy and using (2.8e). The equations of motion for the metric and dilaton
are then satisfied (as shown in general in [37] for ITA, and in [38] for IIB); the equations of
motion for H are also implied, since they are [39] for Minkowskiy compactifications (which
include Minkowskis as a particular case, and hence also AdSg by a conical construction).
We will see later that the Bianchi identities for F' and H are also automatically satisfied
for this case, as was the case for [20].

It is also interesting to compare the system (2.8) with the above-mentioned system for
Minkowskig in [31]. First of all the second summands in the left-hand side of (2.8a)—(2.8d)
implicitly come with a factor proportional to v/—A that we have set to one (since it can be
reabsorbed in the warping factor A). To take the Minkg limit, we can imagine to restore
those factors, and then take A — 0. Hence all the second summands in the left-hand
side of (2.8a)—(2.8d) will be set to zero. This is not completely correct, actually, because
implicit in (2.8a)—(2.8c) there are more equations, that one can get by acting on them
with dp (before taking the A — 0 limit); we have to keep these equations as well. So far
the limit works in the same way as for taking the A — 0 limit from AdS,; to Minkowskiy
in [23]. In the present case, however, there is one more thing to take into account. As
we have seen, in the Minkowskis case the spinor Ansatz can be taken to be (2.1) rather
than the more complicated (2.3) we had to use for AdSg. To go from (2.3) to (2.1), we
can simply set n1 = 0 and 72 = 0. This sets to zero some of our bispinors; for the I1IB
case on which we are focusing, it sets to zero everything but ®,. This makes some of the
equations disappear; some others become redundant. All in all, we are left with

1
dg(e24720%) =0,  dp(e*?9%) =0, dH(eGA_‘b(I)g_):—ZeﬁA sy AF,(2.11)

which is [31, eq. (4.11)] in our SU(2)-covariant language. (In [20], this system was quoted
in a slightly different way: the last equation was mixed with the first, to yield e?F =
16 4 A(dA A ®Y).)

In summary, in this section we have presented the system (2.8), which is equivalent
to preserved supersymmetry for backgrounds of the form AdSg x My4. The forms ® and ¥
are not arbitrary: they obey certain algebraic constraints expressing their origin as spinor
bilinears in (2.6), (2.4). We will now give the general solution to those constraints, and
then proceed in section 4 to analyze the system.



3 Parameterization of the pure spinors

We have introduced in section 2 the even forms @4 and the odd forms Wi
(see (2.6), (2.4a), (2.4b)). These are the main characters in the system (2.8), which is
equivalent to preserved supersymmetry. Before we start using the system, however, we
need to characterize what sorts of forms &4 and W4 can be: this is what we will do in this
section.

3.1 Even forms

We will first deal with ®. We will actually first focus on @, and then quote the results for
®_. The computations in this subsection are actually pretty standard, and we will be brief.

Let us start with the case n} = n? = n;. Assume also for simplicity that ||n4|* = 1.
In this case the bilinears define an SU(2) structure:

1 . 1
iy = 1€ 0T T = s, (3.1)

where the two-forms ji, w, satisfy
JrAwy =0, wi =0, wi AWy =253 = —voly. (3.2)

We can also compute
- 1

1 . _
it = e, il = - ey (3.3)

Let us now consider the case with two different spinors, 77_1F %+ ni; let us again assume
that they have unit norm. We can define (in a similar way as in [40])

1 _ _ 1 ,
oy =S5 —int), e = 50k +int). (3.4)

Consider now a4 = niTni, by = En}r {ni,ni‘j} is a basis for spinors on My; a4, by
are then the coefficients of 77}F along this basis. Since 79 have both unit norm, we have
lat|? + |b4|> = 1. By multiplying n¢ by phases, we can assume that a4 and by are
for example purely imaginary, and we can then parameterize them as ay = —icos(64),
by = isin(64). Going back to (3.4), we can now compute their inner products:

Qi 1

778+770+ = cos’ ( B > ) 77(T)+770+ =0, o+ 70+ = ) sin(04.) . (3.5)

From this we can in particular read off the coefficients of the expansion of 794 along
. L - _ . 0
the basis {no+,nG}. This gives fo; = W(U(LUOH?M + Mo+ T0+16+) = tan (%) N0+

Recalling (3.4), and defining now 194+ = cos (%’) Ny, we get

n}r = cos <92+> N+ + sin (92+> ng n_2|_ =1 (cos <92+> 7Ny — sin (92+> ni) . (3.6)

From this it is now easy to compute ninf and n}rg Recall, however, that in the course
of our computation we have first fixed the norms and then the phases of 7¢. The norms



of the spinors we need in this paper are not one; they were actually already parameterized
before (2.10), so as to satisfy (2.8f). The factor e, however, simplifies with the e=4 in the
definition (2.4a). Let us also restore the phases we earlier fixed, by rescaling nl — e®+nk,
nt — ef+n3. All in all we get

o = § cos(a/2) con( /2 cos(02) exp |~ (i +sin(0)Reay) | . (370)

L
cos(64)

P2 = icos(oz/2) cos(d@/2)e! ™+ F1+) gin(, ) exp [sir1(10+)(008w+)Rew+ + iImw+)] . (3.7b)

The formulas for ¢ can be simply obtained by changing cos(c/2) — sin(a/2), cos(i/2)
— sin(@/2), and 1 — _ everywhere. The only difference to keep in mind is that the last
equation in (3.2) is now replaced with w_ Aw—= = 252 = voly.

3.2 0Odd forms

We now turn to the bilinears of “mixed type”, i.e. the wjf we defined in (2.4b), which
result in odd forms. We will again start from the case where nl =n% = n..

There are two vectors we can define:

9 _
Um = 77_T7m?71+ 5 Wy, = n%vmni . (3.8)

In bispinor language, we can compute

1 1 B
nnl = TGRS nSnt = TGRS (3.9)
1 B 1
n-nl = 1(1 —yw, el = 1(1 —Y)v, (3.9b)
and
ct 1 c T 1 —
nyn" = 1(1 +y)w,  ninl = —1(1 +7)w, (3.9¢)
1 1 _
nnl == =yw, =1 -y)w. (3.9d)

(In four Euclidean dimensions, the chiral 7 = %4\, so that (1 4+ v)v = v + *4v, and so on.
See [24, appendix A] for more details.) For the more general case where nl # 7%, we can
simply refer back to (3.6). For example we get

ei(qu —tf)

YL =——— cos(a/2) sin(a@/2)(1 + ) [cos <9+";9‘) Rev+i cos (W) Imv + (3.10)

4
—sin (9+ —;0_> Rew+17sin <9+ ;9_> Imw} )

For the time being we do not show the lengthy expressions for the other odd bispinors ¢3_

and 1/152, because they will all turn out to simplify quite a bit as soon as we impose the
zero-form equations in (2.8).



The v and w we just introduced are a complex vielbein; let us see why. First, a
standard Fierz computation gives

veng =0, TNy =2n_, (3.11)
where - denotes Clifford product. Multiplying from the left by 771, we obtain
v? =0, VLT = 0"y, =2. (3.12)
Similarly to (3.11), we can compute the action of w:
w-ne =0, Wy =205 . (3.13)

Multiplying by 7=, we get
w? =0, w.T=2. (3.14)

From (3.11) we can also get v-ny7— =0, U - n47— = 2n_7—, whose zero-form parts read
viw=0=vLw. (3.15)
Together, (3.12), (3.14), (3.15) say that
{Rev, Rew, Imv, Imw} (3.16)

are a vielbein.

We can also now try to relate the even forms of section 3.1 to this vielbein. From (3.11)
we also see v - 147+ = 0, which says v Awy = 0; similarly one gets " Aw_ = 0. Also, (3.13)
implies that w - nyNy = w - wy = 0, and thus that w Awy = 0. So we have wi < v A w,
w_ x U Aw. One can fix the proportionality constant by a little more work:

wy =—-vAw, w_ =TAw. (3.17a)
Similar considerations also determine the real two-forms:
ji:i%wA@iwAwy (3.17b)

So far we have managed to parameterize all the pure spinors &4, ¥4 in terms of a
vielbein given by (3.16). The expressions for @ are given in (3.7); ®_ is given by changing
(cos(a/2), cos(@/2)) — (sin(a/2),sin(@/2)), and ; — _ everywhere. The forms ji, wy are
given in (3.17) in terms of the vielbein. Among the odd forms of W, we have only quoted
one example, (3.10); similar expressions exist for wi and for 1/11_’2. We will summarize
all this again after the simplest supersymmetry equations will allow us to simplify the
parameterization quite a bit.

4 General analysis

We will now use the parameterization obtained for ® and ¥ in section 3 in the sys-
tem (2.8). As anticipated in the introduction, we will reduce the system to the two
PDEs (4.12a), (4.13), and we will determine the local form of the metric and of the fluxes
in terms of a solution to those equations.
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4.1 Zero-form equations

The only equations in (2.8) that have a zero-form part are (2.8a) and (2.8c):
(P +® )3 =0, (&, +@)5 =0. (4.1)

The subscript ¢ here denotes the zero-form part. (Recall that the superscripts © and @
denote SU(2) singlets and triplets respectively.) To simplify the analysis, it is useful to
change variables so as to make the SU(2) R-symmetry more manifest; this will lead us to
definitions similar to those made in [20, section 4.5].

In (3.7), apart for the overall factor cos(a/2)cos(@/2)/4, we have ¢},
e+ =) cos(6,), P x e ++4+) sin(f ). The singlet is Reg!  oc cos(6) cos(uy — t),
and it is a good idea to give it a name, say x4. On the other hand, the triplet is
{Im¢?%, Re¢? , Im@p! } o< {sin(6)sin(ug + t4),sin(04) cos(uy + t4), cos(f4) sin(us — t4)}.
If we sum their squares, we obtain:

sin?(04) + cos(04)? sin?(uy — t4) = 2% tan®(uy — t4) +sin®(04) = 1 — 27 . (4.2)

This suggests that we parameterize the triplet using the combination /1 — 1’3_ y%, where
y® should obey y,y® = 1 and can be chosen to be the ¢ = 1 spherical harmonics on S2.
What we are doing is essentially changing variables on an S3, going from coordinates that
exhibit it as an S' x S fibration over an interval to coordinates that exhibit it as an S?
fibration over an interval:

{cos(9+)ei(“+_t+),sin(0+)ei(“++t+)} — {l‘+, \/1-— xiyo‘} . (4.3)

An identical discussion can of course be given for qZ)EZ. Summing up, we are led to the
following definitions:

x4 =cos(fy)cos(uyr —ty), sinfy = M , Y+ = T Ugp — ty (4.4)
1-— xi 2
and
Yy = (sin(ﬁi) cos(v4), sin(fB4)sin(y+), cos(ﬁi)> , (4.5)

in terms of which

®, o = cos(a/2) cos(a/2) <a?+ +iyGa/1— wiaa> ,

(4.6)

d_( = sin(a/2)sin(a/2) <£L'_ +iy2y/1— 3320a> .

Going back to (4.1), summing the squares of all four equations we get

cos?(a/2) cos?(@/2) = sin?(a/2)sin?(&/2). Given that o and & € [0, 7], this is uniquely
solved by

a=7—a. (4.7)
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Now (4.1) reduces to

—r_=x, =1, —y* =97 =y~ (4.8)

In terms of the original parameters, this means 0, =0_, u_ =uy, t_ =t + 7.
The parameterization obtained in section 3 now simplifies considerably:

L = :té sin o cos 0 e exp [— p—; (1j+ + sin HRewi)] , (4.9a)
PL = :l:é sin asin 0 ¢!t exp Lirllg(cos ORewy + iImer)} ; (4.9b)
Yl = :Fé(l + cos a)e "I (1 £ 7) [cos BRev + ilmv F sin fRew] | (4.9¢)
Y1 = :Fé(l + cos a)e T (1 £ 7) [sin #Rev + ilmw =+ cos fRew) . (4.9d)

We temporarily reverted here to a formulation where SU(2)g is not manifest; however, in
what follows we will almost always use the SU(2)-covariant variables x and y® introduced
above.

4.2 Geometry

We will now describe how we analyzed the higher-form parts of (2.8), although not in such
detail as in section 4.1.

The only equations that have a one-form part are (2.8b). From (4.9¢), (4.9d), we
see that the second summand (¥, + ¥_)¢ is a linear combination of the forms in the
vielbein (3.16). The first summand consists of derivatives of the parameters we have
previously introduced. This gives three constraints on the four elements of the vielbein.
We used it to express Imv, Rew, Imw in terms of Rev;? the resulting expressions are at this
point still not particularly illuminating, and we will not give them here. These expressions
are not even manifestly SU(2)-covariant at this point; however, once one uses them into
&, and U4, one does find SU(2)-covariant forms. Just by way of example, we have

1
(P +0_)5 = —56_3A+¢ sinawRev A d (ya sina e1=?/1 — :c2) ,

4.10)
1 (
(U_ — U )% =y*/1—22sin’(a)Rev+ 36_3A+¢ cosad (ya sina e4?\/1 —:1:2) .

We chose these particular 2-form and 1-form triplet combinations because they are involved
in the 2-form part of (2.8¢). The result is a triplet of equations of the form y* Eo+dy*“AE; =
0, where E; are i-forms and SU(2)g singlets. If we multiply this by y,, we obtain Ey = 0
(since yody® = 0); then also F; = 0 necessarily. The latter gives a simple expression for
Rewv, the one-form among the vielbein (3.16) that we had not determined yet:

e—A

Rev = — d(e* cos ) . (4.11)

sin av

Once this is used, the two-form equation Es = 0 is automatically satisfied.

4Doing so requires = # 0; the case = 0 will be analyzed separately in section 4.4.
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There are some more two-form equations from (2.8). The easiest is (2.8¢), which gives

4A—¢ 1
d <e cot ad(e*! cosar) + 3—62A\/ 1—x2d <€4A_¢ 1 —22sin a)) =0. (4.12a)
x x

Locally, this can be solved by saying
xdz = e*~9 cot avd(e?” cos ar) + éem V1= 22d (e4A_¢ 1 —22sin a) (4.12b)
for some function z. The two-form part of (2.8a) reads, on the other hand,
e 84d(e5 cos ) A dz = d(ze*?sina) A d(e*A cosar) . (4.13)
If one prefers, dz can be eliminated, giving
3sin(2a)dA A dp = da A (GdA + sin®(@) (—dz?® — 2(2® + 5)dA + (1 + 22°)dg) ) . (4.14)

We will devote the whole section 5 to analyze the PDEs (4.12a), (4.13) and we will also
exhibit two explicit solutions.

Taking the exterior derivative of (4.13) one sees that da AdAAdz = 0. Wedging (4.12a)
with an appropriate one-form, one also sees da A dA A dx = 0. Taken together, these
mean that only two among the remaining variables («, x, A, ¢) are really independent. For
example we can take o and = to be independent, and

A= Ao, z), ¢ =o¢(a,x). (4.15)

We are not done with the analysis of (2.8), but there will be no longer any purely
geometrical equations: the remaining content of (2.8) determines the fluxes, as we will
see in the next subsection. Let us then pause to notice that at this point we have already
determined the metric: three of the elements of the vielbein (3.16) were determined already
at the beginning of this section in terms of Rev, and the latter was determined in (4.11).
This gives the metric

d¢> 1 sin?(a) (1 [dp dg\?
d 2 _ CoS & aq” Zo(l — 2 I 3 t2 4 d 2 4.16
Y= ww g M T e \@ \p PRy ) tde ) (110)

where the S? is spanned by the functions 3 and v introduced in (4.5) (namely, als?g2 =
df3? + sin?(B)d~?), and we have eliminated A and ¢ in favor of

g=e*cosa, p=e*"?sinayv1—22. (4.17)

These variables could also be used in the equations (4.12a), (4.13) above, with marginal
simplification. Notice that positivity of (4.16) requires |z| < 1.

Thus we have found in this section that the internal space My is an S? fibration over
a two-dimensional space ¥, which we can think of as spanned by the coordinates («, x).
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4.3 Fluxes

We now turn to the three-form part of (2.8b). This is an SU(2)g triplet. It can be written
as y*H = e*P1yPdy? A Ey + y*volg: A E1, where E; are i-forms and SU(2)g singlets.
Actually, from (4.12a) and (4.13) it follows that Ey = 0; we are then left with a single
equation setting H = volgz A Ei:

H= —%em\/ 1—22sina —gii + 2e~4(1 + 2?)d(e sin ) 4 sin a d(¢ + acQ)] Avolgz .
(4.18)
As expected, H is a singlet under SU(2)R.
All the four-form equations in (2.8e), (2.8a), (2.8¢) turn out to be automatically sat-
isfied. We can then finally turn our attention to (2.8d), which we have ignored so far. It
gives the following expressions for the fluxes:

F, = Gxecoq;a [fjj +4e A (2? — 1)d(e” sina) + e** sinad(e (1 + 23:2))} ; (4.19a)
F5 = 62;4¢ msicri(g) [z?jj + e~ (2% — T)d(e? sina) +
+ e?sinad(e ??(1 + 2:52))] Avolge . (4.19b)
The Bianchi identities
dH =0, dF1 =0, dFs+HANF, =0, (4.20)

are all automatically satisfied, using of course the PDEs (4.12a), (4.13). As usual, this
statement is actually true only if one assumes that the various functions appearing in those
equations are smooth. As in [20], one can introduce sources by relaxing this condition.

4.4 The case x =0

In section 4.2, we used the three-form part of (2.8b) to express Imv, Rew, Imw in terms
of Rev. This actually can only be done for = # 0: the expressions we get contain z in the
denominator, as can be seen for example in (4.12a). This left out the case z = 0; we will
analyze it in this section, showing that it leads to a single solution, discussed in [15, 16]
— namely, to a T-dual of the AdSg solution found in [11] and reviewed in our language in

appendix C.
Keeping in mind that —x_ = z;y = =z (from (4.8)), from (4.4) we have x =
cos(f) cos(u — t). Imposing x = 0 then means either § = § or u —t = 5. Of these

two possibilities, the first does not look promising, because on the S3 parameterized by
(cos(0)e 1) sin(0)e (" +1) it effectively restricts us to an S': only the function u+t is left
in the game, and indeed going further in the analysis one finds that the metric becomes
degenerate.® The second possibility, u — t = 5, restricts us instead to an 52 C 83; we will
now see that this possibility survives. It gives

1 T
=40, 57, U= 537 (4.21)

5 At the stage of (4.22) below, one would find Rew o Imuv.
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This leads to a dramatic simplification in the whole system. The one-form equations
from (2.8b) do not involve Imv any more; we can now use them to solve for Rev, Rew,
Imw (rather than for Imv, Rew, Imw as we did in previous subsections, for z # 0). This
strategy would actually have been possible for z # 0 too, but it would have led to far more
involved expressions; for this reason we decided to isolate the z = 0 case and to treat it
separately in this subsection. We get

o—3A+¢ A A

Rev = d(sinae*1=?), Rew = ¢ sina dg, TImw = ~ % Sinasin Bdy. (4.22)
3cos 3 3

We now turn to the 2-form equation in (2.8c). As in the previous subsections of this
section, this can be separated into a 2-form multiplying y* and a 1-form multiplying dy®,
which have to vanish separately:

AN PRer) =0, A3~ dsin®(@)Rev = d( Psinacosa).  (4.23)

Hitting the second equation with d and using the first, we find sin acosada A Rev = 0,
and hence, recalling (4.22), to sin ada A d(4A — ¢) = 0. Now, sin « is not allowed to vanish
because of (4.22) (recall that Rev, Rew, Imw are part of a vielbein); hence da Ad(4A—¢) =
0. This can be interpreted as saying that 44 — ¢ is a function of a. On the other hand,
using (4.22) in the first in (4.23), we get d( i ) A d(sin ae*4=?) = 0, which shows that

Ccos «

A = A(a), and hence also that ¢ = ¢(«r). Going back to the second in (4.23), it now reads

2(cos?(ar) + 2)0a A + sin?(a) 0y = sin(2a) . (4.24)
Turning to (2.8e), its 2-form part reads
A Tmy) =0 =  Imw=e 049z (4.25)

for some function z. This completes (4.22).
Finally, (2.8a) gives

(d(e_QA cos @) 4 2e 34 sin aRev) Almv =0. (4.26)
In view of (4.25), the parenthesis has to vanish by itself; this leads to
4(7 cos®(a) — 4)0a A + 45in? () Dy = —sin(2a) . (4.27)

Notice that now (4.24) and (4.27) are two ordinary (as opposed to partial) differential
equations, which can be solved explicitly:

A C1 6 _ C2
Ao g2 4.8
cos!/6(a) sin o cos?/3 () (4.28)

where ¢; are two integration constants. These are exactly the warping and dilaton presented
n [19, (A.1)], for ¢; = %Lm‘l/G, co = 4/(3L*m?/3). Tt is now possible to derive the fluxes,
as we did in subsection 4.3 for = # 0, and check that they coincide with those in [19, (A.1)].
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The metric can now be computed too, using the vielbein (4.23), (4.25); it also agrees
with the one given in [19, (A.1)]. It inherits the singularity at o = 5 from the Brandhuber-
Oz solution [11]; moreover, it now has a singularity at @ = 0. The latter is actually the
singularity one always gets when one T-dualizes along a Hopf direction in a S that shrinks
somewhere. It represents an NS5 smeared along the T-dual S'; one expects worldsheet
instantons to modify the metric so that the NS5 singularity gets localized along that direc-
tion, as in [41]. As for the singularity at a = 7, it now cannot be associated with an O8-D8
system as it was in ITA, since we are in IIB. It probably now represents a smeared O7-D7
system; it is indeed always the case that T-dualizing a brane along a parallel direction in
supergravity gives a smeared version of the correct D-brane solution on the other side, as we
just saw for the NS5-brane. It is possible that again instanton effects localize the singular-
ity, this time to an O7-D7 system. (Even more correctly, we should expect the O7 to split
into an (1, 1)-sevenbrane and an (1, —1)-sevenbranes, as pointed out in [5] following [42].)

Notice finally that, although we have found it convenient to treat the x = 0 case
separately from the rest, it is in fact a particular case of the general treatment (although a
slightly degenerate one). Indeed one can check that (4.12b) is satisfied by (4.28); in contrast
to the general case, this does not determine a function z, but we can use (4.14), where z
has been eliminated, instead of (4.13), wh