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Abstract
In this paper, we introduce a new fuzzy contraction via a new concept of the fuzzy
sets called fw-distances initiated in the paper, which is a generalization of a fuzzy
contractive mapping initiated in the article (Fuzzy Sets Syst. 159:739-744, 2008).
A fixed point theorem is established by using this type of contraction of set-valued
mappings in fuzzy metric spaces which are complete in the sense of George and
Veeramani. As an application of our results, we give characterizations of fuzzy metric
completeness. The results are supported by examples.
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1 Introduction
In Fuzzy metric spaces we refer to as KM-spaces were initiated by Kramosil andMichálek
[]. The conditions which they formulated were modified later by George and Veeramani
[] via proposing new fuzzy metric spaces called GV-spaces in this paper, with the help
of continuous t-norms (see []) in order to obtain a Hausdorff topology in fuzzy met-
rics paces. The paper of Grabiec [] started the investigations concerning a fixed point
theory in fuzzy metric spaces by extending the well-known Banach contraction principle
to KM-spaces. Many authors followed this concept by introducing and investigating the
different types of fuzzy contractive mappings. Some instances of these works are in [–
]. For instance, in , Gregori and Sapena [] have introduced a kind of contractive
mappings and proved fuzzy fixed point theorems in GV-spaces and KM-spaces by using
a strong condition for completeness, now called the completeness in the sense of Grabiec
or G-completeness, which can be considered a fuzzy version of the Banach contraction
theorem. These results have become recently of interest for many authors.
However, as a complete fuzzy metric space in the usual sense, that is, M-complete, i.e.,

the Cauchy sequence in the usual George and Veeramani’s sense is convergent (defined,
for short,M-Cauchy), needs not be G-complete (see [, ]). Being aware of this problem,
Gregori and Sapena in [] raised the question whether the fuzzy contractive sequences
areM-Cauchy. Very recently, many papers have appeared concerning this subject (see, for
example, [–]). In particular, in [], Wardowski considered a generalization of a fuzzy
contractive mapping of Gregori and Sapena inM-complete GV-spaces, also in [], Mihet
defined a new fuzzy contraction called fuzzy ψ-contraction which enlarges the class of
fuzzy contractivemappings of Gregori and Sapena and considered thesemappings in KM-
spaces. They have shown that every generalized fuzzy contractive sequence isM-Cauchy
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in respective fuzzymetric spaces andproved fuzzy contraction fixed point theoremsunder
different hypotheses. For instance,Mihet assumed that the space under consideration is an
M-complete non-ArchimedeanKM-space.Moreover, he posed an open questionwhether
this fixed point theorem holds if the non-Archimedean fuzzymetric space is replaced by a
fuzzy metric space. Vetro [] introduced a notion of weak non-Archimedean fuzzy metric
space and proved common fixed point results for a pair of generalized contractive-type
mappings. Wang [] gave a positive answer for the open question.
Motivated by the works mentioned above, in this paper, we will establish fixed point

theorems for weakly fuzzy contractive set-valued mappings on M-complete GV-spaces.
To this end, we first introduce a new concept called fw-distance here. Next, using this
fw-distance, we introduce a fuzzy ψ-p-contractive set-valued mapping and formulate the
conditions guaranteeing the convergence of a fuzzy ψ-p-contractive sequence and the
existence of fixed points of a fuzzy ψ-p-contractive set-valued mapping in M-complete
GV-spaces and KM-spaces. The established notion of contraction turns out to be a gen-
eralization of the fuzzy contractive condition of Gregori and Sapena. Moreover, the paper
includes a comprehensive set of examples showing that a fuzzy ψ-p-contractive mapping
is fuzzyψ-contractive and the converse is false. So our results and demonstration are also a
generalization of those of [, ]. To further illustrate the applicability of the fw-distance, we
give characterizations of fuzzy metric completeness, that is, a GV-space X isM-complete
if and only if every fuzzy ψ-p-contractive mapping from X into itself has a fixed point
in X.
Finally, the idea of the present paper has originated from the study of an analogous

problem examined by Suzuki [] for set-valued contractive mappings and [] for single-
valued contractive mappings on complete determinacy metric spaces.

2 Preliminaries
Let us recall [] that a continuous t-norm is a binary operation ∗ : [, ] × [, ] → [, ]
such that ([, ],≤,∗) is an ordered Abelian topological monoid with unit . In this sequel,
we always assume that ∗ is positive, i.e., a ∗ b >  for all a,b ∈ (, ].
As examples of t-norm satisfying the conditions above, we enumerate a ∗ b = ab, a ∗ b =

min{a,b} and a ∗ b = ab/max{a,b,λ} for  < λ < , respectively.

Definition . [] A fuzzymetric space is an ordered triple (X,M,∗) such thatX is a (non-
empty) set, ∗ is a continuous t-norm, andM is a fuzzy set on X×X× (, +∞) that satisfies
the following conditions for all x, y, z ∈ X:
(F) M(x, y, t) >  for all t > ,
(F) M(x,x, t) =  for all t >  andM(x, y, t) =  for some t >  implies x = y,
(F) M(x, y, t) =M(y,x, t) for all t > ,
(F) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t + s) for all s, t >  and
(F) M(x, y, ·) : (, +∞)→ [, ] is continuous.

In the definition of Kramosil and Michalek [], M is a fuzzy set on X × X × [,∞) that
satisfies (F) and (F), while (F), (F), (F) are replaced by (K), (K), (K), respectively,
as follows:
(K) M(x, y, ) = ;
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(K) M(x, y, t) =  for all t >  if and only if x = y;
(K) M(x, y, ·) : [,∞)→ [, ] is left continuous.
As we have mentioned, we refer to these spaces as KM-spaces and refer to the spaces

given in Definition . as GV-spaces. In addition, when X is called a fuzzy metric space
means, it may be a GV-space or a KM-space.
In this sense,M is called a fuzzy metric on X. Some simple but useful facts are that
(I) M(·, ·, t) is a continuous function on X ×X for t ∈ (,∞) and
(II) M(x, y, ·) is nondecreasing for all x, y ∈ X .

The first fact for the proof we refer to [, Proposition ]. To prove the second fact, by (F),
we notice thatM(x, y, t) ≥M(x, y, s)∗M(y, y, t– s) =M(x, y, s)∗  =M(x, y, s) for s, t ∈ [,∞)
with t > s.
Let (X,M,∗) be a GV-space. For t >  and r ∈ (, ), the open ball B(x, t, r) with center

x ∈ X is defined by

B(x, t, r) =
{
y ∈ X :M(x, y, t) >  – r

}
.

A subset A ⊂ X is called open if for each x ∈ A, there exist t >  and  < r <  such that
B(x, t, r)⊂ A. Let T denote the family of all open subsets of X. Then T is a topology on X
induced by the fuzzymetricM. This topology is metrizable (see []). Therefore,A closed
subset B of X is equivalent to x ∈ B if and only if there exists a sequence {xn} ⊂ B such that
{xn} topologically converges to x. In fact, the topological convergence of sequences can be
indicated by the fuzzy metric as follows.

Definition . [] Let (X,M,∗) be a fuzzy metric space.
(i) A sequence {xn} in X is said to be convergent to a point x ∈ X , denoted by

limn→∞ xn = x, if limn→∞ M(xn,x, t) =  for any t > .
(ii) A sequence {xn} in X is called Cauchy sequence if for each ε >  and t > , there

exists n ∈N such thatM(xn,xm, t) >  – ε for any m,n≥ n.
(iii) A fuzzy metric space (X,M,∗), in which every Cauchy sequence is convergent, is

said to be complete.

There exist two fuzzy versions of Cauchy sequences and completeness, i.e., besides
calledM-Cauchy sequence andM-completeness in the sense of Definition ., G-Cauchy
sequence defined by limn→∞ M(xn+p,xn, t) =  for all t,p >  and corresponding G-
completeness introduced by []. In [], the authors have pointed out that a G-Cauchy se-
quence is not anM-Cauchy in general. It is clear that anM-Cauchy sequence isG-Cauchy,
andhence, a fuzzymetric space isM-complete if it isG-complete. Fromnowon, byCauchy
sequence and completeness we mean anM-Cauchy sequence andM-completeness.
We now introduce a new notion as follows.

Definition . Let (X,M,∗) be a fuzzy metric space. A fuzzy set P on X × X × (,∞) is
said to be an fw-distance if the following hypotheses are satisfied:
(w) P(x, y, t) ∗P(y, z, s)≤P(x, z, t + s) for all x, y, z ∈ X and all s, t > .
(w) For any x ∈ X , t ∈ (,∞), P(x, ·, t) : X → [, ] is upper semicontinuous, and

P(x, y, ·) : (, +∞)→ [, ] is left continuous for x, y ∈ X .
(w) Let x, y ∈ X . For any ε ∈ (, ) and t > , there exists δ ∈ (, ) and z ∈ X such that

P(z,x, t/)≥  – δ and P(z, y, t/) ≥  – δ implyM(x, y, t) ≥  – ε.
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Note that neither of the implicationsP(x, y, t) = ⇔ x = y (namely (F)) necessarily hold,
and P is nonsymmetric, i.e., in general, P does not satisfy (F).
The fuzzy metric M is an fw-distance on X. In fact, (F) implies that (w) holds. The

properties I and II of M combining conditions (F) or (K) guarantee that (w) is valid.
Finally, for any ε ∈ (, ) and t > , from the properties of ∗, we can take a small enough
δ >  such that ( – δ) ∗ ( – δ) ≥  – ε. Now, putting M(z,x, t/) ≥  – δ and M(z, y, t/) ≥
 – δ, by means of (F), we have

M(x, y, t) ≥M(z,x, t/) ∗M(z, y, t/) ≥ ( – δ) ∗ ( – δ) ≥  – ε.

This implies that (w) holds. However, some other following examples of fw-distances
show that the converse is false.

Example . Let f : X → R+ be a one-to-one continuous function, and let g : R+ →
[, +∞) be an increasing continuous function. Define a ∗ b = ab for all a,b ∈ [, ]. Fixed
α,β > , defineM and P by, respectively,

M(x, y, t) =
(
(min{f (x), f (y)})α + g(t)
(max{f (x), f (y)})α + g(t)

)β

, P(x, y, t) =
(

g(t)
(f (y))α + g(t)

)β

.

Then M is a fuzzy metric, and (X,M,∗) is a GV-space (see []), P is an fw-distance but
not a fuzzy metric on X.

Proof We observe that

P(x, z, t + s) =
(

g(t + s)
(f (z))α + g(t + s)

)β

=
(

g(t + s)
(f (y))α + g(t + s)

)β

·
(
(f (y))α + g(t + s)
(f (z))α + g(t + s)

)β

≥
(

g(t)
(f (y))α + g(t)

)β

·
(

g(s)
(f (z))α + g(s)

)β

.

Hence, P(x, z, t + s) ≥P(x, y, t) ∗P(y, z, s), i.e., (w) holds. (w) is valid. Trivial. For any ε ∈
(, ) and t > , set δ ∈ (, ε/] and z ∈ X such that ( – δ) ∗ ( – δ) ≥  – ε and P(z,x, t/)≥
 – δ and P(z, y, t/) ≥  – δ, we can distinguish two cases:

f (x)≤ f (y) and f (y) ≤ f (x).

Now, we have, respectively,

M(x, y, t) ≥
(
(f (x))α + g(t/)
(f (x))α + g(t/)

)β(
(f (x))α + g(t/)
(f (y))α + g(t/)

)β

and

M(x, y, t) ≥
(
(f (y))α + g(t/)
(f (y))α + g(t/)

)β(
(f (y))α + g(t/)
(f (x))α + g(t/)

)β

.
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It is easy to verify that in the two cases, the inequality

M(x, y, t) ≥P(z,x, t/) ∗P(z, y, t/) ≥ ( – δ) ∗ ( – δ) ≥  – ε

holds, that is, (w) is met. This reduces that P is an fw-distance.
However, P is not a fuzzy metric since it is nonsymmetric. �

Example . Let X = R with the fuzzy metric M(x, y, t) = e–|x–y|/g(t) with g as in Exam-
ple .. Fixed  < α < β ≤ . Define P by

P(x, y, t) = e–m(x,y)/g(t)

with m(x, y) =max{α(x – y),β(y – x)} and t > . Then P is an fw-distance but not a fuzzy
metric on (X,M,∗).

Some properties for the fw-distance are useful in this sequel.

Proposition . Let (X,M,∗)’ be a fuzzy metric space, and let P be an fw-distance on X .
Then for sequences {xn} and {yn} in X, the function sequences {an(t)} and {bn(t)}with an,bn :
(,∞)→ [, ) converging to  for t > , and x, y, z ∈ Xwe have the following:
() if, for t > , P(xn, y, t/)≥  – an(t/) and P(xn, z, t/) ≥  – bn(t/) for any n ∈N,

then y = z; in particular, if P(x, y, t) =  and P(x, z, t) = , then y = z;
() if, for t > , P(xn, yn, t/)≥  – an(t/) and P(xn, z, t/) ≥  – bn(t/) for any n ∈N,

then {yn} converges to z;
() if, for t > , P(xn,xm, t/)≥  – an(t/) for any n,m ∈N with m > n, then {xn} is a

Cauchy sequence;
() if, for t > , P(y,xn, t/)≥  – an(t/) for any n ∈N, then {xn} is a Cauchy sequence;
() if x ∈ X and {yn} in X with limn→∞ yn = y and P(x, yn, t) ≥ ω for some

ω = ω(x) ∈ (, ), then P(x, y, t)≥ ω.

Proof () For any ε ∈ (, ) and t > , let δ = ε. By our assumptions, there exists n ∈ N

such that an(t/) < δ and bn(t/) < δ which implies that P(xn, y, t/) ≥  – an >  – δ and
P(xn, z, t/) ≥  – bn >  – δ for large enough n. In view of (w), one has M(y, z, t) ≥  – ε.
Now, the arbitrariness of ε implies thatM(y, z, t) = , i.e., y = z.
() Similarly to the argument of (), for any ε ∈ (, ) and t > , we can find n ∈ N such

thatM(yn, z, t) ≥  – ε for each n ≥ n, that is, limn→∞ yn = z.
() For any ε ∈ (, ) and t > , there exists n ∈ N such that an(t/) < ε for n ≥ n.

Let m,m ∈ N with m,m > n > n. Then, by means of the assumption of (), we
have P(xn,xm , t/) ≥  – an(t/) and P(xn,xm , t/) ≥  – an(t/). (w) guarantees that
M(xm ,xm , t) ≥  – ε. From Definition .(ii) {xn} is a Cauchy sequence.
As an analogous argument in (), we can verify that () is valid.
() If limn→∞ yn = y and P(x, yn, t) ≥ ω for some ω = ω(x) ∈ (, ), by (w) P(x, y, t) ≥

lim supn→∞ P(x, yn, t) ≥ ω. Therefore, () holds. �

3 Fixed point theorems
In the sequel, byCB(X), we denote the collection consisting of all nonempty closed subsets
of X (obviously, every closed subset of X is bounded in the sense of fuzzy metric spaces).

http://www.fixedpointtheoryandapplications.com/content/2013/1/276
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Let (X,M,∗) be a fuzzy metric space and T : X → CB(X) be a set-valued mapping. An
element x ∈ X is called a fixed point of T if x ∈ Tx.
The following collection 	 of functions is given in [], that is, ψ ∈ 	 implies that ψ

from [, ] into itself is continuous, nondecreasing and ψ(t) > t for each t ∈ (, ).
Let ψ ∈ 	 and P be an fw-distance. The set-valued mapping T is called a fuzzy ψ-p-

contractive mapping if the following implication takes place: for any x,x ∈ X and y ∈
Tx, there exists y ∈ Tx such that P(x,x, t) >  ⇒ P(y, y, t) ≥ ψ(P(x,x, t)) for each
t > . In particular, the fuzzy ψ-M-contraction corresponds to the fuzzy ψ-contraction
according to [, Definition .]. A fuzzy ψ-p-contractive sequence in X is any sequence
{xn} in X such that P(xn+,xn+, t) ≥ ψ(P(xn+,xn, t)) for all n ∈N and t > .

Theorem . Let (X,M,∗) be a complete fuzzy metric space, and let T be a fuzzy ψ-
p-contractive set-valued mapping from X into CB(X). If there exists x ∈ X such that
P(x, y, t) >  for some y ∈ Tx and any t > , then T has at least a fixed point x ∈ X.More-
over, if P(x,x, t) > , then P(x,x, t) =  for all t > .

Proof From our assumption, there exists u ∈ X such that P(u,u, t) >  for some u ∈
Tu and any t > . For fixed u, by the contractive condition, there exists u ∈ Tu such
that

P(u,u, t)≥ ψ
(
P(u,u, t)

) ≥P(u,u, t) > 

for all t > . Applying again the contractive condition for u, u, we can choose u ∈ Tu
such that

P(u,u, t)≥ ψ
(
P(u,u, t)

) ≥P(u,u, t) > .

Thus, by induction, we obtain a sequence {un} in X such that un+ ∈ Tun and

P(un,un+, t) ≥ ψ
(
P(un–,un, t)

) ≥P(un–,un, t) > 

for every t >  and n ∈N. Next, for each n ∈N, we prove by induction that, for all k ∈N,

P(un,un+k , t) > , ∀t > . ()

We have shown that the claim is true for k = . Assume that P(un,un+l, t) >  for all t > 
and l ∈N with  ≤ l < k. Then, by virtue of (w), we have

P(un,un+k , t) ≥P(un,un+k–, t/) ∗P(un+k–,un+k , t/).

Since P(un,un+k–, t/) > , P(un+k–,un+k , t/) > , from the fact that ∗ is positive we have

P(un,un+k , t) ≥P(un,un+k–, t/) ∗P(un+k–,un+k , t/) > 

for all t > , () is valid.
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Now, any fix t > . Let an = an(t/) =  – infm≥nP(un,um, t/) for m,n ∈ N. Then {an} is
a function from (,∞) into [, ) and

P(un,um, t/)≥  – an

for any n,m ∈ N with m > n. We will prove that {an} converges to . To this end, it is
sufficient to verify that

lim
n→∞ cn =  ()

with cn = infm≥nP(un,um, t/). Form ≥ n + , by () we have

P(un+,um, t/)≥ ψ
(
P(un,um–, t/)

) ≥P(un,um–, t/).

This yields that cn+ ≥ cn for all n ∈N, i.e., {cn} is a decreasing sequence. So {cn} is conver-
gent. Let limn→∞ cn = p. By virtue of the continuity of ψ , we have p ≥ ψ(p) which yields
that p = , and hence () is valid. Moreover, by virtue of Proposition .(), we see that
{un} is a Cauchy sequence. Hence {un} converges to a point v ∈ X by the completeness
of X.
Fix a large enough n ∈ N. Since {um} converges to v and P(un, ·, t) is upper semicontin-

uous, we have

P(un, v, t) ≥ lim sup
m→∞

P(un,um, t) ≥ cn > . ()

This implies that

lim
n→∞P(un, v, t) = . ()

Again, the contractive hypothesis reduces that there exists wn ∈ Tv such that P(un,
wn, t) ≥ ψ(P(un–, v, t)) ≥P(un–, v, t) > . Consequently, we have a sequence {wn} ⊂ Tv
such that P(un,wn, t) > , P(un, v, t) >  for all t >  and n ∈N. Fix t > , let

an =  –P(un,wn, t/), bn =  –P(un, v, t/).

In view of (), we obtain that {bn} converges to . By this, combining P(un,wn, t/) ≥
P(un–, v, t/), we have {P(un,wn, t/)} converging to , which implies that {an} converges
to . By Proposition .(), {wn} converges to v. Since Tv is closed, v ∈ Tv, i.e., v is a
fixed point of T .
Finally, for such v, if P(v, v, t) > , there exists v ∈ Tv such that P(v, v, t) ≥

ψ(P(v, v, t)) ≥ P(v, v, t) > . Thus, we also have a sequence {vn} in X such that
vn+ ∈ Tvn and P(v, vn+, t) ≥ ψ(P(v, vn, t)) ≥ P(v, vn, t) >  for every n ∈ N. Let an =
 – P(v, vn, t/) for fixed t > . Repeating the proof process of (), we can infer that
an →  as n → ∞. By Proposition .(), {vn} is a Cauchy sequence. Hence {vn} con-
verges to a point x ∈ X. Since P(v, ·, t) is upper semicontinuous,  ≥ P(v,x, t) ≥

http://www.fixedpointtheoryandapplications.com/content/2013/1/276
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lim supn→∞ P(v, vn, t) = , and hence P(v,x, t) =  for all t > . For any n ∈N,

P(un,x, t) ≥P(un, v, t/) ∗P(v,x, t/)≥P(un, v, t/) ∗  =P(un, v, t/).

By () and Proposition .(), we have x = v which implies thatP(v, v, t) = . This proof
is complete. �

Example . Let X = [,∞), a ∗ b = ab for any a,b ∈ [, ] and M(x, y, t) be given as in
Example . with α = β = , g(t) = t and f (x) = x. For given λ > , the set-valued mapping
T : X → X as follows

Tx =

⎧⎨
⎩

{√x + λ}, x + λ ≤ ,

[
√
x,

√
x + λ], x + λ > 

has a fixed point in X.

Proof Using similar arguments as the ones in [, Theorem], one can show that (X,M,∗)
is a complete GV-space. Let ψ(t) =

√
t for t ∈ [, ]. Then ψ ∈ 	 . Let

P(x, y, t) =

⎧⎨
⎩
y,  ≤ y ≤ ,

y , y > ,

x, y ∈ X, t > .

It is not hard to verify thatP is an fw-distance. For any x,x ∈ X and y ∈ Tx, if x +λ ≤ ,
then x <  and choose y =

√
x + λ ∈ Tx, we have

P(y, y, t) =
√
x + λ >

√
x =ψ

(
P(x,x, t)

)
.

If x + λ > , choose y =
√x ∈ Tx, we have

P(y, y, t) =
√
x =ψ

(
P(x,x, t)

)

if x ≤  and

P(y, y, t) =
√x

=ψ
(
P(x,x, t)

)

if x > . Consequently, T is ψ-p-contractive and all conditions of Theorem . are satis-
fied. Hence, T has a fixed point (in fact,  ∈ T). �

Remark . We observe that T in Example . is not fuzzy ψ-contractive. Hence, there
exists a mapping which is fuzzy ψ-p-contractive but not fuzzy ψ-contractive. However,
every fuzzy ψ-contractive mapping is obviously fuzzy ψ-p-contractive.

In fact, set λ = . and take x = ., x = . in Example ., we have Tx =√
x + λ = ., Tx =

√
x + λ =

√
.. Note that

M(., ., t) =
. + t
. + t

, M(x,x, t) =M(., ., t) =
. + t
. + t

.

http://www.fixedpointtheoryandapplications.com/content/2013/1/276
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Let y = Tx = . and y = Tx =
√
.. Then M(y, y, t) <M(., ., t). Take t = , we

have

M(., ., ) =
.
.

<
√
.
.

=ψ
(
M(., ., )

)
=ψ

(
M(x,x, t)

)
,

that is,M(y, y, ) < ψ(M(x,x, )). Consequently, T is not fuzzy ψ-M-contractive.
Let (X,M,∗) be a fuzzy metric space and T a single-valued mapping from X into itself.

T is said to satisfy nonzero property if there exists x ∈ X such that P(x,Tx, t) >  for all
t > .

Corollary . Let (X,M,∗) be a complete fuzzy metric space, and the mapping T from X
into itself is fuzzy ψ-p-contractive with the fw-distance P satisfying P(x, y, t) >  for any
(x, y, t) ∈ X×X× (,∞). If T satisfies the nonzero property, then T has a unique fixed point
x ∈ X. Further, x satisfies P(x,x, t) =  for all t > .

Proof From Theorem ., there exists x ∈ X with Tx = x and P(x,x, t) =  for all
t > . Let y = Ty. If p(x, y, t) <  then P(x, y, t) = P(Tx,Ty, t) ≥ ψ(P(x, y, t)) >
P(x, y, t) > . This contradiction implies that p(x, y, t) = . So, by P(x,x, t) =  and
Proposition .(), we have x = y. �

Remark . In the case of P =M, T is exactly fuzzy ψ-contractive initiated byMihet [].
So Corollary . is a positive answer for the open question of [], but also an essential
extension and improvement of Theorem . in [] (see []) and Theorem  in [], also,
the corresponding results of [, ].

4 Characterizations of completeness
As an application of Corollary . and the fw-distance, we propose the following pro-
founder result of fuzzy fixed point theorywhich gives characterizations of the fuzzymetric
completeness. We need the following assumption:

a ∗ b ≥ ab for all a,b ∈ (, ].

We first list the following lemmas regarding the fw-distance which plays a key role in
this section.

Lemma . Let X be a GV-space with the fuzzy metric M, let P be an fw-distance on X ,
and let Q be a function from X × X × (, +∞) into [, ] satisfying (w), (w) in Defi-
nition .. Suppose that Q(x, y, t) ≤ P(x, y, t) for every x, y ∈ X, t ∈ (, +∞). Then Q is
also an fw-distance on X . In particular, if Q satisfies (w), (w) in Definition . and
Q(x, y, t) ≤M(x, y, t) for every x, y ∈ X, t ∈ (, +∞), thenQ is an fw-distance on X .

Proof We show that Q satisfies (w). Let ε ∈ (, ) and t > . Since P is an fw-distance,
there exists a positive number δ ∈ (, ) and z ∈ X such that P(z,x, t/) ≥  – δ and
P(z, y, t/) ≥  – δ imply that M(x, y, t) ≥  – ε. Then Q(z,x, t/) ≥  – δ and Q(z, y, t/) ≥
 – δ imply thatM(x, y, t) ≥  – ε. This proof is complete. �
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Lemma . Let (X,M,∗) be a GV-space and A ⊂ X contain at least two points, and c(t) =
inf{M(x, y, t) : x, y ∈ A} > . Then the fuzzy subset p : X ×X × (, +∞)→ [, ] defined by

p(x, y, t) =

⎧⎨
⎩
M(x, y, t), x, y ∈ A,

d(t), others

is an fw-distance on (X,M,∗), where d(t) is a nondecreasing continuous function with  <
d(t) < c(t).

Proof It is clear that c(t) <  for t >  since A contains at least two points. If x, y, z ∈ A, we
have

P(x, z, t + s) =M(x, z, t + s)≥M(x, y, t) ∗M(y, z, s) =P(x, y, t) ∗P(y, z, s).

In the other case, without loss of generality, we suppose that x /∈ A, then P(x, y, t) = d(t)
and P(y, z, s) ≤ . Hence,

P(x, z, t + s) = d(t + s) ≥ d(t) ∗ ≥ p(x, y, t) ∗ p(y, z, s).

Let x ∈ X. If a ≤ d(t) for some t > , we have {y ∈ X : P(x, y, t) ≥ a} = X. Let a > d(t) for
all t > . If x ∈ A, then P(x, y, t)≥ a implies that y ∈ A. So, we have {y ∈ X :P(x, y, t)≥ a} =
{y ∈ X :M(x, y, t) ≥ a}∩A. If x /∈ A, we have {y ∈ X :P(x, y, t)≥ a} = ∅. In each case, the set
{y ∈ X : P(x, y, t) ≥ a} is closed. Therefore, P(x, ·, t) : X → (, ] is upper semicontinuous.
P(x, y, ·) is obviously continuous.
Let ε >  and t > . Then there exists a positive number τ ∈ (, /) such that  < τε < –

supt> d(t). Let δ = τε. Then P(z,x, t/)≥ – δ and P(z, y, t/) ≥ – δ imply that x, y, z ∈ A.
So, we have

M(x, y, t) ≥M(z,x, t/) ∗M(z, y, t/) =P(z,x, t/) ∗P(z, y, t/) ≥ ( – δ) >  – ε.

This proof is complete. �

Remark . If A is a compact subset of X, then c(t) >  for all t > . Indeed, suppose that
this is not true, then there exists t >  such that c(t) = . Thus, for each n ∈ N, there ex-
ist xn, yn ∈ A such that M(xn, yn, t) < 

n . Since A is compact, there exist the subsequences
{xnk }, {ynk } of {xn}, {yn}, respectively, such that limk→∞ xnk = x and limk→∞ ynk = y with
x, y ∈ A. Note thatM is continuous, we haveM(x, y, t) = limk→∞ M(xnk , ynk , t) = , a con-
tradiction. In addition, we observe that M(x, y, ·) is nondecreasing for any given x, y ∈ X.
Therefore, c(·) is nondecreasing, and this guarantees the existence of d(t), say, d(t) = c(t)/.

Theorem . Let (X,M,∗) be a fuzzy metric space. Then X is complete if and only if every
fuzzyψ-p-contractivemapping fromX into itself satisfying the nonzero property has a fixed
point in X.

Proof Since the ‘only if ’ part is proved in Corollary ., we only need to prove the ‘if ’
part. Assume that X is not complete. Then there exists a sequence {xn} in X which is

http://www.fixedpointtheoryandapplications.com/content/2013/1/276
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Cauchy and does not converge. So, there exists tn >  such that limm→∞ M(xn,xm, tn) < 
for any n ∈ N. Let Sx = {t >  : limm→∞ M(x,xm, t) < } for any x ∈ X. Moreover, we
have also limn→∞ limm→∞ M(xn,xm, t) =  for all t > . Thus, any fix i ∈ N, for some
ni and each t ∈ Sxni , we can choose xni+ ∈ {xn} such that limm→∞ M(xni+,xm, t) >
limm→∞[M(xni ,xm, t)]/. We now obtain a subsequence {xni} ⊂ {xn} such that

lim
j→∞M(xni+,xnj , t) > lim

j→∞
[
M(xni ,xnj , t)

]/ for t ∈ Sxni .

Let

Msup(x, y, t) =

⎧⎨
⎩
M(x, y, t), t < supSx,

M(x, y, supSx), t ≥ supSx

for supSx < ∞. Then we may assume that there exists a sequence {xn} in X satisfying the
following conditions:

(i) {xn} is Cauchy;
(ii) {xn} does not converge;
(iii) limn→∞ M̂(xi+,xn, t) > limn→∞[M̂(xi,xn, t)]/ ≥ M̂(xi,xn, t) for any i ∈N, t > ,

where

M̂(x, y, t) =

⎧⎨
⎩
M(x, y, t), supSx =∞,

Msup(x, y, t), supSx < ∞.

Put A = {xn : n ∈ N}. Then A is bounded and closed. We next prove that c(t) given as
in Lemma . is positive. In fact, if c(t) =  for some t > , then for every k ∈ N, there
exists n(k),m(k) ∈ N such that M(xn(k),xm(k), t) < /k which implies that limk→∞ M(xn(k),
xm(k), t) = . On the other hand, since {xn} is a Cauchy sequence, we have limk→∞ M(xn(k),
xm(k), t) = , a contradiction. Hence, c(t) >  for all t > .
Let us define the fuzzy set P̂ on X ×X × (, +∞) by

P̂(x, y, t) =

⎧⎨
⎩
M̂(x, y, t), x, y ∈ A,

d(t), x /∈ A or y /∈ A,

where d(t) is an increasing continuous function with  < d(t) ≤ c(t). It is clear that P̂ is
an fw-distance on X by Lemmas . and .. Further, P̂(x, y, t) = P̂(y,x, t) for any x, y ∈ X
and t > , i.e., P̂ satisfies the symmetry.
Define a mapping T : X → X as follows:

Tx =

⎧⎨
⎩
x, x /∈ A,

xi+, x = xi (i ∈N).

Then it is easy to see that T has no fixed point in X. Moreover, from (F), it follows
that P̂(x,Tx, t) = P̂(x,x, t) = M(x,x, t) > , that is, T satisfies the nonzero prop-
erty. To complete the proof, it is sufficient to show that T is fuzzy ψ-p̂-contractive with
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ψ(t) =
√
t ∈ 	 . If x /∈ A or y /∈ A, then

P̂(Tx,Ty, t)≥ c(t) ≥ √
d(t) =ψ

(
P̂(x, y, t)

)
.

Let us assume that x, y ∈ A. Then, without loss of generality, we may assume that x = xi,
y = xj and i < j. For any t > , from (iii), combining the monotonicity of M̂(x, y, ·), it follows
that

lim
n→∞ M̂(xi,xn, t) ≥ M̂(xi,xj, t) ∗ lim

n→∞ M̂(xj,xn, t)

≥ M̂(xi,xj, t) ∗ lim
n→∞ M̂(xj–,xn, t) ≥ · · ·

≥ M̂(xi,xj, t) ∗ lim
n→∞ M̂(xi+,xn, t)

≥ M̂(xi,xj, t) ∗ lim
n→∞

[
M̂(xi,xn, t)

]/

≥ M̂(xi,xj, t) ∗ lim
n→∞

[
M̂(xi,xn, t)

]/

≥ M̂(xi,xj, t) limn→∞

√
M̂(xi,xn, t).

This implies that

lim
n→∞

√
M̂(xi,xn, t) ≥ M̂(xi,xj, t). ()

On the other hand, by (iii), combining () and the symmetry of P̂ , we have

P̂(Txi,Txj, t) = P̂(xi+,xj+, t) = M̂(xi+,xj+, t)

≥ lim
n→∞ M̂(xi+,xn, t/) ∗ lim

n→∞ M̂(xj+,xn, t/)

≥ lim
n→∞ M̂(xi+,xn, t/) ∗ lim

n→∞ M̂(xj,xn, t/)≥ · · ·

≥ lim
n→∞ M̂(xi+,xn, t/) ∗ lim

n→∞ M̂(xi+,xn, t/)

≥
[
lim
n→∞ M̂(xi+,xn, t/)

] ≥
[
lim
n→∞ M̂(xi,xn, t)

]/

≥
√
M̂(xi,xj, t) = ψ

(
M̂(xi,xj, t)

)
=ψ

(
P̂(xi,xj, t)

)
.

This shows that T is fuzzy ψ-p̂-contractive. �

Example . For any nonempty set X, let us consider the fuzzy metric space (X,M,∗)
withM(x, y, t) as in Example .. Let Xa = (a,∞) for any fixed a > . Then the fuzzy metric
space (Xa,M,∗) is not complete.

Proof Consider the mapping Tx =
√
x + λ with  < λ ≤ a(a – ) and ψ(t) =

√
t, we have

ψ ∈ 	 . LetP(x, y, t) = min {x,y}
max {x,y} , we haveP(x, y, t)≤M(x, y, t) for any x, y ∈ X and t > . From

Lemma ., it follows thatP is an fw-distance in X. Now, we haveP(x,Tx, t) = min{x,√x+}
max{x,√x+} >

http://www.fixedpointtheoryandapplications.com/content/2013/1/276
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 for all t >  and

P(Tx,Ty, t) =
√
x + √
y + 

>
√
x
y
=ψ

(
P(x, y, t)

)

for x≤ y. This implies that T is fuzzyψ-p-contractive.We assert that T has no fixed point
in Xa. Indeed, if x = Tx, then x = +

√
+λ
 ≤ a. Consequently, Theorem . guarantees that

(Xa,M,∗) is not complete. �
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