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Abstract

Background: ERp is a variable selection and classification method for metabolomics data. ERp uses minimized
classification error rates, based on data from a control and experimental group, to test the null hypothesis of no
difference between the distributions of variables over the two groups. If the associated p-values are significant they
indicate discriminatory variables (i.e. informative metabolites). The p-values are calculated assuming a common
continuous strictly increasing cumulative distribution under the null hypothesis. This assumption is violated when
zero-valued observations can occur with positive probability, a characteristic of GC-MS metabolomics data,
disqualifying ERp in this context. This paper extends ERp to address two sources of zero-valued observations: (i)
zeros reflecting the complete absence of a metabolite from a sample (true zeros); and (ii) zeros reflecting a
measurement below the detection limit. This is achieved by allowing the null cumulative distribution function to
take the form of a mixture between a jump at zero and a continuous strictly increasing function. The extended ERp
approach is referred to as XERp.

Results: XERp is no longer non-parametric, but its null distributions depend only on one parameter, the true
proportion of zeros. Under the null hypothesis this parameter can be estimated by the proportion of zeros in the
available data. XERp is shown to perform well with regard to bias and power. To demonstrate the utility of XERp, it
is applied to GC-MS data from a metabolomics study on tuberculosis meningitis in infants and children. We find
that XERp is able to provide an informative shortlist of discriminatory variables, while attaining satisfactory
classification accuracy for new subjects in a leave-one-out cross-validation context.

Conclusion: XERp takes into account the distributional structure of data with a probability mass at zero without
requiring any knowledge of the detection limit of the metabolomics platform. XERp is able to identify variables that
discriminate between two groups by simultaneously extracting information from the difference in the proportion of
zeros and shifts in the distributions of the non-zero observations. XERp uses simple rules to classify new subjects
and a weight pair to adjust for unequal sample sizes or sensitivity and specificity requirements.
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Background
Feature selection and classification in metabolomics can
be problematic due to the large number of missing
values often present in the data. Specifically, metabolo-
mics data generated through gas chromatography-mass
spectrometry (GC-MS), are known to contain many
missing values [1]. To complicate matters further, values
can be missing at random or not, depending on the
source of the missing values. Missing values can result
from technical limitations, for example peak misalign-
ment, deconvolution errors resulting from the indistinct
shape of a peak, the detection limit of the platform or
any combination of these sources. A missing value can
also have a biological origin, i.e. a metabolite which is
a marker for some disease can be truly absent from a
healthy sample. Datasets containing missing values
can become cumbersome when performing statistical
analysis. Kang [2] lists lack of power and estimation
bias as some of the concerns. As a result, many dif-
ferent imputation strategies have been tried and
tested, from very basic strategies like replacing miss-
ing values by some fraction of the minimum observed
value, to more advanced techniques that aim to im-
pute values based on the remaining data. Imputation
is however not always ideal or straightforward. The
more successful techniques, such as k-nearest-
neighbour and random forest [1, 3], require larger
sample sizes, a known limitation of metabolomics
studies. Other approaches, even the most elementary
ones where missing values are replaced by a fixed
number, require the tuning or estimation of parame-
ters. It is also ill-advised to make use of a one-size-
fits-all approach to dealing with missing values, espe-
cially given the different sources of missing values.
Armitage et al [3] propose a combination of zero
value imputation when the metabolite is assumed ab-
sent from a sample for biological reasons and k-
nearest-neighbour when missing values are believed
to be the result of the technical limitations of the
platform. Specifically, applying ERp to data with miss-
ing values imputed by random numbers can have
some unwanted effects without any real gains, as we
show in a comparative study reported in Additional
file 1: Section S7.
The research into missing value replacement is vast

and we do not go into further detail here, instead we
propose a somewhat different approach. Ensuring that
the data contains as few as possible missing values due
to technical errors must be the first line of defence.
Again, we do not go into detail here since software pack-
ages are continually being improved and developed to
reduce the number of false positives and negatives dur-
ing peak identification and quantification [4, 5]. The
remaining missing values, predominantly resulting from

the detection limit of the platform and biological
sources, can then reasonably be replaced by zeros. Since
a large proportion of zero values still poses a challenge
for hypothesis testing, we devise a new test statistic
which can accommodate zeros. We first discuss why a
new test statistic is needed.
Traditional statistical tests make distributional as-

sumptions or are sensitive to skewed distributions such
as those resulting from data with a pronounced fre-
quency of zero values. To control the proportion of zero
values a “zero filter” can be applied and entails the re-
moval of variables containing too many zeros from the
data [6]. The minimum proportion of zero values re-
quired to remove a variable is rather arbitrary, but the
common consensus is that the proportion should be
high (e.g. at least 50%). This proportion is now a tuning
parameter which forms part of any resulting model and
this is not ideal. Also, we cannot guarantee that import-
ant metabolites will not be discarded even if the group
structure is taken into account. Alternatively, an equal
number of zero observations can be removed from each
group, e.g. the Chop-Lump approach [7] which proved
powerful when combined with the Wilcoxon or t-test.
However, this approach will further reduce already small
group sizes for which metabolomics research is known.
More complex approaches have also been proposed and
we group them into three categories: (i) one-part tests
that account for the mixture distributions of data with a
positive probability of zero values [8, 9]; (ii) two-part
tests that compare the proportions of zeros and the
non-zero values separately [10]; and (iii) inverted sur-
vival analysis methods [11]. However, these approaches
have their limitations. One- and two-part tests are known
to explain the presence of zero values either due to tech-
nical (e.g. below detection limit) or biological (e.g. metab-
olite not present) reasons, but not necessarily both [12].
One- and two-part tests have proved valuable in the vari-
able selection context, but do not have the ability to clas-
sify new subjects and constructing classification models as
a second phase has been criticized [13, 14]. Furthermore,
two-part tests still rely on independently derived and
equal weighted test statistics for the zero and non-zero
data and, as a result, may lack power [15]. Methods de-
rived from survival analysis have also proven valuable, but
require knowledge of the actual detection limit [11].
Our proposed new test statistic is derived from ERp, a

recently introduced approach for variable selection and
classification with application to metabolomics data [14].
In its current form, ERp makes use of p-values associ-
ated with minimized classification error rates to identify
variables that can discriminate between a control and
experimental group. These p-values are calculated based
on the assumption that the cumulative distribution func-
tion (CDF) for the two groups, common under the null
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hypothesis, starts at zero at the lower limit of its range
of values and continuously increases to one, at the upper
limit of its range. This assumption does not allow for
jumps in the CDF and in particular, does not cater for a
positive probability at zero. In this paper we introduce
XERp, an extension of ERp, which takes the presence of
two sources of zeros into account: (i) zeros representing
instances where the metabolite is truly absent from the
biological sample (e.g. metabolites depleted or expressed
by a disease); and (ii) zeros representing observations
below the detection limit of the metabolomics platform
used. Low level metabolites of some diseases, which do
not have a monogenetic origin, are mostly not reflected
as major metabolic perturbations characterized by dom-
inant metabolic biomarkers. These diseases, of which tu-
berculosis meningitis is an example and the data used in
this study, are of particular interest due to their import-
ance in community health. ERp in its current form can
already accommodate many of the characteristics of
metabolomics data such as small sample sizes, unequal
group sizes and data without dominant biomarkers,
making XERp an important and logical extension
through its accommodation of zero values.
In the Methods section, we show how the null distri-

butions used in ERp can be extended to take account of
a probability mass at zero. We find that though ERp is
robust to small proportions of zeros, XERp is more ap-
propriate when these proportions become larger. We ex-
plore the impact of having to estimate p-values as the
true proportion of zeros is unknown. We also outline
the XERp software accompanying this paper. The Re-
sults & Discussion section demonstrates the sensitivity
of the null distributions to the proportion of zeros via
simulation and reports the bias and power associated
with various p-value estimates. Next, we demonstrate
XERp by applying it to a GC-MS metabolomics dataset.
The experimental group represents patients suffering
from tuberculosis meningitis (TBM) – a disease which is
not expressed through one or more dominant diagnostic
biomarkers. We find that XERp is able to select biologic-
ally relevant metabolites by extracting information from
the frequency of zeros, as well as from the distributional
shift. In addition, XERp retains the classification ability
of ERp and performs well for new subjects, as well as in
a leave-one-out (LOO) cross-validation context. We also
discuss a comparison to imputation with non-zero
values reported in the Additional file 2. Finally, we dis-
cuss the utility and future prospects of XERp.

Methods
Notation, terminology & null distribution assumptions
ERp, introduced in [14], aims to identify variables with
significantly higher (upward shift) or lower (downward
shift) values in the experimental group relative to the

control group. Upward and downward classification
rules are constructed based on a threshold value. The
rates of misclassification for both shift directions are
minimised over the thresholds, resulting in two mini-
mised error rates ber�up and ber�down for each variable.

These minimised error rates are then used as test statis-
tics to test the hypothesis that the distribution of the
variable is the same for the control and experimental
groups, while the associated minimising thresholds are
used to classify new subjects. ERp assumes a common
continuous strictly increasing CDF under the null hy-
pothesis. This does not cater for the possibility that the
underlying variable assumes the value zero with positive
probability. Here we extend the notation and termin-
ology used in [14] to account for such a jump in the
CDF at zero.
More specifically, consider a variable W≥0. It may be

that the relevant metabolite is not present in the bio-
logical sample in which case W ¼ 0. It may also be that
there is a detection limit δ > 0 and if W≤δ then the
exact value of W is unknown and the value 0 is recorded
instead, while if W > δ then the exact value of W is re-
corded. Calling the actually recorded variable X , it is re-
lated to the underlying variable W by the equations
X ¼ 0 if W ≤ δ and X ¼ W if W > δ.
Denote the population CDF of W by H and let H take

the value π� in the point 0 (i.e. H 0ð Þ ¼ π� ) and assume
that H xð Þ is continuous and increasing in x for x≥0,
where x denotes the argument at which the CDF is eval-
uated. The jump π� at 0 caters for the possibility that
the underlying variable may take the value 0 with posi-
tive probability, representing instances where the metab-
olite is not present at all. Using the relation between the
underlying variable W and the observed variable X , it
follows that the CDF of X is given by F xð Þ ¼ π ¼ H δð Þ
for 0 ≤ x ≤ δ and F xð Þ ¼ H xð Þ for x > δ. Notice that π≥π�
since π accounts for both the possibilities that the me-
tabolite is not present and that it may be positive but
below the detection limit. Next, let G denote the condi-
tional CDF of X given that X > 0, i.e. the positive part of
the CDF of X . Formally,

G xð Þ ¼ P X≤x X > 0jð Þ ¼ P 0 < X≤xð Þ
P X > 0ð Þ ¼ F xð Þ−F 0ð Þ

1−F 0ð Þ
¼ F xð Þ−π

1−π

Taking into account that F xð Þ ¼ π for 0≤x≤δ:

G xð Þ ¼ 0 f or 0≤x≤δ and

G xð Þ ¼ F xð Þ−π
1−π

f or x > δ

ð1Þ
Then F can be expressed in terms of G by:
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F xð Þ ¼ π f or 0≤x≤δ and
F xð Þ ¼ π þ 1−πð ÞG xð Þ f or x > δ

ð2Þ

Figure 1 below illustrates these assumptions and nota-
tion. The CDF of X is a mixture of a jump of size π at x
¼ 0 and a continuous CDF G xð Þ over x > 0 . Similar
mixed distributions were used by Schisterman et al [16]
in the context of estimating the Youden Index. In their
estimation context, two distributions of this type are re-
quired, one for the control group and another for the
experimental group. The XERp context is simpler in that
only one such distribution is required since the distribu-
tions of the two groups are the same under the null hy-
pothesis. XERp is also related to the developments of
Ruopp et al. [17] for estimating the Youden Index in the
presence of observations below the detection limit.
However, XERp bases variable selection on the well-
known concept of a p-value, providing the added benefit
of a clear interpretation of the variable selection thresh-
old (i.e. the significance level α). The Youden Index, on
the other hand, has no practical interpretation (as dis-
cussed in [14]). In the next section calculation of the
null distributions of the error rate test statistics, required
for conversion to p-values, are discussed in the XERp
context.

The null distribution of ber�up
Denote the actual observed data by yn; xnð Þ ; n ¼ 1; 2; …;

N . Here N is the total number of subjects present and
yn represents the group label of the n-th subject, taking
the value 0 if a subject is in the control group or 1 if it is
in the experimental group. Also xn represents the

observed value of X for the n-th subject. For the time
being we restrict attention to the error rate associated
with the upward rule. With c≥0 denoting a generic
threshold, this rule classifies the n -th subject into the
control group if xn≤c and into the experimental group
otherwise. Let w0 and w1 (with w0 þ w1 ¼ 1) represent
the respective relative costs of misclassification of con-
trol and experimental subjects. Then the error rate for
the upward rule with threshold c is

berup cð Þ ¼ w0

N0

XN

n¼1
I yn ¼ 0; xn > cð Þ

þ w1

N1

XN

n¼1
I yn ¼ 1; xn≤cð Þ ð3Þ

Here N0 and N1 are the numbers of subjects in the
control and experimental groups respectively. The mini-
mised error rate is ber�up ¼ minc≥0 berup cð Þ� �

and this is

still used as the test statistic to test the hypothesis that
F0 xð Þ ¼ F1 xð Þ ¼ F xð Þ , where F xð Þ is the common CDF
of X under the null hypothesis for the control and ex-
perimental groups as in [14]. However, F xð Þ must now
take the form (2), requiring a revised calculation of the
null distribution of ber�up.
In the XERp context some xn ’s may be zero, while the

non-zero xn ’s are all greater than the detection limit δ .
The event xn > c implies that xn is non-zero and there-
fore also that xn > δ. Hence (3) can be written as

berup cð Þ ¼ w0

N0

XN

n¼1
I yn ¼ 0; xn > c; xn > δð Þ

þ w1

N1

XN

n¼1
I yn ¼ 1; xn≤c; xn > δð Þ

þ w1

N1

XN

n¼1
I yn ¼ 1; xn≤c; xn ¼ 0ð Þ ð4Þ

where we have split the second term according to the two
events that xn > δ and xn ¼ 0. Next, evaluate each term in
equation (4) for c > δ and c≤δ . Considering the first term
in (4), if c > δ the intersection of the events xn > c and xn
> δ is equivalent to xn > c, which in turn is equivalent to
G xnð Þ > G cð Þ. If c≤δ the intersection of the events xn > c
and xn > δ is equivalent to xn > δ, which in turn is equiva-
lent to G xnð Þ > G δð Þ ¼ G 0ð Þ ¼ G cð Þ. Over all c, the inter-
section of the events xn > c and xn > δ is thus equivalent
to G xnð Þ > G cð Þ . Considering the second term in (4), if c
> δ the intersection of the events xn≤c and xn > δ is
equivalent to δ < xn ≤ c , which in turn is equivalent to 0
< G xnð Þ≤G cð Þ. If c≤δ the intersection of xn≤c and xn > δ
is vacuous. Over all c , the intersection of the events xn≤c
and xn > δ is thus equivalent to 0 < G xnð Þ≤G cð Þ: Finally,
consider the third term in (4), regardless of whether c > δ
or c≤δ , the intersection of the events xn≤c and xn ¼ 0 is
equivalent to xn ¼ 0, which in turn is equivalent to G xnð Þ
¼ G 0ð Þ ¼ 0. Equation (4) therefore reduces to:

Fig. 1 An illustration of the CDFs discussed. The graph illustrates the
distributions of the variables W and X using a standard log-normal
CDF to depict the positive part of H xð Þ, represented by the blue line,
with π� set to 0.1. The assumptions on H xð Þ imply that G xð Þ,
represented by the green line, is continuous and increasing over
x > δ with δ set to 0.5. For x≤δ, F xð Þ ¼ π which is equal to 0.32 in
this illustration, represented by the pink line. For x > δ, F xð Þ ¼ H xð Þ,
but their graphs were slightly shifted for clarity
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berup cð Þ ¼ w0

N0

XN

n¼1
I yn ¼ 0; G xnð Þ > G cð Þð Þ

þ w1

N1

XN

n¼1
I yn ¼ 1; 0 < G xnð Þ≤G cð Þð Þ

þ w1

N1

XN

n¼1
I yn ¼ 1; G xnð Þ ¼ 0ð Þ

ð5Þ
Putting un =G(xn) and b =G(c), it follows that berup cð Þ

in (5) can be restated as:

eerup bð Þ ¼ w0

N0

XN

n¼1
I yn ¼ 0; un > bð Þ

þ w1

N1

XN

n¼1
I yn ¼ 1; 0 < un≤bð Þ

þ w1

N1

XN

n¼1
I yn ¼ 1; un ¼ 0ð Þ ð6Þ

Note that the terms in equation (6) neatly address the
group differences we want to investigate. The first two
terms evaluate the presence of an upward shift in the
distribution of the experimental group, while the third
term evaluates the presence of a difference in the pro-
portion of zero observations.
The range c≥0 is equivalent to 0≤b≤1 so that ber�up

¼ min0≤b≤1 eerup bð Þ� �
. To derive the null distribution of

ber�up from this expression requires the common CDF of

the un ‘s. Note that the un ‘s are independent and identi-
cally distributed (iid), since the xn ‘s were assumed to be
iid for the purpose of calculating the null distribution.
By definition the common CDF of the un ‘s is P un≤uð Þ ,
where u denotes the argument of the CDF. Considering
separately the cases u ¼ 0 (equation 7) and u > 0 (equa-
tion 8):

P un ¼ 0ð Þ ¼ P G xnð Þ ¼ 0ð Þ ¼ P xn ¼ 0ð Þ ¼ F 0ð Þ
¼ π ð7Þ

P un≤uð Þ ¼ P G xnð Þ≤uð Þ ¼ P xn≤G−1 uð Þ� �
¼ F G−1 uð Þ� � ¼ π þ 1−πð ÞG G−1 uð Þ� �
¼ π þ 1−πð Þu ð8Þ

The common CDF of the un ‘s is also a mixture be-
tween a jump at zero of size π and a uniform distribu-
tion on (0,1). The distribution of the un ‘s only depends
on π and, since eerup bð Þ is only a function of the un ‘s, the
same holds for ber�up ¼ min0≤b≤1 eerup bð Þ� �

.

To conclude, the null distribution of ber�up (equation 3)

depends only on the parameter π and not on any of the
other parameters (π� , δ or the positive part CDF G xð Þ).
Though ber�up is no longer fully non-parametric, as was

the case in [14], the only remaining unknown parameter
is π . Not needing to take into account π� , δ or G xð Þ
when calculating p-values is a major advantage since
these quantities are typically all unknown. Furthermore,
the dependence on π only becomes pronounced for

larger π, as shown in Fig. 2 below. To calculate the null-
distribution of ber�up for any given value of the parameter

π via simulation, the algorithm in Table 1 of [14] can
still be followed, with the exception that the un ‘s must
be sampled from the CDF given by (7) and (8). This is
easily achieved by drawing vn from a uniform (0,1) dis-
tribution and setting un ¼ 0 if vn≤π and un ¼ vn � πð Þ=
1� πð Þ otherwise (refer to Section S2 of the Additional
file 1 for more detail). In the next section, several solu-
tions are proposed to finding p-values in the presence of
the remaining unknown parameter π.
A simulation study was performed to assess the sensi-

tivity of the null distribution of ber�up to changing values

of π . Figure 2 illustrates these null distributions for π
varying from 0 to 0.8 in steps of 0.2. Note that the distri-
butions are discrete, with jumps at the possible values of
ber�up , being the different numbers in the list

w0n0 þ w1n1ð Þ=N : n0 ¼ 1; 2;…;N0; n1 ¼ 1; 2;…;N1f g .
The null distribution of ber�up changes slowly when π is

small - in fact the graphs for π ¼ 0 and 0.2 are almost
indistinguishable in Fig. 2. Even at π ¼ 0:4 the differ-
ences are quite small, but become increasingly pro-
nounced for larger π . Note that for π ¼ 0:8 the million
simulation repetitions yielded no error rate values below
0.225, implying that the probability below 0.225 rapidly
becomes very small for the sample sizes used in this il-
lustration. In fact, under the null hypothesis the prob-
ability of the event ber�up ¼ 0 can be calculated

analytically. This is shown in Section S3 of the

Fig. 2 Null CDF for ber�up with π taking on different values. One

million simulation repetitions, group sizes N0 ¼ N1 ¼ 20 and the
weight set w0 ¼ w1 ¼ 1

2 were used to calculate the null-
distributions. Each line represents the CDF for a different value of π,
π ¼ 0 (black), π ¼ 0:2 (light blue), π ¼ 0:4 (purple), π ¼ 0:6 (dark
blue) and π ¼ 0:8 (red). The CDFs are plotted on a log10 scale for
clarity purposes, since interest centres on the extreme left tail
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Additional file 1, which also gives this probability as a
function of N0, N1 and π in a reference table.

Computing p-values
Next p-values need to be computed for observed values of
ber�up . This is no longer straightforward, since the null distri-

bution depends on π and we do not know its true value. In
this section three possible choices of p-values are discussed.
Let pπ denote the p-value of an observed ber�up when re-

ferred to the null CDF with the true parameter π . Since
we do not actually know the value of π , we cannot use
pπ in practice and need specific choices. The first choice
is p0 , which implies referring ber�up to the null CDF with

π ¼ 0 . This amounts to reverting back to the original
ERp p-value and ignoring the possible effects of the
zeros.
The second choice is the maximum p-value, defined as

pmax ¼ max0≤π≤1 pπf g, and is aimed at ensuring the Type
I error rate is controlled since rejection of the null hy-
pothesis at significance level α using pmax implies pmax≤α
. Therefore pπ≤pmax≤α and the null hypothesis will also
be rejected if the true pπ were used. The calculation of
this estimate requires some additional simulation: (i) cal-
culate the null distributions over a grid of all possible π
values given the sample sizes in each group (i.e. N0 and

N1); (ii) list the individual p-values, pertaining to the ob-
served error rate, as π varies over this grid; (iii) then
pmax is the maximum in this list. In practice it is not ne-
cessary to use a fine grid since the maximum usually oc-
curs at small choices of π where the null-distribution
does not change dramatically (Fig. 2).
The third choice estimates π by the proportion of

zeros observed in the dataset (denoted by π̂ ) and uses
the corresponding p-value, i.e. pobs ¼ pπ̂ .
In datasets with a low frequency of zeros (reflected

in π̂ being small), p0 , pmax and pobs should yield
similar results since the null distribution changes
only slowly for small values of π (Fig. 2). If one is
determined to control the Type I error rate, pmax

would be a reasonable choice, but this may also
imply loss of power. To investigate this further a
comparative study was performed between the three
proposed p-values, the details of which are reported
in the Results & Discussion section. The outcomes
of this investigation lead to our recommendation of
pobs as the best choice.

Other error rates
The developments and results discussed above are based
on the upward rule error rate test statistic ber�up , but can

Table 1 XERp Results for TBM vs Healthy Controls

Variable ER C Direction Observed
p-value

Percentage zeros

Control Experimental Overall

2-hydroxybutyric acid 0.08 0.3 Up 0 68% 0% 44%

3-hydroxyisovaleric acid 0.09 20.05 Up 0 0% 0% 0%

4-hydroxyphenylpyruvic acid 0.11 0 Up 0 100% 18% 71%

methylcitric acid 0.1 0.45 Up 0 55% 6% 38%

quinolinic acid 0.05 2.38 Up 0 45% 0% 29%

2-hydroxyvaleric acid 0.12 0 Up 0 77% 6% 52%

non-annotated-1 0.15 0 Up 0 100% 24% 73%

uracil 0.13 0.67 Up 0 48% 0% 31%

1,4-dihydroxycyclohexane 0.14 0.23 Up 0 55% 6% 38%

non-annotated-3 0.19 0 Up 0 100% 29% 75%

2-ketoglutaric acid 0.16 0.56 Up 0 55% 6% 38%

phenylacetylglutamine 0.17 1.02 Up 0 90% 24% 67%

hexanoic acid 0.16 0.34 Down 0 35% 35% 35%

pyruvic acid 0.17 0.25 Up 0 29% 0% 19%

isocitric acid 0.17 1.6 Up 0 32% 0% 21%

glycolic acid 0.17 12.98 Up 0 0% 0% 0%

pyroglutamic acid 0.17 4.69 Up 0 52% 18% 40%

vanillylmandelic acid 0.18 7.5 Up 0 13% 0% 8%

The table lists the discriminatory variables based on their significant pobs-values when compared to B-H adjusted significance level (α ¼ 0:05). The first column lists
the names of these variables (labelled “Variable”), the second the minimized error rate (labelled “ER”) and the third the associated threshold (labelled “C”). The di-
rections of the minimized error rates are given in the fourth column labelled “Direction”. Column five contains the pobs-values. The last three columns also report
the percentages of zeros in each group and in the combined data set
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easily be extended to the downward and minimum error
rates, ber�down and ber�min , as described in more detail in
Section S1 of the Additional file 1. Importantly, the null
distributions of ber�up and ber�down are no longer the same

if π > 0, as was the case in [14].

XERp software
XERp was programmed in Matlab [18] and all scripts and
functions are provided as Additional file 2 along with an ex-
ample application. The software allows the user to (i) gener-
ate the null distributions; (ii) rank variables based on XERp
p-values; (iii) select variables for any given significance level
after correcting for multiple testing by controlling either
the family-wise error rate or the false discovery rate; and
(iv) predict group membership of new samples or perform
leave-one-out cross-validation. A discussion of the software,
as well as a description of the results produced, are in-
cluded in Section S4 of the Additional file 1, with a graph-
ical overview provided as Additional file 1: Figure S1.

Results & discussion
Comparison of the p-values
Here we report the results of a comparative simula-
tion study to assess the bias and power of the three
p-value alternatives. Five performance metrics were
used. Firstly, to assess estimation accuracy, the bias
and mean squared error (MSE) were used. The bias
and MSE were calculated by comparing the different
p-value alternatives to pπ , conditioning on a 10% sig-
nificance level. Next, the test size (referred to as the
size) was used to assess the Type I error probability.
The size represents the fraction of times the estimate
falsely rejected the null hypothesis given a 10% sig-
nificance level (i.e. α ¼ 0:1). These three metrics were
used to evaluate the performance of p0, pmax and pobs
under the null hypothesis. Finally, the performance of
the three p-values were also assessed under the alter-
native hypothesis. To do so the average p-value and
the proportion of null hypothesis rejections (reported
in the Additional file 1: Figure S4 and S5) were used
to assess the discriminatory power of the different p-
values. The alternative hypothesis was simulated using
a log-normal (0,1) distribution for the control group
and a shifted log-normal (μ ,1) distribution, with shift
equal to μ, for the experimental group. A jump com-
ponent was added to these distributions by assuming
different proportions of zeros in each group. The sim-
ulations were repeated a hundred thousand times for
each shift. Null distributions were based on one mil-
lion repetitions. A more detailed description of the
steps to calculate all five performance metrics is pro-
vided in Section S5 and S6 of the Additional file 1.
Two group size and weight scenarios were used. The

first (scenario 1) corresponds to equal group sizes (
N0 ¼ N1 ¼ 20 ) and weights (w0 ¼ w1 ¼ 1

2 ), while the
second (scenario 2) is motivated by the metabolomics
dataset used to illustrate XERp in Section 3.2, namely,
N0 ¼ 31; N1 ¼ 17; w0 ¼ 0:35; w1 ¼ 0:65.

Figure 3 shows graphs of the bias, MSE and size as
functions of π for scenarios 1 and 2. The results for p0
and pmax differ so little that they are almost indistin-
guishable. Moreover, they have rapidly increasing bias
and MSE for increasing values of π so that they are not
recommendable unless one is quite certain that π is
small. The p-value alternative pobs does much better,
having small bias and MSE, while remaining so for in-
creasing values of π. Note that the bias and MSE graphs
for p0 and pmax were truncated to make the bias and
MSE of pobs more visible. The size results, given a 10%
significance level, are presented in the final row of
Fig. 3. Additional size results, given significance levels
of 1 and 5%, are reported in Additional file 1: Figure
S2. It is evident that pobs is better able to retain the sig-
nificance level specified, compared to the other esti-
mates regardless of whether π is small or large.
Next, the performance of the three p-value alterna-

tives is compared under the alternative hypothesis, i.e.
there is either a difference in the proportion of zeros
(the jump part) or in the continuous part of the dis-
tributions or in both. Define π0 and π1 as the popula-
tion proportions of zeros among control experimental
subjects respectively. The power was assessed given
three π0 and π1 combinations. The first two represent
instances where the proportion of zeros: (i) contains
discriminatory information coinciding with the distri-
butional shift (i.e. consonant variables where the
group with the larger proportion of zeros has a lower
mean [10, 12, 15]) represented by the choice π0

¼ 0:25; π1 ¼ 0 ; and (ii) does not contain discrimin-
atory information in that they are equal, represented
by the choice π0 ¼ π1 ¼ 0:25. A third combination is
included in the (Additional file 1: Figure S3) to evalu-
ate the power given dissonant variables (i.e. where the
proportion of zeros contains discriminatory informa-
tion different from the distributional shift [10, 12,
15]) represented by the choice π0 ¼ 0; π1 ¼ 0:25 .
Though this is an unusual scenario (i.e. where the
group with the larger proportion of zeros also has a
higher mean) it is not unheard of as subjects react
differently in the presence of disease and some dis-
eases are known to cause different metabolic changes
at different stages.

Figure 4 shows the average p-value as a measure of
testing power for different zero proportions in the
two groups and increasing distributional shifts in the
experimental group ðμÞ . To make the differences
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between the p-value alternatives more visible the
average p-value was calculated conditioning on p≤α
with α set to 10%. For the same reason the graphs
are not displayed for the entire range of shift values
(μ). Once no differences between p-value alternatives
are apparent and the average p-values have achieved
sufficiently low levels the graphs are no longer dis-
played. The graphs comparing the proportions of null
hypothesis rejections can be found in the Additional
file 2. To interpret Fig. 4, it is important to note that
when comparing p-value alternatives, the p-value with
the lower average is able to detect difference faster
given the conditions specified, i.e. it has greater
power or smaller Type II errors. We find that the
three p-value alternatives are almost indistinguishable

in most instances and when differences are noted,
pobs always outperforms pmax and p0 . The differences
between the three p-value alternatives and pπ show
the price paid in terms of power for not knowing the
true value of π . On the basis of the evidence pre-
sented in Figs. 3 and 4, pobs is a better choice com-
pared to p0 and pmax . The p-value recommended for
use in XERp is therefore pobs.

Comparison to imputation
As a further assessment of XERp, a limited comparison
to imputation was done. We only briefly discuss the
setup and outcome of the comparison here, but report it
in greater detail in Section S7 of the Additional file 1.

Fig. 3 Bias, MSE and size of the three p-value alternatives for ber�up . The number of simulation repetitions was a hundred thousand with π varying

from 0 to 0.7 and the group size and weigh choices as indicated (left panel: N0 ¼ N1 ¼ 20 and w0 ¼ w1 ¼ 0:5 and right panel: N0 ¼ 31; N1 ¼ 17
and w0 ¼ 0:35; w1 ¼ 0:65). The lines represent the results for the three p-value (i) p0 in dark blue; (ii) pmax in purple; and (iii) pobs in light blue. The
top row depicts the bias, while the middle row depicts the MSE. The red line in the size graphs (bottom row) corresponds to pπ . The size was calcu-
lated for a significance level of 10%
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The results from XERp, applied to the data with zeros,
was compared to the results from ERp applied to the same
data, but with zeros values replaced by positive random
numbers. We find that replacing zeros with numbers im-
puted between some lower bound and the smallest non-
zero value can have unwanted effects without real gains.
The grid of classification thresholds evaluated, the mini-
mum error rate statistic and corresponding minimising
classification threshold and ultimately the associated p-
value all become random to some extent when imputing
zero values. If the p-value happens to be in the critical
area an important variable may be missed or an unimport-
ant variable may be selected by mistake, all depending on
numbers chosen at random. Moreover, if a new subject
has a zero value for a selected variable, the imputation rule
used must first be applied. Classification is then based on
whether this imputed number is larger or smaller than the
threshold which may also have been estimated from im-
puted numbers. All this adds to unnecessary uncertainty
about conclusions drawn without any obvious gains com-
pared to simply using XERp.

Application to metabolomics data
Here we report the results of XERp as applied to data
generated from the GC-MS organic acid analysis of
urine samples. Refer to the paper and SI of Mason et al.
[19] for a full description of the processing of the data
and clinical profiles of patients and controls. The data-
set contains concentration levels for 185 variables ob-
served in one experimental and two control groups.
Variables refer to 180 substances that could be un-
equivocally annotated as metabolites and five with in-
sufficient analytical-chemical information to be
identified as metabolites, and thus designated as non-
annotated variables. The experimental group consisted
of 17 children diagnosed with TBM, referred to as the
TBM group. The first control group consisted of 31
healthy infants, referred to as the Healthy Controls
group. The second control group consisted of 21 ser-
iously ill children whose initial clinical presentation was
similar to the TBM cases, but subsequently proved to
be negative for TBM, referred to as the Sick Controls
group.

Fig. 4 Measures of power of the three p-value alternatives for ber�up . Observations for control subjects followed a log-normal (0,1) distribution while

those of experimental subjects where drawn from a log-normal (μ,1) distribution where μ assumed values ranging between 0 and 2. The number
of simulation repetitions was a hundred thousand with π0 and π1 pairs selected as indicated (i.e. the top row π0 ¼ 0:25; π1 ¼ 0 and the bottom
row π0 ¼ π1 ¼ 0:25). The graphs represent the two group size and weigh scenarios as indicated (left panel: N0 ¼ N1 ¼ 20; w0 ¼ w1 ¼ 0:5 and
right panel: N0 ¼ 31; N1 ¼ 17; w0 ¼ 0:35; w1 ¼ 0:65). The lines represent the averages of the three p-value estimates (i) p0 in dark blue; (ii) pmax

in purple; and (iii) pobs in light blue, conditioned on a 10% significance level. The red lines correspond to pπ
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The results reported here firstly show the list of me-
tabolites identified by XERp as important based on their
ability to discriminate between TBM and Healthy Con-
trols. The weight pair was used to adjust for the differ-
ences in sample size by setting them proportional to the
inverses of the group sizes which leads to w0 ¼ N1

N0þN1

and w1 ¼ N0
N0þN1

when taking into account that they must

add up to 1. One million simulation repetitions were
performed to build the null distributions for the different
comparisons, while ber�min was used as test statistic.

Table 1 shows selected output from the XERp software
(as describe in the Additional file 2) for the metabolites se-
lected based on pobs . The variable selection cut-off was
based on the Bonferroni-Holm (B-H) multiple significance
testing method, as explained in [14], at a family-wise error
rate of 5%. Note that the software accompanying this
paper can alternatively correct for multiple testing by con-
trolling the false discovery rate, please refer to Section S4
of the Additional file 1 for more detail.
It is beyond the scope of this paper to provide an ex-

tensive interpretation of the biological significance of
the eighteen variables listed in Table 1, but note that
fifteen of the sixteen annotated metabolites bear some
relationship to the clinical consequences in patients
suffering from of TBM. The variables 2-hydroxybutyric,
3-hydroxyisovaleric, 4-hydroxyphenylpyruvic and 2-
hydroxyvaleric acids are indicative of a perturbed en-
ergy metabolism in the patients due to the disease itself
or as a consequence of antibiotic treatment. These vari-
ables are of low diagnostic value towards TBM. How-
ever, methylcitric acid most likely originated from the
well-characterized methylcitrate cycle of Mycobacter-
ium tuberculosis (Mtb), the bacterium known to induce
TBM in the human host [20, 21]. The presence of qui-
nolinic acid in the urine samples of the TBM patients is
likely due to perturbations in the serotonin-
tryptophane-pyridoxal phosphate pathways caused by
TBM [22]. In accordance with these biological observa-
tions, methylcitric acid and quinolinic acid were re-
cently proposed as two of four metabolites with high
diagnostic potential for TBM [19]. Noteworthy: (1) A
variable of unknown chemical structure (non-anno-
tated-1) clearly highlights the importance of chemical
characterization of unknown substances associated with
infectious diseases in man, given the potential import-
ant diagnostic and translational value of these sub-
stances; (2) A gut metabolite, 4-hydroxyhipuric acid,
included as an important indicator by Mason et al. [19],
is not included in this list, but is selected when control-
ling the false discovery rate rather than the family-wise
error rate.
Aside from the biological relevance of the variables

listed in Table 1, we also note some valuable aspects of

XERp. According to Table 1, 4-hydroxyphenylpyruvic
acid contained 71% zero values overall of which 100%
occurred in the control and 18% in the experimental
group, while hexanoic acid contained 35% zero values
in both groups. Both are listed as important by XERp,
while both could just as easily have been excluded had
zero-filtering been applied beforehand, even if the filter
accounted for the group structure. Most importantly
XERp is able to identify discriminatory variables regard-
less of whether π is small (e.g. 3-hydroxyisovaleric acid
with no zero observations) or large (e.g. non-
annotated-3 with 75% zero observations) and without
requiring any knowledge of the detection limit.
Secondly, the classification ability of the resulting list

was assessed in two ways: (i) based on LOO cross-
validation; and (ii) using the second control group as a
hold-out set. This approach was followed for three rea-
sons: (i) given the small group sizes we felt it unwise to
select a hold-out or test set from the TBM and Healthy
Control groups; (ii) small group sizes are common to
metabolomics studies and as such it is important to
make available and illustrate the LOO approach to asses-
sing classification ability; and (iii) using a group of diffi-
cult to classify subjects (i.e. Sick Controls) allows us to
assess the clinical practicality of the list, specifically,
whether the list can distinguish between patients with
TBM and patients with similar symptoms but not having
TBM, indicated by the absence of Mtb infection.
The LOO cross-validation results are reported in

Table 2. In each iteration of the N ¼ N0 þ N1 LOO itera-
tions, variables were selected based on p-values derived
from the null CDF specific to the reduced group sizes and
revised proportions of zeros. The CDFs were constructed
using a hundred thousand simulation repetitions and the
weight pairs did not change with the changing group sizes.
Classification was performed in the exact same manner as
described in [14]. We made use of the threshold resulting
from the corresponding iteration to classify the subject left
out. More details on how LOO cross-validation was per-
formed are provided in the Additional file 2.
Table 2 illustrates the variable selection stability of

XERp, as is evident from the “% Selected” column. The
top 11 variables (i.e. variables achieving a “% Selected”
of 100) were consistently selected regardless of which
subject was excluded. Notably, 10 of the top 11 corres-
pond to the top 10 variables selected when no cross-
validation is performed, with non-annotated-1, methyl-
citric and quinolinic acid in the top 4. The selection
frequency of lower ranking variables dwindles quickly
(75 to 17%), while the majority of variables were never
selected (not shown). The classification accuracy of
XERp is high with the top 9 variables achieving sensi-
tivity and specificity levels exceeding 70% when classify-
ing “left out” and therefore unseen subjects. The top 4

van Reenen et al. BMC Bioinformatics  (2017) 18:83 Page 10 of 13



variables all had overall classification error rates (1-
classification accuracy) of 10% or less, which may be a
good argument to reduce the complexity of the list as a
classification model to only 4. In addition, the average
thresholds do not differ dramatically from those ob-
tained using all available subjects (column 3 of Table 1),
illustrating the robustness of XERp.
Table 3 contains the results when classifying the Sick

Controls based on the variable list in Table 1. A predic-
tion error is made when a Sick Control is classified into
the TBM group. Interestingly non-annotated-3 made no
classification errors, while non-annotated-1 only classi-
fied 3 Sick Controls as TBM and was also the second
highest ranking variable in the LOO cross-validation.
Though 4-hydroxyphenylpyruvic acid performed the
best in the LOO cross-validation context, it is a marker
of disease in general rather than a TBM-specific marker,
as it only classified 62% of Sick Controls correctly.
The potential diagnostic value of methylcitric acid

and non-annotated variables was already discussed
above. Phenylacetylglutamine and pyroglutamic acid
also occurred in the list of important variables summa-
rized in Table 1. Interesting, phenylacetylglutamine has
been implicated in autism [23], while a metabolomics
study highlighted pyroglutamic acid as one of 13 me-
tabolites that differentiate between post-stroke patients
group and healthy control subjects [24]. Both these
neuropathological conditions are not related to TBM

Table 2 LOO XERp Results for TBM vs Healthy Controls

Variable %
Selected

Classification Accuracy % Average
threshold

Direction

Control Group Experimental Group Overall

4-hydroxyphenylpyruvic acid 100 100 82 94 0 Up

non-annotated-1 100 100 76 92 0 Up

methylcitric acid 100 94 88 92 0.45 Up

quinolinic acid 100 87 94 90 2.38 Up

2-hydroxybutyric acid 100 77 94 83 0.31 Up

2-hydroxyvaleric acid 100 77 94 83 0 Up

phenylacetylglutamine 100 90 71 83 1.02 Up

3-hydroxyisovaleric acid 100 71 100 81 20.02 Up

1,4-dihydroxycyclohexane 100 71 88 77 0.23 Up

2-ketoglutaric acid 100 65 82 71 0.53 Up

uracil 100 61 88 71 0.69 Up

non-annotated-3 75 100 71 90 0 Up

hexanoic acid 67 65 94 75 0.35 Down

isocitric acid 33 52 94 67 1.67 Up

pyruvic acid 17 81 76 79 0.25 Up

The table displays an excerpt of the LOO XERp results. The table is sorted in descending order of the second column (“% Selected”), i.e. the percentage of times a
variable (as listed in the first column under “Variable”) was selected out of the N ¼ N0 þ N1 LOO iterations. In addition, the table reports the specificity (accurate
classification of control subjects) and sensitivity (accurate classification of experimental subjects) percentages in columns 3 and 4, as well as the overall
classification accuracy in column 5. Columns 6 and 7 contain the threshold values averaged over all instances the variable was selected (“Average Threshold”) and
the direction of the shift found to be significant (“Direction”)

Table 3 Classification Results for Sick Controls

Variables Prediction Error

Count Rate

non-annotated-3 0 0%

non-annotated-1 3 14%

phenylacetylglutamine 3 14%

pyroglutamic acid 3 14%

methylcitric acid 4 19%

2-hydroxyvaleric acid 7 33%

quinolinic acid 7 33%

3-hydroxyisovaleric acid 8 38%

4-hydroxyphenylpyruvic acid 8 38%

vanillylmandelic acid 9 43%

pyruvic acid 11 52%

1,4-dihydroxycyclohexane 12 57%

2-ketoglutaric acid 13 62%

glycolic acid 13 62%

uracil 13 62%

2-hydroxybutyric acid 16 76%

isocitric acid 16 76%

hexanoic acid 18 86%

The table lists the classification results for Sick Controls using variable selected
when XERp is applied (without LOO cross-validation) to the TBM and Healthy
Controls data. The first column lists the variable, while the second and third list
the prediction error in terms of absolute count and percentage respectively
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and indicate potential importance in clinical chemical
studies of diseases that resemble meningitis, but are
not caused by Mtb.

Conclusion
We extended the ERp testing approach to take account of
zeros occurring with positive probability by introducing a
jump component into the CDF of the underlying variable
and named it XERp. Though XERp is no longer nonpara-
metric, it only requires the estimation of one parameter,
the proportion of zeros, which can easily be estimated
from the available data. XERp is able to simultaneously ex-
tract information from differences in the proportion of
zeros between two groups as well as the distributional
shifts. XERp does not require any knowledge of the detec-
tion limit. The most distinctive feature of XERp is that it
is not only a variable selection tool, but also has the ability
to directly classify new subjects.
XERp is favourable compared to combining ERp with

random imputation of zero values. The latter may lead
to threshold values that are only based on the random
imputed values and therefore also would cause random-
ness in the classification of new subjects.
Future research will develop XERp in two ways. The

two-part testing approaches briefly mentioned in the
Background may hold some benefit as they are able to
exploit both consonant as well as dissonant variables.
Our first endeavour is therefore to develop XERp along
the lines of a two-part test to ensure dissonant variables
are correctly evaluated. Secondly, XERp is a univariate
approach and only addresses the multivariate nature of
metabolomics data by correcting for multiple testing.
Future research will aim to generalize XERp to the
multivariate setting.

Additional files

Additional file 1: Figure S1. Overview of the XERp software. Figure S2.
Size of the three p-value alternatives. Figure S3. Average p-value (p≤0:1)
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given. α = 5%. Figure S5. Proportion of null hypothesis rejections given
α = 1%. (PDF 532 kb)

Additional file 2: A compressed folder (XERp Software.zip) containing the
Matlab scripts to perform XERp as well as an example application. (ZIP 11 kb)
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