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Abstract: Recently an inflationary model with a vector field coupled to the inflaton was

proposed and the phenomenology studied for the Bianchi type I spacetime. It was found

that the model demonstrates a counter-example to the cosmic no-hair theorem since there

exists a stable anisotropically inflationary fix-point. One of the great triumphs of infla-

tion, however, is that it explains the observed flatness and isotropy of the universe today

without requiring special initial conditions. Any acceptable model for inflation should thus

explain these observations in a satisfactory way. To check whether the model meets this

requirement, we introduce curvature to the background geometry and consider axisymmet-

ric spacetimes of Bianchi type II,III and the Kantowski-Sachs metric. We show that the

anisotropic Bianchi type I fix-point is an attractor for the entire family of such spacetimes.

The model is predictive in the sense that the universe gets close to this fix-point after a few

e-folds for a wide range of initial conditions. If inflation lasts for N e-folds, the curvature

at the end of inflation is typically of order ∼ e−2N . The anisotropy in the expansion rate at

the end of inflation, on the other hand, while being small on the one-percent level, is highly

significant. We show that after the end of inflation there will be a period of isotropiza-

tion lasting for ∼ 2
3N e-folds. After that the shear scales as the curvature and becomes

dominant around N e-folds after the end of inflation. For plausible bounds on the reheat

temperature the minimum number of e-folds during inflation, required for consistency with

the isotropy of the supernova Ia data, lays in the interval (21, 48). Thus the results ob-

tained for our restricted class of spacetimes indicates that inflation with anisotropic hair

is cosmologically viable.
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1 Introduction

It is plausible that inflation occurred around the energy scale of the grand unification.

Since we do not have direct experimental access to such energy scales we need to be

open-minded regarding the physics possibly occurring there. Indeed, when theoretical

models of inflation are compared to observations they might provide the clue to understand

fundamental physics at non-accessible energies. In this paper we are concerned with a

specific model that violates isotropy; i.e. three-dimensional rotational invariance. Although

rotational invariance is a well established feature of low-energy physics, several puzzling

features of the large scale CMB anisotropies hints that this symmetry might have been

broken during inflation [1–6]. At the same time recent progress in theoretical models has

clarified that inflation with anisotropic hair is a theoretical possibility [7–16]. It has become

clear, however, that specific realizations are often plagued by instabilities, either ghosts or

unstable growth of the linearized perturbations [17–20].

In a series of recent papers M. Watanabe, S. Kanno and J. Soda studied the cosmology

of a model with anisotropic hair which, apparently, is free of instabilities [21–25] (for

related works by other authors also see [26–30]). Their model is inspired from supergravity

which includes a massless vector field coupled to the scalar field(s). The vector part of

the supergravity action has so far been neglected in cosmology, but for an approprately

chosen coupling, the authors demonstrated interesting cosmological implications when the

backreaction to geometry is properly accounted for. In particular, it is shown that the

anisotropy in the expansion rate is stable and proportional to the slow roll parameter [21].

Even in the case when the anisotropy is very small, say on the micro level, the statistical
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anisotropy imprinted in primordial fluctuations can be significant [24]. Thus, it has become

clear that, in high precision cosmology, one cannot always neglect the back-reaction of

vector-fields to geometry.

One of the essential features of the conventional inflationary scenarios, however, is that

they explain the observed flatness and isotropy of the universe today without requiring

special initial conditions. For spatially homogeneous models of non-positive curvature

containing comoving fluids obeying the strong energy condition, this is a consequence of the

cosmic no-hair theorem [31–33] which guarantees that the curvature and shear of the spatial

geometry decay rapidly during inflation. Given that inflation is stable for a sufficiently large

time, the universe will, in agreement with observations, remain almost flat and isotropic

until today.1 The above mentioned papers, however, clearly demonstrate that the theorem

may be violated if a massless vector field is appropriately coupled to the scalar field (and

necessarily violating the assumptions given in the theorem). The phenomenology of the

model has so far only been studied in the context of the spatially flat Bianchi type I model.

The implications of curvature are therefore, until now, unexplored. A crucial question is

whether the model, while violating the cosmic no-hair theorem, is still consistent with the

observed isotropy and flatness of the universe today. It is therefore important to understand

the behavior of the model with more general initial conditions. In this paper we shall

introduce curvature to the model by considering axisymmetric spacetimes of Bianchi type

II,III and the Kantowski-Sachs metric. To be specific we shall consider the well motivated

case where both the potential of the scalar field and the coupling function between the

vector and scalar fields are exponentials (this specific model is analyzed without spatial

curvature in [23]).

The organization of the paper is as follows. In section 2 we give a brief introduction to

the model, while in section 3 we motivate our class of considered spacetimes. In section 4

we derive the field equations. Section 5 is devoted to dynamical system analyses. First,

in 5.1, we characterize the phase-space by identifying and classifying all fix-points. Then,

in 5.2, we study the phase flow with arbitrary initial conditions. As we shall see the

model is predictive in the sense that it provides unambiguous initial conditions for the

post-inflationary era. Finally, in section 6, we show that these initial conditions provide a

viable cosmological scenario.

2 The model

The starting point of the model is the following action for the metric gµν , scalar field φ

and vector field Aµ:

S =

∫

d4x
√−g

[

M2
p

2
R − 1

2
(∇φ)2 − V (φ) − 1

4
f2(φ)FµνFµν

]

, (2.1)

where (∇φ)2 = gµν∇µφ∇νφ is the kinetic term of the scalar field, and Fµν = ∇µAν −∇νAµ

is the field strength of the vector field. In agreement with conventional notation g is the

1As a rule of thumb, 60 e-folds is sufficient.
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determinant of the metric, R is the Ricci scalar and Mp is the reduced Planck mass.

We shall use metric signature (−1, 1, 1, 1). Motivated by dimensional reduction of higher

dimensional theories we take the potential of the scalar field and the coupling functions to

be exponentials:

V (φ) = V0e
λ φ

Mp , (2.2)

f(φ) = f0e
Q φ

Mp , (2.3)

where λ and Q are constant parameters that characterize the model. We shall assume

slow-roll inflation which implies λ ≪ 1. We shall treat the coupling constant Q as a

free parameter, and study the implications on inflation for different values. We consider

a positive potential which implies V0 > 0. There are no restrictions on the constant f0.

Variation with respect to gµν , φ and Aµ, respectively, gives the equations of motion:

M2
p Eµ

ν = T µ(φ)
ν + T µ(A)

ν , (2.4)

∇µT µ(φ)
ν = −Q

2LA

Mp
∇νφ, (2.5)

∇µT µ(A)
ν = +Q

2LA

Mp
∇νφ, (2.6)

where Eµ
ν is the Einstein tensor, and LA = −1

4f2(φ)FµνFµν is the Lagrangian for the vector

field. Notice that the total energy-momentum tensor is conserved ∇µ(T
µ(φ)
ν + T

µ(A)
ν ) = 0.

It is manifest from the equations of motions that the coupling leads to exchange of energy

and momentum between the scalar field and the vector field. The rate is determined by

the coupling constant Q. It is the vector field that sources the shear degree of freedom of

the expansion rate in this model.2 Without the coupling to the scalar field, however, the

vector field would decay rapidly leading to isotropization.3

Finally we write down the components of the energy-momentum tensors for the scalar

field and the vector field:

T µ(φ)
ν = −δµ

ν

(

1

2
(∇φ)2 + V (φ)

)

+ ∇µφ∇νφ (2.7)

T µ(A)
ν = −f2(φ)Fµ

αFα
ν − 1

4
f2(φ)δµ

ν FαβFαβ, (2.8)

where δµ
ν =gµαgαν .

3 On axisymmetric geometries

The usual approach for anisotropic models where the shear is sourced by a homogeneous

vector field, is to assume axisymmetric geometries, often called local rotational symmetric

2Since we do not consider any shear in the matter source, the term shear will unambiguously refer to

the geometrical freedom in the expansion rate.
3As an interesting digression we mention that in a model where inflation is driven by non-Abelian gauge

vector fields (without any scalar field), the anisotropic hair vanish exponentially fast although the field is

sufficiently stable to drive inflation, see [34] and references therein.
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(LRS) spacetimes. The vector field is assumed to be aligned parallel with the axis of sym-

metry, ie. orthogonal to the plane of rotational symmetry. Although this is a widely used

assumption in the literature [10, 21–24, 35], it seems like a proper discussion is lacking.4

Beside being a simplifying assumption we think that the approach is appealing since, on

the background level, one has the same symmetry in the spacetime geometry as in the

(total) matter field. One can also loosely argue that if the symmetry was broken initially,

spacetime would quickly become axisymmetric again, since there is no way to source a

preferred direction in the plane orthogonal to the vector field.5 The purpose of this section

is to show rigorously that this is actually what happens in the Bianchi type I spacetime.

We find that the universe isotropizes in the plane orthogonal to the vector field and that

in the case of inflation this is a very rapid process.

We consider the most general Bianchi type I geometry:

ds2 = −dt2 + a2
xdx2 + a2

ydy2 + a2
zdz2, (3.1)

where ax(t), ay(t) and az(t) are three independent scale factors. It is convenient to intro-

duce three functions α(t), σ1(t) and σ2(t) defined by

ax = eαe−σ1−σ2 , ay = eαeσ1 , az = eαeσ2 . (3.2)

In the special case σ1(t) = σ2(t) we recover the axisymmetric geometry usually assumed.

The three Hubble factors Hi ≡ ȧi

ai
can then be written:

Hx = α̇ − σ̇1 − σ̇2, Hy = α̇ + σ̇1, Hz = α̇ + σ̇2, (3.3)

where a dot denotes differentiation with respect to the cosmic time t. It is also useful to

introduce a mean Hubble rate

H ≡ 1

3
(Hx + Hy + Hz) = α̇. (3.4)

As in the Friedman-Lemâıtre-Robertson-Walker (FLRW) metric, acceleration can be quan-

tified in terms of the deceleration parameter q defined by:

q = −1 − Ḣ

H2
. (3.5)

Acceleration is then defined as q < 0. Note that q < 0 is equivalent to d2

dt2
eα > 0. The

function eα can be interpreted as an isotropic scale factor. More precisely it is the geometric

mean of the scale factors. Thus our definition of acceleration is equivalent to acceleration

4Ref. [24] comments that the shear variable (in the considered two dimensional hypersurface) is exponen-

tially decaying in an expanding universe. But the physical interesting quantity is the dimensionless shear

degree of freedom which, roughly speaking, measures the fraction between the anisotropic and isotropic

parts of the expansion rate. As we shall see, this one is not necessarily exponentially decaying in an

expanding universe.
5Note that in quadratic theories the curvature, in some sense, may source itself creating the possibility

for non-axisymmetric Bianchi type I solutions [9].
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of the geometric mean of the scale factors. These definitions are standard in homogenous

cosmologies, and generalize the definitions of the FLRW model in a natural way.

To proceed we impose the metric (3.1) on the gravitational equation (2.4). We assume

a single electric-type field. Since there are no spatial symmetries, apart from homogeneity

of course, in the considered spacetime, we can without loss of generality align the field

in the x-direction: F = 1
2Fµν(t)dxµ∧dxν = F10(t)dx∧dt. In the gauge A0 = 0 this field

configuration corresponds to the vector potential A = Aµdxµ = Ax(t)dx (where Ax are

related to F10 by F10 = −Ȧx). By taking linear combinations of the components of (2.4)

one can eliminate the matter sources leading to the pure geometrical equation:

(σ̈2 − σ̈1) = −3α̇(σ̇2 − σ̇1). (3.6)

We now introduce a shear degree of freedom:

X⊥ ≡ Hz − Hy

H
=

σ̇2 − σ̇1

α̇
. (3.7)

The quantity |X⊥| is a measure of the anisotropy in the plane orthogonal to the vector

field (as indicated by the subscript). For |X⊥| = 0 the hypersurface is isotropic and we

have the axisymmetric metric usually assumed. Equation (3.6) then implies:

d|X⊥|
dα

= −|X⊥|(2 − q). (3.8)

In this equation we have changed to the number of e-folds, α, as time parameter by the

identity dα
dt = H. From the gravitational equations it is easy to verify that q < 2 since we

consider a positive potential V (φ) > 0. This implies d|X⊥|
dα < 0. Thus we have shown that

|X⊥| decays monotonically, although, in general, it will not necessarily decay rapidly. In

the case of inflation, however, we have by definition q < 0. From (3.8) it then follows that
d|X⊥|

dα < −2|X⊥|. Thus inflation guarantees that |X⊥|(α) decays faster than the function

e−2α. To summarize we have showed that the Bianchi type I spacetime isotropizes in the

plane orthogonal to the vector field, and that in the case of inflation this is a very rapid

(exponential) process.

Let us finally use this result to prove that there will be no inflationary fix points with

anisotropic expansion in the considered hypersurface. A dynamical system analysis for the

spacetime (3.1) would require two shear variables, say X1 = σ̇1

α̇ and X2 = σ̇2

α̇ . Note that

from the definition of X⊥ we have X⊥ = X2 − X1. It follows that for a fix-point (dX1

dα =
dX2

dα = 0), we must have dX⊥

dα = 0. But, as shown above, this is not possible in our model.

Thus there will be no additional fix-points if introducing a new shear degree of freedom.

Although this analysis has been restricted to the Bianchi type I metric, we believe it

sheds some light on the more general class of homogenous geometries, and we will use this

as a motivation for the class of spacetimes to be introduced in the next section.

4 Field equation for a class of homogenous and axisymmetric spacetimes

We shall now impose a class of homogenous spacetimes to the field equations. Motivated

by the discussion above we consider a class of axisymmetric versions of Bianchi types I,
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Spacetime 3R w1 w2 w3

BI 0 dx dy dz

BII −2k2e−2α−8σ dx+k(ydz−zdy) dy dz

BIII & KS 2ke−2α−2σ dx (1−ky2)−1/2dy ydz

Table 1. Geometric variables in the various spacetimes. wi are the one-forms in the line ele-

ment (4.1). 3R is the spatial Ricci scalar. k is a constant. For BIII k < 0, while k > 0 for KS.

II, III and the Kantowski-Sachs metric. We shall refer to these as BI, BII, BIII and KS,

respectively. Type BI is spatially flat while BII, BIII and KS have anisotropic curvature

in addition to the shear. For these spacetimes there is an intrinsic rotational symmetry in

the spatial curvature which is aligned with the rotational symmetry of the expansion rate.

Our considered class of spacetimes can be written on the form:

ds2 = −dt2 + e2α(t)
(

e−4σ(t)w1⊗w1 + e2σ(t)w2⊗w2 + e2σ(t)w3⊗w3
)

, (4.1)

where wi are three time-independent and mutually orthogonal one-forms which are related

to the coordinate basis in table 1. These spacetimes have rotational symmetry in the plane

spanned by w2 and w3. The rotational symmetry in the expansion rate is manifest from the

line-element on this form. The rotational symmetry of the anisotropic curvature, on the

other hand, is manifest first after an appropriate coordinate transformation.6 To obtain

the same symmetry in the (total) matter as in the spacetime geometry, we shall align the

vector field parallel to w1.

Since the one-forms are time-independent one can read the scale factors directly from

the line-element (4.1):

a‖ = eα−2σ , a⊥ = eα+σ , (4.2)

where a‖ and a⊥ are the scale factors in the direction parallel and perpendicular to the

vector field, respectively. The corresponding Hubble factors are:

H‖ = α̇ − 2σ̇, H⊥ = α̇ + σ̇. (4.3)

The mean Hubble rate becomes similar as in the previous section, H = α̇.

We shall now introduce two spacetime dependent coefficients s1 and s2 with values

specified in table 2. The former is defined by ˙3R = −2(α̇ + s1σ̇)3R, where 3R is the

three-dimensional Ricci scalar of constant time hypersurfaces. The functions 3R for the

various spacetimes are specified in table 1. The latter (s2) determines the strength of

a coupling between the curvature and the energy density of the vector field.7 We can

then treat the entire class of spacetimes in a unified way by expressing the equations in

terms of s1,s2 and 3R.

Next, let us consider the matter sources. The most general field strength compatible

with the class of spacetimes is on the form F = v̇ w0∧w1 + (b + 2s2kv) w2∧w3, where

6As an example, in the Bianchi type II one can use y = r cos(φ) and z = r sin(φ).
7As we shall see, it turns out that such a coupling exists in BII, but not in BIII or KS.
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v = v(t) is the dynamical degree of freedom and b is a constant. This field is homogeneous,

axisymmetric and satisfy the identity dF = d2A = 0. Note that the field includes both

an electric-type and a magnetic-type component which are parallel and pointing in the

w1 direction. Previous studies (which are restricted to the BI metric) have considered

the case corresponding to b = 0, ie. neglecting the possibility of a magnetic component.8

Since our intention is to generalize the geometry, and not the matter fields, we will put

b = 0. In that case there is no magnetic-type component in the BI, BIII and KS spacetimes

(since s2 = 0). In the BII spacetime, however, where s2 = 1, there is still a magnetic-type

component. This is the minimal magnetic component required to satisfy the source-free

Maxwell equations (dF = 0). Our considered field strength is therefore:

F = v̇(t) w0∧w1 + 2s2kv(t) w2∧w3. (4.4)

The corresponding vector potential in the gauge A0 = 0 is A ≡ Aµwµ = vw1.

We shall continue to specify all tensors, and perform all calculations, relative to the one-

forms (dt, w1, w2, w3). In this basis the energy-momentum tensor is diagonal and we write:

T µ
ν = diag(−ρ, p‖, p⊥, p⊥). (4.5)

Since T µ
ν is a diagonal mixed tensor of rank (1, 1), the components are invariant under a

normalization of the one-forms (w1, w2, w3), ie. under a change to an orthonormal basis.

Thus the components of T µ
ν are physical quantities representing the energy density and

pressure as measured in the fluid rest frame. We split the energy and pressure in the

contributions from the scalar field (φ) and vector field (A):

ρ = ρφ + ρA,

p‖ = pφ + (pA)‖,

p⊥ = pφ + (pA)⊥.

(4.6)

The energy density and pressure of the scalar field takes the standard form in the entire

family of spacetimes:

ρφ =
1

2
φ̇2 + V (φ), pφ =

1

2
φ̇2 − V (φ). (4.7)

The energy density (and pressure) of the vector field, on the other hand, depends on

the spacetime:

ρA = f2e−2α+4σ

(

1

2
v̇2 − s2(

3R)v2

)

. (4.8)

As s2 6= 0 only for BII it turns out that the spatial curvature couples to the energy density

only in this case. Clearly, this is due to the magnetic-type field unique for BII. Note that,

since 3R < 0 for BII, the coupling gives a positive contribution to the energy density. The

equation of state, however, is similar for all spacetimes:

(pA)‖ = −ρA, (pA)⊥ = +ρA. (4.9)

8Reference [22] treated magnetic fields perturbatively.
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Spacetime s1 s2

BI 0 0

BII 4 1

BIII & KS 1 0

Table 2. Spacetime dependent coefficients.

The relation (pA)‖ = −(pA)⊥ also hold in the case of a massive vector field [28] (at least

in the Bianchi type I metric).

The field equations (2.4)–(2.6) for the considered family of spacetimes can be written:

H2 − σ̇2 =
ρ

3M2
p

−
3R

6
, (4.10)

Ḣ + 3H2 =
1

2M2
p

(ρ − 1

3
p‖ −

2

3
p⊥) −

3R

3
, (4.11)

σ̈ + 3Hσ̇ =
p⊥ − p‖

3M2
p

− s1

3R

6
, (4.12)

˙3R = −2(α̇ + s1σ̇)3R, (4.13)

ρ̇φ + 3H(ρφ + pφ) = QLA
2φ̇

Mp
, (4.14)

ρ̇A + 4(H + σ̇)ρA = −QLA
2φ̇

Mp
, (4.15)

where LA = 1
2f2(φ)e−2α+4σ

(

v̇2 + 2s2
2v

2(3R)
)

. From (4.12) it is manifest that the shear is

sourced by anisotropic pressure and anisotropic curvature.

We will now introduce dimensionless variables and rewrite the field equations as an

autonomous set of first order differential equations. First we introduce the shear variable

X ≡ H⊥ − H

H
=

σ̇

α̇
, (4.16)

and a variable for the curvature:

ΩK = −
3R

6H2
. (4.17)

Note that ΩK > 0 in all spacetimes apart from KS where it is negative (and BI, of course,

where it is zero). Furthermore, we need the variables:

Y =
φ̇

MpH
, Z =

fe−α+2σ v̇

MpH
, V = s2

vfe−α+2σ

Mp
. (4.18)

The variables X, Y and Z are similar to those used in [23]. The additional variables ΩK

and V are required to study the more general family of spacetimes considered here. We

shall refer to the space spanned by the set of independent variables (X,Y,Z,ΩK ,V) as

– 8 –
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state space. The space spanned by the constant parameters λ and Q, we shall refer to as

parameter space. Note that V 6=0 only in BII due to the coefficient s2 in the definition of

V. It is only in BII, where 3R couples to the energy density of the vector field, that the

variable V is needed.

We can make use of the Hamiltonian constraint equation (4.10) to eliminate V (φ) from

the equations of motions. Using the identity dα
dt = H we change to the scale, α, as time

parameter, and the autonomous equations becomes:

dX

dα
=

1

3
Z2(X + 1) + X

[

3(X2 − 1) +
1

2
Y 2

]

+ ΩK

(

s1 + X + 4V2(1 + X)
)

, (4.19)

dY

dα
= (Y + λ)

(

3(X2 − 1) +
1

2
Y 2

)

+
1

3
Y Z2 +

(

Q +
λ

2

)

Z2 (4.20)

+ ΩK

(

Y + 3λ + 2V2 (3λ − 6Q + 2Y )
)

,

dZ

dα
= Z

[

3(X2 − 1) +
1

2
Y 2 − QY + 1 − 2X +

1

3
Z2

]

+ ΩK

[

Z + 4ZV2 − 12V
]

, (4.21)

dΩK

dα
= 2ΩK

[

−1 − s1X + 3X2 +
1

2
Y 2 +

1

3
Z2 + ΩK + 4ΩKV2

]

, (4.22)

dV
dα

= (QY + 2X − 1)V + s2Z, (4.23)

The dynamical variables are subject to the constraint:

X2 +
1

6
Y 2 +

1

6
Z2 + ΩK

(

1 + 2V2
)

< 1, (4.24)

which follows from our considered case of a positive potential (V (φ) > 0). For BI, BII

and BIII this implies absolute upper bounds on each of the variables since ΩK ≥ 0. More

specifically X must be in the interval (−1, 1), Y and Z in (−
√

6,
√

6), while ΩK

(

1 + 2V2
)

in (0, 1). In the KS spacetime, however, each of the variables might be arbitrarily large

individually since ΩK < 0. Due to the negative curvature, the KS spacetime might collapse.

At the turning point, from expansion to contraction, we have H=0, and all the variables

(apart from V) diverges (→ ∞) as seen from the definitions (4.16)–(4.18). For initial

conditions leading to collapse, α is then usually not a suitable time-parameter. For our

purposes, however, it is fine since we are just interested in whether, and eventually when,

the universe collapse for a given set of initial conditions.

It is only in BII that both 3R 6= 0 and s2 6= 0. For the other spacetimes the equations

simplifies somewhat:

ΩK → 0 for BI,

V → 0 for BI, BIII and KS.

Although we shall study the dynamics in terms of the independent variables (X, Y ,

Z, ΩK , V), it is useful to introduce some auxiliary variables in order to make a closer

connection to the physics. The (energy) density parameters for the vector field and the

scalar field can be expressed in terms of the independent variables in the following way:

ΩA ≡ ρA

3M2
p H2

=
1

6
Z2 + 2ΩKV2 (4.25)
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and

Ωφ ≡ ρφ

3M2
p H2

= 1 − X2 − 1

6
Z2 − ΩK(1 + 2V2). (4.26)

Furthermore, we can split the latter one in the contributions from the kinetic and the

potential energy: Ωφ = Ωkin + ΩV , where Ωkin = 1
6Y 2. The Hamiltonian constraint equa-

tion (4.10) can then be written on the generic form:

1 = X2 + Ωkin + ΩV + ΩA + ΩK . (4.27)

It is also useful to express the deceleration parameter defined in (3.5) in terms of the

independent variables:

q = −1 + 3X2 +
1

2
Y 2 +

1

3
Z2 + ΩK

(

1 + 4V2
)

. (4.28)

From the definition of ΩK it follows that

dΩK

dα
= −2ΩK(s1X − q). (4.29)

We notice that, due to the shear , there is no guaranty for monotonically decaying curvature

during inflation (q< 0). Nevertheless, as we shall see in the next section, the model turns

out to be predictive since the potential energy of the scalar field ΩV is monotonically

increasing in a large region of state space. This leads the universe close to an anisotropic

fix point with linear stability and vanishing curvature.

5 Phase space analysis

Equipped with the field equations we shall now investigate the phase-space structure by

dynamical system analysis and simulations. First we shall identify the fix points of the

system and classify their linear stabilities. Although this is a powerful way to characterize

phase space qualitatively, it gives unambiguous predictions only in the linear regime close

to the fix points. With arbitrary initial conditions it is therefore usually necessary to run

simulations. As we shall see, however, in our case the potential energy of the scalar field is

monotonically increasing in a large region of state space for BI, BII and BIII, leading the

system close to a stable and unique anisotropic fix point of type BI. The KS spacetime is

a bit more complicated. Firstly, in this case ΩV is not a monotone function. Secondly, the

KS spacetime might collapse. We therefore investigate the phase flow in the KS universe

by running simulations. Our results indicates that if the universe does not collapse, its fate

is similar to that of the Bianchi type spacetimes. The model is therefore predictive and,

as we shall demonstrate by simulations, the universe gets close to the stable anisotropic

fix-point typically within a few e-folds.

5.1 Fix-points and linear stability

The fix points of the system are found by setting the left-hand side of the dynamical

equations (4.19)–(4.23) equal to zero and solving the algebraic equation. The stability is
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Name X Y Z2 ΩK V
(a) ∼ λQ−2

3Q2 ∼ −2
Q ∼ 6λQ−12

2Q2 0 ∼ s2Z
3

(b) 0 −λ 0 0 0

(c) −1 0 18λ
2Q−λ −3(2Q+λ)

2Q−λ 0

(d) − 2−λ2

2+2λ2 − 3λ
1+λ2 0 − 12−3λ4

4(1+λ2)2
0

(e) free ±
√

6 − 6X2 0 0 0

(f) 1
2 0 0 3

4 0

Table 3. Coordinates of fix-points. For fix-point (a) we have written down an approximation. The

exact position of (a) can be found in the text.

Name Spacetime Existence Stability q Comment

(a) BI Q ≫ 1 attractor ∼ (−1 + λ
Q)

(b) FLRW - - −1 + λ2

2

(c) KS 2Q > λ saddle −1

(d) KS - saddle −1 + 3λ2

2+2λ2

(e) BI - unstable 2 boundary

(f) BIII - saddle 1/2 boundary

Table 4. Properties of fix-points. The stability of (b) depends on λ and Q (it is a saddle when (a)

exists, and stable if not). See text for more details.

determined by linearizing the field equations around the fix-points, dδXi

dα = MδXi, and

evaluating the eigenvalues of the matrix M. If the real part of all eigenvalues are negative,

the fix-point is stable and we call it an attractor. If not all values are negative, the fix-point

is unstable. Unstable fix-points are called saddles if there are both positive and negative

eigenvalues, and repellers if all are positive. In general the phase flow goes from repellers,

possibly via saddles, towards attractors. Without loss of generality we shall assume λ > 0.9

Under the assumption λ ≪ 1 we find 6 fix-points satisfying the constraint (4.24) or laying

on its boundary. The fix-points are named (a)-(f) and the positions summarized in table 3.

We shall first give a brief overview before studying each of them more carefully.

In table 4 we give an overview of certain properties of the fix-points. Notice that the

deceleration parameter q ∼ −1 for (a)-(d) while q > 0 for (e) and (f). Thus (a)-(d) are

inflationary fix-points, while (e) and (f) are decelerating. The fix-points (e) and (f) are on

the boundary, ie. V (φ) = 0, while (a)-(d) satisfy the constraint (4.24). Notice that there are

no inflationary fix-points of type BII or BIII. For KS there are two inflationary fix-points,

(c) and (d), but they are both saddles. A fix-point of special significance is the anisotropic

attractor (a). Notice that it exists only when Q ≫ 1. Thus, interestingly, the shear X is

small if it exists. The only fine tuning in the model is therefore the usual λ ≪ 1 required

9The situation λ → −λ is equivalent to φ → −φ.
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for slow-roll inflation. No additional fine-tuning in any of the parameters is needed to avoid

a dominating and observationally unacceptable shear. The model therefore represents a

serious alternative to more conventional models. Fix-point (a) where identified in [23] and

the stability determined within the Bianchi type I framework. Note, however, that (a) is

on the border to the entire family of spacetimes as all becomes type BI in the limit of zero

curvature. It is therefore important to check the stability with respect to a broader class of

spacetimes. As we shall see, (a) turns out to be the unique attractor for the entire family

of spacetimes. Loosely speaking, we can therefore say that the curved spacetimes becomes

more and more Bianchi type I as they converges towards (a). Technically, spacetimes of

type BII, BIII or KS never becomes BI, of course, but with decaying curvature they can

come arbitrarily close. See figure 1 for a simulation close to the attractor (a). Note how all

spacetimes converges towards a common point which represents fix-point (a). In figure 2 we

show a simulation of type KS where the phase flow goes via the saddles (c) and (d) before

converging towards (a). Fix-point (b) is isotropic and of type FLRW. In [23] it was shown

that (b) is a saddle in the parameter region where (a) exists, and a stable attractor where

(a) does not exist. As we shall see this holds also in the more general class of spacetimes

considered here (apart from BII if Q ≪ −1).

We shall now examine each of the fix-points more carefully.

Fixpoint (a). This is the anisotropically inflationary fix-point of Bianchi type I first

identified in [23]. In table 3 the coordinates of (a) are given only to lowest order in the

small quantities λ
Q and Q−2. The exact position is:

X =
2(λ2 + 2Qλ − 4)

λ2 + 8Qλ + 12Q2 + 8
, (5.1)

Y = − 12(λ + 2Q)

λ2 + 8Qλ + 12Q2 + 8
, (5.2)

Z2 =
18(λ2 + 2Qλ − 4)(−λ2 + 4Qλ + 12Q2 + 8)

(λ2 + 8Qλ + 12Q2 + 8)2
, (5.3)

ΩK = 0, (5.4)

V =
s2Z

1 − 2X − QY
. (5.5)

Since the energy of the vector field is positive, ie. ΩA > 0, we get the condition Z2 > 0. The

fix-point (a) therefore only exist in the parameter region where 2Qλ+λ2 > 4. Since λ ≪ 1

this implies Q ≫ 1. As seen most directly from the approximations in table 3, it follows

that (a) is near the origin of the state space (X,Y ,Z,ΩK ,V). Consequently the fix-point is

strongly dominated by the potential energy of the scalar field. For clarity we expand the

eigenvalues in λ
Q and Q−2, and truncate at zero order. For BI the three eigenvalues are:

(

−3, −3

2
− i

√

3(2λQ + λ2 − 4) − 9

4
, −3

2
+ i

√

3(2λQ + λ2 − 4) − 9

4

)

. (5.6)

For BII one has the additional eigenvalues −3 and −2, while for BIII and KS one has the

additional eigenvalue −2. The real part of all eigenvalues are negative for all spacetimes.
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Thus we have showed that the flat and anisotropic fix point identified in [23], is an attractor

also for the more general class of spacetimes considered here. Moreover, as we will verify

below, it turns out to be the unique attractor (when it exists) for our considered class. Fi-

nally we mention that, as shown in [23], there is an exact power-law solution corresponding

to this fix-point, where the line element takes the form:

ds2 = −dt2 + t2k1−4k2dx2 + t2k1+2k2(dy2 + dz2), (5.7)

where, to lowest order, k1 ∼ Q
λ and k2 ∼ λQ−2

3λQ .

Fixpoint (b). This is a flat inflationary fix-point of type FLRW containing a scalar field

dominated by its potential energy. The three eigenvalues for BI are:

(

1

2
(2λQ + λ2 − 4), −3 +

1

2
λ2, −3 +

1

2
λ2

)

.

For BII one has the additional eigenvalues −1−λQ and −2+λ2, while for BIII and KS one

has the additional eigenvalue −2 + λ2. This means that for the entire class of spacetimes,

(b) is a saddle when (a) exists. If (a) does not exist, ie. 2λQ + λ2 − 4 < 0, then (b) is an

attractor for BI, BIII and KS. For BII it is also stable in a large parameter region if (a)

does not exist, but not if Q ≪ −1, in which case it is unstable.

Fixpoint (c). This is an inflationary fix-point of type KS containing an electric-type

field and a cosmological constant (since the kinetic part of φ is vanishing). Essentially it is

a generalization of the solutions with a pure cosmological constant found in [36] and [37].

From the condition Z2 > 0 it follows that the fix-point only exist in the parameter region

2Q > λ. The four eigenvalues are:

(

−6, 3, −3

2
+

1

2

√

1 − 8λQ
2Q + λ

2Q − λ
, −3

2
− 1

2

√

1 − 8λQ
2Q + λ

2Q − λ

)

.

Notice that the real part of the two latter eigenvalues are always negative when 2Q > λ,

ie. when it exists. We note that (c) is a saddle.

Fixpoint (d). This is an inflationary fix-point of type KS containing only our considered

scalar field. First note that there are no condition on Q for the existence of this fix-point.

To lowest order in λ the eigenvalues of (d) are:

(

− 3 + O(λ2), −6 + O(λ2), 3 + O(λ2), 3λQ + O(λ2)
)

.

Since λ ≪ 1 the first and second eigenvalues are negative, while the third are positive. The

sign of the last eigenvalue depends on Q. In any case (d) is a saddle. Although our analysis

focus on slow-roll inflation λ ≪ 1, we mention that there exist a region in parameter space

(where λ is larger than unity) where all the eigenvalues are negative and the fix point is

a stable attractor. In this region, however, the deceleration parameter is positive and the

fix-point is not inflationary.
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Fixpoint (e). This is a decelerating fix-point of type BI containing only a pure kinetic

scalar field (thus the fluid is stiff ρ = p). The solution is part of a broader solution commonly

referred to as Jacobs disc [38]. See also [39] for a discussion of such solutions. Note that

(e) is a curve of fix-points, satisfying 6X2 + Y 2 = 6. Since V (φ) = 0, on the curve, it lays

on the boundary of our considered state space. We have two sets of eigenvalues depending

on the sign of Y = ±
√

6 − 6X2. The eigenvalues for BI:

(

0, 1 − 2X ∓ Q
√

6 − 6X2, 6 ± λ
√

6 − 6X2
)

The sign of the third eigenvalue is always positive since λ ≪ 1, while the second eigenvalue

depends on Q and the sign of Y . For BII one has the additional eigenvalues 4 − 8X and

−1+2X ±Q
√

6 − 6X2, while for BIII and KS one has the additional eigenvalue 4− 2s1X.

In any case (e) is unstable.

Fixpoint (f). This is a decelerating fix-point of type BIII containing no fluids. Essen-

tially it is a Bianchi type III generalization of the Milne universe (but with a trivial flat

direction). Like (e), it lays on the boundary V (φ) = 0. The four eigenvalues are:

(3, −3/2, −3/2, −3/2) .

Thus (f) is a saddle.

5.2 Phase flow with arbitrary initial conditions

The stability analysis above determines the phase flow close to the fix-points. With ar-

bitrary initial conditions, however, we need something more to determine the fate of the

dynamical system. For the spacetimes of type BI, BII and BIII we shall now see that far

away from (a) the phase flow can be characterized by the potential energy of scalar field.

In section 4 we defined an auxiliary variable ΩV , representing the potential energy of

the scalar field. The equation of motion is:

dΩV

dα
= ΩV [λY + 2q + 2] = ΩV F, (5.8)

where F = 6X2+(Y + λ
2 )2− λ2

4 + 2
3Z2+2ΩK(1+4V2). Note that if ΩK ≥0 and |Xi| ≫ λ for

at least one of the variables, then F > 0, and consequently, ΩV is monotonically increasing.

Note that, as implied by (4.27), ΩV ∼1 when all the independent variables are small (≪ 1).

Regardless of initial conditions, the system will therefore approach some solution where

ΩV ∼ 1 and all the independent variables are small (≪ 1). The monotone function ΩV

will therefore lead the system close to the origin of the state space (X,Y ,Z,ΩK ,V). In this

region we have the stable anisotropic fix-point (a). The system will therefore eventually

end up at the anisotropic fix-point (a) for arbitrary, but non-special10, initial conditions.

In principle, it could take arbitrary long time for the system to get close to (a), since it

might spend long time at the some of the saddles (for example at (b) which is also located

10One can construct special initial-conditions not leading to (a). With initially vanishing vector field for

instance, Z = 0, the universe will converge towards the isotropic fix-point (b) instead of (a).
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BII

BIII

KS
BI

0.0000
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0.0010

X

-0.002

-0.001
0.000

0.001
0.002W_K

0.00

0.02

0.04

0.06

Z

Figure 1. The phase flow of X , Z and ΩK with λ = 0.1 and Q = 50. The black, green, red and

blue curves, respectively, represents simulations with BI, BII, BIII and KS initial conditions close

to fixpoint (a). All trajectories converge towards a common point which is the type BI anisotropic

fix point (a).

close to the origin). Simulations, however, demonstrates that the typical time spent to get

close to (a), starting with arbitrary initial conditions, only represents a minor fraction of

the total number of e-folds during inflation. To demonstrate this, we define the distance

to the fix-point (a) by

D =
√

(X − Xa)2 + (Y − Ya)2 + (Z − Za)2 + (ΩK − (ΩK)a)2 + (V − Va)2, (5.9)

where Xa is the value of X at (a) and similar for the other coordinates. Note that the

distance between (a) and (b) is of order ∼ λ ∼ Q−1. We say that the system is close to (a)

when D < λ
Q . With this definition we ensure that the system is effectively unaffected by

(b) and attracted by (a). In table 5 we have summarized some simulations with λ = 0.1

and two different values for Q. For Q = 50 we note that it typically takes 4-14 e-folds for

the system to get close to fix-point (a). For Q = 1000 it typically takes 5-7 e-folds.

The above analysis does not apply for KS since ΩV is not a monotone function when

ΩK < 0. Instead we study the KS spacetime by numerical simulations. Some results for

randomly chosen initial conditions are summarized in table 6. As mentioned above, the KS

universe might collapse, in which case H → 0. Simulations shows that non-special initial

conditions, either lead to collapse or the system will converge towards the fix-point (a). For

initial conditions leading to collapse, the table shows how long time it takes before H = 0.

We note that H → 0 very quickly, typically within the first third of the first e-fold, if the
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HcL

HdL
HaL

HbL-1.0

-0.5

0.0

X

-0.2

0.0

0.2

Y

0.0

0.1

0.2

0.3

Z

Figure 2. The phase flow of X , Y and Z for KS initial conditions with λ = 0.1 and Q = 50.

Initial conditions and direction of flow is indicated by the arrow. The fixpoint (a), (b), (c) and (d)

are indicated by the colored points. Initial conditions are carefully chosen such that the solution

”rides” on both KS-saddles (d) and (c) before ending up in the BI anisotropic attractor (a).

universe collapses. For initial conditions not leading to collapse, simulations shows that

the system ends up at (a), and the table shows how long time it takes to get a distance

D < λ
Q from (a). The results are very similar as those for BI, BII and BIII if the universe

does not collapse. The system is close to (a) typically after 4-14 e-folds for Q = 50 and 5-7

e-folds for Q = 1000.

Supported by simulations we have showed that for initial conditions leading to in-

teresting cosmologies (no immediate recollapse), the universe gets close to (a) relatively

quickly.11 When the system is close to (a) we see from (4.22) that the curvature decays ex-

ponentially, ΩK ∼ e−2α. If inflation lasted for N e-folds, a rough estimate for the curvature

at the end of inflation is therefore (ΩK)end ∼ e−2N .

11We should mention that for several of the (randomly chosen) initial conditions in tables 5 and 6, the

universe is not accelerating, ie. q might be positive at the initial time α = 0. The time taken to get close

to (a) after the start of inflation, is therefore somewhat smaller than the times in the table for the cases

where q > 0 initially. In any case, since we typically assume inflation lasted for at least 60 e-folds, only a

minor fraction will be spend far away from (a).
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Initial conditions D < λ
Q at time (α)

Spacetime X Y Z ΩK V Q = 50 Q = 1000

BI 0.4 −0.6 0.5 - - 6.0 5.7

BI −0.4 −1.1 1.5 - - 13.4 6.0

BI −0.4 0.3 −0.7 - - 6.1 5.8

BI 0.1 0.7 −0.7 - - 7.4 5.8

BI 0.3 −1.4 −0.1 - - 9.5 5.8

BII −0.2 −0.3 0.5 0.1 −0.1 2.9 4.7

BII −0.3 −1.1 −1.2 0.2 −0.4 3.7 5.2

BII −0.1 0.1 −0.9 0.1 −0.1 3.3 4.8

BII −0.5 0.2 −1.1 0.1 −0.1 3.5 5.2

BII −0.6 0.8 −0.5 0.3 −0.2 3.8 5.0

BIII −0.5 −0.8 0.6 0.1 - 8.1 5.8

BIII 0.1 0.8 −0.4 0.2 - 7.4 5.7

BIII −0.1 −1.5 −1.3 0.2 - 12.7 6.5

BIII −0.6 −1.7 −0.3 0.1 - 14.1 6.6

BIII 0.3 −0.9 0.5 0.3 - 8.2 5.9

Table 5. Simulations for Bianchi type spacetimes with initial conditions generated by a random

number generator. D is the distance to fix-point (a) defined in (5.9). When D < λ
Q

the universe is

in the linear regime close to fix-point (a), and the distance to (a) is much smaller than the distance

to (b). Two runs with different values for Q, while λ = 0.1 in all runs.

6 Late time behavior

To check if the model gives rise to an acceptable cosmology we will now investigate the late-

time behavior. We showed above that at the end of inflation the universe will be extremely

close to the anisotropic fix-point (a), with a curvature of order (ΩK)end ∼ e−2N if inflation

lasted for N e-folds. At the end of inflation we assume a period of reheating where the

energy of the scalar and vector fields are dumped primarily into radiation. Reheating is a

poorly understood process, but we shall assume that it is sufficiently fast that we can take

the initial conditions for the shear (X) and the curvature (ΩK) to be similar as at the end

of inflation. In our analysis we shall, for simplicity, introduce a single perfect fluid with

equation of state p = ωρ. The radiation dominated era after inflation can then be studied

by setting ω = 1
3 , while the subsequent period dominated by non-relativistic fluids can be

studied by setting ω = 0. We shall neglect the cosmological constant, since it would not

change the estimates we seek significantly.

The conservation equation in the class of spacetimes yields

ρ̇ + 3H(1 + ω)ρ = 0. (6.1)

The associated density parameter is defined

ΩM =
ρ

3M2
p H2

. (6.2)
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Initial conditions D < λ
Q at time (α) H = 0 at time (α)

# X Y Z ΩK Q=50 Q=1000 Q=50 Q=1000

1 0.6 −1.5 2.2 −0.8 12.7 6.4 − −
2 0.8 1.5 −0.4 −0.7 12.4 5.8 − −
3 0.6 −1.4 0.3 −0.5 9.4 6.0 − −
4 −0.1 2.1 2.4 −0.9 − − 0.3 0.3

5 0.7 −0.5 2.0 −0.9 12.7 6.1 − −
6 2.2 4.0 3.9 −9.3 − − 0.03 0.03

7 1.6 −2.5 −0.2 −3.1 − − 0.13 0.13

8 1.5 −4.9 −3.8 −8.7 − − 0.03 0.04

9 −0.8 −1.8 2.6 −2.3 − − 0.17 0.17

10 −0.9 2.7 −4.9 −5.1 − − 0.04 0.04

11 0.6 −1.4 0.7 −23 3.8 5.5 − −
12 0.2 −0.6 −1.7 −22 4.1 5.6 − −
13 0.7 2.0 1.9 −28 5.2 5.9 − −
14 0.9 1.9 −0.1 −21 5.1 5.5 − −
15 −0.7 −2.2 −1.0 −24 4.5 6.0 − −

Table 6. Simulations for KS with various initial conditions. D is the distance to fix-point (a) defined

in (5.9). Two runs with different values for Q, while λ = 0.1 in all runs. Initial values for ΩK where

picked uniformly by a random number generator from the intervals (−1.0, −0.1), (−10.0, −2.0)

and (−30, −20), respectively, for simulations #1-5, #5-10 and #11-15. In simulations #6-10 the

potential energy of the scalar field is initially sub-dominant, while in #11-15 ΩV ∼ |ΩK |.

The Hamiltonian constraint equation can then be written:

1 = X2 + ΩM + ΩK , (6.3)

where X and ΩK is defined in the same way as above. Due to the constraint (6.3) the system

is effectively two dimensional, and we choose ΩM as the auxiliary variable. The autonomous

equations for the post-inflationary era with a single perfect fluid can then be written:

dX

dα
= −1

2
X
[

(1 + 3ω)ΩK + 3(1 − ω)(1 − X2)
]

+ s1ΩK , (6.4)

dΩK

dα
= ΩK

[

(1 − ΩK)(1 + 3ω) − 2s1X + 3(1 − ω)X2
]

. (6.5)

This system has four fix-points (P1)-(P4) summarized in table 7. The real parts of the

eigenvalues can be found in table 8. Note that there are no fix-points of type KS. Without

introducing a dark energy in the model, the KS spacetime will eventually collapse [40].

The Bianchi type I fix-point (P4) represents the two special points on the Kasner circle

which are LRS [41]. Also note that it is a special case of (e) in table 3. Setting ω = 0, the

attractors (P2) and (P3) represents the late time solutions for BII and BIII, respectively,

for a universe without dark energy. Fix-point (P2) corresponds to the Collins-Stewart
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Name Spacetime X ΩK ΩM Stability

(P1) FLRW 0 0 1 saddle

(P2) BII 1
8(1+3ω) 3

64 (1+2ω−3ω2) 15−3ω
16 attractor

(P3) BIII 1
2

3
4 0 attractor

(P4) BI ±1 0 0 unstable

Table 7. Post-inflationary fix-points. The unstable fix-point (P4) is either a saddle or a repeller

depending on the spacetime and the sign of X (see eigenvalues).

Name Spacetime Eigenvalues

(P1) FLRW
(

1 + 3ω, −3
2(1 − ω)

)

(P2) BII
(

−3
4(1 − ω), −3

4(1 − ω)
)

(P3) BIII
(

−3
2 , −3ω

)

(P4) BI (4 ∓ 2s1, 3(1 − ω))

Table 8. Real part of eigenvalues for post-inflationary fix-points.

Bianchi type II exact solution [42], while (P3) is similar as fix-point (f) in table 3. For

ω = 0, (P2) and (P3) are the global attractors for the most general perfect fluids of type

II and III, respectively, even including tilt [43, 44].

Note that the shear in the attractors (P2) and (P3), with X around unity, is quite

extreme. Supernova Ia data gives the bound −0.012 < Xtoday < 0.012 to one sigma

confidence level for a Bianchi type I spacetime with rotational symmetry [45]. The goal of

this section is to find the minimum number of e-folds during inflation, Nmin, required for

a shear today in agreement with supernova observations. For this estimate we shall use

|Xtoday| < 0.01. More stringent bounds can probably be found from the CMB which is

very sensitive to shear [46–49]. For simplicity we shall use the supernovae since the final

result is not very sensitive to the bound on Xtoday. Thus, observational bounds certainly

implies that the universe must have been very close to the flat FLRW saddle (P1) just

before dark energy became significant. To determine Nmin we must therefore investigate

the dynamics close to the fix-point (P1). Linearizing (6.4)–(6.5) around (P1) yields:

dX

dα
= −3

2
(1 − ω)X + s1ΩK , (6.6)

dΩK

dα
= (1 + 3ω)ΩK . (6.7)

These equations can be solved exactly:

X(α) = e−
3
2
(1−ω)α

[

± 2s1

5 + 3ω
e

1
2
(5+3ω)α−2N (1 − e−

1
2
(5+3ω)α) +

λQ − 2

3Q2

]

, (6.8)

ΩK(α) = ±e(1+3ω)α−2N , (6.9)
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Figure 3. Simulation of BIII after inflation with equation of state ω = 1/3 for the perfect fluid.

The initial conditions comes from an inflation model with λ = 0.1 Q = 50 and number of e-folds

N = 60.

where we have used the initial conditions X(0) = λQ−2
3Q2 and ΩK(0) = ±e−2N . Here N is

the number of e-folds during inflation. The initial condition for the shear corresponds to

the shear at the anisotropic fix-point (a), while for the curvature we have used the estimate

at the end of inflation derived above. To get some intuition for the solution we shall now

set ω = 1/3 and study the behavior at different times. In the regime 0 < α < 2
3N we

have the approximation X ∼ λQ−2
3Q2 e−α. Thus there is an era of isotropization starting

right after reheating, where the shear decays as ∼ e−α, lasting until α ∼ 2
3N . Also notice

that X ∼ ΩK around α = 2
3N . This is also true for KS since the sign of X will change

from positive to negative around the same time. In the period 2
3N < α < N we have the

approximation X ∼ ±1
3s1e

2α−2N . In this period we have ln |X| ∼ ln |ΩK | ∼ 2α − 2N .

We therefore say that the curvature ”tracks” the shear in this period. Around α = N

the parameters X and ΩK will approach unity and the universe is no longer close to the

matter dominated fix-point (P1). The solutions (6.8)–(6.9) are then no longer valid. In

the regime α > N the universe will in general converge towards the attractors (P2) and

(P3), respectively, for BII and BIII, while KS will eventually collapse. Simulations of the

autonomous equations (6.4)–(6.5) verifies these approximations. For an example with BIII

spacetime, see figure (3). Note how the shear decays until it catches up with the curvature

slightly before α = 2
3N . After that the shear is tracked by the curvature, approaching unity

around α ∼ N . This behavior is in close agreement with the above approximations. It is

easily seen from the solutions (6.8)–(6.9) that the same tracking behavior occurs also with

ω 6= 1/3. Thus the shear will be tracked by the curvature also in the matter dominated era.

Reheating is complete when practically all of the energy is in radiation at thermal

equilibrium. We shall denote the time and temperature at this stage by αreh and Treh,

the reheat time and temperature, respectively. Furthermore we shall denote the time at

radiation-matter equivalence by αeq, and today by α0. Setting the initial time αreh = 0 at

T = Treh we get α0 = ln Treh

T0
, where T0 = 2.73K is the temperature of the CMB today.
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Here we have used that the temperature of a photon gas scales as ∝ e−α. Matter-radiation

equivalence occurred around redshift 3300 corresponding to αeq ∼ α0 − 8. We can then

find the minimum number of e-folds during inflation, Nmin, required for a shear today

consistent with supernova data, ie. |X0| < 10−2. The initial condition for the curvature is

ΩK(αreh) = e−2N . Assuming that the universe is close to the saddle (P1) all the way up to

today, the curvature grows approximately as ΩK ∝ e2α in the radiation dominated era, and

as ΩK ∝ eα in the matter dominated era. The curvature today is then (ΩK)0 ∼ eαeq+α0−2N .

Since the shear is tracked by the curvature both in the radiation and matter dominated

eras, we have X0 ∼ (ΩK)0. Let |Xmax| denote the maximum shear today consistent with

observations. The condition |X0| ≤ |Xmax|, then leads to:

Nmin = ln
Treh

T0
− 1

2
ln |Xmax| − 4. (6.10)

As discussed above we shall use |Xmax| = 10−2, consistent with the supernova Ia data. A

lower bound on the reheat temperature Treh & 1MeV comes from the requirement that

reheating must have occurred before the start of nucleosynthesis. This corresponds to

Nmin = 21. There is also an upper limit Treh < 109GeV if supersymmetry exists [50],

corresponding to Nmin = 48.

To summarize, we have showed that plausible bounds on Treh implies Nmin in the

interval (21, 48).

7 Conclusion

In this paper we have studied an inflationary scenario with a stable anisotropic hair. Since

the model provides a counter-example to the cosmic no-hair theorem, it is important to

study the model with more general initial conditions. Ultimately, as suggested in [21, 23],

this might lead to a modified cosmic no-hair theorem. As a first step we took a dynami-

cal system approach and showed that the stable anistropic fix-point of type BI, identified

in [23], is the unique attractor for a wider class of spacetimes exhibiting spatial curvature.

Moreover, for the considered Bianchi type spacetimes, we showed that the potential energy

of the scalar field (ΩV ) is monotonically growing in a large variable region leading the

universe close to the origin of the state space. In this region we have the stable anisotropic

fix-point. This observation explains the rapid convergence in numerical simulations with

arbitrary initial conditions, and, in fact, it is a reminiscent of the cosmic no-hair theorem

itself.12 The KS spacetime, however, which (depending on initial conditions) might col-

lapse, is more complicated and our analysis relies on numerical simulations. For initial

conditions not leading to collapse, our simulations shows that the behavior is quite simi-

lar as for the considered Bianchi type spacetimes. For arbitrary, but non-special,13 initial

conditions, the universe will typically get close to the attractor after a few e-folds for any

12The only difference is that, while the no-hair theorem relies only on the fact that ΩV is a monotone

function, ΩV is only monotone until it is almost 1 in our considered model. Our argument therefore also

relies on the dynamical system analysis.
13For example, if the energy density of the vector field is initially vanishing, it will always be vanishing,

and the universe goes to the isotropic FLRW saddle point.
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of the considered spacetimes. Thus, for the major fraction of e-folds required for inflation,

the inflationary universe is well described by this fix-point.

Thanks to these features the model provides unambiguous initial conditions for the era

after inflation. After reheating, when the energy of the scalar and vector fields are dumped

primarily into radiation, the only hair left is the anisotropic expansion. Interestingly, these

initial conditions yields an acceptable late-time cosmology. After reheating there will be a

period of isotropization lasting for ∼ 2
3N e-folds, where N is the number of e-folds during

inflation. After that the shear scales as the curvature and becomes dominant around N

e-folds after the end of inflation. For plausible bounds on the reheat temperature, the

minimum number of e-folds during inflation, required for consistency with the isotropy of

the supernova Ia data, lays in the interval (21, 48). As a rule of thumb, successful inflation

models must be stable for at least 60 e-folds. It is clear that this number is sufficient also

for the considered model despite the stable anisotropic hair. So, to answer the question

in the title: yes, the results obtained for our restricted class of spacetimes indicates that

inflation with anisotropic hair is cosmologically viable.
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