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Abstract

Background: With the growing popularity of using QSAR predictions towards regulatory purposes, such predictive
models are now required to be strictly validated, an essential feature of which is to have the model’s Applicability
Domain (AD) defined clearly. Although in recent years several different approaches have been proposed to address
this goal, no optimal approach to define the model’s AD has yet been recognized.

Results: This study proposes a novel descriptor-based AD method which accounts for the data distribution and
exploits k-Nearest Neighbours (kNN) principle to derive a heuristic decision rule. The proposed method is a
three-stage procedure to address several key aspects relevant in judging the reliability of QSAR predictions. Inspired
from the adaptive kernel method for probability density function estimation, the first stage of the approach defines
a pattern of thresholds corresponding to the various training samples and these thresholds are later used to derive
the decision rule. Criterion deciding if a given test sample will be retained within the AD is defined in the second
stage of the approach. Finally, the last stage tries reflecting upon the reliability in derived results taking model
statistics and prediction error into account.

Conclusions: The proposed approach addressed a novel strategy that integrated the kNN principle to define the AD
of QSAR models. Relevant features that characterize the proposed AD approach include: a) adaptability to local density
of samples, useful when the underlying multivariate distribution is asymmetric, with wide regions of low data density;
b) unlike several kernel density estimators (KDE), effectiveness also in high-dimensional spaces; c) low sensitivity to the
smoothing parameter k; and d) versatility to implement various distances measures. The results derived on a case study
provided a clear understanding of how the approach works and defines the model’s AD for reliable predictions.
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Background
The popularity of QSARs has seen a growth from time
to time and was complemented by the availability of
more sophisticated and efficient model development tech-
niques. This fact was further supported by the consider-
ation of QSAR predictions for regulatory purposes. To deal
with risk assessment of chemicals for their safe use, a new
European legislation – REACH (Registration, Evaluation,
Authorization and restriction of Chemicals) was approved
in the recent years [1]. To reduce animal testing and re-
placing them by cost effective methods, this law encourages
* Correspondence: viviana.consonni@unimib.it
Milano Chemometrics and QSAR Research Group, Department of Earth and
Environmental Sciences, University of Milano-Bicocca, P.za della Scienza 1,
Milano 20126, Italy

© 2013 Sahigara et al.; licensee Chemistry Cen
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
the use of QSARs as a possible alternative when enough ex-
perimental data is not available, provided that the model
was strictly validated for its regulatory consideration [2].
There are several aspects that must be taken into ac-

count before considering a QSAR model reliable enough.
In other words, the validity of a model has to be evalu-
ated. Existing literature has often emphasized upon val-
idating the QSAR models to reflect their robustness and
predictive ability. In 2004, following five OECD principles
for model validation were adopted to validate a QSAR
model for its regulatory consideration: a) a defined end-
point; b) an unambiguous algorithm; c) a defined domain
of applicability d) appropriate measures for goodness-of-
fit, robustness and predictivity and e) mechanistic inter-
pretation, if possible [3].
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Applicability domain (AD) of a QSAR model defines
the model’s limitation in its structural domain and re-
sponse space. In other words, this principle for model
validation restricts the applicability of a model to reliably
predict those test samples that are structurally similar to
the training samples used to build that model [4-6]. Sev-
eral approaches were proposed in the past years to de-
fine the AD of QSAR models. These approaches mainly
differed in the algorithm used to characterise the AD
within the descriptor space, where the model can predict
reliably [7,8]. For instance, some classical approaches
suggested defining the domain of applicability by a) con-
sidering the range of descriptors values; b) enclosing the
training space in a convex hull; c) calculating the dis-
tance of a query compound from a defined point within
the model’s descriptor space and d) estimating the Prob-
ability Density Function for the given data. All these ap-
proaches were associated with their own advantages and
limitations [2,7-10]. From time to time, several ap-
proaches were proposed that were aimed to be more ef-
ficient or were thought to overcome several limitations
of existing approaches.
This article proposes a new heuristic approach towards

defining the AD of QSAR models. The basis of this
novel strategy is inspired from the k-Nearest Neighbours
(kNN) approach and adaptive kernel methods for prob-
ability density estimation (kernel density estimators, KDE)
[11]. Due to its simplicity and easy implementation, kNN
had been a preferred choice for several proposed QSAR
studies [6,12-18].
In the classical kNN approach for AD evaluation

[6,18], average distances of all the training samples from
their k nearest neighbours are calculated and used to de-
fine a unique threshold to decide if a test sample is inside
or outside the model’s AD (for example, 95th percentile).
Moreover, in the framework of the probability density
function estimation, the nearest neighbour method pro-
vides density estimates depending on the Euclidean dis-
tance to the k-th nearest data point [19]. Following the
same concept, the proposed method tries to integrate the
kNN principle with the salient features of adaptive kernel
methods [11], which define local bandwidth factors corre-
sponding to the training data points and use them to build
the density estimate at a given point.
The novelty of the kNN based AD approach proposed

in this article lies in the overall strategy that is properly
executed in a three-stage procedure to encapsulate and re-
flect upon several significant aspects towards model valid-
ation. Moreover, some features common to most of the AD
approaches were dealt differently with this approach; for
instance, rather than defining a general threshold as in all
the distance-based approaches, each training sample in this
approach was associated with its individual threshold; in
order to find an optimal smoothing parameter k, this
approach performed a k-optimization procedure based on
Monte Carlo validation; additionally, model’s statistical pa-
rameters and other relevant aspects were dealt simultan-
eously to reflect upon the reliability in the derived results.
To better understand the strategy behind this approach,

it was implemented on a dataset from the literature. The
dataset was chosen from the CAESAR project to predict
the bioconcentration factor (BCF) [20,21].The derived re-
sults were discussed in comparison with those derived
from other literature AD approaches.

Methods
k-Nearest Neighbours principle from AD perspective
The kNN principle basically reflects upon the structural
similarity of a test sample to the training samples used to
build that model. In theory, the distance of a query sample
is considered from its k closest data points in the chemical
space. Lower distance values correspond to a higher simi-
larity, while the increasing distances signify higher levels
of structural mismatch. The k value plays a significant role
in defining how constraint the approach will be and thus,
it can be referred to as the smoothing parameter.
A stepwise execution of the following three stages

characterises the workflow of this approach:

1) defining thresholds for training samples
2) evaluating AD for new/test samples
3) optimizing the smoothing parameter k

To allow a better interpretation of the proposed ap-
proach, results on a two-dimensional simulated dataset
will be considered throughout the major part of this dis-
cussion and wherever applicable. As shown in Figure 1,
this dataset has a cluster of 48 training samples and the
remaining two training samples (49 and 50) are located
quite in the extremities of the space with respect to
these clustered samples.

Defining thresholds for training samples
Thresholds have a great influence in characterising the
AD for reliable predictions; a test sample that exceeds
the threshold condition is associated with an unreliable
prediction.
Like the adaptive kernel methods, instead of defining a

general unique threshold as seen with several classical
AD approaches, the proposed approach allocates a set of
thresholds corresponding to the various training samples.
For a given value of k, threshold allocation process can

be summarised as follows:

a) First of all, the distances of each training sample
from the remaining n – 1 samples are calculated and
ranked in increasing order, n being the total number
of training samples. This will result in a n x (n −1)



Figure 1 Scatter plot of the simulated dataset.

Figure 2 Simulated data set. Thresholds ti vs. number of training
neighbours Ki plot (k = 12).
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neighbour table D; an entry Dij of the table
corresponds to the distance of the i-th sample from
its j-th nearest neighbour:

Di1 ≤Di2 ≤… ≤Di;n−1

b) The average distance of each i-th sample from its k
nearest neighbours is calculated considering the first
k entries in i-th row of the neighbour table:

�di kð Þ ¼

Xk
j¼1

Dij

k
where; 1 ≤ k ≤ n−1 and �di kð Þ ≤�di k þ 1ð Þ

ð1Þ
A vector �d kð Þ of average distance values is then
derived considering all the samples in the training set.

c) Next, a reference value (from now on referred as Ref
Val), ed kð Þ is determined as follows:

ed kð Þ ¼ Q3 �d kð Þð Þ
þ 1:5 Q3 �d kð Þð Þ−Q1 �d kð Þð Þ½ � ð2Þ

where, Q1 �d kð Þð Þ and Q3 �d kð Þð Þ are the values
corresponding to the 25th and 75th percentiles in
the vector �d kð Þ, respectively [22].

d) Next, the ordered distances of each i-th training
sample from all other n - 1 training samples are
compared with the Ref Val. If the distance value of
the i-th sample from its given j-th training
neighbour (where 1 ≤ j ≤ n–1) is less than or equal
to the Ref Val, then that distance value is retained,
otherwise is discarded. The number Ki of neighbours
satisfying this condition, minimum zero and
maximum being n – 1, defines the density of the i-th
sample neighbourhood:

Ki : Dij ≤
ed kð Þ� �

∀j : 1; n−1 ð3Þ
e) Finally, each i-th training sample is associated with a

threshold ti which defines the width of its
neighbourhood as:

ti ¼

XKi

j¼1

Dij

K i
ð4Þ

If no distance value was retained for a given i-th train-
ing sample (Ki = 0), then its threshold ti would be theo-
retically settled to 0, but a pragmatic solution is to set it
equal to the smallest threshold of the training set.
The plot in Figure 2 provides with an overview of the

thresholds for all the 50 samples in the simulated dataset.
As expected, most of the training samples within the clus-
ter (for instance, samples 2, 33 and 39) were associated
with higher Ki values. On the other hand, obvious poten-
tial outliers (samples 49 and 50) had their thresholds equal
to 0 since they couldn’t satisfy the threshold criterion even
for a single training neighbour (i.e. Ki = 0), thus no dis-
tance values contributed to their threshold calculation.
Nevertheless, they were associated with the minimum
threshold equal to 0.42, i.e. the threshold of sample 43.



Figure 3 Simulated data set. Contour plot to demonstrate how
the AD was characterised. Metric used: Euclidean distance; k = 12.
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Evaluating AD for new/test samples
Until this point, each training sample was associated with
its individual threshold. The next step will be to character-
ise the AD which usually relies upon a set of conditions
that will decide if a given test sample can be associated
with a reliable prediction or not.
The criterion used by this approach to associate a

given test sample to be within the domain of applicabil-
ity can be summarised below.
Given a test sample, its distance from all the n training

samples is calculated and simultaneously, compared to
be less than or equal to the thresholds associated with
those training samples. If this condition holds true with
at least one training sample, the test sample will be con-
sidered inside the domain of applicability for that model.
Otherwise, the prediction for that test sample will be
rendered unreliable.
More formally, given the training set TR, for each test

sample j, the AD decision rule is:

j ∈ AD iff ∃i ∈ TR : Dij ≤ ti ð5Þ

where Dij is the distance between the j-th test sample
and the i-th training sample and ti is the individual
threshold of the latter. In addition, each test/new sample
will be associated with the number Kj of nearest training
neighbours for which the previous condition holds true.
This number can be assumed as a measure of prediction
reliability; indeed, high values of Kj indicate that the new
sample falls within a dense training region of the model’s
space, while low values of Kj denote that the new sample
still belongs to the model’s space, but located in sparse
training regions. Kj equal to zero rejects the sample as it
being outside the model’s AD since no training neigh-
bours are identified.
Figure 3 provides with the contour plot for the simu-

lated dataset derived projecting several data points enough
to fill the training space. Thresholds were calculated using
12 nearest neighbours and Euclidean distance. This choice
of k = 12 nearest neighbours was based on the results
derived performing an internal k-optimization, discussed
later in this article. The space enclosed around the cluster
represented as black line indicates that all the data points
within this enclosed region were inside the AD. Thus, this
region reflects in a way how the AD was characterised for
this two-dimensional dataset. Area of this enclosed region
tends to expand or shrink depending upon the number of
nearest neighbours used for threshold calculation.
As explained earlier, the extreme outliers in the train-

ing space will be associated with the number Ki of neigh-
bours equal to zero and the lowest possible threshold in
the training set. Consider the sample 49 from the simu-
lated dataset which is an extreme outlier with its thresh-
old equal to 0.42. If there is a test sample that seems to
be quite in the vicinity of this potential outlier within
the descriptor space, the test sample will be associated
with an unreliable prediction since its distance from
sample 49 will likely exceed the small threshold. Now,
consider a case, where the descriptor values for another
test sample exactly overlap or are very similar to those
for this potential outlier. In this situation, the distance of
that sample from the outlier will be less than the thresh-
old and thus it will be considered within the domain of
applicability. In theory, this is not wrong because the po-
tential outlier is still a part of the training space. Practi-
cally, the approach retains all the training samples to
characterize the AD but minimizing the role of potential
outliers in doing so. That’s the reason why the first test
sample was excluded from being reliably predicted while
the second sample was not. However, for the latter the
number Kj of nearest training neighbours will likely be
equal to one indicating that its prediction has some de-
gree of uncertainty. In conclusion, there exists a relation
between the defined AD and the impact of training sam-
ples in characterising it based on their threshold values.

Optimizing the smoothing parameter k
Another important aspect is concerning the choice of an
appropriate smoothing parameter k, whose theoretical
range is between 1 and n-1.
Very low k values will restrict the domain of applic-

ability in a very strict manner as compared to the AD
derived opting for larger k values. This is because, an
opted k value will have a direct impact on the threshold
calculations which in turn can make it more rigid or easier
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for test samples to satisfy the threshold criterion. The
strategy implemented in this article to select an appropri-
ate k value was performed by Monte Carlo validation,
maximizing the percentage of the test samples considered
within the AD, i.e. satisfying AD criterion (Equation 5).
Box-and-whisker plots (box plots) were produced to

get an overview of all these derived results. For instance,
consider the plot in Figure 4 derived for the simulated
dataset showing percentage of test samples retained within
the AD with different k values (optimization carried out
with 20% of samples in the test set and 1000 iterations).
Median quartile in the middle of the box (marked in

red) can be referred for all the k values to get a hint
about how many test samples were retained on average
during the optimization process for a given k value. The
top and bottom edges of each box plot (quartiles Q3 and
Q1) correspond to 75th and 25th percentile, respectively.
The whisker can extend further from Q1–w(Q3 −Q1)
until Q3 +w(Q3 −Q1), of 1.5 [23]. The test samples fall-
ing outside this coverage are considered as outliers and
are highlighted as ‘+’ in red. About their usefulness in
the proposed AD approach, box plots showing limited
spread and allowing majority of test samples to be
retained within the AD can be favoured and their corre-
sponding range of k values can be considered to finally
opt for the most appropriate k. Additionally, a line plot
is integrated in the same figure indicating the mean per-
centage of test samples that were considered within the
AD for each k value. A simultaneous interpretation of
both these plots can make it easier for a user to decide
upon an appropriate k value.
Figure 4 shows that the spread of the box plots for ini-

tial k values is quite large. This may have resulted due to
Figure 4 Simulated data set. Box-and-whisker plot of test samples
(%) retained within the AD for different k values during
k-optimization.
the impact of restricted training thresholds that excluded
several test samples from the AD. With an increase in k
values, the spread narrowed, however the outliers were
still present until k = 17. After this point, the box plots
remained unchanged throughout the plot with no out-
liers. Similar observations were derived from the mean
line plot which showed a significant rise initially fol-
lowed by a stable curve until the first half of the k
values. The plot didn’t show any major changes for the
second half of the k values. In order to avoid very high k
values good enough to unnecessarily expand the defined
AD, a k value of 12 was opted as appropriate k for this
dataset. The plots dealt earlier (Figures 2 and 3) for this
dataset were thus derived using this opted k value.
We also performed an extended analysis on several di-

verse data sets (results not reported in this paper), to study
the influence of the smoothing parameter k on model’s
AD definition. It was concluded that optimization of k can
be a time-demanding procedure especially in the case of a
huge number of samples, but it was also observed that this
approach is quite insensitive to the smoothing parameter
k, except for very small k values which led to the results
influenced by local noise. Therefore, for many applications
the optimization of the smoothing parameter can be
avoided and reasonable results can instead be obtained by
a fixed k value empirically calculated as n1/3.

Reflecting the reliability in derived results
After the AD approach has been applied to the model of
interest, several features will be taken into account to re-
flect upon the derived results. Moreover, as stated earlier
the response domain will be taken into account to address
the reliability in the results derived by characterising the
AD of a model in its descriptor space.
In order to reflect upon a model’s predictive ability, the

predictive squared correlation coefficient (Q2) was used.
Since the test samples excluded from the model’s AD are
unreliably predicted, in theory they should not be ac-
counted for to calculate the model’s statistics (Q2).
The following key parameters were evaluated:

a) Number of test samples retained within the AD.
b) Q2 calculated from the test samples retained within

the AD [24,25]:

Q2 ¼ 1−

XnTS
j¼1

ŷj−yj

� �2
" #

=nTS

XnTR
i¼1

yi−�yTR
� �2" #

=nTR

ð6Þ

where, yj is the measured response value for the j-th
sample and ŷj its predicted value; nTR and nTS
represent the total number of training and test
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samples, respectively, and �yTR is the mean response
of the training set.

c) List of all the test samples considered outside the
AD.

d) For each j-th test sample, the absolute standardized
error calculated as:

SEj ¼
yj−ŷj

��� ���
sY

ð7Þ

where, yj is the measured value for the j-th sample
and ŷj its predicted value; sY the standard error of
estimate derived from the training set.

e) The information about how many times the
threshold criterion (Equation 5) is satisfied by each
test sample, that is, how many training neighbours
(i.e. Kj) are located at a distance less than or equal to
their threshold values, from a given test sample.

In theory, a test sample satisfying the threshold criterion
several times (i.e. having high Kj) is expected to be pre-
dicted with higher accuracy. This can be desired since less
distant training neighbours indicate a higher structural
similarity of the test sample. On the contrary, a test sam-
ple satisfying the threshold criterion for no training neigh-
bours (Kj = 0) indicates that there wasn’t any training
sample similar enough to reliably predict that test sample.
Results and discussion
As the case study to derive results with the proposed strat-
egy, the CAESAR Model 2 to predict bioconcentration
factor (BCF), which was developed under the EU project
CAESAR following the REACH requirements, was se-
lected. It is a Radial Basis Function Neural Network
(RBFNN) model derived from 378 training and 95 test
samples [20,21]. The five descriptors used to develop this
model were calculated using Dragon 5.5 [26].
The statistics for this model are summarized in Table 1.
For comparison purposes, some AD approaches taken

from literature [2,7-10] were implemented on the se-
lected case study. Among them, the classical kNN-based
AD approach [6,18] was implemented by calculating
average distances of all the training samples from their 5
nearest neighbours (i.e. k = 5); since the choice of
Table 1 Summary of model statistics for the case study

Model Training set Test set

nTR R2 RMSE nTS Q2 RMSEP

CAESAR Model 2 378 0.804 0.591 95 0.797 0.600

R2 Determination coefficient; RMSE Root-mean-square error; Q2 Predictive
squared correlation coefficient; and RMSEP Root-mean-square error
of prediction.
thresholds didn’t follow any strict rules in the existing
literature, the value corresponding to 95th percentile in
this vector of average distances was considered as gen-
eral threshold. If the average distance of a test sample
was lesser than or equal to the threshold value, the test
sample was retained within the AD.
In addition to the classical kNN-based AD approach,

the following methodologies were considered [2,7-10]: the
Bounding Box, which is based on the ranges of model var-
iables; its variant based on principal components instead
of the original variables (PCA-Bounding Box); the Convex
Hull, which is the smallest convex area that contains the
original set; two distance-based methods, which calculate
the distance (Euclidean and Mahalanobis) of a test sample
from the data centroid and use the 95th percentile of the
training sample distances as threshold.
Finally, some methods for probability density function

estimation were also considered. Among the multivariate
kernel density methods, four variants of Gaussian kernel
estimators were implemented [19]: fixed Gaussian kernel
with bandwidth equal to 0.462 (for the studied data set);
optimized Gaussian kernel with a smoothing parameter
equal to 0.237 obtained by leave-one-out cross-validation
[27]; variable Gaussian kernel with bandwidth calculated as
the inverse function of the Euclidean distance to k-th neigh-
bour (k = 15) [27]; adaptive Gaussian kernel, with fixed
Gaussian kernel as the pilot estimate and sensitivity param-
eter α equal to 0.5. Finally, Epanechnikov kernel with a
fixed bandwidth equal to 1.961 and the nearest neighbour
density estimator with smoothing parameter k equal to 15,
were also considered [19].
For all the implemented methods, except for Bounding

Box and Convex Hull, autoscaling was adopted as data
pretreatment.
The proposed AD strategy was implemented in

MATLAB [28] using autoscaled Euclidean distances. The
k-optimization procedure was carried out initially to de-
cide upon an optimal k value; the training set of 378 sam-
ples was randomly partitioned 1000 times selecting 20%
of samples in the test set (i.e. 75 samples). The box plots
in Figure 5 summarize the percentage of test samples
retained within the AD for different k values (up to 25).
As expected, the first lower k values were associated

with box plots having highest spread. This degree of dis-
persion lowered gradually with increase in number of
neighbours considered. The line plot of the mean showed
an increase in the number of samples throughout the plot,
however, this increment after initial k values was gradual.
Based on their lower spread and preference to retain rea-
sonably higher number of samples within the AD (as
reflected from their median), the k values in the range of
15–19 were considered further to decide upon an optimal
k. Finally, to avoid unnecessarily higher training thresholds
and their resulting impact on the defined AD, k = 15 was



Figure 5 CAESAR BCF model. Box-and-whisker plot of test
samples (%) retained within the AD for different k values during
k-optimization.
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considered as an optimal choice for this case study. Con-
sidering the selected k value of 15, the novel AD approach
identified four test samples (33, 61, 82 and 83) being out-
side the model’s AD.
To reflect upon the reliability in the results derived

with this approach, absolute standardized error of all the
test samples was plotted against their corresponding Kj

values. As shown in Figure 6, four test samples consid-
ered outside the AD with this approach were associated
with a value of Kj = 0. The absolute standardized error
for sample 33 was quite higher as compared to the
remaining three samples. As seen clearly from the plot,
Figure 6 CAESAR BCF model. Absolute standardized error of test
samples plotted against their Kj values.
there had been a sharp decrease in the prediction error
of test samples with an increase in Kj. However, it can’t
be denied that this pattern wasn’t rigidly followed in the
results. There had been test samples with very low Kj

values but extremely low or negligible absolute standard-
ized error, meaning that even less reliable predictions
can have good accuracy. In any case, this plot somehow
tried to interpret the AD results derived in model’s de-
scriptor space taking into account the response domain,
and clearly informed about both, reliability and accuracy
in the predictions of the test samples. Most of the pre-
dictions had good accuracy, them being within two units
of standardized error and high reliability. The samples
corresponding to these reliable predictions were associ-
ated with higher Kj values, thus being well represented
by several training samples.
Generally, a standardized error of two/three units is

usually considered as a warning value for outliers detec-
tion. In Figure 6, six test samples (12, 33, 51, 52, 75 and
90) exceeded a two-unit threshold for the absolute stan-
dardized error indicating them as outliers in the model’s
response domain. It can be interesting to further evalu-
ate the reasons behind categorising them as outliers;
however, this is beyond the scope of this article as the
proposed AD approach is defined within the model’s de-
scriptor space. Nevertheless, this evaluation identifies
sample 33 as an outlier in model’s descriptor’s space as
well as its response domain which further supports the
results derived from the proposed approach to exclude
this sample from the model’s AD.
Finally, the results derived by this approach were com-

pared with those derived from classical AD approaches.
Table 2 reports these results; the first row shows results
when no AD approach has been applied to bound the
model’s descriptor space.
The number k of nearest neighbours considered with

the proposed approach (i.e. 15) was comparatively higher
than the one considered with classical kNN (i.e. 5); how-
ever, the impact on model statistics was not so obvious
on the resulting Q2, while the number of retained sam-
ples increased from 87 (classical kNN) to 91 (proposed
approach). Discussing the results derived with classical ap-
proaches, number of samples retained within the AD var-
ied significantly depending on what strategy was used.
Convex hull, optimized and variable Gaussian kernel
methods retained the least number of samples while the
Bounding Box considered none of the test samples outside
the AD. Overall, the proposed approach worked quite well
on the CAESAR model, trying to define an AD with max-
imum retained test samples within the domain and posi-
tive impact on the model statistics.
The last column of Table 2 reports the list of samples

considered outside the AD with all the approaches. Irre-
spective of total number of samples considered outside



Table 2 Comparison of AD methods applied to the test set of CAESAR BCF model

Approach IN AD Q2 OUTSIDE AD

All samples inside (no AD approach) 95 0.797 None

Proposed approach (Euclidean dist., k = 15) 91 0.803 33 61 82 83

Bounding box 95 0.797 None

PCA bounding box 93 0.804 33 40

Convex hull 73 0.789 3 7 9 13 18 33 34 36 37 38
39 40 41 43 51 56 61 72 79 91 92 94

Euclidean dist (95 percentile) 88 0.802 3 33 36 37 40 42 61

Mahalanobis dist (95 percentile) 89 0.791 18 43 54 61 83 91

Classical kNN (Euclidean dist., k = 5) 87 0.797 3 33 34 40 61 82 83 94

Fixed Gaussian kernel 85 0.794 3 24 33 34 40 61 82 83 91 94

Optimized Gaussian kernel 66 0.831 3 912 22 24 33 34 38 40 45 47 51 53 54
56 61 68 69 75 76 80 82 83 87 89 91 93 94 95

Variable Gaussian kernel (k = 15) 81 0.790 3 24 33 34 40 43 61 80 82 83 89 91 94 95

Adaptive Gaussian kernel 88 0.801 3 33 43 61 82 83 91

Fixed Epanechnikov kernel 87 0.799 3 33 40 43 61 83 91 94

Nearest neighbour density estimator (k = 15) 91 0.806 3 33 61 91
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the AD, all the methods converged significantly identify-
ing a subset of common samples that were always ex-
cluded from the model’s AD.
Conclusions
A novel kNN-based approach to define the AD of QSAR
models was proposed. The overall execution of this ap-
proach was performed in three different phases that ef-
ficiently used the salient features of kNN principle to
define a model’s AD in its descriptor space. Significant
features that distinguished the proposed AD approach
include defining individual threshold for each training
sample, optimizing the smoothing parameter k to be
considered and taking into account the model’s response
domain to reflect upon the reliability of results derived
in its descriptor space.
In the proposed AD method, the appropriate number

k of neighbours can be chosen on the basis of the plot
with retained samples vs. k values obtained by Monte
Carlo validation; it allowed to identify a smoothed region
of the k values where the results remained unchanged,
ensuring high robustness in the AD definition.
The results on the selected case study defined an AD

with a positive impact on model statistics retaining max-
imum possible samples that were reliably predicted.
Comparison of the derived results with those from the
classical approaches by no means intended to project
the pitfalls of existing approaches but it was aimed to
have a performance evaluation of this novel strategy to
understand how its implementation could lead to obtain
similar or different results as compared to the classical
ways of defining the AD. An extended comparison of the
different AD approaches on several diverse data sets have
indicated the following relevant features that characterize
the proposed AD approach: a) adaptability to local density
of samples, useful when the underlying multivariate distri-
bution is asymmetric, with wide regions of low data density;
b) unlike several kernel density estimators, effectiveness
also in high-dimensional spaces; d) low sensitivity to the
smothing parameter k; d) versatility to implement various
distances measures other than Euclidean distance, such as
Manhattan distance, Mahalanobis distance and the recently
proposed locally-centred Mahalanobis distance [29], de-
pending on the data set in analysis.
A MATLAB module for the model’s AD estimate by

different approaches will be soon available at http://
michem.disat.unimib.it/chm/.
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