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Digging into the extremes: a useful approach for
the analysis of rare variants with continuous
traits?
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Abstract

The common disease/rare variant hypothesis predicts that rare variants with large effects will have a strong impact
on corresponding phenotypes. Therefore it is assumed that rare functional variants are enriched in the extremes of
the phenotype distribution. In this analysis of the Genetic Analysis Workshop 17 data set, my aim is to detect
genes with rare variants that are associated with quantitative traits using two general approaches: analyzing the
association with the complete distribution of values by means of linear regression and using statistical tests based
on the tails of the distribution (bottom 10% of values versus top 10%). Three methods are used for this extreme
phenotype approach: Fisher’s exact test, weighted-sum method, and beta method. Rare variants were collapsed on
the gene level. Linear regression including all values provided the highest power to detect rare variants. Of the
three methods used in the extreme phenotype approach, the beta method performed best. Furthermore, the
sample size was enriched in this approach by adding additional samples with extreme phenotype values. Doubling
the sample size using this approach, which corresponds to only 40% of sample size of the original continuous trait,
yielded a comparable or even higher power than linear regression. If samples are selected primarily for sequencing,
enriching the analysis by gathering a greater proportion of individuals with extreme values in the phenotype of
interest rather than in the general population leads to a higher power to detect rare variants compared to
analyzing a population-based sample with equivalent sample size.

Background
Genome-wide association studies effectively identify new
common loci and pathways, but a large amount of esti-
mated heritability is still unexplained [1]. It is conceiva-
ble that the effects of rare variants explain some
proportion of this missing heritability [2-4], because rare
variants more likely reflect causative variants than com-
mon variants do. Conventional genome-wide association
studies, however, are not designed to capture rare var-
iants. The most common approach of studies aiming to
identify rare variants is based on the assumption that

rare variants with large effects are enriched in the
extremes of the phenotype distribution [3,5].
If resources are limited, sequencing the extreme tails

of a phenotype distribution in the search for rare var-
iants has been successful, for example, in studies on
candidate genes for lipoprotein metabolism [5-7] or type
1 diabetes [8]. Is it a failure to neglect the “uninforma-
tive middle” of the distribution if there is no monetary
pressure to do so? When applying this extreme trait
approach to a continuous phenotype, much of the over-
all distribution of the phenotype is neglected and some
rare genetic variants with just moderate effects may be
missed. In contrast to this assumption, the extreme phe-
notype approach has been more successful than linear
regression on all values in a recent study on free fatty
acids [9]. In this study, a linear regression on the com-
plete phenotype distribution was used and methods
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designed for rare variants in a case-control design [10]
by focusing on the extremes of the phenotype. An
excess of rare variants in the upper tail of the distribu-
tion is shown by the case-control design.
In light of these recent findings and the expected role

of rare variants, is linear regression still the gold stan-
dard? It might be conceivable that an excess of rare var-
iants in the extremes would be better detected by
choosing good discriminative cut points for the extreme
values using appropriate statistical methods. On the
other hand, a lot of information might be lost, leading
to diminished power. Is this power loss merely due to a
smaller sample size?
With these considerations in mind, my aim in this

analysis of the Genetic Analysis Workshop 17 (GAW17)
data set is to detect genes with rare variants that are
associated with quantitative traits using two general
approaches: analyzing the association with the complete
distribution of values by means of linear regression and
performing statistical tests based on the tails of the
distribution.

Methods
Data
In this analysis, I use data prepared for GAW17. These
data include 697 unrelated individuals from the 1000
Genomes Project originating from 6 populations (Afri-
can, Asian, European) [11]. The genotypes were held
fixed, and three normally distributed phenotypes (Q1,
Q2, and Q4) were simulated in 200 replication data sets.
In this analysis, I use all 200 replicates on all three con-
tinuous traits. The genotype data are composed of
21,356 single-nucleotide polymorphisms (SNPs) clus-
tered in 3,205 genes, 2,874 of which also include rare
variants. The quantitative trait Q1 has been simulated to
be influenced by 39 SNPs in 9 genes, and Q2 by 72
SNPs in 13 genes; Q4 is not influenced at all by genes
in this data set.

Collapsing rare variants within a gene
Because of the nature of rare variants, analyzing each of
them individually lacks adequate power. Several kinds of
collapsing methods for rare variants have been pro-
posed. The primary idea is to group rare variants
together in such a way that individuals with at least one
rare variant are tested against others who do not have
any rare variant [12,13]. In this analysis, I group rare
variants on the gene level, indicating only whether each
individual has at least one rare variant within one gene
or not, corresponding to a dominant allele coding. For
each gene, I created one indicator variable, I(number of
rare variants within the gene > 0) (= I(rare)). I define
rare variants as variants with a minor allele frequency
(MAF) less than 5%.

Analysis using all values of the continuous traits
For the association analysis of the rare variants with all
values of the continuous traits, I use linear regression
models and collapsed rare variants into one indicator
variable. Morris and Zeggini basically proposed this idea
in the combined multivariate and collapsing (CMC)
method [14]. The expectation of the phenotype Y is
modeled as follows for each gene with rare variants:

E Y I i ni i( ) ( ) , , , ,= + =a b rare rare 1 (1)

where n is the number of individuals, a the intercept
and and brare is the expected increase of the phenotypic
trait in individuals with at least one rare variant within
the respective genes compared to individuals without
any rare variant. To evaluate possible population stratifi-
cation issues, I performed a population-stratified analysis
by running the linear regression separately in three
homogeneous groups (Africans, Asians, Europeans) fol-
lowed by a consecutive random effects meta-analysis.

Analysis based on the extreme tails of the distribution
The extreme tails are defined by values smaller than
10% quantiles versus values greater than 90% quantiles
(i.e., the bottom 10% and top 10% of the categorized
trait). In addition, I created a dichotomized trait (the
bottom 90% versus the top 10%). In both cases, each
gene can be presented in a 2 × 2 table. Therefore we
can apply methods that have been proposed for case-
control studies only. I use the following methods and
compare them in this analysis:
1. Fisher’s exact test on each of the 2 × 2 tables corre-

sponding to the cohort allelic sum test (CAST) method
proposed by Morgenthaler and Thilly [13].
2. Beta test proposed by Li et al. [10], which compares

proportion differences of rare variants between affected
and unaffected subjects. The test does not involve any
distribution approximation and can therefore be used as
an exact test for the analysis of 2 × 2 tables.
3. Weighted-sum (WS) method proposed by Madsen

and Browning [15], which groups rare variants and
scores each individual using a weighted sum of rare var-
iant counts. The WS method is a test for an excess of
rare variants in affected individuals.
More details on the collapsing methods used in this

analysis (CMC, CAST, WS) can be found in Dering et
al. [16].
Because the analyses on the categorized trait are based

on only 20% of the sample size of the continuous trait, I
evaluate the effect of sample size on the categorized
trait using the following approaches:
1. Enriching the tails: In the analysis of each of the

first 100 replicates, additional replicates were sampled
from replicates 101–200 by chance to increase the
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sample size of the top and bottom 10%. This enrich-
ment was performed by adding one or two additional
data sets, leading to 40% or 60%, respectively, of the ori-
ginal sample size of the continuous trait.
2. Widening the tails: The sample sizes were increased

by shifting the limits of the categorized trait Q1 closer
to the median: The top and bottom 20% were included
to attain 40% of the original sample size, and the top
and bottom 30% were included to reach 60% of the ori-
ginal sample size.

Results
Comparing type I error and power
For Q4, which serves as a control phenotype, the type I
error was inflated for the linear regression (0.10) and
pretty much preserved to slightly elevated for the other
methods (0.02–0.07). For Q2 and especially Q1, the type
I error was inflated, with a maximum of 0.16 for the lin-
ear regression in Q1. The WS and beta methods yielded
similar rates throughout (using the categorized trait in
Q1, 0.09 for WS, 0.11 for beta; in Q2, 0.04 for WS, 0.05
for beta). The population-stratified analysis eliminated
the inflation in Q4 (0.04) and diminished it for the
other traits (0.11 for Q1 and 0.06 for Q2).
Figure 1 shows the power to detect the true associated

genes for Q1 and Q2 based on a nominal significance
level of 0.05. Power ranges from 97.5% to 100% for
FLT1 and from 1.5% to 6.5% for ELAVL4; both of these
genes are similarly likely to be detected by all methods.
For other genes, there is a high variation in power with

regard to method. Overall, linear regression is the most
powerful method for almost all genes and both traits,
followed by the methods using the dichotomized trait.
Comparing the three methods used for the categorized
trait, the beta method shows the highest power for
almost all genes, followed by the WS method. For Q2,
power is generally lower (maximum 45.5% for BCHE),
but the overall pattern remains the same. Correction for
multiple testing using a simple Bonferroni correction
would have detected only FLT1 using linear regression
on Q1 with adequate power (91%).

Effect of sample size
I used sample-size-enriched data sets to evaluate the
effect of sample size on the extreme phenotype
approach compared to the gold standard of linear
regression. Because the beta method performed the best
of all methods in the extreme phenotype approach and
also outperformed the WS method with regard to com-
puting time, I used only the beta method for this analy-
sis step.
Figure 2 shows both the enriched-tail and the

widened-tail approaches. For each added data set
(enriched method), power increases, whereas widening
the tails to include individuals with phenotypes closer to
the median decreases the power. Doubling the sample
size in the extreme phenotype approach (top 10% versus
bottom 10%) yields a comparable or even higher power
than linear regression, with the exception of the VEGFC
gene in the association analysis of Q1. For clarification

Figure 1 Power to detect genes with rare causal SNPs using different methods. Showing the power to detect (A) each of the 9 genes
including causal SNPs for Q1 and (B) each of the 13 genes for Q2 for all methods used: linear regression (black dots); weighted sum (WS),
Fisher’s exact test, and beta test on the categorized trait (top 10% versus bottom 10%) (red dots); and all three methods on the dichotomized
trait (top 10% versus bottom 90%) (blue dots). Power was calculated as the percentage of nominally significant p-values using all 200 replicates.
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Figure 2 Increasing the sample size by enriching or widening the tails and effect on power. The power to detect each of the nine genes
including causal SNPs for Q1 using linear regression and the beta test with increased sample size. Orange dots refer to the analyses enriched by
adding further individuals with extreme trait values: (A) One additional replicate was added to gain 40% of the original sample size; (B) two
additional data sets were added to gain 60% of the original sample size. Green dots represent the analyses based on the widened tails: (A) top
20% versus bottom 20%; (B) top 30% versus bottom 30%. Power was calculated as the percentage of nominally significant p-values using the
first 100 replicates.

Figure 3 Conditional density plot: probability of carrying a rare variant conditional on Q1 values. The dots at the upper or lower border
of the plot depict the values of Q1 (given on the x-axis) for each individual with rare variants (upper dots) or without rare variants (lower dots).
Based on the observed distribution, the curve gives the probability of carrying a rare variant conditional on Q1 values. The position of the upper
and lower 10%, 20%, and 30% quantiles of Q1 are marked by vertical lines.
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of this behavior, a conditional density plot is shown in
Figure 3. In this figure the distribution of the phenotype
conditional on the rare variants is exemplified on HIF1A
using the first replicate. The curve represents the prob-
ability of carrying at least one rare variant in the HIF1A
gene conditional on Q1 values, which is highest for
values above the 90th quantile with as low as 0 prob-
ability for values below the 10th quantile. Moving the
cut points to the median also enlarges the sample size,
but the information added is rather noninformative and
thus the power decreases.

Discussion
I applied two different general approaches to the analy-
sis of rare variants in the GAW17 data set: using all
values of the continuous trait distribution in a linear
regression and comparing the proportion of rare var-
iants in the upper tail of the distribution (upper 10%)
versus the rest (lower 90%) or in the lower tail (lower
10%) using methods reported for the detection of rare
variants in case-control studies.
Inflated type I errors is an issue in the analysis of the

GAW17 data set. Consistent false-positive findings have
been reported over different methods and all replicates
[17]; these false positives are partly due to long-range
linkage disequilibrium between genes. The higher power
of the linear regression is gained by a higher type I
error rate, which is a natural consequence but should be
kept in mind. Appropriately adjusting for population
stratification could reduce the inflation, though. Similar
type I error rates between the WS method and the beta
method indicate that neither of these methods can be
preferred over the other in this regard. Because genetic
effects were simulated in GAW17 using a normal distri-
bution, it was expected that linear regression would out-
perform the other extreme phenotype approaches with
regard to power.
The WS and beta approaches come down to a 2 × 2

table for which well-known methods could also be
applied. From the three methods applied, the beta test
and the WS method are the most powerful, indicating
that methods that have been primarily developed for the
detection of rare variants should be preferred over a
simple but overconservative Fisher’s exact test.
Another question handled in this analysis was whether

the higher power of linear regression was simply due to
higher sample size. Enriching the tails by adding indivi-
duals with extreme phenotypes led to an increase in
power, but widening the tails led to a decrease. There-
fore, it is not the size that matters but the selection of
samples. It should be noted, however, that the enrich-
ment method artificially added “genotypic twins”
because genotypes were held fixed in the simulated
replicates. This would not happen in the real world, and

it is not clear to what extent this twinning affected the
results.
In this analysis a sample size that is 40% as high as the

original sample size is sufficient to gain at least the same
power as found with linear regression. This result is in
line with the findings of Yang et al. [18], who compared
a quantitative trait analysis with a case-control design
assuming a threshold model of disease. Yang and collea-
gues showed that for diseases with a prevalence smaller
than 10%, a balanced case-control study needs a smaller
sample size than a quantitative trait analysis does to
gain equivalent power. Such a threshold model for a
rather rare disease can easily be transferred to the
underlying idea of an extreme phenotype approach of a
continuous trait.
If such an approach is chosen, the question remains,

How should extreme values be defined? In this analysis,
I chose the cut point of 10% as a trade-off between
really extreme values and sample size. Conditional den-
sity plots for many genes and replicates indicated that
using the bottom and top 10% of the distribution pro-
vided a good discrimination between individuals with at
least one or no rare variant without losing too much
data and therefore information. In general, this decision
has to be based on the studied phenotype and the sam-
ple size, which is available or can be sequenced.

Conclusions
What do these findings mean for sample selection and
analysis strategy? If a complete population-based study
is available for sequencing, then the statistical analysis
should not focus on the extremes alone because a
standard linear regression including all values is
expected to provide the highest power to detect rare
variants. Extreme phenotype approaches, however,
should be conducted in addition, because this
approach has been successful in real study situations.
If samples are selected primarily for a sequencing
approach, then enriching the analysis by gathering a
greater proportion of individuals with extreme values
in the phenotype of interest than in the general popu-
lation leads to a higher power to detect rare variants
compared to analyzing a population-based sample with
equivalent sample size. With such a selection strategy
using rare-variant-approved methods, such as the beta
or WS test, money on sequencing can be saved or
spent to include additional samples. However, these
collapsing methods can only point to genes or sets of
SNPs; detecting the truly functional variants is still
necessary.
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