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Analysis of 2,440 human exomes highlights the evolution and functional 

impact of rare coding variation

Joshua Akey

Department of Genome Sciences, University of Washington, Seattle, WA 98195, 

USA
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Deep exome resequencing is a powerful approach for delineating patterns 
of protein-coding variation among genes, pathways, individuals and 
populations. We analyzed exome data from 2,440 individuals of European 
and African ancestry as part of the National Heart, Lung, and Blood 
Institute’s Exome Project, the aim of which is to discover novel genes and 
mechanisms that contribute to heart, lung and blood disorders. Each exome 
was sequenced to a mean coverage of 116×, allowing detailed inferences 
about the population genomic patterns of both common variation and 
rare coding variation. We identifi ed more than 500,000 single nucleotide 
variations, the majority of which were novel and rare (76% of variants had 
a minor allele frequency of less than 0.1%), refl ecting the recent dramatic 
increase in the size of the human population. The unprecedented magnitude 
of this dataset allowed us to rigorously characterize the large variation 
in nucleotide diversity among genes (ranging from 0 to 1.32%), as well as 
the role of positive and purifying selection in shaping patterns of protein-
coding variation and the diff erential signatures of population structure from 
rare and common variation. This dataset provides a framework for personal 
genomics and is an important resource that will allow inferences of broad 
importance to human evolution and health.
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Are clinical genomes already becoming semi-routine for patient care?

Mark Boguski

Harvard Medical School, Boston, MA, USA

Genome Biology 2011, 12(Suppl 1):I16

Hardly a month goes by without a new published report of a patient’s genome 
being used diagnostically for clinical management in a diverse spectrum 
of disease areas, including gastroenterology, nephrology, neurology and 
oncology. The impression is that clinical genomics is already becoming semi-
routine. However, a large and complex set of non-technical barriers needs 
to be overcome before genomics can truly be integrated into the practice 
of medicine and made widely available for patient care. Through the use of 
case studies, my presentation will elucidate issues relating to the needs and 
requirements of the workforce, the legal and regulatory aspects of ‘laboratory-
developed tests’ and insurance reimbursement for ‘multi-analyte diagnostics’. 
The roles of the Food and Drug Administration, the Centers for Medicare & 
Medicaid Services and the College of American Pathologists will be highlighted.
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Interrogating the architecture of cancer genomes

Peter Campbell
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Genome Biology 2011, 12(Suppl 1):I11

Cancer is driven by mutation. Using massively parallel sequencing technology, 
we can now sequence the entire genome of cancer samples, allowing the 
generation of comprehensive catalogs of somatic mutations of all classes. 
Bespoke algorithms have been developed to identify somatically acquired 
point mutations, copy number changes and genomic rearrangements, which 
require extensive validation by confi rmatory testing. The fi ndings from our fi rst 
handful of genomes illustrate the potential for next-generation sequencing 
to provide unprecedented insight into mutational processes, cellular repair 
pathways and gene networks associated with cancer development. I will also 
review the possible applications of these technologies in a diagnostic and 
clinical setting and the potential routes for translation.

I5

Genome-forward oncology: how do we get there?

Matthew Ellis

Breast Cancer Program and the Genome Institute, Washington University in 
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Massively parallel sequencing is transforming our knowledge of cancer, 
yet the medical value of next-generation approaches has not been fully 
established. From a technical perspective, it is easy to envisage that, within 
a few years, the primary diagnostic approach for all cancers will be to assess 
a partial or whole cancer genome sequence; however, the adoption of this 
approach will ultimately depend on the development of robust and valid 
models for the tailoring of therapy. Thus, within a short period, the focus of 
genomic investigation will shift from the current emphasis on discovery in 
poorly annotated datasets, such as The Cancer Genome Atlas, to ambitious 
investigations that focus on precise clinical questions. This transition will 
occur in two stages. The fi rst stage will be a retrospective, ‘genome-backward’ 
approach, in which patients are treated blind to genomics but consent to 
prospective germline and tumor sequencing, as well as data sharing. In this 
way, models that use mutation patterns to predict treatment outcomes can 
be developed. In a later prospective, ‘genome-forward’ phase, therapeutic 
postulates that arise from genome sequencing will be used as the basis 
for clinical trial eligibility or stratifi cation. Specifi c examples of how these 
approaches are being studied in breast cancer will be discussed.
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Microbial reference genomes for human metagenomics

Sarah K Highlander

Department of Molecular Virology and Microbiology, Baylor College of Medicine, 
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Genome Biology 2011, 12(Suppl 1):I28

A key resource for metagenomics projects is a representative catalog 
of annotated microbial genome sequences to serve as a reference for 
classifi cation and functional annotation [1]. The Human Microbiome Project 
(HMP) [2], which is funded by the National Institutes of Health, began with 
the goal of sequencing 600 genomes from culturable prokaryotes that are 
representative of those inhabiting the major niches within and on the human 
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body. This eff ort has been expanded to include uncultured organisms, 
small eukaryotes, and viruses that infect prokaryotes or eukaryotes, and 
the current sequencing target is 3,000 microbes. An automated pipeline 
for prokaryotic gene calling and annotation has been established for the 
project, yet very few of the HMP organisms have been subjected to in-depth 
analysis. Comparisons of several HMP genomes have revealed substantial 
intraspecies diff erences and provide clues about the pathogenic and 
physiological potential of these organisms.
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Next-generation clinical sequencing in a children’s hospital

Stephen Kingsmore

Children’s Mercy Hospital, Kansas City, MO, USA

Genome Biology 2011, 12(Suppl 1):I21

Next-generation sequencing and analysis tools are reaching the mature stage 
at which mentioning their usefulness for clinical testing is not an oxymoron. 
Indeed, next-generation clinical sequencing has the potential to transform 
children’s health care, because inherited illnesses account for much of the 
childhood disease burden. I will discuss the fi rst year of the integration of 
genomic medicine for Mendelian diseases at Children’s Mercy Hospital.
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A glimpse at tumor genome evolution

Elaine R Mardis

The Genome Institute at Washington University School of Medicine, St. Louis, 
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Genome Biology 2011, 12(Suppl 1):I8

Next-generation DNA sequencing has dramatically aff ected cancer genomics 
eff orts in several important ways. Although whole genome sequencing 
remains an analytical challenge, such eff orts are yielding data that elucidate 
the myriad ways in which a genome can be infl uenced by single point 
mutations, focused insertions or deletions, and large structural alterations. In 
addition to cataloguing somatic alterations, various correlation analyses are 
indicating the genes whose alterations most profoundly determine patient 
outcomes, patient responses to therapeutics and other important aspects of 
disease biology. We have recently begun exploring how the digital nature 
of next-generation sequencing reads allows important information about 
tumor cell genomic heterogeneity to be inferred, revealing the earliest 
mutations and how the composition of the tumor cell mass changes over 
time under the infl uence of stressors such as chemotherapy.
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Comparative genomic analysis of mouse and human mammary tumors

Charles M Perou

Lineberger Comprehensive Cancer Center, 450 West Drive, CB# 7295, The 

University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

Genome Biology 2011, 12(Suppl 1):I10

Human breast cancer is a heterogeneous disease consisting of at least fi ve 
molecular subtypes. With our increasing understanding of the genetic 
underpinnings of human breast cancer subtypes, many genetically 
engineered mouse models (GEMMs) have been created to mimic these 
subtypes. Traditionally, these GEMMs have been analyzed individually; 
however, when consolidated into a single dataset, these models have an 
increased sensitivity for detecting signifi cant overlap with human subtypes. 

These associations between GEMMs and human subtypes can provide 
insight into the genetic alterations associated with the human subtypes 
and can provide a translational resource for preclinical drug testing. We 
previously performed an analysis of 13 GEMMs [1] and have since expanded 
our dataset to include 29 murine models. Using DNA expression microarrays 
and unsupervised hierarchical clustering, we identifi ed 17 distinct murine 
classes from this set of 29 models. After comparison with the human 
subtypes by using gene set analysis, we found that seven of our classes 
show statistically signifi cant overlap with fi ve human subtypes. Although 
we observed no statistical overlap with the human luminal B subtype, the 
MMTV-NeuPyMT class shows signifi cant overlap with the combined luminal 
A and B subtypes. Some of the new models fall into classes that have been 
defi ned previously, but many, such as the AIB1 and ETV6 murine models, are 
associated with new groups. The AIB1 and ETV6 models fall into their own 
classes, and each shows statistically signifi cant overlap with HER2-enriched 
tumors, a subtype that was not previously observed to overlap with any 
GEMM. These expanded analyses have identifi ed new and important models 
and are laying the groundwork for additional studies focused on DNA copy 
number changes and mutation status similarities between mice and humans.
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Reconstructing microbial communities

Mihai Pop
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Metagenomic studies have allowed an unprecedented view of the microbial 
communities that inhabit our world and our bodies. Deep sequencing data 
have already been generated from several environments, as well as from 
various human body sites. As more data are generated, we are beginning 
to understand the structure of our commensal microbial communities and 
how microbes aff ect our health. Analyzing the metagenomic data, however, 
poses signifi cant computational challenges, because few software tools are 
available that can handle the volume and characteristics of the data being 
generated. In my talk, I will primarily focus on the challenges posed by 
metagenomic assembly and will outline recent research in my laboratory 
aimed at meeting these challenges. I will also describe some of the analyses 
that can be performed on the assembled data but would not be possible in 
read-based analyses.
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Next-generation human genetics

Jay Shendure

Department of Genome Sciences, University of Washington, Seattle, WA, USA

Genome Biology 2011, 12(Suppl 1):I17

Over the past fi ve years, a new generation of technologies has reduced 
the cost of DNA sequencing by more than four orders of magnitude, 
democratizing the fi eld by putting the sequencing capacity of a major 
genome center in the hands of individual investigators [1]. To exploit this 
paradigm shift, we have developed new technical methods and analytical 
strategies for disease gene discovery based on whole exome and whole 
genome sequencing. Our results to date include proof of concept [2] and 
the fi rst demonstration [3] that exome sequencing of a small number of 
individuals can be applied to solve Mendelian, single-gene, disorders such 
as Miller syndrome [3] and Kabuki syndrome [4]. Recently, we have also 
demonstrated that exome or genome sequencing of parent-child trios can 
be used to rapidly identify candidate genes for complex disorders such as 
autism [5]. We are currently extending these strategies to additional simple 
and complex diseases of unknown etiology.
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Metatranscriptomics of the human gut microbiome
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Genome Biology 2011, 12(Suppl 1):I31

Our ‘other’ genome is the collective genetic information in all of the 
microorganisms that are living on and within us. Collectively known as the 
microbiome, these microbial cells outnumber human cells in the body by 
more than 10 to 1, and the genes carried by these organisms outnumber the 
genes in the human genome by more than 100 to 1.
How these organisms contribute to and aff ect human health is poorly 
understood, but the emerging fi eld of metagenomics promises a more 
comprehensive and complete understanding of the human microbiome.
In the European-funded Metagenomics of the Human Intestinal Tract 
(MetaHIT) project [1], we combined next-generation sequencing with high-
density microarrays, generating metagenomic and metatranscriptomic data 
for more than 400 individuals.
The combined data reveal clusters of coexisting species with diff erences in 
pathway and gene function activity, suggesting that there is a division of 
labor between the bacterial species in the human gut microbiome.
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De novo mutations in mental retardation

Joris A Veltman

Department of Human Genetics, Radboud University Nijmegen Medical Centre, 

PO Box 9101, 6500 HB Nijmegen, The Netherlands

Genome Biology 2011, 12(Suppl 1):I20

Recent studies have indicated that humans have an exceptionally high 
per-generation mutation rate of 7.6 × 10–9 to 2.2 × 10–8. These spontaneous 
germline mutations can have serious phenotypic consequences when 
aff ecting functionally relevant bases in the genome. In fact, their occurrence 
may explain why cognitive disorders with a severely reduced fecundity, such 
as mental retardation, remain frequent in the human population, especially 
when the mutational target is large and comprises many genes. This would 
explain a major paradox in the evolutionary genetic theory of these disorders.
In this presentation, I will describe our recent work on using a family-based 
exome sequencing approach to test this de novo mutation hypothesis in ten 
patients with unexplained mental retardation [1]. Unique nonsynonymous 
de novo mutations were identifi ed and validated in nine genes. Six of these, 
identifi ed in diff erent patients, were likely to be pathogenic based on gene 
function, evolutionary conservation and mutation impact. The clinical 
relevance of these novel genes, and the ultimate proof that they cause 
disease, lies in the identifi cation of de novo mutations in additional patients 
with a similar phenotype. As such, we are currently screening approximately 
1,200 patients with unexplained mental retardation for mutations in YY1, 
which is one of these newly identifi ed genes. In addition, we are extending 
our family-based exome sequencing approach to 100 patients to establish the 
diagnostic yield for de novo mutations in patients with unexplained mental 
retardation. These fi ndings, when replicated, provided strong experimental 
support for a de novo paradigm for mental retardation. Together with de 

novo copy number variation, de novo point mutations of large eff ect could 
explain the majority of all mental retardation cases in the population. In my 
presentation, I will explain this work, as well as related work on autism [2] 
and schizophrenia [3].
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Diseases of the vaginal tract result from perturbations of the complex 
interactions among microbes of the host vaginal ecosystem. Recent 
advances in our understanding of these complex interactions have been 
enabled by next-generation-sequencing-based approaches, which make it 
possible to study the vaginal microbiome. In harnessing these approaches, 
we are beginning to defi ne what constitutes an imbalance of the vaginal 
microbiome and how such imbalances, along with associated host factors, 
lead to infection and disease states such as bacterial vaginosis (BV), preterm 
births, and susceptibility to HIV and other sexually acquired infections. We 
have exploited various approaches to this end: comparative analysis of 
reference microbial genomes of vaginal isolates; comparative microbiome, 
metabolome and metagenome analysis of vaginal communities from subjects 
deemed to be healthy and individuals with BV; and comparative microbiome 
analysis of vaginal communities from humans and non-human primate 
species. The results from comparative genome sequencing have led us to 
suggest that diff erent strains of the proposed pathogen Gardnerella vaginalis 
have diff erent virulence potentials and that the detection of G. vaginalis in the 
vaginal tract is not indicative of a disease state [1]. Comparative microbiome, 
metabolome and metagenome analysis of vaginal communities from 
humans has demonstrated that the microbial communities from subjects 
with BV have a defi ned bacterial composition and metabolic profi le that is 
distinct from subjects who do not have BV [2 and unpublished observations]. 
Our studies of microbial communities from non-human primate species 
and humans provide a unique comparative context. From an evolutionary 
perspective, humans and non-human primates diff er considerably in mating 
habits, estrus cycles and gestation period. Moreover, birth is diffi  cult in 
humans relative to other primates, increasing the risks of maternal injury 
and infection. In light of these numerous diff erences between humans 
and non-human primates, we hypothesize that humans have microbial 
populations that are distinct from those of non-human primates. Preliminary 
results show that the vaginal microbiomes of non-human primates are more 
diverse and are compositionally distinct from human vaginal microbiomes 
[3,4]. The composition of bacterial genera found in non-human primates is 
dissimilar to that seen in humans, most notably with lactobacilli being much 
less abundant in non-human primates. Our observations point to vaginal 
microbial communities being an important component of an evolutionary 
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set of adaptations that separates humans from other primates and is of 
fundamental importance to health and reproductive function.
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For more than a decade, the Joint Center for Structural Genomics (JCSG) [1] 
has been at the forefront of developing tools and methodologies that allow 
the application of high-throughput structural biology to a broad range of 
biological and biomedical investigations. In the previous phases of the 
National Institutes of Health’s Protein Structure Initiative (PSI; 2000 to 2010) 
[2], we explored structural coverage of uncharted regions of the protein 
universe [3], as well as a single organism, allowing complete structural 
reconstruction of the metabolic network of Thermotoga maritima [4]. In 
the current phase (PSI:Biology; 2010 to 2015), the JCSG is leveraging its 
high-throughput platform to explore the structural basis for host-microbe 
interactions in the human microbiome. The emerging fi eld of metagenomics 
has been particularly enlightening: the human gut microbiome sequencing 
projects have already uncovered fascinating new families and expansions 
of known families for adaptation to this environment. The gut microbiota 
is dominated by poorly characterized bacterial phyla, which contain 
an unusually high number of uncharacterized proteins that are largely 
unstudied. Their infl uence upon human development, physiology, immunity 
and nutrition is only starting to surface and is thus an exciting new frontier for 
structural genomics, where we can structurally investigate the contributions 
of these microorganisms to human health and disease. The JCSG is located 
at The Scripps Research Institute, the Genomics Institute of the Novartis 
Research Foundation, University of California at San Diego, the Sanford-
Burnham Medical Research Institute and SSRL/Stanford University.
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Next-generation sequencing of RNA (RNA-Seq) is a powerful tool that can 
be applied to a wide range of biological questions. RNA-Seq provides insight 
at multiple levels into the transcription of the genome. It yields sequence, 
splicing and expression-level information, allowing the identifi cation of 
novel transcripts and sequence alterations. We have been developing and 
comparing methods for samples that present a challenge: that is, those with 
low quantity and/or quality RNA.
RNA-Seq methods that start from total RNA and do not require the oligo(dT) 
purifi cation of mRNA will be valuable for such challenging samples. Such 
methods use alternative approaches to reduce the fraction of sequencing 
reads derived from rRNA. We will present results from multiple approaches, 
including the use of not-so-random (NSR) primers for cDNA synthesis, low-
C0t hybridization with a duplex-specifi c nuclease for light normalization and 
NuGEN’s Ovation RNA-Seq kit. We demonstrated that these three methods 
successfully reduce the fraction of rRNA to less than 13%, even when 
starting from degraded RNA. We compared the performance between these 
methods and with ‘gold standard’ RNA-Seq data (derived from samples with 
large quantities of high-quality RNA), using quantitative criteria that evaluate 
eff ectiveness for genome annotation, transcript discovery and expression 
profi ling. The application of these methods to samples that contain degraded 
RNA and/or very low input amounts of RNA will also be presented.
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Viral diversity in children with diarrhea in Gambia
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Background Despite a decrease in the rate of mortality due to diarrhea in the 
past few decades, diarrhea remains one of the leading causes of childhood 
deaths worldwide, especially in developing countries. The known causes of 
disease include infection with bacteria (for example, Salmonella or Shigella), 
viruses (for example, rotaviruses, noroviruses or hepatitis viruses) or parasites 
(for example, Giardia lamblia or Cryptosporidium); however, the true agent 
remains unknown in up to 40% of clinical cases [1].
Recent advances in sequencing technologies allow us to explore microbial 
diversity in a sample, making metagenomic analysis a promising technique 
to characterize the viral spectrum (that is, the viral sequences and their 
abundances) in stool samples. By studying the genomes of particular viruses 
that are present in vivo, we may obtain a complete picture of the causes of 
diarrhea and potentially identify unknown viral pathogens.
Methods In this project, we explored viral communities present in diarrheal 
samples from 40 Gambian children of 18 months of age or younger. Each 
sample contained 4,829 to 57,778,454 pyrosequencing shotgun reads with 
read lengths varying from 50 to 930 bp.
In our pipeline, we fi rst assembled the genomes of known diarrhea-causing 
viruses by aligning the reads with the available references in the National 
Center for Biotechnology Information database and reconstructing the 
haplotypes from the mapped reads. Additional care needs to be taken for 
RNA viruses because they exist as a set of closely related but nonidentical 
genomes (quasispecies). We therefore reconstructed the set of the most 
plausible haplotypes [2] rather than the consensus genome. Next, we 
estimated the abundances of the assemblies by employing an expectation-
maximization algorithm that takes into account sequencing error, as well 
as mark reads that are not adequately covered by the assemblies. Then, we 
focused on assembling the uncovered reads and identifying them. Finally, 
we analyzed the viral spectrum across all of the samples to decide whether 
specifi c genomes are responsible for causing diarrhea.
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Results We were able to detect and assemble sequences from known 
diarrhea-causing viruses (such as rotaviruses, adenoviruses and noroviruses), 
known human viruses (such as herpesviruses and enteroviruses) and 
potential diarrhea-causing viruses (such as bocaviruses, astroviruses and 
parechoviruses). These fi ndings were consistent with independent virology 
results.
In some clinical cases, sequences from classic viruses were found, but the 
virology results were negative.
Conclusions Annually, diarrhea causes about 1.8 million deaths worldwide. 
Although many causative agents are known, as many as 40% of clinical cases 
are attributed to unknown viral pathogens. The metagenomic analysis of 
pyrosequencing data allows us to investigate the role of viruses in causing 
diarrhea.
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The Catalogue Of Somatic Mutations In Cancer (COSMIC) [1] is one of the 
largest repositories of information on somatic mutations in human cancer. 
The project has been running for more than ten years as part of the Cancer 
Genome Project (CGP) at the Wellcome Trust Sanger Institute in the UK.
The data in COSMIC are curated from a variety of sources, primarily the 
scientifi c literature and large international consortia. The project includes 
information from the CGP, along with data from other consortia such as the 
International Cancer Genome Consortium and The Cancer Genome Atlas. 
In addition, COSMIC is regularly updated with the genes highlighted in the 
Cancer Gene Census, which curates the scientifi c literature for known cancer 
genes [2].
With the advent of whole exome and genome sequencing technology, the 
amount of data in COSMIC is increasing rapidly. The recent COSMIC release 
(version 53; 18 May 2011) contains 608,042 tumor and cell line samples, 
annotating 176,856 mutations across 19,439 genes, with 352 full exomes, 
43 whole genome rearrangement screens and 4 full genomes now available. 
The data are updated regularly, with new releases scheduled every two 
months.
COSMIC provides a large number of graphical and tabular views for 
interpreting and mining the large quantity of information, as well as the 
facility to export the relevant data in various formats. The website can be 
navigated in many ways to examine mutation patterns on the basis of genes, 
samples and phenotypes, which are the main entry points to COSMIC.
COSMIC also provides various options to browse the data in a genomic 
context. Integration with the Ensembl genome browser allows the 
visualization of full genome annotations, together with COSMIC data, on 
the GRCh37 genome coordinates. COSMIC also contains its own genome 
browser, which facilitates data analysis by combining genome-wide gene 
structures and sequences with rearrangement breakpoints, copy number 
variations and all somatic substitutions, deletions, insertions and complex 
gene mutations.
The main COSMIC website [1] encompasses all of the available data. However, 
within COSMIC, the Cancer Cell Line Project [3] is a specialized component, 
which provides details of the genotyping of almost 800 commonly used 
cancer cell lines, through the set of known cancer genes. Its focus is to 
identify driver mutations, or those likely to be implicated in the oncogenesis 
of each tumor.
This information forms the basis for integrating COSMIC with the Genomics 
of Drug Sensitivity in Cancer project [4], which is a joint eff ort with the 
Massachusetts General Hospital [5] to screen this panel of cancer cell 
lines against potential anticancer therapeutic compounds to investigate 
correlations between somatic mutations and drug sensitivity.

Data on somatic mutations in cancer are being produced at a rapidly 
increasing rate, and the combined analysis of large distributed datasets is 
becoming ever more diffi  cult. However, COSMIC curates and standardizes 
this information in a single database, providing user-friendly browsing tools 
and analytical functions, thus ensuring its role as a key resource in human 
cancer genetics.
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Background Recent genome-wide association studies (GWAS) have 
identifi ed allele T of a single nucleotide polymorphism (SNP), rs2294008, in 
the prostate stem cell antigen (PSCA) gene as a risk factor for bladder cancer 
[1,2]. In the present study, we aimed to fi nd additional disease-associated 
SNPs in the PSCA region and to explore their possible molecular function.
Methods Based on information from the 1000 Genomes and HapMap 3 
projects, we performed imputation analysis on 3,532 bladder cancer cases 
and 5,120 healthy controls of European ancestry from the stage 1 bladder 
cancer GWAS, within ±100 kb of the region fl anking the GWAS signal, 
rs2294008. The average allele dosage and best-guess genotypes were 
estimated and tested for association between SNP variants and bladder 
cancer risk by using unconditional logistic regression. Functional follow-up 
studies included RNA sequencing in normal and tumor bladder samples and 
electrophoretic mobility shift assays to examine the potentially altered DNA-
protein interactions for SNPs of interest.
Results A total of 639 imputed and 37 genotyped SNPs within ±100 kb of 
the region of the original GWAS signal were tested for genetic association 
with bladder cancer. In these stage 1 GWAS samples, the SNP rs2294008 had 
a per-allele odds ratio (OR) of 1.09 (95% confi dence interval (CI) = 1.02 to 
1.16, P = 6.93  10−4). Multivariable logistic regression analysis adjusted for the 
study center, age, gender, smoking status and rs2294008 genotype revealed 
a novel associated variant, rs2978974 (OR = 1.11, 95% CI = 1.04 to 1.19, P = 
1.62 × 10−3). There was low linkage disequilibrium between rs2978974 and 
the original GWAS signal, rs2294008 (D' = 0.19, r2 = 0.02). Only individuals 
carrying the risk variant of both SNPs had an increased risk of bladder cancer 
(OR = 1.24, 95% CI = 1.13 to 1.35, P = 4.69 × 10−6) and not individuals who 
carried a risk variant of only one of the SNPs (P > 0.05). Stratifi ed analysis 
suggested that this compound eff ect of rs2294008 and rs2978974 was more 
signifi cant in males (OR = 1.27, P = 2.80 × 10−6) than in females (OR = 1.08, 
P = 0.52).
rs2978974 resides 10 kb upstream of rs2294008, is marked by an H3K4me3 
signal and is in the vicinity of an androgen-receptor-binding site. Using RNA 
sequencing of bladder samples, we showed that rs2978974 is located within 
an alternative, untranslated fi rst exon of PSCA. Using the electrophoretic 
mobility shift assay with nuclear proteins from LNCaP and HeLa cells, we 
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observed that the non-risk-associated allele (G) of rs2978974, but not the 
risk allele (A), could bind to ELK1, a protein belonging to the ETS family of 
transcription factors.
Conclusions We identifi ed a SNP, rs2978974, in the PSCA region as a novel 
marker for bladder cancer susceptibility. There was a compound eff ect in 
carriers of both the rs2294008 and rs2978974 risk variants. The functional 
relevance of rs2978974 might be related to the loss of ELK1 regulation by the 
risk allele (A) and diff erential regulation of PSCA mRNA expression.
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Background Dinofl agellates are a diverse group of ecologically important 
eukaryotic algae, the global impact of which ranges from the large-scale 
primary production of oxygen [1] to devastating toxic algal blooms [2]. 
These organisms have exceptionally large genomes (109 to 1011 bases) 
[3] and highly duplicated genes (which can occur thousands of times 
within a single genome) [4]. These and other unusual characteristics have 
made dinofl agellates diffi  cult to study using traditional molecular biology 
techniques. Sequence data for dinofl agellates are correspondingly sparse, 
and not a single genome sequence has been published to date.
As part of our project called Assembling the Dinofl agellate Tree of Life 
(DAToL), our laboratory has sequenced the transcriptome of Polarella 
glacialis. Its genome is estimated to be only 3 Gb in size, making it one 
of the smallest known dinofl agellate genomes. Because we had to rely 
on de novo assemblers that had been tested using data from organisms 

that are extremely divergent from dinofl agellates, we took special care 
in our attempts to validate the data. Before expanding our analyses to 
include additional dinofl agellates, we compared the results from diff erent 
sequencing and assembly methods.
Methods Total RNA was extracted from cultured P. glacialis. This sample 
was then divided and shipped to Macrogen for rRNA degradation, library 
preparation and sequencing. One library was sequenced on one-eighth 
of a Roche/454 GS FLX picotiter plate using Titanium chemistry. A second 
library was sequenced using one lane on an Illumina GAIIx sequencer for 78 
cycles in both directions (paired end). The sequences were assembled using 
Newbler, MIRA, Oases and Trinity, and they were analyzed using various 
custom scripts.
Results The total amount of unassembled 454 sequence data added to less 
than one-third of the combined lengths of only those Trinity transcripts that 
had a signifi cant BLAST hit against a sequence in GenBank, indicating that 
we did not achieve complete coverage with our 454 data.
Conclusions Our primary hypothesis was that the longer read lengths of 
the 454 data might allow the corresponding assemblers to better resolve 
repetitive sequences, which could be instrumental for assembling conserved 
regions within highly duplicated genes. Our failure to obtain complete 
coverage with the 454 dataset undermined our ability to test this hypothesis, 
although we made several other interesting observations. Notably, despite 
the vas t disparity in the depth of the coverage between the 454 and Illumina 
assemblies, we observed unique, apparently real sequences within some of 
the 454 contigs.
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Background Pyrosequencing techniques allow scientists to perform 
prokaryotic genome sequencing and achieve draft sequences within a 

Table 1 (abstract P6). Main average indices for diff erent sequencing strategies for 100 genomes (400-bp read length)

ST GCE (%) SBE (%) IDR (%) FLT (%) FDT (%) CN NB SN

6xSE+10xPE 98.26971 0.004915 0.000364 0.310807 0.4678237 50.94 331136.7 3.64

10xSE+10xPE 98.30248 0.004265 0.000322 0.2626039 0.5629617 44.75 383793.6 3.51

15xSE+10xPE 98.32861 0.003293 0.000294 0.2518801 0.6041274 43.12 397060.7 3.48

20xSE+10xPE 98.35117 0.00227 0.000293 0.2307405 0.6301239 42.3 411169.2 3.66

ST: Sequencing Strategy; GCE: Genome Coverage Rage; SBE: Single Base Error Rate; IDR: Indel Error Rate; FLT: False Gene Duplication Rate; FDT: False Gene Loss Rate; 
CN: Contig Number; NB: Contig N50 Size (bp); SN: Scaff old Number.

Table 2 (abstract P6). Main average indices for diff erent sequencing strategies for 100 genomes (100-bp read length)

ST GCE (%) SBE (%) IDR (%) FLT (%) FDT (%) CN NB SN

6xSE+10xPE 98.06775 0.00498 0.000339 0.4892094 0.190552 72.11 209661.1 4

10xSE+10xPE 98.09051 0.003982 0.000324 0.4596817 0.180621 63.08 240424.9 3.8367

15xSE+10xPE 98.308065 0.004018 0.000322 0.4731213 0.1733068 61.77 241163.8 3.9184

20xSE+10xPE 98.10211 0.004231 0.000339 0.4754001 0.1754001 59.65 244658.8 3.7642

ST: Sequencing Strategy; GCE: Genome Coverage Rage; SBE: Single Base Error Rate; IDR: Indel Error Rate; FLT: False Gene Duplication Rate; FDT: False Gene Loss Rate; 
CN: Contig Number; NB: Contig N50 Size (bp); SN: Scaff old Number.
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few days. However, the sequencing results always turn out to contain 
several hundred contigs. A multiplex PCR procedure is then needed to 
fi ll all of the gaps and to link the contigs into one full-length genome 
sequence [1-10]. The full-length prokaryotic genome sequence is the gold 
standard for comparative prokaryotic genome analysis. This study assessed 
pyrosequencing strategies by using a simulation with 100 prokaryotic 
genomes.

Results Our simulation shows the following: fi rst, a single-end 454 Jr 
Titanium run combined with a paired-end 454 Jr Titanium run may assemble 
about 90% of 100 genomes into <10 scaff olds and 95% of 100 genomes 
into <150 contigs; second, the average contig N50 size is more than 331 kb 
(Table 1); third, the average single base accuracy is >99.99% (Table 1); fourth, 
the average false gene duplication rate is <0.7% (Table 1); fi fth, the average 
false gene loss rate is <0.4% (Table 1); sixth, the total size of long repeats 

Table 3 (abstract P6). Main average indices for diff erent sequencing strategies for 100 genomes (200-bp read length)

ST GCE (%) SBE (%) IDR (%) FLT (%) FDT (%) CN NB SN

6xSE+10xPE 98.17144 0.003195 0.000334 0.4401864 0.2416131 61.15 253000.7 3.625

10xSE+10xPE 98.15661 0.004024 0.000317 0.4076573 0.2861061 54.33 290749.3 3.7188

15xSE+10xPE 98.16915 0.004743 0.000305 0.3916122 0.261398 53.47 301038.3 3.64

20xSE+10xPE 98.17177 0.004877 0.000309 0.409125 0.2509012 52.98 289864.6 3.6

Table 4 (abstract P6). Linear regression results for 100 genomes, between the genome quality indicators and, for various read lengths, the number of repeats 

in the genome, the total repeat length of the genome and the percentage of the total repeat length of the genome

 Repeat length Repeat length (>300) Repeat length (>700)

  R2 P-value R2 P-value R2 P-value

6XSE+10XPE, 400bp

 Number of Contigs 0.5657 2.2E-16 0.7842 2.2E-16 0.7948 2.2E-16

 N50 size of Contigs 0.07932 0.00453 0.1107 0.00072 0.1114 0.0006918

 Genome coverage 0.1298 0.0002314 0.2295 4.591E-07 0.2545 *.732E-08

 SNP error rate 0.04819 0.0282 0.09175 0.002189 0.08484 0.003282

 Inde1 error rate 0.002337 0.6329 0.04038 0.53 0.003728 0.5462

 se gene duplication 0.2951 5.227E-09 0.2969 4.598E-09 0.2158 0.000001124

 False gene loss rate 0.1978 0.00003553 0.338 2.264E-10 0.3408 1.827E-10

 Number of Scaff olds 0.3363 2.565E-10 0.462 7.497E-15 0.4845 9.023E-16

10XSE+10XPE, 400bp

 Number of Contigs 0.4762 2E-15 0.6908 2.2E-16 0.7164 2.2E-16

 N50 size of Contigs 0.05194 0.02258 0.09437 0.001878 0.09966 0.001377

 Genome coverage 0.1185 0.0004542 0.2119 0.000001443 0.2358 0.000000305

 SNP error rate 0.02702 0.1022 0.06257 0.01207 0.06363 0.01134

 Inde1 error rate 0.0006153 0.8065 0.001432 0.7085 0.001119 0.7411

 se gene duplication 0.3133 1.414E-09 0.324 6.457E-10 0.2426 1.936E-07

 False gene loss rate 0.1232 0.0003429 0.2021 0.000002708 0.1943 0.000004425

 Number of Scaff olds 0.2813 1.384E-08 0.4074 9.141E-13 0.4424 4.417E-14

15XSE+10XPE, 400bp

 Number of Contigs 0.453 1.709E-14 0.6676 2.2E-16 0.7008 2.2E-16

 N50 size of Contigs 0.01038 0.3131 0.07265 0.006691 0.07771 0.004978

 Genome coverage 0.1149 0.0005616 0.02068 0.00002001 0.2323 3.837E-07

 SNP error rate 0.0001226 0.913 0.0004724 0.83 0.0002939 0.8656

 Inde1 error rate 0.0001226 0.913 0.0004724 0.83 0.0002939 0.8656

 se gene duplication 0.3217 7.638E-10 0.3318 3.595E-10 0.2468 1.465E-07

 False gene loss rate 0.1541 0.00005366 0.2604 5.834E-08 0.2642 4.519E-08

 Number of Scaff olds 0.4023 1.399E-12 0.5996 2.2E-16 0.5878 2.2E-16

6XSE+10XPE, 400bp

 Number of Contigs 0.448 2.696E-14 0.6554 2.2E-16 0.6869 2.2E-16

 N50 size of Contigs 0.05142 0.02328 0.09641 0.001666 0.1006 0.001301

 Genome coverage 0.1152 0.000551 0.2076 0.000019 0.2338 3.467E-07

 SNP error rate 0.2124 0.000001398 0.3199 8.7E-10 0.3315 3.678E-10

 Inde1 error rate 0.00001646 0.968 0.00016 0.9006 0.00006389 0.937

 se gene duplication 0.3492 9.627E-11 0.3761 1.182E-11 0.2922 6.453E-09

 False gene loss rate 0.1163 0.000515 0.2011 0.000002892 0.1938 0.000004569

 Number of Scaff olds 0.3125 1.495E-09 0.458 1.09E-14 0.4898 5.431E-16
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(both repeat length >300 bp and >700 bp) is signifi cantly correlated to the 
number of contigs (Table 4); and, seventh, increasing the read length of a 
pyrosequencing run could improve the assembly quality signifi cantly (Table 
1-3).
Conclusions A single-end 454 Jr run combined with a paired-end 454 Jr run 
is a good strategy for prokaryotic genome sequencing. This strategy provides 
a solution to producing a high-quality draft genome sequence of almost 
any prokaryotic organism, selected at random, within days. It could be the 
fi rst step to achieving the full-length genome sequence. It also makes the 
subsequent multiplex PCR procedure (for gap fi lling) much easier, aided by 
the knowledge of the orders/orientations of most of the contigs. As a result, 
large-scale full-length prokaryotic genome-sequencing projects could be 
fi nished within weeks.
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Background A recent genome-wide association study (GWAS) identifi ed a 
single nucleotide polymorphism, rs8102137, located 6 kb upstream of the 
cyclin E1 gene (CCNE1) on chromosome 19q12, as a risk factor for bladder 
cancer (odds ratio (OR) = 1.13, P = 1.7 × 10−11) [1]. CCNE1 encodes a cell 
cycle protein that regulates cyclin-dependent kinases and is therefore an 
important cancer susceptibility gene.
Methods This study used 42 bladder tumor samples and 41 normal bladder 
tissue samples (24 matched normal-tumor pairs), HeLa cells and several 
prostate and bladder cancer cell lines. Genotyping of rs8102137 in DNA and 
rs7257694 in both DNA and cDNA samples was performed using an allelic 

discrimination genotyping assay. TaqMan and SYBR Green assays were 
used to measure the expression of the diff erent CCNE1 isoforms. The CCNE1 
isoforms were cloned into a pFC14A (HaloTag) CMV Flexi Vector. Protein 
expression of CCNE1 isoforms in normal and tumor bladder tissues and 
transfected cells was analyzed by western blotting. Subcellular localization 
of recombinant CCNE1 splicing forms was analyzed by confocal microscopy.
Results CCNE1 mRNA was expressed at a higher level in bladder tumors 
(n  = 42) than in adjacent normal bladder tissue samples (n = 41, 3.7-
fold, P = 2.7 × 10−12). However, no association was found between mRNA 
expression level and the genotype of rs8102137. We observed strong allelic 
expression imbalance for a synonymous coding variation located in the last 
exon (rs7257694, Ser390Ser), which is in high linkage disequilibrium with 
rs8102137 (normal bladder tissue samples, n = 41, D’ = 1.0, r2 = 0.815; HapMap 
CEU samples, n = 60, D’ = 0.95, r2 = 0.68). In normal and tumor tissue samples 
heterozygous for both single nucleotide polymorphisms, the risk variant 
of rs8102137 was associated with lower expression of allele T of rs7257694 
(normal samples, P = 2.2 × 10−4; tumor samples, P = 1.11 × 10−10). Western 
blotting analysis of bladder tissue and prostate cell line lysates revealed that 
the allelic expression imbalance is likely to be related to two CCNE1 protein 
isoforms that showed a diff erential pattern of expression dependent on the 
rs8102137 and rs7257694 genotype. We have cloned the alternative splicing 
forms of CCNE1 and are currently evaluating their functional relevance.
Conclusions Our results suggest that bladder-cancer-associated genetic 
variants of the CCNE1 gene might contribute to altered cell cycle regulation, 
owing to diff erential mRNA splicing producing diff erent protein isoforms of 
CCNE1.
Reference

1.  Rothman N, Garcia-Closas M, Chatterjee N, Malats N, Wu X, Figueroa JD, Real 

FX, Van Den Berg D, Matullo G, Baris D, Thun M, Kiemeney LA, Vineis P, De Vivo 

I, Albanes D, Purdue MP, Rafnar T, Hildebrandt MA, Kiltie AE, Cussenot O, Golka 

K, Kumar R, Taylor JA, Mayordomo JI, Jacobs KB, Kogevinas M, Hutchinson A, 

Wang Z, Fu YP, Prokunina-Olsson L et al.: A multi-stage genome-wide 
association study of bladder cancer identifi es multiple susceptibility loci. 
Nat Genet 2010, 42:978-984.

P8

Scaff Viz: visualizing metagenome assemblies

Sergey Koren1,2, Todd Treangen2,3 and Mihai Pop1,2

1Department of Computer Science, University of Maryland, College Park, MD 

20742, USA; 2Center for Bioinformatics and Computational Biology, University 

of Maryland, College Park, MD 20742, USA; 3The McKusick-Nathans Institute for 

Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, 

MD 21205, USA

Genome Biology 2011, 12(Suppl 1):P8

Background Metagenomics has allowed the study of a wide range of 
microbial communities, from those within the sea [1,2] to those of the human 
body [3]. Increasingly, de novo assembly is the fi rst step in the analysis of 
these metagenomic samples. As the targets have increased in complexity, 
computational tools have started to emerge [4,5] to address the challenges 
presented by the assembly of these datasets. Although the targets and 
analyses have become more complex, the means of presenting the results 
has remained the same: a multi-FASTA text fi le. This presentation hides the 
variation that is present in the sampled biological community. The ability to 
navigate and view the complexity of a genomic sample may help drive novel 
biological insights. Here, we present a graphical visualization tool that allows 
the visual inspection of genome assembly graphs and the characterization of 
the genomic variation that is present in these graphs (that is, the diff erences 
between two or more related haplotypes commonly found in metagenomes 
or higher eukaryotes).
Methods Our software, Scaff Viz [6], is open source and was developed as 
a plug-in for the Cytoscape graph viewer package [7,8]. Our assembly view 
represents assembly metadata within node/edge attributes. For example, 
node height corresponds to coverage (the amount of oversampling of a 
sequence), and node width is proportional to the length of the sequence. We 
support assemblies from Celera Assembler [9], Newbler [10], Bambus 2 and 
MetAMOS. The creation and initialization of Cytoscape objects is abstracted 
to allow a developer to easily add new assembly result formats without 
knowledge of Cytoscape’s API. We developed a layout algorithm based on 
information from the assembler on node position, orientation and length. 
Scaff Viz allows users to show (or hide) an arbitrary subset of nodes. The 
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viewer can also output genome sequence that corresponds to any subset 
of the graph, including all alternative sequences present in all selected 
subpaths. We believe that this representation may prove to be instrumental 
in fi nding and characterizing structural variants such as alternative genes, 
alternative regulatory units or mobile genomic elements.
Results We evaluated the performance of Scaff Viz on seven datasets of 
varying size and complexity. We report that the run time is approximately 
linear with respect to the number of elements in the graph (nodes + 
edges). The memory scales linearly with respect to the number of nodes. 
Extrapolating from these factors, a graph of 250,000 contigs can be opened 
in approximately 2 minutes using approximately 2.5 GB of memory. Scaff Viz 
is scalable to large graphs and can be run on a laptop.
Conclusions We have developed a novel open-source assembly graph 
viewer, Scaff Viz, as a plug-in for Cytoscape. Scaff Viz supports the output of 
several popular assembly programs and is scalable to large metagenomic 
assemblies on a laptop.
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Most of the DNA viruses in the gastrointestinal tract are phages, which infect 
bacterial hosts. Despite phages being the most abundant organisms on Earth, 
as well as extremely active players in the global ecosystem, much remains 

unknown about how they function in their natural environments. Advances in 
whole genome sequencing technologies have generated a large collection of 
hundreds of phage genomes, allowing deep insight into the genetic evolution 
of phages, and metagenomics technologies seem to promise more rewarding 
glimpses into their life cycles and community structures.
Recently, we developed an automated approach to assemble a collection 
of orthologous gene clusters of double-stranded DNA phages (phage 
orthologous groups, or POGs). This approach follows the well-known clusters 
of orthologous groups (COGs) framework to identify sets of orthologs by 
examining top-ranked sequence similarities between proteins in complete 
genomes without the use of arbitrary similarity cutoff s, and it thus represents 
a natural system for examining fast-evolving and slow-evolving proteins 
alike. This automated approach was designed to keep pace with the rapid 
and accelerating growth of whole genome information from sequencing 
projects. In particular, we employ a faster graph-theoretical COG-building 
algorithm that vastly improves our ability to deal with larger numbers of 
genomes (N) by reducing the worst-case complexity from O(N6) to O(N3 × log 
N). This system encompasses more than 2,000 groups from the almost 600 
known phage genomes deposited at the National Center for Biotechnology 
Information and is in the process of being expanded to include single-
stranded DNA phages and single- and double-stranded RNA phages.
Using this approach, we found that more than half of the POGs have no or 
very few evolutionary connections to their cellular hosts, indicating that 
these phages combine the ability to share and transduce the host genes with 
the ability to maintain a large fraction of unique, phage-specifi c, genes. Such 
genes are useful for targeted research strategies: for example, as diagnostic 
indicators and fundamental units of systems biology studies. We employed 
this set of phage-specifi c genes to probe the composition of several oceanic 
metagenomic samples. Although virus-enriched samples indeed contain 
more homologous matches to phage-specifi c POGs than a full metagenomic 
sample also containing cellular DNA, the total gene repertoire of the marine 
DNA virome is dramatically diff erent from that of known phages. In particular, 
it is dominated by rare genes, many of which might be contained within virus-
like entities such as cellular gene transfer agents rather than true viruses. This 
result might suggest the necessity of radically rethinking what constitutes 
the ‘virus world’, because the major component of (marine) viromes could be 
gene transfer agents that encapsidate bacterial and archaeal genes.
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Background Recent genome-wide association studies have led to the reliable 
identifi cation of single nucleotide polymorphisms (SNPs) at a number of loci 
associated with an increased risk of developing specifi c common human 
diseases. Each such locus implicates multiple possible candidate SNPs as 
being involved in the disease mechanism, and determining which SNPs 
actually contribute, and by what mechanism, is a major challenge. A variety 
of mechanisms may link the presence of a SNP to altered in vivo gene product 
function and hence contribute to disease risk. We have analyzed the role of 
one of these mechanisms, nonsynonymous SNPs (nsSNPs) in proteins, for 
associations found in the Wellcome Trust Case-Control Consortium (WTCCC) 
study of seven common diseases [1] and the follow-up work.
Methods Using HapMap data and linkage disequilibrium information, we 
identifi ed all possible candidate SNPs associated with increased disease 
risk. We then applied two computational methods [2,3], based on analysis 
of protein structure and sequence, to determine which of these SNPs has a 
signifi cant impact on in vivo protein function (SNPs3D) [4].
Results Several of these disease-associated loci were found to be linked 
to one or more high-impact nsSNPs. In some cases, these SNPs are in well-
known proteins (such as human leukocyte antigens). In other cases, they 
are in less well-established disease-associated genes (for example, MST1 
for Crohn’s disease), and in yet others, they are in proteins that have been 
poorly investigated (for example, gasdermin B, also for Crohn’s disease). 
Approximately 55% of these disease-associated loci have at least one nsSNP, 
and about 33% of them have at least one high-impact nsSNP in those regions.
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Conclusions Together, these data suggest a signifi cant role for nsSNPs in 
common human disease susceptibility.
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Background A major goal of metagenomics is to characterize the taxonomic 
composition of an environment. The most popular approach relies on 16S 
rRNA sequencing; however, this approach can generate biased estimates 
owing to diff erences in the copy number of the gene, even between closely 
related organisms, and owing to PCR artifacts. In addition, the taxonomic 
composition can also be determined from metagenomic shotgun sequences 

by matching reads against a database of reference sequences. One major 
limitation of the computational methods that have been used for this 
purpose is the use of a universal classifi cation threshold for all genes at all 
taxonomic ranks.
Methods We present a novel taxonomic profi ler for metagenomic sequences, 
MetaPhyler [1], which relies on 31 phylogenetic marker genes as a taxonomic 
reference. Because genes can evolve at diff erent rates and because shotgun 
reads contain gene fragments of diff erent lengths, we propose that better 
classifi cation results can be obtained by tuning the taxonomic classifi er to 
the length of the gene fragment, to a particular gene and to the taxonomic 
rank. Our classifi er uses diff erent thresholds for each of these parameters, 
and these thresholds are automatically learned from the taxonomic structure 
of the reference database.
Results We have randomly simulated about 300,000 DNA sequences of 60 
bp and about 70,000 DNA sequences of 300 bp from phylogenetic marker 
genes. Table 1 shows the performance of the phylogenetic classifi cations 
from MetaPhyler, PhymmBL [2], MEGAN [3] and WebCARMA [4]. The query 
sequence itself was removed from the reference dataset when running the 
programs. The sensitivity of MetaPhyler is signifi cantly higher than that of 
the other tools in all situations because our classifi er is explicitly trained at 
each taxonomic rank.
In addition, we have created a simulated metagenomic sample comprising 
fi ve genomes. Table 2 shows the taxonomic profi les estimated by 
diff erent approaches. In this setting, MetaPhyler also outperforms the 
other approaches by more accurately reconstructing the true taxonomic 
distribution.
Conclusions We have introduced a novel taxonomic classifi cation method 
for analyzing the microbial diversity from whole metagenome shotgun 
sequences. Compared with previous approaches, MetaPhyler is more 

Table 1 (abstract P11). Comparison of sensitivity and precision. 

Sequence length Parameter Taxonomic rank MetaPhyler (%) PhymmBL (%) MEGAN (%) WebCARMA (%)

60 bp Sensitivity Genus 33.45 18.18 15.49 22.66

  Family 54.22 38.75 24.52 25.10

  Order 59.59 49.36 31.74 28.22

  Class 70.72 62.86 50.78 32.12

  Phylum 75.30 68.88 64.19 34.65

 Precision Genus 96.38 94.42 90.72 35.22

  Family 97.45 97.66 97.18 45.71

  Order 97.39 97.65 98.10 52.51

  Class 98.27 98.15 99.11 66.15

  Phylum 98.83 99.06 99.56 72.90

300 bp Sensitivity Genus 52.39 42.97 20.89 45.96

  Family 70.17 58.81 34.27 52.49

  Order 78.09 66.72 45.24 58.56

  Class 84.52 75.42 61.06 62.70

  Phylum 91.18 76.78 81.36 66.49

 Precision Genus 97.90 96.16 96.09 77.63

  Family 99.14 99.07 99.19 88.69

  Order 99.15 99.15 99.21 92.67

  Class 99.34 99.34 99.57 95.43

  Phylum 99.64 99.64 99.80 96.58

Table 2 (abstract P11). Comparison of taxonomic profi le estimations.

Genus True (%) MetaPhyler (%) PhymmBL (%) MEGAN (%) WebCARMA (%)

Bifidobacterium 50.0 50.0 34.3 32.8 34.3

Bacteroides 20.0 20.4 32.1 34.3 33.8

Staphylococcus 10.0 10.2 9.4 9.1 8.9

Enterococcus 10.0 10.1 9.0 7.3 10.4

Clostridium 10.0 9.4 11.8 12.1 12.6

Other 0.0 0.0 3.6 4.4 0.1
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accurate at estimating the taxonomic profi le, especially when taking into 
account the actual abundance of individual taxonomic groups.
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Background Individuals II-1 and II-6 from family 1 presented in the mid-
1980s to the University of Utah Medical Center. These boys had a striking 
similarity to each other, with a range of shared clinical manifestations, but 
the disease they presented with was not a recognized syndrome. Both boys 
subsequently died in infancy. X-linked inheritance was confi rmed in the next 
generation, when individuals III-4 and III-7 presented with the same disease. 
Their aged appearance was the most striking part of the disease.
Methods We describe two parallel genetic research eff orts that converged 
on the same gene variant. Exon capture was carried out on samples from 
two families, using a commercially available in-solution method (Agilent’s 
SureSelect Human X Chromosome kit) as per the manufacturer’s guidelines 
with minor modifi cations to generate sequencing libraries (Illumina). 
We also used a recently developed tool, the Variant Annotation, Analysis 
and Selection Tool (VAAST), which identifi es disease-causing variants, to 
analyze the exon capture data from family 1. Our analysis applied a disease 
model that did not require complete penetrance or locus homogeneity. We 
restricted the expected allele frequency of putative disease-causing variants 
within the control genomes to 0.1% or lower. The background fi le used in 
the analysis is composed of variants from dbSNP (version 130), 189 genomes 
from the 1000 Genomes Project, the 10Gen Data Set, 184 Danish exomes 
and 40 whole genomes from the Complete Genomics Diversity Panel. VAAST 
candidate gene prioritization analysis was performed using the likelihood 
ratio test under the dominant inheritance model, assuming an expected 
allele frequency of 0.1% or lower for the causal variant in the general 

population. After masking out loci of potentially low variant quality, single 
nucleotide variations in each gene were scored as a group. The signifi cance 
level was assessed using individual permutation tests.
Results We identifi ed a family with a previously undescribed lethal 
X-linked disorder of infancy comprising a distinct combination of an aged 
appearance, craniofacial anomalies, hypotonia, global developmental 
delays, cryptorchidism, cardiac arrhythmia and cardiomyopathy. We used 
X-chromosome exon sequencing and a recently developed probabilistic 
disease-gene discovery algorithm to identify a missense variant in NAA10, 
which encodes the catalytic subunit of the major human amino-terminal 
acetyltransferase (NAT; also known as hNaa10p). More recently, we became 
aware that a parallel eff ort on a second unrelated family converged on 
the same variant. The absence of this variant in controls, the amino acid 
conservation of this region of the protein, the predicted disruptive change 
and the co-occurrence in two unrelated families with the same rare 
disorder suggest that this is the pathogenic mutation. We confi rmed this 
by demonstrating that the mutant hNaa10p had signifi cantly impaired 
biochemical activity, and we therefore conclude that a reduction in 
acetylation by hNaa10p causes this disease.
Conclusions This is one of the fi rst uses of next-generation sequencing to 
identify the genetic basis of a previously unrecognized X-linked syndrome. 
It is also the fi rst evidence of a human genetic disorder resulting from direct 
impairment of amino-terminal acetylation, one of the most common protein 
modifi cations in humans. We have also demonstrated that a probabilistic 
disease-gene discovery algorithm (VAAST) can readily identify and 
characterize the genetic basis of this syndrome.
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Background Genome-wide association studies (GWAS) have identifi ed a 
single nucleotide polymorphism, rs2294008 C/T, within the prostate stem 
cell antigen (PSCA) gene as a risk variant for bladder cancer [1]. PSCA is a 
glycosyl phosphatidylinositol (GPI)-anchored cell surface protein from the 
Ly-6/Thy-1 family of cell surface antigens. PSCA overexpression has been 
reported in bladder, prostate and pancreatic tumors. The risk allele (T) of 
rs2294008 creates a novel translation start site and extends the PSCA leader 
peptide sequence by 11 amino acids.
Methods The mRNA expression in 42 bladder tumor samples and 39 
adjacent normal bladder tissue samples (24 matched normal-tumor pairs) 
was explored using genome-wide RNA sequencing and targeted PSCA mRNA 
expression assays. For allelic expression imbalance studies, genotyping of 
rs2294008 both in DNA and cDNA samples was performed using an allelic 
discrimination genotyping assay. Alternative allele-specifi c splicing forms of 
PSCA were cloned and transfected into several human cancer cell lines. The 
endogenous expression of PSCA protein and the expression pattern of the 
recombinant PSCA allelic isoforms in diff erent cancer cell lines were studied 
by western blotting, confocal microscopy and fl uorescence-activated cell-
sorting analysis. PSCA protein expression in normal and tumor bladder 
tissue samples was examined in relation to rs2294008 genotypes by using 
immunohistochemistry.
Results PSCA mRNA was expressed at a 5.7-fold higher level in tumors 
than in matching normal bladder tissue samples (P = 0.0060). There was a 
strong allelic expression imbalance in tumor samples (P = 0.0020), based 
on 20 normal and 13 tumor samples that were heterozygous for rs2294008. 
PSCA mRNA expression was associated with the genotype of rs2294008 
both in normal and tumor bladder tissue samples. Our preliminary data 
on the expression of recombinant allele-specifi c PSCA protein isoforms 
in transfected cells show a possible diff erence in the distribution of the 
cytoplasmic and membrane expression of these isoforms.
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Conclusions Our results suggest that the extension of the PSCA leader 
peptide by 11 amino acids, introduced by the risk allele (T) of rs2294008, 
may aff ect subcellular protein localization and the availability of functional 
GPI-anchored PSCA on the cell surface. These results may have clinical 
implications because antibodies that target cell-surface-expressed PSCA are 
in clinical trials for pancreatic and prostate cancer.
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Background Thiol peroxidases have been conserved throughout evolution 
and are found in almost every known organism from bacteria to humans. 
These proteins play a key role in maintaining redox homeostasis and have 
been implicated in other processes such as cell signaling and sensing 
hydrogen peroxide and passing this signal along to transcription factors. To 
gain a better understanding of the role that each thiol peroxidase plays in 
redox regulation on a global level, Fomenko and colleagues [1] performed 
a series of microarray experiments in which diff erent combinations of the 
genes encoding the eight thiol peroxidases (three glutathione peroxidase 
homologs (Gpx) and fi ve peroxiredoxins (Prx)) present in yeast were 
knocked out, including one mutant (8-Δ) in which all eight peroxidases were 
removed. Surprisingly, all of the mutants, including 8-Δ, were viable and 
could withstand redox stresses; however, they were unable to activate or 
repress transcriptional events in response to hydrogen peroxide treatment, 
which was most evident in the 8-Δ mutant. In our work, network analysis was 
used to gain a better understanding of the biological networks whose gene 
expression is aff ected by these mutations.
Methods Microarray data (provi  ded by [1]) was processed for input into the 
Cytoscape plug-in jActiveModules. Active sub-networks for select mutants 
were identifi ed using all yeast interactions found in the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) [2] as the background network (including 
protein-protein, metabolic and gene expression interactions). Nodes in each 
sub-network were input into the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) [3] to identify which KEGG pathways were 
present.
Results Two hundred and six genes appeared in one or more of the active 
sub-networks. Only seven genes were present in the sub-networks of all 
strains. These were a known oxidative stress-induced aldose reductase 
(GRE3), four putative aryl-alcohol dehydrogenases (AAD3, AAD6, AAD10 and 
AAD14), a mitochondrial aldehyde dehydrogenase (ALD4) and a xylulokinase 
(XKS1). All of the genes were upregulated on average by 6- to 12-fold in all 
strains, except for 8-Δ with a 1.5-fold average upregulation and 5Prx-Δ with a 
3-fold average upregulation.
Many metabolic pathways were aff ected by the knockouts; the pathway 
types aff ected depended on which peroxidase gene was knocked out. This 
result suggests that diff erent thiol peroxidases may have a signifi cant and 
specifi c impact on the regulation of metabolic pathways during oxidative 
stress.
Surprisingly, the Gpx3-Δ active sub-network was similar to the Gpx1-Δ and 
Gpx2-Δ sub-networks. Gpx3 is known to sense hydrogen peroxide and pass 
that signal along to transcription factors; thus, it was expected that this sub-
network would diff er from that of the other Gpx mutants. Additionally, our 
results showed that amino acid metabolism, biosynthesis and degradation 
pathways were active in wild-type cells but were present in few mutant 
strains.

Conclusions The results of this work indicate that thiol peroxidases, along 
with playing a key role in maintaining redox homeostasis, may also play 
a signifi cant role in the regulation of metabolic pathways in yeast, thus 
illuminating the global role that thiol peroxidases play in oxidative stress.
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Metagenomic studies were originally focused on exploratory/validation 
projects but are rapidly being applied in a clinical setting. In this setting, 
researchers are interested in fi nding characteristics of the microbiome that 
correlate with the clinical status of the corresponding sample. Comparatively 
few computational/statistical tools have been developed that can assist in 
this process. Rather, most developments in the metagenomics community 
have focused on methods that compare samples as a whole. Specifi cally, 
the focus has been on developing robust methods for determining the level 
of similarity or diff erence between samples, rather than on identifying the 
specifi c characteristics that distinguish diff erent samples from each other.
Metastats [1] was the fi rst statistical method developed specifi cally to address 
the questions asked in clinical studies. Metastats allows a comparison of 
metagenomic samples (represented as counts of individual features such as 
organisms, genes and functional groups) from two treatment populations 
(for example, healthy versus disease) and identifi es those features that 
statistically distinguish the two populations.
Here, we present major improvements to the Metastats software and the 
underlying statistical methods. First, we describe new approaches for 
data normalization that allow a more accurate assessment of diff erential 
abundance by reducing the covariance between individual features 
implicitly introduced by the traditionally used ratio-based normalization. 
These normalization techniques are also of interest for time-series analyses 
or in the estimation of microbial networks. A second extension of Metastats 
is a mixed-model zero-infl ated Gaussian distribution that allows Metastats to 
account for a common characteristic of metagenomic data: the presence of 
many features with zero counts owing to undersampling of the community. 
The number of ‘missing features’ (zero counts) correlates with the amount of 
sequencing performed, thereby biasing abundance measurements and the 
diff erential abundance statistics derived from them.
Using simulated and real data, we show that these methods signifi cantly 
improve the accuracy of Metastats. We also describe the addition of several 
new statistical tests to our code (including presence/absence and the 
corresponding odds ratio, and penetrance calculations) that improve the 
usability of our software in clinical practice.
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Background miRNAs are short, non-coding regulatory RNA molecules 
that can bind to complementary sequences on target mRNAs, resulting 

Genome Biology 2011, 12(Suppl 1) 
http://genomebiology.com/supplements/12/S1

12



in translational repression and gene silencing. miRNAs are attractive as 
biomarkers, because they are stable in various conditions and are easy to 
measure using quantitative PCR methods. Biomarkers that can diff erentiate 
between normal and tumor states and can be measured in easily accessible 
body fl uids, such as blood and urine, are important for cancer diagnostics 
and disease monitoring.
Methods and results In this study, we identifi ed a universal panel of miRNAs 
for cancer detection. This panel can easily be used to screen the serum of 
healthy individuals and patients with diff erent types of cancer. First, we 
measured the expression of about 800 miRNAs in 40 control individuals 
and 60 patients with bladder, breast or prostate cancer using TaqMan Low 
Density gene expression arrays (Applied Biosystems), starting from 250 
μl serum. On the basis of these results, we selected a panel of 24 miRNAs 
that showed the best discrimination between normal samples and cancer 
samples. These miRNAs were then retested as a custom-designed mini-panel 
on serum samples from 44 healthy controls and from patients with cancer 
(31 with bladder cancer, 25 with breast cancer and 28 with prostate cancer), 
as well as in relevant normal and tumor tissue samples (42 normal bladder 
samples and 43 bladder tumors, 44 normal breast samples and 42 breast 
tumors, and 50 normal prostate samples and 20 prostate tumors). Only 
miRNAs with changes in expression in the same direction in serum and tissue 
samples and with a signifi cant association with cancer in both sample types 
were used for further analysis.
The current panel consists of 16 miRNAs: 15 targets and 1 positive control. 
Using this panel on serum samples from 77 controls, 52 patients with bladder 
cancer, 48 patients with breast cancer and 34 patients with prostate cancer, 
we performed receiver operating characteristic (ROC) analysis and achieved 
complete discrimination (area under the ROC curve (AUC) of about 1.0) 
between all types of cancers and controls, as well as good discrimination 
between diff erent types of cancers (minimal AUC of 0.89 for breast and 
bladder cancer samples).
Conclusions Our results prove that miRNA detection in serum might be a 
promising method for cancer detection.
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Background A recent genome-wide association study (GWAS) of bladder 
cancer identifi ed a single nucleotide polymorphism (SNP), rs11892031, 
within the UGT1A gene cluster on chromosome 2q37.1, as a novel risk factor. 
The UGT1A locus encodes nine UGT proteins, which belong to the phase 
II cellular detoxifi cation system. UGTs are functionally important for the 
detoxifi cation of aromatic amines, which are found in industrial chemicals 
and tobacco smoke and are known risk factors for bladder cancer. The UGT-
encoding genes have exons 2 to 5 in common but have diff erent fi rst exons, 
which defi ne the enzymatic activity and substrate specifi city of the gene 
products.
Methods and results We sequenced all nine highly similar alternative fi rst 
exons for the UGT-encoding genes of up to 2,000 individuals. We identifi ed 
26 known nonsynonymous and 17 known synonymous coding variants 
but no novel variants. Imputation based on the GWAS dataset, a combined 
reference panel of HapMap 3 and the 1000 Genomes Project, and a subset of 
GWAS samples genotyped for all of the identifi ed coding variants generated 
data for 1,170 SNPs within the whole UGT1A region. Of these markers, the 
strongest association was detected for an uncommon protective genetic 
variant that explained the original GWAS signal (odds ratio (OR) = 0.55, 95% 
confi dence interval (CI) = 0.44 to 0.69, P = 3.3 × 10−7 in 4,035 cases and 5, 284 
controls; D’ = 0.96, r2=0.23 with rs11892031). No residual association in this 
region was detected after adjustment for this SNP. A typical genetic variant 
identifi ed by GWAS for a common disease is expected to be a common allele 
(>10% minor allele frequency) that increases the disease risk. We show that 
the novel associated variant is an uncommon protective allele (1.14% in 
cases and 2.5% in controls). Interestingly, the risk allele (G) is conserved in 
33 species, whereas the protective allele (T) is a human-specifi c variant. Even 
though this SNP is a synonymous coding variant, we show its association 
with quantitative mRNA expression of a specifi c functional splicing form of 
UGT1A6, probably through an exonic splicing enhancer.
Conclusions This study exemplifi es that uncommon protective genetic 
variants are unusual suspects that may play important but underestimated 
functional roles in complex traits.
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Background Horizontal gene transfers (HGTs) are pervasive in prokaryotes 
[1], being the routes of net-like evolution that collectively dominate the 
evolution of prokaryotes [2]. However, in eukaryotes, the eff ect of HGT has 
not been thoroughly analyzed, with the exception of the massive HGT from 
the endosymbionts [3]. Here, we report a comprehensive analysis of likely 
HGT events in diff erent groups of unikonts (Amoebozoa, Archamoebae, 
Mycetozoa, the Fungi/Metazoa group, Choanofl agellida, Fungi and Metazoa).
Methods We analyzed the complete proteomes of 36 species of unikonts: 1 
from the Archamoebae, 1 from Mycetozoa, 18 from Fungi, 13 from Metazoa 
and 1 from Choanofl agellida. These proteomes were manually selected 
to widely represent the unikont supergroup. Initial pre-candidate genes 
were obtained by analyzing each proteome using the DarkHorse program 
[4]. The program BLASTClust was then used to make clusters of putative 
unique transfer events at the origin of the diff erent groups of unikonts. 
These clusters were separated into two groups: group I candidate clusters 
(clusters with no eukaryotic representative other than the unikont group 
analyzed), and group II candidate clusters (clusters with representatives from 
prokaryotes, the unikont group analyzed and other eukaryotes). Sequences 
from group I candidate clusters were analyzed using BLAST versus nr and 
RefSeq databases, compared with the clusters of orthologous groups for 
eukaryotic complete genomes (KOGs) [5] and manually curated to remove 
false positives that result from bacterial contamination of the genomic 
DNA. Group II candidate clusters were analyzed using a series of automatic, 
conservative fi lters to assess the quality of the candidates. Finally, all clusters 
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were phylogenetically analyzed to defi ne the fi nal candidates and to infer 
putative donors.
Results Using this methodology, we detected numerous probable HGT 
events from prokaryotes (mainly Bacteria) to unikonts. These events are not 
distributed uniformly throughout the evolution of unikonts: for example, 
almost all HGTs detected in Amoebozoa occurred after the divergence of 
Archamoebae and Mycetozoa. Importantly, we also detected many HGT 
events from Bacteria to Fungi, Choanofl agellida and MetazoaConclusions 

Although HGTs are not as pervasive in eukaryotes as in prokaryotes, the 
amount of HGT detected in this study suggests that the acquisition of genes 
from Bacteria played a major role in the evolution of the unikonts.
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Background Most studies exploring cancer progression have focused on the 
infl uence of individual genes, and few eff orts have investigated the eff ects of 
interactions between genes within the genome. Our hypothesis is that cancer 
cells thrive by exploiting combinations of genes, in fact by exploiting networks 
of genes that both protect the cell against destruction and enhance its survival. 
We believe that these networks involve genes that tend to be coordinated in 
their copy number alterations, even when they are located at a distance in 
the genome. Radiation hybrid (RH) cells have a random assortment of genes 
as triploid rather than diploid. Our recent work studying genetic networks in 
libraries of RH cells has elucidated key survival-enhancing interactions with 
high specifi city [1]. Because of the hardiness of the RH clones, statistically 
signifi cant patterns of co-inherited, unlinked triploid gene pairs pointed to 
the cell survival mechanism. We identifi ed more than 7.2 million signifi cant 
interactions at single-gene resolution using the RH data.
Methods Our work with the RH data provided the rationale for an investigation 
of cancer survival networks, in particular for glioblastoma multiforme, a 
formidable brain cancer for which extensive datasets are available but few 
treatment options. We investigated correlated patterns of copy number 
alterations for distant genes in glioblastoma multiforme tumors using the 
same method we employed to construct the RH survival network. Public 
data were analyzed from 301 glioblastomas that had been assessed for copy 
number alterations using array comparative genomic hybridization [2].
Results The glioblastoma and RH survival networks overlapped signifi cantly 
(P = 3.7 × 10−31). We therefore exploited the high-resolution mapping of 
the RH data to obtain single-gene specifi city in the glioblastoma network. 
The combined network features 5,439 genes and 13,846 interactions (false 
discovery rate (FDR) <5%) and suggests novel approaches to therapy for 
glioblastoma. For example, although the epidermal growth-factor receptor 
(EGFR) oncogene is frequently activated in glioblastoma, EGFR inhibitors 
have limited therapeutic effi  cacy [3]. In the combined glioblastoma survival 
network, there are 46 genes that interact with EGFR, of which ten (22%) 
happen to be targets of existing drugs. This observation suggests that a 
fl anking attack strategy that strikes at both EGFR and its partner genes in 
the glioblastoma survival network may be an eff ective approach to treating 
these tumors.
Conclusions By elucidating a genetic survival network for glioblastoma, 
we gained insight into the mechanisms of proliferation of this cancer and 
opened up new avenues for therapeutic intervention.
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Background Hundreds of diverse genetic loci have been linked to autism 
spectrum disorders (ASDs), making large-scale analysis essential for 
understanding the molecular events underlying the pathogenesis of 
these disorders. Our laboratory fi rst released the autism database AutDB 
in 2007 as a bioinformatics tool for systematic curation of all known 
ASD candidate genes [1-3]. AutDB was designed with a systems biology 
approach, integrating genetic entries within the Human Gene module with 
corresponding behavioral, anatomical and physiological data in the Animal 
Model module. In June 2011, we released a new Protein Interaction (PIN) 
module of AutDB, which serves as a comprehensive, up-to-date resource on 
the direct protein interactions of ASD-linked genes.
Methods To curate the PIN module, our researchers utilize a multi-level 
annotation model to systematically search, collect and extract information 
entirely from published, peer-reviewed scientifi c literature. Although we 
initially consult public molecular interaction databases (HPRD and BioGRID) 
and commercial molecular interaction software (Pathway Studio, version 
7.1), every interaction is manually extracted and verifi ed by evaluating the 
primary reference articles from PubMed. Our manual curation has proved 
critical for accurate annotation, because these references were the second 
largest source of references for the initial PIN dataset, providing more 
interactions than both HPRD and Pathway Studio. Each ASD gene entry 
within the PIN module is presented as a multi-level display, with interactive 
graphical and tabular views of its corresponding interactome.
Results The initial PIN dataset includes interactomes for 86 ASD candidate 
genes, with a total of 1,311 direct protein interactions garnered from 533 
unique primary references. These interactomes are composed of 6 interaction 
types and 13 species, documented by 402 distinct pieces of evidence. Our 
researchers will expand and maintain the data content of the PIN module 
with systematic updates.
Conclusions We have created an integrated bioinformatics tool that can be 
used for the large-scale analysis of the biological relationships among ASD 
candidate genes. Such network analysis is envisioned to provide a framework 
for identifying the key molecular pathways underlying ASD pathogenesis, 
potentially leading to the development of novel drug therapies.
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Background Bladder cancer is the 9th most common cancer worldwide 
and the 13th most common cancer-related cause of death. Bladder cancer 
frequently recurs after the removal of primary carcinomas. This recurrence 
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leads to repeated surgeries and long-term treatment and surveillance, 
making it the most expensive type of cancer to treat. Genetic factors 
and environmental factors such as cigarette smoking and occupational 
exposure to aromatic amines are linked to bladder cancer risk. Genome-
wide association studies (GWAS) for bladder cancer have identifi ed multiple 
genetic variants within genes and regions, including TP63, TERT-CLPTMIL 
and 8q24.21, to be highly associated with disease risk. Whole transcriptome 
sequencing (RNA-Seq) is a revolutionary tool for generating a large amount 
of qualitative and quantitative information, thus helping to explore known 
and novel transcripts, splicing forms and fusion genes.
Methods To understand the genetic and genomic landscape of the 
GWAS susceptibility regions, we investigated and characterized the entire 
transcriptome of normal and tumor bladder tissue samples by using 
powerful massively parallel RNA sequencing. We used an Illumina HiSeq 
2000 instrument to sequence six paired samples of normal and tumor 
bladder tissues. For each of the samples, we generated 50 Gb of 100-bp reads 
to represent the whole transcriptome.
Results Using the Bowtie/TopHat and Samtools packages, we successfully 
aligned approximately 80% of the total sequence reads against the human 
genome reference sequence (build 19). Our analysis sought to identify 
alternative splicing forms, novel exons, non-coding transcripts and chimeric 
fusion events. Total levels of mRNA in normal and tumor samples were 
evaluated by Cuffl  inks analysis based on the Ensembl transcripts database. 
Multiple splicing isoforms were identifi ed for some of the GWAS susceptibility 
genes, and some of these isoforms were diff erentially expressed between the 
tumor and normal samples. We found that novel transcripts and non-coding 
RNAs corresponding to gene desert regions such as 8q24 were abundantly 
expressed. Our next step will focus on validation of these diff erentially 
expressed genes and novel transcripts by using quantitative RT-PCR on 
independent samples.
Conclusions Using RNA-Seq, we explored transcripts corresponding to 
candidate regions identifi ed by bladder cancer GWAS. Some of these 
transcripts demonstrated splicing variability and diff erential levels of 
expression between normal and tumor tissue samples, which might be of 
importance for bladder cancer.
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Background Recent genome-wide association studies (GWAS) have identifi ed 
multiple genetic variants associated with the risk of developing prostate 
cancer (PrCa). At least ten PrCa-associated single nucleotide polymorphisms 
(SNPs) are located within a gene-poor region on chromosome 8q24, but the 
functional mechanisms of each of these variants remain unknown. Normal 
prostate development, as well as tumor initiation and progression, greatly 
depends on the androgen receptor (AR) and its ligands, testosterone and 
5α-dihydrotestosterone. We hypothesized that genetic variants associated 
with PrCa risk might be important owing to their eff ects on AR-binding sites.
Methods and results We comprehensively explored 11 PrCa GWAS 
published as of July 2011 in the National Human Genome Research Institute’s 
GWAS database [1] and in PubMed [2]. We selected ten SNPs from the 
8q24 region that were signifi cantly and consistently associated with PrCa 
in Caucasian datasets (P < 5 × 10−7). By querying the CEU 1000 Genomes 
Project panel, we generated a list of 224 SNPs in high linkage disequilibrium 
(r2 > 0.8) with the ten selected GWAS SNPs. Of all of the SNPs on this list, six 
variants were located in the regions identifi ed as AR-binding sites, based on 
AR chromatin immunoprecipitation (ChIP)-Seq data from the University of 
California, Santa Cruz’s genome browser [3]. To test for diff erential binding 
of AR to alleles of the six SNPs, we developed a protocol for quantitative 
multiplex allele-specifi c ChIP (AS-ChIP) assays. Confi rmatory AS-ChIP with 
AR-specifi c antibodies in the LNCaP cell line showed that fi ve of these 
SNPs were heterozygous in the LNCaP cell line, and four of them showed 
statistically signifi cant allele-specifi c diff erences in AR binding (P-value range 
= 0.0005 to 0.04, based on four biological replicates of AS-ChIP).

Conclusions Our data suggest that some of the PrCa-associated SNPs within 
the 8q24 region might create or disrupt binding sites for AR, thereby aff ecting 
important regulatory networks in normal and cancerous prostate tissue.
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Background Metagenomics has opened the door to unprecedented 
comparative and ecological studies of microbial communities, ranging from 
the sea [1] to the soil (the terragenome) to within the human body [2,3]. Most 
analyses begin with assembly, as the short reads that are characteristic of 
most datasets severely limit the ability to classify the data taxonomically [4-7] 
and require considerable computational resources to perform comparative 
analyses (such as BLAST against public databases). In addition, given that 
many sequences are likely to be from novel organisms, classifi cation methods 
relying on databases fail to acknowledge most of the novel species present 
in the dataset. In an attempt to move away from reference-based analysis, 
computational tools based on promising algorithmic and statistical methods 
for metagenomic de novo assembly have recently started to emerge [8,9]. 
However, to date, they either are ill-suited to large datasets or have yet to 
off er signifi cant improvements over existing genome assemblers that were 
not designed for metagenomic assembly.
Methods Here, we describe MetAMOS [10], an open-source, modular 
assembly pipeline built upon AMOS and tailored specifi cally for metagenomic 
next-generation sequencing data. MetAMOS is the fi rst step toward a fully 
automated assembly and analysis pipeline, from mated reads (Illumina 
and 454) to scaff olds and ORFs. Currently, MetAMOS has support for four 
assemblers (SOAPdenovo [11], Newbler, CABOG and Minimus [12]), three 
annotation methods (BLAST, PhymmBL and MetaPhyler), two metagenomic 
gene prediction tools (MetaGeneMark and Glimmer-MG) and one unitig 
scaff older engineered specifi cally for metagenomic data (Bambus 2). We also 
provide a novel graph-based algorithm to propagate annotations rapidly 
to all contigs in an assembly using, for example, only the largest contigs or 
contigs with high-confi dence classifi cation. MetAMOS has three principal 
outputs: subdirectories containing FASTA sequence of the contigs/scaff olds/
variant motifs belonging to a specifi ed taxonomic level, a collection of all 
unclassifi ed/potentially novel contigs contained in the assembly, and an 
HTML report with detailed assembly statistics and summary charts.
Results and conclusions We compared MetAMOS with other metagenomic 
assembly tools (Meta-IDBA and Genovo) and with genome assemblers 
that have previously been used with metagenomic data (CA-met and 
SOAPdenovo). We used both a mock/artifi cial dataset generated for the 
Human Microbiome Project (HMP) project and real metagenomic samples 
from the HMP and its European counterpart (MetaHIT). On the mock 
dataset, MetAMOS compares favorably to existing metagenomic and 
genomic assemblers with respect to several validation metrics that take into 
account contig accuracy in addition to size. On the real dataset, MetAMOS 
also outperforms the existing software. These improvements can largely 
be attributed to heavy reliance on Bambus 2 and to assembly verifi cation 
techniques that help identify and remove potentially chimeric contigs while 
running the pipeline.
In terms of biology, we were able to report several novel variant motifs that 
would be challenging at best to identify and extract from the output of other 
methods. In addition, much emphasis was placed on making MetAMOS 
compatible with a variety of next-generation sequencing technologies, 
genome assemblers and annotation methods, making the pipeline highly 
customizable for the beginner and advanced bioinformatics user alike.
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Gaucher disease is the most common lysosomal storage disorder. It results 
from an inherited defi ciency of the enzyme glucocerebrosidase (GBA); 
accumulation of the substrate of this enzyme has many clinical manifestations. 
Since the discovery of the GBA gene, more than 200 mutations have been 
identifi ed, but only a handful of mutations are recurrent (L444P, N370S, IVS2, 
D409H and 55Del). To determine the spectrum of mutations in the Indian 
population, we performed mutational screening in children with Gaucher 
disease.
Twenty-four patients from twenty families were enrolled in this study, 
after written informed consent was obtained. The diagnosis of Gaucher 
disease was based on mandatory clinical and biochemical analysis. An 
initial screening for fi ve common mutations was carried out using PCR-
RFLP. Patients who were negative for common mutations were screened by 
sequencing exons 9 to 11 (a mutation hotspot region) [1].
We identifi ed common mutations (L444P, N370S, IVS2 and D409H [2], and 
55Del [3]) in approximately 50% of the patients. L444P (c.1448T>C) was 
the most frequently identifi ed, followed by D409H in our patients. Western 
data shows that N370S is the most common mutation in Romanian patients 
[4]. One polymorphism (E340K) was identifi ed in two patients who were 
compound heterozygotes for A456P/R463C and S237F/A269P, respectively.
Our data highlight the spectrum of mutations that lead to Gaucher disease 
in the Indian population.
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Background Given diff erential gene expression data across divergent mutant 
strain arrays of two enzyme subgroups, it would be logical to segregate by 
protein group ablation (PGA). Discrete correlate summation (DCΣ) was 
utilized to examine the diff erential eff ects of a hydrogen peroxide stressor 
on discrete and total yeast knockouts of the genes encoding glutathione 
peroxidase (Gpx) and peroxiredoxin (Prx), both groups starting from the 
wild-type (WT) strain [1]. While the half-life of the total Gpx knockout mutant 
is intermediate between that of the WT and the transient total Prx knockout 
mutant, the distribution of passage number of the various mutant strains 
can be separated into two groups independent of Gpx and Prx state. Based 
on half-viability, totalPrx <<<< nPrx << Gpx3 = Tsa1 < totalGpx < mPrx <<< 
Gpx1 < Gpx2 << Ahp1 = WT <<< Tsa2 (P < 0.0005, two tailed t-test, n = 5, 
6). DCΣ was also employed for the boundary between robust and gracile 
cultures. The aim of this study was to fi nd the characteristic response of the 
transcriptome, from the perspective of PGA versus strain viability (SV).
Methods DCΣ is a method used to score variables that can be classifi ed into 
two groups [2]. It is a composite score of a gene’s mean group change and 
overall interaction diff erence relative to all others tested. Transcripts were 
included in this analysis only if the values for all conditions passed microarray 
quality control and were present in the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) network [3]. Randomly sorted edges were sampled for 
comparison (P < 0.001, two tailed t-test, n = 8,372). Edges that were sorted on 
average DCΣ score and grouped by biological process yielded a distinctive 
topology (P < 1e–85, two tailed t-test, n = 8,372). The identifi ed transcripts 
were subjected to functional annotation in the Database for Annotation, 
Visualization and Integrated Discovery (DAVID) [4].
Results Application of DCΣ to the individual and complete knockouts of Gpx 
(3 genes) and Prx (5 genes) identifi ed 92 transcripts based on PGA and 43 
based on SV, with a 13 gene overlap (corresponding to the proteins Arg1p, 
Aah1p, Ade17p, Pgm2p, Cat2p, Cdd1p, Mae1p, Arg3p, Nma2p, Ole1p, Cta1p, 
Spb1p and Cds1p). Functional annotation analysis of the 92 PGA transcripts 
identifi ed the following functions: pyrimidine metabolism, steroid 
biosynthesis, purine metabolism, RNA polymerase and terpenoid backbone 
biosynthesis. Ergosterol biosynthesis, gluconeogenesis and transcription 
from Pol I/III promoters were major biological process categories for this set. 
Interestingly, terpenoids feed into the steroid pathway, which results in the 
vitamin D2 precursor ergosterol. Analysis of the 43 SV transcripts identifi ed 
starch and sucrose metabolism, butanoate metabolism, and fructose and 
mannose metabolism. Stress response was the key biological process for this 
arm of the study. No functional annotations were statistically signifi cant for 
the common genes. Transcripts identifi ed by PGA of either the Gpx- or Prx-
encoding genes tend toward transcriptional control mechanisms, whereas 
SV-associated transcripts track with metabolic necessities.
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Background Transposable elements (TEs) in the human genome may 
contribute to molecular evolution, hereditary diseases and cancer [1-3]. 
Therefore, analyzing the impact of TEs in the genome is necessary to better 
characterize genetic events related to tumorigenesis. Here, we used a 
computational approach to identify TE insertions in publicly available data 
for exome sequences in lymphoblastoid and breast tumor cells derived from 
the same patient.
Methods A total of 29,340, sequences from the cell lines HCC1954 (18,365,271) 
and HCC1954BL (10,975,107) were used to investigate gene fusion with TEs 
(gfTEs) [4,5]. The RepeatMasker and Burrows-Wheeler Alignment (BWA) tools 
were used to identify and to map gfTEs, respectively. We also used BEDTools 
to fi nd overlaps between gfTEs and genome annotations. Human mRNAs 
and RepeatMasker tracks were downloaded in BED format from the GRCh37/
hg19 assembly. Repbase was used to fi lter the eukaryotic TEs.
Results RepeatMasker was used to identify gfTEs in the exome reads. Next, the 
repeat masked reads were aligned against the reference genome using BWA. 
Finally, we fi ltered the aligned reads to exclude those without TEs (length of Ns 
<15, Ns means block of nucleotides masked), those with alignments showing 
low sequence identity (<95%) or those with a small hit length (<50 nucleotides). 
The study focused on the detection of TEs in coding sequence gene regions. 
A total of 3,307,608 reads were excluded, and 23,841 reads were predicted as 
cancer-specifi c gfTEs. Table 1 shows the number of gfTEs distributed among the 
TE families and highlights the members with higher frequency in both cell lines. 
Insertions of LINE/L1 and SINE/Alu were the most frequent. The Gene Ontology 
analysis for the biological process and molecular function terms showed a bias 
toward membrane receptor and cell adhesion proteins.
Conclusions We used a computational approach to identify putative cancer-
specifi c gfTEs using human exome capture sequences. Interestingly, the total 
number of gfTEs was similar in normal and tumor cell lines, but the Gene 
Ontology analysis revealed an enrichment of insertions in genes encoding 
protein receptors and cell adhesion molecules. These results suggest that TEs 
could be contributing to cancer development.
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Background Genome-wide association studies (GWAS) of human complex 
disease have identifi ed a large number of disease-associated genetic 
loci, which are distinguished by distinctive frequencies of specifi c single 
nucleotide polymorphisms (SNPs) in individuals with a particular disease. 
However, these data do not provide direct information on the biological basis 

Table 1 (abstract P28). Number of genes containing insertion of TEs from 

diff erent families

Class/Family  HCC1954BL (N) HCC1954 (T)

DNA 4 3

DNA/MuDR 5 1

DNA/PiggyBac 2 2

DNA/TcMar-Mariner 10 9

DNA/TcMar-Tc2 6 8

DNA/TcMar-Tigger 90 96

DNA/hAT 2 8

DNA/hAT-Blackjack 7 19

DNA/hAT-Charlie 107 137

DNA/hAT-Tip100 12 19

LINE/CR1 23 25

LINE/Dong-R4 1 1

LINE/L1 863 641

LINE/L2 163 175

LINE/RTE 9 13

LINE/RTE-BovB 1 0

LTR 1 2

LTR/ERV1 134 145

LTR/ERVK 11 17

LTR/ERVL 70 77

LTR/ERVL-MaLR 148 186

LTR/Gypsy 6 7

Other 5 4

RNA 1 3

SINE 6 17

SINE/Alu 264 406

SINE/Deu 5 14

SINE/MIR 109 149

SINE/tRNA 0 3

Satellite 7 15

Satellite/acro 2 1

Satellite/centr 52 112

Unknown 6 8

rRNA 14 11

scRNA 4 2

snRNA 0 2

srpRNA 4 1

tRNA 0 1

Total 2.154 2.340
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of a disease or on the underlying mechanisms. Many studies have shown 
that variations in gene expression among individuals, as well as among cell 
types, contribute to phenotype diversity and disease susceptibility. Recent 
genome-wide expression quantitative trait loci (eQTL) association (GWEA) 
studies have provided information on genetic factors, especially SNPs, that 
are associated with gene expression variation. These expression-associated 
SNPs (exSNPs) have already been utilized to explain some results of GWAS for 
diseases, but interpretation of the data is handicapped by low reproducibility 
of the genotype-expression relationships.
Methods To address this problem, we established several gold standard sets 
of high-reliability exSNPs based on multiple occurrences in diff erent GWEA 
studies in various human populations and cell types. We then related these 
data to results from GWAS for diseases, to fi nd a set of disease-associated loci 
that are likely to have an underlying expression mechanism. HapMap linkage 
disequilibrium data were utilized to allow the comparison of GWEA results 
from studies that employed diff erent microarray SNP sets.
Results We integrated the current gold standard data with SNPs in disease-
associated loci from the Wellcome Trust Case-Control Consortium (WTCCC) 
GWAS of seven common human diseases. Approximately one-third of these 
disease-associated loci in the WTCCC GWAS were found to be consistent with an 
underlying expression change mechanism. Comparing separate gold standard 
sets for Caucasian (CEU), African (YRI) and Asian (ASN) populations also allowed 
us to investigate which exSNPs contribute to population-specifi c eQTLs.
Conclusions Use of the gold standard set of SNP-expression relationships 
has enabled us to more reliably determine the role of expression changes in 
common human diseases.
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Background Archaeal and bacterial ribosomes contain more than 50 
proteins. Thirty-four ribosomal proteins (r-proteins) are universally conserved 
in the three domains of cellular life (Bacteria, Archaea and Eukarya), and 
33 r-proteins are shared between Archaea and Eukarya to the exclusion 
of Bacteria; there are also 23 Bacteria-specifi c, 1 Archaea-specifi c and 11 
Eukarya-specifi c r-proteins [1]. Despite the high sequence conservation of 
r-proteins, the annotation of r-protein genes is often diffi  cult because of their 
short lengths and biased sequence composition.
Methods To perform a comprehensive survey of prokaryotic r-proteins, we 
developed an automated computational pipeline for the identifi cation of 
r-protein genes and applied it to 995 completely sequenced bacterial genomes 
and 87 archaeal genomes available in the RefSeq database. The pipeline 
employs curated seed alignments of r-proteins to run position-specifi c scoring 
matrix (PSSM)-based BLAST searches against six-frame genome translations, 
thus overcoming possible gene annotation errors. Likely false positives are 
identifi ed using comparisons against the original seed alignments.
Results In the course of this analysis, we gained insight into the diversity 
of prokaryotic r-protein complements, such as missing and paralogous 
r-proteins and distributions of r-protein genes among chromosomal 
partitions. A phylogenetic tree was constructed from a concatenated 
alignment of 50 almost-ubiquitous bacterial r-proteins. The topology 
of the tree is generally compatible with the current high-level bacterial 
taxonomy, although we detected several inconsistencies, possibly indicating 
uncertain or erroneous classifi cation of the respective bacteria. Similarly, a 
concatenated alignment of 57 ubiquitous archaeal proteins was used for 
an archaeal phylogenetic tree reconstruction. In both Bacteria and Archaea, 
the patterns of the presence/absence of non-ubiquitous r-proteins suggest 
several independent losses and/or gains of these proteins. According to 
parsimony reconstruction, three bacterial and fi ve archaeal r-proteins do not 
appear to be ancestral. Remarkably, all fi ve non-ancestral archaeal r-proteins 
are present in Eukarya.
Conclusions Extended sets of prokaryotic r-proteins were created. Align-
ments of these sets may be used as new seed profi les for the identifi cation of 
r-proteins in new genomes and for comparative genomics studies.
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Broad clinical application of ultra-high-throughput sequencing is imminent. 
In a few notable cases, actionable information has been discovered from 
sequencing, and the number of such cases is likely to increase. At present, 
there are no widely accepted genomic standards or quantitative performance 
metrics. These are needed to achieve the confi dence in measurement 
results that is expected for sound, reproducible research and regulated 
applications. The National Institute of Standards and Technology (NIST) has 
been approached about considering development in this area by several 
commercial entities and regulatory agencies. There is great enthusiasm for 
translation of sequencing from the research community to clinical practice, 
and standards that can be used to inform confi dence in measurement results 
(for instance, through validation studies, profi ciency testing and routine 
quality assurance) may be an enabling factor in that goal.
NIST is currently gathering input from the genomics community about 
which reference materials and data would be useful. For example, NIST and 
the Coriell Institute for Medical Research may develop genomic reference 
material from cell lines from families that have already been characterized 
by a variety of sequencing methods (for example, the cell line from which 
NA12878 DNA is derived). In addition, we may build synthetic DNA constructs 
to test specifi c questions about measuring diff erent types of variants or 
combinations of variants in diff erent genomic contexts. For example, we 
might create pairs of constructs with single nucleotide polymorphisms, 
indels and/or structural variants in GC- or AT-rich regions or repeat regions. 
To ensure the design of appropriate standards, we are interested in 
discussing the design and application of genomic reference materials with 
any interested parties.
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Background Protein-protein interactions (PPIs) are the most fundamental 
biological processes at the molecular level. The experimental methods 
for testing PPIs are time-consuming and are limited by analogs for many 
reactions. As a result, a computational model is necessary to predict PPIs 
and to explore the consequences of signal alterations in biological pathways. 
Reproductive control of the vector Anopheles gambiae using transgenic 
techniques poses a serious challenge. To meet this challenge, it would help 
to defi ne the biological network involving the male accessory gland (MAG) 
proteins responsible for successful formation of the mating plug [1]. This 
plug forms in the male and is transferred to the female during mating, hence 
initiating the PPIs in both sexes. As is the case in Drosophila melanogaster, 
a close relative of A. gambiae, some MAG proteins responsible for the 
formation of the mating plug have been shown to alter the post-mating 
behavior of females.
Methods and results The STRING database for known PPIs was used to 
identify orthologs of A. gambiae proteins in Drosophila (Table 1). Twenty-
seven proteins are known to form the mating plug in A. gambiae, and 16 
others were obtained as strings in the STRING database. Chromosome 
synteny comparisons for proteins with more than 50% identity between 
species were carried out using the Artemis Comparison Tool (ACT version 
9.0), and this showed 24.39% matches (M), 12.20% mismatches (MM) and 
63.41% unmatched (NM). The network built in Cytoscape (version 2.8.0) with 
the UniProt IDs for these Drosophila orthologs showed 14 complexes, with 
4 of them being for Drosophila. The network showed 555 nodes and 2,344 
edges. The top 50 identifi ed hubs in the network showed a range of 3 to 30 
interactions. The expression values for these proteins in FlyAtlas showed that 
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Table 1 (abstract P32). Orthologs of Anopheles gambiae proteins in Drosophila identifi ed using the STRING database.

A. gambiae ID    Ortholog in UniProt  STRING Chromosome

(plug proteins) STRING Chromosome Sex Drosophila ID Chromosome score synteny

AGAP009099  3R Male CG7356 Q9VLU2 2L 108 MM

     Q8IPH0 2L 108 MM

AGAP009368  3R Male CG15005 Q9VZG4 3L 40 NM

AGAP009370  3R Male     

AGAP012830  Unknown Male   Unknown  

AGAP008276  2R Male CG12350 Q7JPN9 3R 139 NM

AGAP008277  2R Male CG12350 Q7JPN9  137 MM

AGAP013150 (AGAP004671)   Male CG4738 Q9VKJ3  362 NM

AGAP005791  2L Male CG32834 Q9WIW6 2R 74.7 NM

     D3DMG3   

AGAP007041  2L Male CG6676 Q95SM8 2R 172 NM

AGAP006418  2L Male CG32679 Q8IRL3 X 166 NM

     D9PTU6   

AGAP009673  3R Male CG5976 Q7KTY3 3L 317 MM

     Q0GT94   

AGAP003083  2R Male CG6113 Q9VKT9 2L 180 NM

AGAP001649  2R Male CG31414 Q8IMY3 3R 537 M

    CG3647 Q4V4A3   

     Q4V4J1   

 AGAP0012412 3L  CG6437 Q9W297 2R 583 NM

 AGAP002055 2R  CG3132 Q9VGE7 3R 642 NM

AGAP009584  3R Both CG31884 Q9V429 2L 134 NM

 AGAP000565 X  CG2151 P91938 X 687 M

    CG11401 Q9VNT5 3L 687 

 AGAP011107 3L  CG6852 B7Z076 3L 144 NM

     Q9VVT6 3L 144 

 AGAP010517 3L  SOD1 B8YNX4 3L 302 NM

 AGAP007201 2L  TRX-2 Q6HI1 2L 169 NM

 AGAP007827 3R  CG17654 P15007 2L 736 M

 AGAP009623 3R  CG8893 P07487 X 544 M

 AGAP007120 2L  CG2210 P08879 3R 292 NM

 AGAP006818 2L  CG8975 P48592 2R 588 NM

    CG17797 O46197 2L  

 AGAP010198 3R  CG5371 P48591 2L 1311 M

 AGAP001325 2R  CG32920 Q960M4 3R 238 NM

    CG7217 Q6XHE3 3R  

AGAP012407  3L Both CG6988 P54399 3L 642 M

 AGAP007393 2L  CG8983 Q3YMU0 2R 696 NM

 AGAP002816 2R  CG1333 Q9V3A6 3L 582 M

AGAP011630  3L Female CG33998 Q6IG52 2R 66 NM

     B3DN29 2R 66 

AGAP004533  2R Both CG10992 Q9VY87 X 464 M

AGAP005194  2L Female CG5255 Q9VEM5 3R 154 NM

AGAP005195  2L Female CG4053 Q9VEM7 3R 136 NM

     Q9VIT3 2L  

     Q8IGA0 2L  

AGAP006904  2L Female CG4859 Q9W122 2R 762 M

    CG4859 Q8MLN6 2R  

 AGAP003319 2R  CG6281 Q9VH14 3R 148 MM

AGAP007347  2L Female CG7798 A1ZAB8 2R 131 NM

AGAP003139  2R Both CG18525 Q9VFC2 3R 293 NM

    CG18525 Q9U1I4 3R  

AGAP006964  2L Female CG32147 Q8SZB7 3L 155 NM

 AGAP009172 3R  CG5355 Q9VKW5 2L 980 M

AGAP006420  2L Both CG32679 Q8IRL3 X 137 NM

AGAP009212  3R Both CG7219 A4V9T5 2L 206 NM

NOVEL ACP1 (from female)  3R: b/w 9370 & 9371 Male     

NOVEL ZCP7 (AGAP008071)  3R: b/w 5051000 & 5067900 Male CG8564 Q9VS63 3L 164 NM
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they are upregulated in the reproductive tissues of both sexes. To understand 
the processes involved in plug formation, the Reactome database was 
used, and the hub proteins were identifi ed in 49 of the 2,021 known 
processes in Drosophila. Twelve proteins were involved in the following 
processes: metabolism of proteins (8.8e–13), gene expression (2.0e–06), 
3’-UTR-mediated translational regulation (7.7e–08), regulation of β-cell 
development (1.3e–06), diabetes pathways (6.8e–06), signal recognition 
(preprolactin) (5.0e–07) and membrane traffi  cking (1.3e–03). Of the top 50 
proteins, 92% had orthologs in A. gambiae, with one identifi ed in the mating 
plug and four others identifi ed as strings to AGAP009584, which is found in 
the mating plug. Acp29AB was identifi ed in the network and is known to 
induce post-mating responses in Drosophila, confi rming that the network is 
reproductive and giving an insight into the possible pathways involved. The 
CG9083 (Q8SX59) protein was ranked fi rst among the hub proteins but has 
no ortholog in A. gambiae. Interestingly, it has the same protein properties 
as the Plugin protein (AGAP009368) in A. gambiae, suggesting that Plugin 
may be the main protein in the PPI reproductive network in A. gambiae. The 
Whelan and Goldman (WAG) maximum likelihood tree evaluations of the 
plug proteins in A. gambiae and their orthologs in Drosophila showed that 
these proteins are involved in similar biological processes in both species, 
but the A. gambiae protein evaluation provided a better explanation for the 
expected process as it clustered in both pre-mated and post-mated PPIs.
This table shows the 27 proteins known to be in the mating plug of A. 
gambiae [1], derived predominantly from the male. The 16 strings predicted 
as orthologs in Drosophila, using the STRING database, have varying scores. 
Scores above 60 can be trusted following their alignments. Plugin, which 
has the lowest score, has no good ortholog in Drosophila. Most of the 
proteins are encoded on chromosome arms 2L and 3R in both species. The 
chromosome synteny comparisons using ACT showed 24.39% matches 
(M), 12.20% mismatches (MM) and 63.41% unmatched (NM). The presence 
of gaps between the alignments resulted in the observed MM and NM. The 
nucleotide sequences at the chromosomal locations where the proteins 
NOVEL ACP1 and NOVEL ZCP7 are encoded were used to identify similar 
proteins and their orthologs.
Conclusions The identifi cation of A. gambiae proteins in this network creates 
more targets for functional analysis and reproductive control of the malaria 
vector.
Reference

1.  Rogers DW, Baldini F, Battaglia F, Panico M, Dell A, Morris HR, Catteruccia F: 

Transglutaminase-mediated semen coagulation controls sperm storage in 
the malaria mosquito. PLoS Biol 2009, 7:e1000272.

P33

InSilico DB: an online platform to collaboratively structure and export 

publicly available datasets from the Gene Expression Omnibus database

A Coletta1, C Molter1, R Duqué1, D Steenhoff 2, J Taminau2, V de Schaetzen2, 

C Lazar2, S Meganck2, A Nowé2, H Bersini1 and D Weiss1

1IRIDIA, Université libre de Bruxelles, Brussels 1050, Belgium; 2COMO, Vrije 

Universiteit Brussel, Brussels 1050, Belgium

Genome Biology 2011, 12(Suppl 1):P33

There are more than 20,000 genomic studies comprising 500,000 samples 
freely available in the Gene Expression Omnibus (GEO) database [1]. However, 
accessing these data requires complex computational steps, including 
structuring and formatting the clinical vocabulary used to annotate the 
samples. These complex steps hinder the accessibility of genomic datasets 
through visualization and analysis software platforms, such as GenePattern 
and R/Bioconductor, therefore hampering the pace of research.
InSilico DB [2] is an online platform that provides a complete collaborative 
solution for structuring and formatting clinical annotations from GEO, 
making GenePattern and R datasets one click away for researchers.
InSilico DB has made available powerful and intuitive online curation tools 
to structure the metadata of GEO datasets. The database is automatically 
updated daily, through GEO import pipelines. Datasets can have multiple 
annotations given by diff erent users, and one user can have multiple versions 
of an annotation to suit diff erent experimental questions.
The InSilico DB platform supports datasets from Aff ymetrix human gene 
expression platforms, which account for 2,900 studies comprising 110,000 
samples, making InSilico DB the largest public database of manually curated 
human gene expression samples. In addition to the web interface, InSilico DB 
off ers programmatic access through an R/Bioconductor package [3].

Future releases of InSilico DB will include Illumina RNA-Seq platform data 
and Aff ymetrix mouse gene expression data.
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DNA sequence motifs with the ability to form non-B (non-canonical) 
structures have been linked to a variety of regulatory and pathological 
processes. Although the exact mechanism is unknown, recent work has 
provided signifi cant evidence that non-B DNA structures may play a role 
in DNA instability and mutagenesis, leading to both DNA rearrangements 
and increased mutational rates, which are hallmarks of cancer. We have 
developed algorithms to identify a wide variety of non-B-DNA-forming 
motifs, including G-quadruplex-forming repeats, direct repeats and 
slipped motifs, inverted repeats and cruciform motifs, mirror repeats and 
triplex motifs, and A-phased repeats. After identifying these motifs in the 
mammalian reference genomes of human, mouse, chimpanzee, macaque, 
cow, dog, rat and platypus, the data were made publicly available in 
non-B DB [1]. However, it soon became apparent that it was not feasible to 
annotate the ever-growing list of genomic data and that it would be more 
eff ective to provide researchers with a systematic tool to predict these motifs 
in their own genomic data. Thus, the non-B DNA Motif Search Tool (nBMST) 
was created, and it is freely available online [2]. nBMST is a web interface that 
enables researchers to interactively submit any DNA sequence for searching 
for non-B DNA motifs. Once a user submits one or more DNA sequences in 
FASTA format, nBMST returns a comprehensive results page that contains the 
following: downloadable fi les in both a tab-delimited format and a generic 
feature format (GFF); a visualization, including PNG images; and a dynamic 
genome browser created using the Generic Genome Browser (GBrowse) 
[3] (version 2.0). Currently, nBMST allows fi le sizes of up to 20 MB of DNA 
sequence to be uploaded and stores the results for registered users for up 
to six months. In summary, the purpose of nBMST is to help provide insight 
into the involvement of alternative DNA conformations in cancer and other 
diseases, as well as into other potential biological functions.
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Background Research focused on genome-wide association studies (GWAS) 
has resulted in the identifi cation of genetic variants associated with risk of 
developing breast cancer. These genetic variants are providing valuable 
insight into the genetic susceptibility landscape of breast cancer. However, 
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to date, data generated from GWAS have not been maximally leveraged and 
integrated with gene expression data to identify the genes and pathways 
associated with the most aggressive subset of breast cancers, triple-negative 
breast cancer (TNBC), which accounts for about 20% of all breast cancers. 
TNBC disproportionately aff ects young premenopausal women and has 
a higher mortality rate among African-American women. At present, no 
targeted treatments exist for TNBC, and standard chemotherapy remains 
the only therapeutic option. Integration of genetic mapping results from 
GWAS with gene expression data could lead to a better understanding of the 
genetic mechanisms underlying the molecular basis of the TNBC phenotype 
and to the identifi cation of potential biomarkers for the development of 
novel therapeutic strategies.
Methods We mined data from 43 GWAS involving over 250,000 patients with 
breast cancer and 250,000 controls, reported through April 2011, to identify 
genetic variants (single nucleotide polymorphisms (SNPs)) and genes 
associated with risk for breast cancer. We then integrated GWAS information 
with gene expression data from 305 subjects (162 cases and 143 controls) 
to stratify TNBC and other breast cancer subtypes, as well as to identify 
functionally related genes and multi-gene pathways enriched by SNPs that 
are associated with risk for breast cancer and are relevant to TNBC. To stratify 
TNBC and to identify functionally related genes, we performed supervised 
and unsupervised analysis of gene expression data. We used a false discovery 
rate to correct for multiple testing. Pathway prediction and networking 
visualization was performed using Ingenuity Systems’ software.
Results Combining GWAS information with gene expression data, we 
identifi ed 448 functionally related genes that stratifi ed breast cancer 
subtypes into TNBC. A subset of these genes (130 genes) contained SNPs 
associated with risk for breast cancer; of these 130 genes, 122 correctly 
stratifi ed TNBC. Pathway prediction revealed multi-gene pathways enriched 
by SNPs that are signifi cantly associated with risk for breast cancer. Key 
pathways identifi ed include the p53, nuclear factor-κB, DNA repair and cell 
cycle regulation pathways.
Conclusions Our results demonstrate that integrating GWAS information 
with gene expression data can be an eff ective approach for identifying 
biological pathways that are relevant to TNBC. These could be potential 
targets for the development of novel therapeutic strategies.

P36

Abstract not submitted for online publication.

P37

An amalgamated risk estimation model (REM) and assay integration into 

future REMs

Peter Cartwright1, Erica Ramos1, India Bradley1 and Eric Hanson1

1Advanced Medical Imaging and Genetics (Amigenics), 5495 South Rainbow 

Boulevard, Suite 102, Las Vegas, NV 89118, USA

Genome Biology 2011, 12(Suppl 1):P37

The clinical reality of the post-genomic era is that we now face even more 
complex disease processes when provided with genomic information, 
including multifactorial genetic and genomic infl uences, and epigenetic and 
environmental factors. A useful example of the promise and perils of genomic 
technologies and information is breast cancer. By the mid-1990s, two genes 
(BRCA1 and BRCA2) had been identifi ed, accounting for approximately 5% of 
aff ected individuals. Since then, surprisingly few genetic breast cancer risk 
factors have been identifi ed to account for the remaining 95%. To effi  ciently 
and cost-eff ectively identify individuals at high risk, a combination of 
information components is required: a patient-reported personal and family 
medical history; clinical data (for example, a physical exam, pathology results, 
laboratory test results and imaging); and genetic/genomic results. Gaining 
comprehensive data from all of these areas provides the best risk assessment 
and management options for patients. Furthermore, high quality patient and 
clinical information is essential for the accurate and reliable interpretation of 
genomic results.
We have clinically implemented a platform that integrates all three 
informational components with multiple risk estimation models (REMs) 
to produce an eff ective automated method for risk-stratifying patients. 
Although this platform can be and has been applied to a wide range of 
genetic conditions, this presentation will use breast cancer to illustrate 
the approach. This system consists of three primary components: a secure 

web-based questionnaire used by patients to enter personal and family 
medical history; a tablet-based system for collecting clinical and genomic 
information; and an analysis engine that seamlessly integrates REMs that 
have been developed to calculate either a woman’s risk of developing breast 
cancer during her lifetime (Claus, Gail II, BRCAPRO, BOADICEA and IBIS) or the 
probability of detecting a hereditary breast cancer gene mutation (Myriad, 
Penn II, BRCAPRO, BOADICEA and IBIS).This use of multiple or amalgamated 
REM (aREM) results off ers one of the most comprehensive breast cancer risk 
assessments available for predicting the lifetime risk of developing breast 
cancer or the presence of BRCA mutations. Additional uses for aREMs include 
rapid analyses of existing breast cancer datasets, external validation of new 
REMs, and prospective outcome comparisons based on initial aREM results.
Numerous biomarkers for breast cancer, in addition to BRCA1 and BRCA2 
mutations, have been reported, but few molecular markers or assays have 
been adopted for clinical use. The addition of novel REMs that integrate a 
new molecular assay or classifi ers can facilitate the identifi cation of an 
enriched population for screening (for example, lowering the number 
needed to screen) or for diagnostic, prognostic or therapeutic purposes. 
REMs are rapidly integrating multiple genetic infl uences, whole genome 
sequencing data and epigenetic modifi cations, so structured comparisons of 
the performance of existing and emerging predictive REMs are required for 
safe and eff ective clinical application.
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The new and emerging fi eld of systems medicine, an application of 
systems biology approaches to biomedical problems in the clinical setting, 
leverages complex computational tools and high dimensional data to 
derive personalized assessments of disease risk. Systems medicine off ers 
the potential for more eff ective individualized diagnosis, prognosis and 
treatment options. The Georgetown Clinical & Omics Development Engine 
(G-CODE) is a generic and fl exible web-based platform that serves to allow 
basic, translational and clinical research activities by integrating patient 
characteristics and clinical outcome data with a variety of high-throughput 
research data in a unifi ed environment to enable systems medicine. Through 
this modular, extensible and fl exible infrastructure, we can quickly and 
easily assemble new translational web applications with both analytic and 
generic administrative features. New analytic functionalities specifi c to the 
needs of a particular disease community can easily be added within this 
modular architecture. With G-CODE, we hope to help enable the creation 
of new disease-centric portals, as well as the widespread use of biomedical 
informatics tools by basic, clinical and translational researchers, through 
providing powerful analytic tools and capabilities within easy-to-use 
interfaces that can be customized to the needs of each research community.
This infrastructure was fi rst deployed in the form of the Georgetown Database 
of Cancer (G-DOC) [1], which includes a broad collection of bioinformatics 
and systems biology tools for analysis and visualization of four major omics 
types: DNA, mRNA, microRNA and metabolites. Although several rich data 
repositories for high dimensional research data exist in the public domain, 
most focus on a single data type and do not support integration across 
multiple technologies. G-DOC contains data for more than 2,500 patients 
with breast cancer and almost 800 patients with gastrointestinal cancer, 
all of which are handled in a manner that allows maximum integration. We 
believe that G-DOC will help facilitate systems medicine by allowing easy 
identifi cation of trends and patterns in integrated datasets and will hence 
facilitate the use of better targeted therapies for cancer.
One obvious area for expansion of the G-CODE/G-DOC platform infrastructure 
is to support next-generation sequencing (NGS), which is a highly enabling 
and transformative emerging technology for the biomedical sciences. 
Nonetheless, eff ective utilization of these data is impeded by the substantial 
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handling, manipulation and analysis requirements that are entailed. We have 
concluded that cloud computing is well positioned to fi ll these gaps, as this 
type of infrastructure permits rapid scaling with low input costs. As such, the 
Georgetown University team is exploring the use of the Amazon EC2 cloud 
and the Galaxy platform to process whole exome, whole genome, RNA-Seq 
and chromatin immunoprecipitation (ChIP)-Seq NGS data. The processed 
NGS data will be integrated into G-DOC to ensure that they can be analyzed 
in the full context of other omics data. Likewise, all G-CODE projects will 
simultaneously benefi t from these advances in NGS data handling. Through 
technology re-use, the G-CODE infrastructure will accelerate progress in 
a variety of ongoing programs that are in need of integrative multi-omics 
analysis and will advance our opportunities to practice eff ective systems 
medicine in the near future.
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Background Tumors accumulate large numbers of mutations and other 
chromosomal abnormalities because of a breakdown in genomic repair 
mechanisms, which is a hallmark of tumors. Not all of these abnormalities are 
thought to be crucial for tumor growth and progression, and it is a question 
of great importance to try to identify critical abnormalities, particularly as 
possible targets for treatment. A strong indicator of the importance of an 
abnormality is the order in which it occurred relative to other abnormalities, 
with triggering events likely to have occurred earlier.
Methods In general, we cannot directly observe the temporal progression 
of a tumor; however, for some types of chromosomal gains and losses, the 
mutations within the event can be classifi ed as having occurred before 
or after the event by virtue of being homozygous or heterozygous. The 
simplest case is copy-neutral loss of heterozygosity (CN-LOH), in which it is 
reasonable to assume that homozygous mutations occurred before the LOH 
event and that heterozygous mutations occurred after the LOH event. Using 
sequencing data, we developed a probabilistic model for the observed allele 
frequency of a mutation, which allows us to estimate the true proportion of 
pre- and post-event mutations. Specifi cally, we modeled the number of reads 
with the mutation as a mixture model of binomials and estimated the mixing 
proportion. On the basis of this model, we can estimate this proportion for 
all LOH events within a sample and give a temporal ordering to the events 
within a sample. We applied this method to exome capture sequencing data 
that were obtained from eight primary cutaneous squamous cell tumors and 
matched normal pairs [1].
Results An immediate novel result of the analysis was that CN-LOH of 
chromosome 17p was temporally ordered as the fi rst event (among CN-LOH 
events) in all four of the eight tumors that had CN-LOH of this region. The 
well-known tumor suppressor gene TP53 is located in the CN-LOH region and 
has pre-CN-LOH mutations in all of the samples, further strengthening the 
role of TP53 as a trigger for tumor progression.

Conclusions Our method gives novel insight into the biology of tumor 
progression through a quantitative evaluation of temporal ordering of 
chromosomal abnormalities. Moreover, it yields a quantitative measure for 
comparing samples to highlight driver mutations and events.
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Background Genome structural annotation - that is, the identifi cation and 
demarcation of the boundaries of all of the functional elements in a genome 
(such as the genes, non-coding RNAs, proteins and regulatory elements) - is a 
prerequisite for systems level analysis. Current genome annotation programs 
do not identify all of the functional elements of the genome, especially 
small non-coding RNAs (sRNAs). Transcriptome analysis is a complementary 
method for identifying ‘novel’ genes, small RNAs, regulatory regions and 
operon structures, thus improving structural annotation in bacteria. 
In particular, the identifi cation of non-coding RNAs has revealed their 
widespread occurrence and functional importance in gene regulation, stress 
and virulence. However, very little is known about non-coding transcripts in 
Histophilus somni, one of the causative agents of bovine respiratory disease, 
as well as bovine infertility, abortion, septicemia, arthritis, myocarditis and 
thrombotic meningoencephalitis.
Methods In this study, we generated a single-nucleotide resolution 
transcriptome map of H. somni strain 2336 using RNA-Seq (Illumina). A Perl 
script was written to convert Illumina reads into FASTQ format. The software 
tools MAQ, Bowtie and SAMtools were used to process the raw data and 
generate pileup format, which provides the signal map fi le in per-base format 
coverage. In-house Perl scripts were written to identify novel sRNAs, putative 
novel proteins and operon structures. Comparative genomic analysis of H. 
somni strain 2336 and the avirulent strain 129Pt was performed using the 
tool Mauve. The processed data were submitted to the Gene Expression 
Omnibus database with accession number GSE29578.
Results The RNA-Seq-based transcriptome map identifi ed 94 sRNAs in the 
H. somni genome, of which 82 had not been predicted or reported in earlier 
studies. We also identifi ed 38 novel potential protein-coding ORFs that are 
not in the current genome annotation. The transcriptome map allowed 
the identifi cation of 278 operon structures (for a total of 730 genes) in the 
genome. Compared with the genome sequence of a non-virulent strain, 
129Pt, a disproportionate number of sRNAs (about 30%) were located in a 
genomic region unique to strain 2336 (accounting for about 18% of the total 
genome). This observation suggests that a number of the newly identifi ed 
sRNAs in strain 2336 may be involved in strain-specifi c adaptations that 
could include virulence.
Conclusions Overall, this study describes an RNA-Seq-based transcriptome 
map of H. somni, an important agricultural pathogen, that was constructed 
to identify functional genomic elements. Our genome-wide survey predicts 
numerous novel expressed regions that need to be characterized biologically 
to improve our understanding of disease pathogenesis. A description of all 
of the functional elements in the H. somni system is a prerequisite for using 
holistic systems approaches to understand the complex pathogenesis of 
bovine respiratory disease.
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Background In this work, we study the benefi ts of using optical maps to 
improve genome assembly. Many modern assembly algorithms rely on 
a de Bruijn graph paradigm to reconstruct a genome from short reads. 
Ambiguities caused by repeats within the genome cause the fi nal assembly 
to be broken up into many contigs, because the assembler does not have 
enough information to fi nd the one correct traversal of the graph. Optical 
mapping technology can be useful for determining the correct path in the 
de Bruijn graph, through providing estimates on the locations of one or 
more restriction enzyme patterns in the genome, thereby constraining the 
possible traversals of the graph to only those that are consistent with the 
map. A particular traversal that does not align well with the optical map can 
be discarded as incorrect. Previous work has shown how to construct optical 
maps [1,2] for scaff olding contigs [3].
Methods Our algorithm relies on a depth-fi rst search strategy. As the depth-
fi rst search proceeds and its corresponding sequence is extended, we 
check whether the resultant sequence would generate an optical map that 
matches the optical map of the genome. If the candidate in silico optical map 
matches the optical map of the genome, we proceed with the depth-fi rst 
search. Otherwise, we backtrack in the depth-fi rst search until we fi nd a path 
that covers the entire graph and whose sequence has an optical map that 
matches the optical map of the entire genome. Although the total number 
of paths in the de Bruijn graph can be exponential in the number of nodes 
and edges in the graph [4], a reference optical map can eff ectively prune the 
search space of paths. To improve performance, we start by fi nding edges in 
the de Bruijn graph that can be uniquely placed on the optical map. These 
edges, which we call landmark edges, can also help guide our depth-fi rst 
search. Although there may be multiple paths in the de Bruijn graph that 
can yield sequences with optical maps that match the genome’s optical map, 
these paths all yield very similar sequences in most cases.
Results Given modest assumptions about the errors in the optical map, initial 
simulations show that our algorithm is very eff ective at assembling bacterial 
genomes, given read lengths of 100 or longer. The majority of our assemblies 
match the original sequences used in our simulations very closely. We will 
also present the results of simulations aimed at measuring the eff ect of errors 
on the correctness of the reconstruction and at measuring how the choice of 
restriction enzymes can improve the sequence assembly.
Conclusions Our work shows that optical maps can be used eff ectively to 
aid in genome assembly. We are currently extending our approach to handle 
much larger graphs and to tolerate higher amounts of mapping error. In our 
fi nal assembly, we would also like to be able to detect and mark regions that 
we are less certain about and regions that we are confi dent are correct.
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Arabidopsis thaliana is a member of the mustard (Brassicaceae) family that is 
widely used as a model organism in plant biology. The 1001 Genomes Project 
[1] has been sequencing the genomes of Arabidopsis strains (accessions) 
and has made these sequences available. We selected the genomes of 30 
Arabidopsis accessions with diverse geographical and environmental origins 
for our analysis. Using the TAIR8 annotation of the Arabidopsis reference 
genome, for the accession Col-0, we generated a dataset of approximately 
27,000 protein-coding genes for all of the 30 genomes. With such population 
genomic data, it is feasible to ask whether a group of genes is under a 
diff erent type of selection from the rest of the genome.
The plant immune-signaling network is robust to network perturbations. 
We hypothesized that genes that constitute a robust network tend to be 
under neutral selection because deleterious mutations in such genes do 
not strongly aff ect the immune phenotype owing to the robustness of the 
network. We identifi ed the component genes of the plant immune-signaling 
network in a relatively unbiased manner by mining AraNet [2], which is a 
functional gene network built without using phenotype information. We 
compared population genetic summary statistics for the network component 
genes and those for all of the genes in the genome. For example, Tajima’s D is 
such a summary statistic, and positive, negative and zero values of Tajima’s D 
suggest diversifying, purifying and neutral selection, respectively, when the 
eff ective population size does not change. The Tajima’s D value distribution 
for all of the genes in the genome has a single clear peak with a negative 
value, suggesting that purifying selection is the genomic norm.
Our preliminary results showed that the plant immune-signaling network 
genes are signifi cantly enriched with genes whose Tajima’s D values are near 
zero compared with all of the genes in the genome. This fi nding suggests that 
there is a lower level of purifying selection among the network component 
genes than other genes.
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Next-generation sequencing technology platforms are driving the 
development of a variety of approaches to study genomic variation 
associated with disease. One of these approaches, exome sequencing, 
specifi cally targets the coding regions of the genome, which are captured 
and sequenced. Compared with whole genome sequencing, exome 
sequencing off ers the advantages of being cost- and time-eff ective while 
providing deeper coverage of coding variants, which are more likely to aff ect 
function.
However, the protocol is known to be only partially reliable and might miss 
some of the coding regions. To assess how much coding region could be 
missed or off  target, we compared whole genome and exome sequencing data 
derived from one sample that was processed by the Illumina GA-IIx platform. 
Our in-house-developed workfl ow named TREAT (Targeted RE-sequencing 
and Annotation Tool) was used to align and annotate the data. We provide 
a summary of the comparison between the two datasets, including the total 
number of reads produced, the time needed for sequencing and analysis, the 
coverage of coding regions and the agreement between called variants.
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The annotation of pathologically relevant somatic variations has gained 
importance with the wide use of next-generation sequencing in biomedical 
studies. At present, this evaluation is performed using public tools such 
as SAMtools and ANNOVAR by comparing predicted mutations and small 
nucleotide variations (SNVs) with databases such as 1000 Genomes and 
dbSNP, as well as with paired normal data if available. However, these 
analytical methods lack the ability to integrate information from the diff erent 
analyses into a single output. Additionally, many approaches are fi lter based 
and remove data that does not match specifi c criteria, thus leading to the 
removal of variations that would otherwise be reconsidered later. To this 
end, we have developed a Perl wrapper script that utilizes standard next-
generation sequencing output fi les along with SAMtools and ANNOVAR to 
produce an annotated tumor variant fi le with sequence calls from related 
tumor and matched normal samples.
We performed SOLiD paired-end sequencing of the whole transcriptome of 
one lung adenocarcinoma and seven normal lung samples (including one 
matched normal). BioScope 1.3 was used to map the reads, and the SNVs 
were identifi ed by the diBayes package. The map fi les in binary-sequence 
alignment format (BAM) and SNV fi les in generic feature format (GFF) were 
used to annotate the tumor SNVs with matched normal sequence information 
at each position (diBayes and SAMtools), as well as other normal samples 
(both position and gene based). Furthermore, SNVs were annotated with 
positional information, including whether intronic, exonic, or synonymous 
versus nonsynonymous, as well as with data from the 1000 Genomes Project 
(allele frequency), the dbSNP database (rs identifi ers) and the Catalogue of 
Somatic Mutations in Cancer (COSMIC) database. Of the 1,804 SNVs initially 
identifi ed in the tumor sample, 138 SNVs were found in non-coding RNA, 
and 75 did not appear in the normal samples according to diBayes or in 
the specifi c matched normal sample according to SAMtools. Because the 
capacity to sequence the whole transcriptome is subject to the expression 
level, the possibility of failure to detect variations in normal lung samples 
cannot be ignored. To address this concern, we analyzed 1000 Genomes data 
and found that only 23 of the 75 potential tumor-specifi c SNVs exhibited 
allele frequencies <1%, and 6 of these exist in dbSNP. All of these steps can be 
rapidly performed by a researcher, and modifying the approach to identify 
other types of SNVs is easily achievable.
The use of a single script that tracks input fi le names and locations is expected 
to improve data handling and reporting. Notably, all variant data are present 
in a single fi le, allowing straightforward modifi cation of criteria and instant 
hypothesis testing and therefore reducing the need for an informed end user 
to re-engage a bioinformatician to address another biological question.
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Rare genetic variants of large eff ect may confer a substantial genetic risk 
for common diseases and complex traits. There is considerable interest in 
sequencing limited genomic regions such as candidate genes and target 
regions identifi ed by genetic linkage and/or association studies. Next-
generation sequencing of pooled DNA samples is an effi  cient way to identify 
rare variants in large sample sets. Although sample pooling can reduce the 
labor and cost of sequencing, it also reduces the sensitivity and specifi city 
for eff ective and reliable identifi cation of rare variants. It remains a challenge 
to solve these problems using the available computational genomics tools. 
We have developed an eff ective Illumina-based sequencing strategy using 
pooled samples and have optimized a novel base-calling algorithm, Srfi m, 
and a variant-calling algorithm, SERVIC4E (Sensitive Rare Variant Identifi cation 
by Cross-pool Cluster, Continuity & Tail-Curve Evaluation). SERVIC4E analyzes 
base composition by cycle or tail-curves across sample pools and employs 
multiple fi ltering strategies, including quality and continuity cluster analysis, 
average quality fi ltering, tail-curve fi ltering and error proximity fi ltering, to 
accurately identify rare sequence variants. We validated these algorithms 
using two independent Illumina sequence datasets generated from diff erent 
pool sizes, read lengths and sequencing chemistries. Using these programs, 
we identifi ed 32 coding variants, including 14 present only once over 24 
exon-containing regions in one sample cohort (n = 480), and 41 coding 
variants, including 16 present only once in the same regions in an unrelated 
cohort (n = 480). Validation of these variants by Sanger sequencing revealed 
an excellent combination of sensitivity (97.8% and 96.4%) and specifi city 
(84.9% and 93.8%) for variant detection in pooled samples from both cohorts, 
respectively. Data from these studies showed that our algorithms compare 
favorably with the available programs, including SAMtools, SNPSeeker, CRISP 
and Syzygy, for the eff ective and reliable detection of rare variants in pooled 
samples.
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Microbial communities carry out the majority of the biochemical activity on 
the planet, and they play integral roles in processes such as metabolism and 
immune homeostasis in the human microbiome. Whole genome shotgun 
sequencing of such communities’ metagenomes is becoming an increasingly 
feasible complement to obtaining organismal information from taxonomic 
markers. However, the resultant dataset typically comprises short reads from 
hundreds of diff erent organisms, making it challenging to assemble and 
functionally annotate these sequences in the standard manner for single-
organism genomes.
We describe an alternative to this approach to infer the functional and 
metabolic potential of a microbial community metagenome by determining 
whether gene families and pathways are present or absent, as well as their 
relative abundances, directly from short sequence reads. We validated this 
methodology using synthetic metagenomes, recovering the presence 
and abundance of large pathways and of small functional modules with 
high accuracy. We subsequently applied this approach to the microbial 
communities of 649 metagenomes drawn from 7 primary body sites on 102 
individuals as part of the Human Microbiome Project (HMP), demonstrating 
the scalability of our methodology and the critical importance of microbial 
metabolism in the human microbiota. This provided a framework in which to 
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defi ne functional diversity in comparison to organismal ecology, including 
an example of microbial metabolism linked to specifi c organisms and to host 
phenotype (vaginal pH) in the posterior fornix. We provide profi les of 168 
functional modules and 196 metabolic pathways that were determined to 
be specifi c to one or more niches within the human microbiome, including 
details of glycosaminoglycan degradation in the gut.
Understanding how and why these biomolecular activities diff er among 
environmental conditions or disease phenotypes is, more broadly, one 
of the central questions addressed by high-throughput biology. We have 
thus developed the linear discriminant analysis (LDA) eff ect size algorithm 
(LEfSe) to discover and explain microbial and functional biomarkers in the 
human microbiota and other microbiomes. We demonstrate this method to 
be eff ective for mining human microbiomes for metagenomic biomarkers 
associated with mucosal tissues and with diff erent levels of oxygen 
availability. Similarly, when applied to 16S rRNA gene data from a murine 
ulcerative colitis gut community, LEfSe confi rms the key role played by 
Bifi dobacterium in this disease and suggests the involvement of additional 
clades, including the Clostridia and Metascardovia. A quantitative validation 
of LEfSe highlights a lower false positive rate, consistent ranking of biomarker 
relevance, and concise representations of taxonomic and functional shifts in 
microbial communities associated with environmental conditions or disease 
phenotypes.
Implementations of both methodologies are available at the Huttenhower 
laboratory’s website [1,2]. Together, they provide a way to accurately and 
effi  ciently characterize microbial metabolic pathways and functional 
modules directly from high-throughput sequencing reads and, subsequently, 
to identify organisms, genes or pathways that consistently explain the 
diff erences between two or more microbial communities. This has allowed 
the determination of community roles in the HMP cohort, as well as their 
niche and population specifi city, which we anticipate will be applicable to 
future metagenomic studies.
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High-throughput sequencing (HTS) is an emerging technology that promises 
to deliver unparalleled information on genomic variations. As technology 
evolves and matures, and as a deeper understanding of this technology is 
gained, new and upgraded tools for analyzing HTS will become available and 
will need to be evaluated and validated. To facilitate this cumbersome task, 
we have developed an HTS validation framework into which both in-house-
generated synthetic datasets and well-characterized experimental datasets 
have been incorporated for controlled testing and evaluation of these 
analysis tools. Currently, the framework can be used to assess algorithms for 
short-read mapping, variant calling and RNA-Seq-derived gene expression 
measurements. The framework is deployed in the Amazon EC2 cloud so that 
it is available to the broader research community. Using our framework, 
researchers can further validate interfaced applications with preferred 
parameters, upload their own datasets for processing, and interface new 
applications with the framework for validation and comparison.
We report the performance of several alignment, variant calling and RNA-Seq 
analytic tools that have been tested with our framework. We also provide 
feedback on the challenges and benefi ts of Amazon EC2 deployment.
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