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Background
The notion of attribute based encryption (ABE) was first proposed by Sahai and Waters 
(2005). Since then, many typical ABE (Goyal et al. 2006; Waters 2011; Lewko et al. 2010; 
Goyal et  al. 2008; Tian and Peng 2014) schemes have been proposed. In ABE, user’s 
access privileges are described by a set of attributes instead of a single identity string. A 
user can get access to the ciphertext only if his attributes satisfy with the policy which 
is set by the data owner. Due to its capability of providing fine-grained and flexible 
access control, ABE appears to be a promising tool for data encryption and data shar-
ing between users. Attribute based signature (ABS) has been developed as a primitive 
to solve the data authentication problem of ABE, which was first introduced (Guo and 
Zeng 2008) in 2008. In ABS mechanisms (Maji et al. 2011), a signer can sign a message 
with the private key component corresponds with the attributes he processes. The signa-
ture can be verified to a certain set of attributes or an attribute access structure of which 
the data owner claims.

The notion of signcryption (Zheng 1997; Lim and Lee 1998; Tan 2008; Selvi et al. 2008) 
can be introduced to attribute based cryptography to present attribute based signcryp-
tion schemes. Signcryption (Paulo et al. 2005; Li and Khan 2012) is a single logical step 
to complete the function of both signature and encryption at the same time, thus it 
achieves better efficiency then the traditional sign-then-encryption method. However, 
research on attribute based signcryption has not been received much attention from 
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academia. Wang and Huang (2011) proposed a signcryption scheme from pairings. Their 
scheme provides the same functions of encryption and authentication and is proved to 
be more efficient than the simply combination of “CP-ABE + CP-ABS”. Hu and Zhang 
(2013) proposed a fuzzy attribute based signcryption and apply it in the BAN (Body area 
network). Their scheme is a novel security mechanism and achieves outstand perfor-
mance. However, the proposed (Wang and Huang 2011; Hu and Zhang 2013) schemes 
are based on the tree structure (Bethencourt et al. 2007) and threshold structure, which 
need frequent calls of recursive algorithm for the purpose of recovering the secret 
encryption component. Thus this will bring about external computation overhead.

To better improve the efficiency of attribute based signcryption scheme, in this paper, 
we propose an improved ciphertext policy attribute based signcryption scheme. We use 
LSSS structure (Beimel 1996) instead of access tree structure to avoid the frequent calls 
of recursive algorithm. By security and performance analysis, we prove that our scheme 
is secure as well as achieves higher efficiency.

Preliminaries
Bilinear pairings

Let G1 and G2 be two cyclic groups of prime order q. Let g be a generator of G1. A bilinear 
pairing ê: G1 × G1 → G2, G2 has these features:

Bilinearity: for a, b ∈ Zq, we have ê
(

ga, gb
)

= ê
(

g , g
)ab.

Non-degeneracy: for any g ∈ G1, ê
(

g , g
)

�= 1.
Computability: the value of ê(u, v) can be computed for any u, v ∈ G1.

Hardness assumption

Discrete logarithm assumption (DL)

Given P,Q ∈ G1, no probabilistic polynomial-time (PPT) algorithm can find an integer 
n ∈ Z∗

q such that Q = Pn with non-negligible probability.

Decision bilinear Diffie–Hellman problem (DBDH)

For a, b, c, z ∈ Z∗
q, given {g , ga, gb, gc, z}, no probabilistic polynomial-time (PPT) algo-

rithm can distinguish the following tuples 
{

A = ga,B = gb,C = gc, ê
(

g , g
)abc

}

 and 
{

A = ga,B = gb,C = gc, ê
(

g , g
)z
}

 with non-negligible probability.

Our model and assumptions
Formulized definitions of our scheme

Our scheme consists of the following algorithms:

Setup On input security parameter, it returns the system public parameter PK  and mas-
ter key MK . PK  is shared by users while MK  is kept private by the private key generator.

Private Key generation On input the system public key PK , the master key MK , and an 
attribute set {Ai}, private key generator (PKG) outputs Di as the user’s attribute private 
key. To distinguish the role of signers and receivers, in this paper, we define the private 
key of signer as Ds while the private key of receiver as Dr.
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Signcrypt This algorithm is run by a signer which takes the systems public parameter PK ,  
a plaintext M, signer’s private key Ds and an access structure as input. Then it outputs 
the ciphertext CT {U ,V ,E}.

De-signcrypt This algorithm is run by the receiver. The algorithm takes as input the 
ciphertext CT {U ,V ,E} and the receiver’s private key Dr, it outputs either the plaintext 
M or the reject symbol ⊥.

Security model

Definition 1 Our scheme has the essential confidentiality under chosen plaintext attack 
in selected model if no Adversary has non-negligible advantage in the challenge game.

Setup: Adversary claims a challenging attribute set γ. Challenger runs setup algorithm to 
obtain PK . It sends PK  to Adversary.

Adversary may make the following queries to Challenger.

Private key generation query: Adversary can request the private key of an attribute set 
(expect for the challenging attribute set).

Challenge: Adversary chooses two plaintexts M0 and M1. Challenger chooses µ ∈ {0, 1} 
randomly and calculates C∗ = Signcrypt

{

PK ,Mµ,Ds

}

. Then Challenger sends the result 
back to Adversary.

Adversary cannot ask Challenger for Private key generation query for the challenging 
attribute set γ.

Adversary outputs a value µ∗ as a conjecture of µ. If µ∗ = µ then Adversary wins the game.
Denote 

∣

∣

∣
Pr [µ∗ = µ]− 1

2

∣

∣

∣
 to be the advantage of Adversary.

Definition 2 Our scheme has the existential unforgeability under chosen message attack 
in the selective model if no Adversary has non-negligible advantage in the challenge game.

Setup: Adversary claims a challenging attribute set γ. Challenger takes a security param-
eter and runs setup procedure to obtain the system parameters. It sends the PK  to 
Adversary.

Private key generation query: Adversary can request the private key of an attribute set 
(expect for the challenging attribute set).

Signcryptquery: Adversary chooses an attribute set {Ai}, an access structure, a plaintext 
M. Challenger calculates Ds and runs the signcrypt procedure to calculate the ciphertext 
CT = Signcrypt{PK ,M,Di, γ }. After then, Challenger sends CT  to Adversary.

Challenge: Adversary computes a 3-tuple CT ∗{U ,V ,E}, while CT ∗{U ,V ,E} was not 
from a igncrypt query.

Challenger de-signcrypts the ciphertext by running the De-signcrypt {PK ,CT ∗,Dr }.

Adversary wins the game if the output of De-signcrypt is not ⊥.

Denote Adv(A) =
∣

∣Pr [Result = M]
∣

∣ to be the advantage of Adversary.
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Our contributions to attribute based signcryption scheme
Let G1 and G2 be two cyclic groups of prime order p, while g is the generator of G1. Let 
ê : G1 × G1 → G2 be a bilinear pairing. Define 2 functions: H1,H2. The function H1 asso-
ciates attributes to rows of access Matrix (the number of rows ∈ Z∗

p). H2 : {0, 1}
n → Z∗

p.

Setup PKG randomly chooses αi ∈ Z∗
p for each attribute i in the system. Besides, PKG 

chooses another secret number α ∈ Z∗
p . The system outputs the system master keys 

{

gα ,αi
}

, public parameters 
{

ê
(

g , g
)α
, ê
(

g , g
)αiH1(i),H1,H2,G1,G2, p, g

}

.

Private key generation For signer’s attribute set 
{

Aj

}

, PKG chooses u ∈ Z∗
p and 

calculates its private key 
{

Ds,1,Ds,2,Ds,3

}

=
{

gu+αjH1(j), gα+u, ê
(

g , g
)u
}

. Like-
wisely, for receiver’s attribute set {Ai} PKG chooses h ∈ Z∗

p calculates its private key 
{

Dr,1,Dr,2,Dr,3

}

=
{

gαiH1(i)+h, gα+h, ê
(

g , g
)h
}

. PKG transfers the private key to each 
user through secure channels.

Signcrypt Signer firstly picks x ∈ Z∗
p and a LSSS access structure Matrix, then chooses 

random vector �v = (x, vr1, vr2, . . . , vrn) ∈ Zn
p . Let �i = �v ·Matrixi. (Matrixi stands for the 

ith row of the corresponding Matrix). Finally, singer randomly picks ri ∈ Z∗
p and calcu-

lates the signcryption information:

Signer sends CT = {U ,V ,E} to the receiver.

De-signcrypt Let 
{

ω ∈ Zp

}

i∈l
 be a set of constants such that if {�i} are valid shares of 

secret x according to Matrix, then 
∑

i∈l ωi�i = x. Receiver calculates M∗ as follows:

Then, receiver verifies if

If Eq.  (3) holds then the algorithm outputs plaintext M with the signature. If not, it 
outputs reject “⊥”.

Correctness proof:

U =
{

ê
(

g , g
)

∑

j∈S αjH1(j)·x
}

t = H2(U ||M)

V :







v1 =
�

j∈S

Dx+t
s,1 , v2 =

�

j∈S

Dx+t
s,3







(1)E :
{

C0 = Mê
(

g , g
)αx

,C1 = gx,C2,i = ê
(

g , g
)−αiH1(j)·�i ,C3,i = g�i

}

(2)M∗ =
C0

∏

i∈l

(

ê(C3 ,Dr,1) · C2,i

)ωi · ê(C1 ,Dr,2)

(3)ê
(

v1, g
)

= U · v2 · ê
(

g , g
)

∑

j∈S αjH1(j)·t
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(a) Decryption:

(b) Signature verification:

Security and efficiency analysis
Confidentiality

Theorem 1 If Adversary can break our scheme under chosen plaintext attack in the selec-
tive model, then a simulator can solve the DBDH problem.

Proof In the challenge game, if there exists an Adversary which has advantage ε in attack-
ing our scheme, there exists a simulator solving the DBDH problem with an advantage 
of ε

/

2.
The simulator is constructed as follows:

Phase 1 Setup: Adversary claims a challenging attribute set γ. Challenger defines a set of 
attributes {Ai}. Let G1 and G2 be two cyclic groups of prime order p,while g is the genera-
tor of G1. Let ê : G1 × G1 → G2 be a bilinear pairing. Define 2 functions : H1 associates 
attributes to rows of access Matrix, H2 : {0, 1}

∗ → Z∗
p .

Challenger randomly chooses µ ∈ {0, 1}, a, b, c ∈ Z∗
p.

The aim of simulator is to output a value µ∗ as a conjecture of µ.
The simulator simulates the role of Challenger and runs Adversary’s algorithm as 
subprogram.

Phase 2 Queries:

Adversary asks for private key for attributes Ai. Simulator picks u, y, ai ∈ Z∗
p and makes 

the following settings:

(4)

M∗ =
C0

∏

i∈l

(

ê
(

C3,i ,Dr,1) · C2,i

)ωi · ê(C1 ,Dr,2)
=

C0 · ê(C1 ,Dr,2)
−1

∏

i∈l

(

ê
(

g�i , gαiH1(i)+u
)

ê
(

g , g
)−αiH1(j)·�i

)ωi

=
C0 · ê(C1 ,Dr,2)

−1

∏

i∈l

(

ê
(

g , g
)u�i

)ωi

=
Mê

(

g , g
)αx

· ê
(

g , g
)ux

ê
(

g , g
)αx

· ê
(

g , g
)u

∑

i∈l �iωi

= M

(5)

t = H2(U ||M)

ê
(

v1, g
)

= ê
(

g
∑

j∈S (αjH1(j)+u)·(x+t)
, g
)

= ê
(

g , g
)

∑

j∈S αjH1(j)·(x+t)
· ê
(

g , g
)

∑

j∈S u(x+t)

= ê
(

g , g
)

∑

j∈S αjH1(j)·x · ê
(

g , g
)

∑

j∈S αjH1(j)·t · ê
(

g , g
)

∑

j∈S u(x+t)

= U · v2 · ê
(

g , g
)

∑

j∈S αjH1(j)·t

Let







(A,B,C ,Z) =
�

ga, gb, gc, ê
�

g , g
�abc

�

if µ = 0

(A,B,C ,Z) =
�

ga, gb, gc, ê
�

g , g
�z
�

if µ = 1
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The queries like Phase 2 can be asked by Adversary for a bounded times.

Phase 3 Challenge:

Adversary picks plaintext M0, M1 and a challenging LSSS containing attribute set γ.
Simulator chooses µ ∈ {0, 1} and calculates CTµ = Signcrypt

{

PK ,Mµ,Ds

}

.
Simulator sends CTσ to Adversary.

Let x = c, accoding to the previous setting in the Setup phase:

Adversary outputs a value µ∗ as a guess of µ. If µ∗ = µ Adversary wins the game.
Then we will discuss simulator’s advantage in distinguishing the following two tuples 

{

A = ga,B = gb,C = gc, ê
(

g , g
)abc

}

 and 
{

A = ga,B = gb,C = gc, ê
(

g , g
)z
}

.
When µ = 1, E is a illegal ciphertext and Adversary cannot acquire useful information 

of σ .

Since when µ∗ �= µ, the simulator outputs µ = 1, so:

When µ = 0, E is a legal ciphertext. According to the assumption, Adversary has an 
advantage ε.

Since when µ∗ = µ the simulator outputs µ = 1, so

As is mentioned above, the advantage of simulator is

(6)
{

Dr,1,Dr,2,Dr,3

}

=

{

gu+αiH1(i), gab+u
, ê
(

g , g
)u
, ifAi ∈ γ

gu+αiH1(i), gy+u
, ê
(

g , g
)u
, if Ai /∈ γ

CTµ :
{

C0 = Mê
(

g , g
)abx

,C1 = gx,C2,i = ê
(

g , g
)−αiH1(j)·�i ,C3,i = g�i

}

(7)CTµ =

{

Mê
(

g , g
)abc

, if µ = 0

Mê
(

g , g
)z
, if µ = 1

(8)Pr
(

µ∗ �= µ|µ = 1
)

=
1

2

(9)Pr
(

µ∗ = µ|µ = 1
)

=
1

2

(10)Pr
(

µ∗ = µ|µ = 1
)

=
1

2
+ ε

(11)Pr
(

µ∗ = µ|µ = 0
)

=
1

2
+ ε

(12)

1

2
Pr

(

µ∗ = µ|µ = 0
)

+
1

2
Pr

(

µ∗ = µ|µ = 1
)

−
1

2

=
1

2

(

1

2
+ ε

)

+
1

2
×

1

2
−

1

2

=
ε

2
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Unforgeability

Theorem 2 If an Adversary can break our scheme chosen message attack in the selective 
model, then it can be constructed that a simulator with a non- negligible advantage solves 
the DBDH problem.

Proof In the challenge game, if there exists an Adversary which has advantage ε in forg-
ing a legal ciphertext, there exists a simulator which can solve the DBDH problem with 
an advantage of ε

/

2.

Phase 1 Setup:

Adversary claims a challenging attribute set γ. Challenger defines a set of attributes {Ai};  
Let G1 and G2 be two cyclic groups of prime order p, while g is the generator of G1 . Let 
ê : G1 × G1 → G2 be a bilinear pairing. Define 2 functions: H1 associates attributes to 
rows of access Matrix,H2 : {0, 1}

∗ → Z∗
p .

Challenger randomly chooses b ∈ {0, 1}, a, b, c ∈ Z∗
p.

The aim of simulator is to output a value µ∗ as a conjecture of µ.

Phase 2 Queries:

Private key generation query: Adversary chooses a set of attributes 
{

Aj

}

, a plaintext M 
and a LSSS. Simulator picks u, y, ai, bi, yi ∈ Z∗

p and makes the following settings:

Signcrypt query: Adversary picks a message M for signcrypt query. Simulator runs algo-
rithm Signcrypt{M,Ds,PK } and returns the result CT = {U ,V ,E} to Adversary.
The queries like Phase 2 can be asked by Adversary for a bounded times.

Phase 3 Challenge:

Adversary outputs a ciphertext CT ∗{U∗,V ∗,E∗}. Adversary makes the forges the illegal 
ciphertext as the following process:

Let







(A,B,C ,Z) =
�

ga, gb, gc, ê
�

g , g
�abc

�

if µ = 0

(A,B,C ,Z) =
�

ga, gb, gc, ê
�

g , g
�z
�

if µ = 1

(13)
{

Ds,1,Ds,2,Ds,3

}

=

{

gu+αibiH1(i), gab+u
, ê
(

g , g
)u
, if Aj ∈ γ

gu+yiH1(i), gy+u
, ê
(

g , g
)u
, if Aj /∈ γ

U∗ =

{

ê
(

g , g
)aibiH1(j)·x, Aj ∈ γ

ê
(

g , g
)yiH1(i)·x, Aj /∈ γ

t = H2

(

U∗||M
)

V =
{

v∗1 , v
∗
2

}

=

{

g(αjbjH1(j)+u)
∗
·(x+t), ê

(

g , g
)u·(x+t)

, Aj ∈ γ

g(yjH1(j)+u)
∗
·(x+t), ê

(

g , g
)u·(x+t)

, Aj /∈ γ

(14)
E∗:

{

C0 = Mê
(

g , g
)abx

,C1 = gx,C2,i = ê
(

g , g
)−αiH1(j)·�i ,C3,i = g�i

}
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Simulator verifies the ciphertext CT ∗{U∗,V ∗,E∗}. Simulator firstly calculates the legal 
private key of receivers’ attribute set {Ai}:

Then decrypts and verifies:

Let f = ê
(

g , g
)αjbjH1(j)·t+u(x+t)

, gH1(j)·x = gc, according to the previous setting in the 

Setup phase:

When µ = 1, ê
(

v∗1 , g
)

 is a random number and Adversary fails to forge a legal 
ciphertext.

When µ = 0, E is a legal ciphertext and Adversary successfully forges the ciphertext. 
According to the assumption, Adversary has an advantage ε.

As is mentioned above, the advantage of simulator is

(15){Ds,1,Ds,2} =







�

gajbjH1(j)+u
, gab+u

,Aj ∈ γ

�

�

gyjH1(j)+u
, gy+u

,Aj /∈ γ

�

M∗ =
C0

∏

i∈l

(

ê(C3 ,Dr,1) · C2,i

)ωi · ê(C1 ,Dr,2)
,

t = H2(U ||M)

(16)

ê
�

v∗1 , g
�

=







ê
�

g (ajbjH1(j)+u)(x+t), g
�

, Aj ∈ γ

ê
�

g (yjH1(j)+u)(x+t), g
�

, Aj /∈ γ

=

�

ê
�

g , g
�αjbjH1(j)·x · ê

�

g , g
�αjbjH1(j)·t · ê

�

g , g
�u(x+t)

, Aj ∈ γ

ê
�

g , g
�yjH1(j)·x · ê

�

g , g
�yjH1(j)·t · ê

�

g , g
�u(x+t)

, Aj /∈ γ

(17)ê
(

v∗1 , g
)

=

{

f · v∗2 · ê
(

g , g
)abc

, if u = 0

f · v∗2 · ê
(

g , g
)z
, if u = 1

(18)Pr
(

µ∗ = µ|µ = 1
)

=
1

2

(19)Pr
(

µ∗ = µ|µ = 0
)

=
1

2
+ ε

(20)

1

2
Pr

(

µ∗ = µ|µ = 0
)

+
1

2
Pr

(

µ∗ = µ|µ = 1
)

−
1

2

=
1

2

(

1

2
+ ε

)

+
1

2
×

1

2
−

1

2

=
ε

2
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Efficiency analysis

In this paper, we compare the proposed scheme with Wang’s and Hu’s schemes with 
respect to the computation cost and access control method. Due to the fact that the 
computation cost of add operation and multiply operation is much smaller than that of 
exponential operation and bilinear pairing operation, consequently, we mainly compare 
the number of exponential operation and bilinear pairing operation in different schemes. 
We denote “Exp” and “Pair” by exponential operation and bilinear pairings. Detailed 
results are listed in Table 1.

From Table 1, we can figure out that the number of exponential operation in the sign-
cryption in our CP-ABSC is more than those in Wang and Huang (2011) and Hu and 
Zhang (2013), however, the number of bilinear pairing operation in the de-signcryp-
tion is decreased greatly. Since the computation burden of bilinear pairing operation is 
heavier than that of exponential operation, the total computation cost has been reduced 
in our scheme. What’s more, our CP-ABSC adopts LSSS to realize data access control, 
which differs from the access structures in Wang and Huang (2011 and Hu and Zhang 
(2013). The LSSS access structure not only avoids the frequent calls of recursive algo-
rithm used in access tree structure model, but also provides more flexible control man-
agement and increases the overall efficiency of the cryptosystem.

Conclusion
In this paper, we propose an optimized attribute based signcryption scheme. By security 
analysis, we prove that it meets the security demands of confidentiality, unforgeability 
and non-repudiation. Besides, by introducing LSSS structure to implement the access 
control function, the flexibility and efficiency of the whole attributed based signcryption 
system has been improved.

Our future work should focus on the attribute revocation and key refreshing in the 
attribute based encryption. Since users with the same set of attributes share the same 
private key, once a single user’s private key has been leaked, a group of users’ privacy and 
privilege will be damaged. Consequently, protecting users’ privacy and refreshing private 
keys at a lower cost when private key leakage happens is a problem urgently to be solved 
and should be taken into our future research direction.

Table 1 Performance comparison

Schemes Access control  
method

Signcryption  
computation cost

De-signcryption 
computation cost

Wang and Huang (2011) Access tree 2 Exp + 1Pair (1 + 2nlog n)
Exp + (4n + 1)Pair

Hu and Zhang (2013) Threshold (2n + 5) Exp 2n Exp + (3n + 2)Pair

Our scheme LSSS matrix (5n + 2) Exp (n + 1) Exp + (2n + 1)
Pair
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