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1 Introduction

A genuine connection between the laws of black holes mechanics and those of thermody-

namics is widely believed today. It started out with a mere analogy connecting these two

sets of laws which was first pointed out by Bardeen, Carter and Hawking [1]. Only af-

ter the discovery of Hawking radiation [2], it has been realized that these thermodynamic

relations describe the thermal properties of a black hole. In this work Hawking was able

to show that a black hole behaves quantum mechanically as a black body radiator, with

a temperature proportional to its surface gravity and entropy proportional to its horizon

area [3].

Based on the above connection between entropy and horizon area, and that of tem-

perature and surface gravity, Jacobson [4] found that Einstein field equations can follow

exactly from the fundamental thermodynamic relation between heat, entropy, and tem-

perature dQ = TdS, i.e., Clausius relation. The argument is based on demanding that

Clausius relation holds for all the local Rindler causal horizons through each spacetime

point. Jacobson interpreted dQ as the energy flux and T as Unruh temperature seen by

an accelerated observer just inside the horizon. Jacobson’s work can be stated as follows;

from a thermodynamic point of view, Einstein field equations are nothing but an equa-

tion of state for the spacetime under consideration. Inspired by Jacobson approach, Cai

et al. [5] derived Friedman equations of (n + 1)-dimensional Friedman-Robertson-Walker

(FRW) universe, from the Clausius relation (TdS = −dE) with the apparent horizon of

FRW universe, assuming that the entropy is proportional to the area of apparent hori-

zon [5]. The derivation of Cai et al. was based on assuming that the apparent horizon has
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an entropy S, and a temperature T ;

S =
A

4G
, (1.1)

T =
1

2πr̃A
(1.2)

Notice here that the entropy is proportional to the area, but the temperature is not pro-

portional to the surface gravity κ, since

κ = − 1

r̃A

(
1−

˙̃rA
2 H r̃A

)
. (1.3)

As a result, the first law in this context is an approximation, where
˙̃rA

2 H r̃A
|
horizon

= Ḣ
2H2 � 1,

has to be satisfied. This has been noticed and discussed by the authors in [5]. The drawback

of this approximation is that it constrains possible equations of state (EoS) to be p ' −ρ,

i.e., EoS has to be close enough to that of the vacuum energy or de Sitter spacetime.

This can be shown clearly through the cosmological equation Ḣ = −3H2

2 (p/ρ + 1) for a

non-vanishing H. To improve this thermodynamic description of FRW cosmology, Akbar

and Cai [6] used the Misner-Sharp energy relation inside a sphere of radius r̃A of an

apparent horizon and rewrite the dynamical Friedman equation in the form of the first law

of thermodynamics with a work term.

dE = T dS +W dV, (1.4)

where the work density W is given in terms of the energy density ρ and the pressure of

matter in the universe p as follows:

W =
1

2
(ρ− p) . (1.5)

In addition, they considered the Misner-Sharp energy to be the total energy of the matter

existing inside the apparent horizon which is given by E = ρV , where V is the volume of

the apparent horizon.

Motivated again, by black hole physics, there is an another interesting connection

between the Hawking radiation and the uncertainty principle [7–13] where the black hole

can be modeled as n-dimensional sphere of size equal to twice of Schwarzschild radius. Since

the Hawking radiation is a quantum process, one could assume that the emitted particles

should obey the Heisenberg uncertainty relation. From this, one can derive exactly the

Hawking temperature and the thermodynamic properties of the black hole [8–10]. From

the black hole thermodynamics, it has been realized that; as the black hole approaches zero

mass, its temperature approaches infinity with infinite radiation rate which is considered

a catastrophic evaporation of the black hole.

A generalized uncertainty principle(GUP) was proposed by different approaches to

quantum gravity such as string theory and black hole physics [14–25] in which Planck

length plays an important role. The existence of Planck length as a minimal observable

length lp is a universal feature among all approaches of QG [14–22]. This minimal length
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works as a natural cutoff, which is expected to have a crucial role in resolving curvature

singularities in general relativity. By employing this GUP, it was found that the black hole

thermodynamics quantities, such as temperature, and entropy are completely modified

such that the end-point of Hawking radiation is not catastrophic anymore. This is because

the GUP implies the existence of black hole remnants at which the specific heat vanishes

and, therefore, the black hole cannot exchange heat with the surrounding space [7–13].

This means that GUP prevents the black hole from evaporating completely, just like the

standard uncertainty principle prevents the hydrogen atom from collapsing. It is worth

mentioning that the GUP modifies, significantly, the entropy-area law as has been pointed

out by several authors (see for example refs. [7, 11–13]).

In this work we study exact modifications of the entropy-area law due to GUP, which

is used to modifying Friedmann equations derived by Akbar and Cai in [6] at very high

densities. It is worth mentioning that GUP has been studied with Friedmann equations

through different frameworks in [26, 27]. In this paper, we first derive the modified Fried-

mann equations for a general form of the entropy as a function of area using the first law

of thermodynamics (dE = T dS + W dV ). This generalization can host all possible cor-

rection to the entropy-area law like the logarithmic correction and power law corrections

which are motivated by different approaches to quantum gravity such as string theory and

loop quantum gravity [28–30]. We then investigate an important entropy-area law which is

motivated by the GUP and study the modified Friedmann equations derived through the

first law approach introduced by Akbar and Cai in [6]. Studying the resulted Friedmann

equations reveals the existence of a maximum energy density closed to Planck density.

Assuming a general continuous pressure p(ρ, a) leads to bounded curvature invariants and

a general nonsingular evolution. As a result, the maximum energy density is reached in

a finite time and there is no cosmological evolution beyond this point from a spacetime

prospective. The existence of maximum energy density and a general nonsingular evolu-

tion is independent of the equation of state and the spacial curvature k. As an example

we study the evolution of the equation of state p = wρ, using a phase-space diagram [31],

to show the existence of a maximum energy density and a finite time to reach it. Our

results reveal that the big bang singularity is not accessible in this description since the

spacetime itself can not be extended beyond Planck density as a result of the GUP and

the thermodynamic approach to gravity which modifies Friedmann equations.

The paper is organized as follows, in section 2, we review the derivation of Friedmann

equations from the first law of thermodynamics due to Akbar and Cai [6], assuming that

the entropy is proportional to the area of apparent horizon. In section 3, we extend

this procedure for an arbitrary entropy, which could host various possible correction to

entropy-area law, to obtain a set of modified Friedmann equations. In section 4, we review

the generalized uncertainty principle and calculate the exact entropy-area law from the first

law of thermodynamics. In section 5, we calculate the modified Friedmann equations due

to the exact entropy-area law obtained from GUP using the first law of thermodynamics.

In section 6, we discuss direct implications of the modified Friedmann equations arguing

for the existence of a maximum energy density closed to Planck density. Assuming a

continuous pressure we show that all curvature invariants are finite and the previous two
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features are independent of the equation of state and the spacial curvature. As an example

we study the evolution of the equation of state p = wρ, using a phase-space diagram, to

show the existence of a maximum energy density and a finite time to reach it. At the end

we conclude by showing the general implications of the modified Friedmann equations that

we found due to the exact entropy-area law obtained from the GUP.

2 Friedmann equations from the first law of thermodynamics

In this section, we review the derivation of Friedmann equations from the first law of ther-

modynamics relation with the apparent horizon of FRW universe with assuming that the

entropy is proportional to the area of the apparent horizon [4, 5]. The (n+ 1)-dimensional

Friedmann-Robertson-Walker (FRW) universe is described by the following metric:

ds2 = habdx
adxb + r̃2dΩ2

n−1, (2.1)

where r̃ = a(t)r, xa = (t, r), hab = (−1, a2/(1 − kr2)), dΩ2
n−1 is the metric of (n − 1)-

dimensional sphere, a, b = 0, 1 and the spatial curvature constant k takes the values 0, 1,−1

for a flat, closed and open universe, respectively. The dynamical apparent horizon is

determined by the relation hab∂ar̃∂br̃ = 0, which would give the radius of the apparent

horizon to be [5]:

r̃A = a r =
1√

H2 + k/a2
, (2.2)

where H = ȧ/a is the Hubble parameter. By assuming that the matter which occupy the

FRW universe forms a perfect fluid, so the energy-momentum tensor would be:

Tµν = (ρ+ p)uµuν + pgµν . (2.3)

where uµ is the four velocity of the fluid. The energy conservation law ( Tµν;ν = 0) leads

to the continuity equation

ρ̇+ nH(ρ+ p) = 0. (2.4)

Based on the arguments of [32], one can define work density W as follows

W = −1

2
T abhab, (2.5)

where Tab is the projection of the energy-momentum tensor Tµν in the normal direction.

For FRW universe with perfect fluid, the work density will be

W =
1

2
(ρ− p). (2.6)

Now, we give a brief review for the procedure that has been followed by Akbar-Cai in [6].

Considering the first law of thermodynamics as follows:

dE = T dS +W dV. (2.7)

Let us calculate term by term in eq. (2.7). We start with dE. The term dE represents the

infinitesimal change in the total energy during small interval of time dt. Since E introduces
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the total energy of matter inside the apparent horizon (Misner-Sharp energy), so it can

take the following form

E = ρ V, (2.8)

where V = Ωnr̃
n
A is the volume of n-dimensional sphere with radius r̃A and Ωn = πn/2

Γ(n/2+1) .

Hence, the differential element of E would be

dE = ρdV + V dρ

= nΩnr̃
n−1
A ρdr̃A + Ωnr̃

n
Adρ. (2.9)

By using the continuity equation of eq. (2.4) in eq. (2.9), we get;

dE = nΩnr̃
n−1
A ρdr̃A − nΩnr̃

n
A(ρ+ p)Hdt (2.10)

Turning to the other term W dV , it can be written as follows:

W dV =
1

2
nΩnr̃

n−1
A (ρ− p) dr̃A. (2.11)

For the term T dS, we should use definition of Hawking temperature of eq. (1.2) as well

as the entropy-area law. We start with Hawking temperature which is defined in terms of

surface gravity as follows:

T =
κ

2π
(2.12)

where κ introduces the surface gravity for the metric of eq. (2.1) and is defined as

κ =
1

2
√
−h

∂a(
√
−hhab∂br̃)

= − 1

r̃A

(
1−

˙̃rA
2 H r̃A

)
(2.13)

Besides, we use the entropy-area law of eq. (1.1) and the expression of area for n-dimensional

sphere A = nΩnr̃
n−1
A . This yields at the end the following expression

T dS =
κ

2π
d

(
nΩnr̃

n−1
A

4G

)

= − 1

2πr̃A

[
1−

˙̃rA
2 H r̃A

](
n(n− 1)Ωn

4G
r̃n−2
A

)
(2.14)

By substituting eqs. (2.10), (2.11) and (2.14) into the first law of thermodynamics of

eq. (2.7), we get

dr̃A
r̃3
A

=
8πG

n− 1
(ρ+ p) Hdt. (2.15)

Using eq. (2.2) which yields dr̃A = −Hr̃3
A

(
Ḣ − k/a2

)
dt [5], one simply finds that eq. (2.15)

introduces the dynamical Friedman equation.

Ḣ − k

a2
= − 8πG

n− 1
(ρ+ p) (2.16)
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Using the continuity equation (2.4) and integrating eq. (2.16), one simply gets

H2 +
k

a2
=

8πG

n(n− 1)
ρ, (2.17)

which is the Friedmann equation for (n+ 1)-dimensional FRW universe.

3 Modified Friedmann equation for a general form of the entropy

In this section, we derive the general modified Friedmann equation for a general expression

of the entropy as a function of area through the apparent horizon approach and first law of

thermodynamics. Suppose that the general expression for the entropy-area relation takes

the following form:

S =
f(A)

4G
, (3.1)

dS

dA
=
f ′(A)

4G
, (3.2)

where f ′(A) = df(A)/dA. Using the first law of thermodynamics dE = T dS+W dV , and

following the same procedure that we reviewed in section 2, we get

f ′(A)
dr̃A
r̃3
A

=
8πG

n− 1
(ρ+ p) H dt (3.3)

Again, using eq. (2.2) which yields [5],

dr̃A = −Hr̃3
A

(
Ḣ − k/a2

)
dt (3.4)

one simply finds that eq. (2.15) introduces the dynamical Friedman equation.(
Ḣ − k

a2

)
f ′(A) = − 8πG

n− 1
(ρ− p) (3.5)

Using the continuity equation of eq. (2.4), and with few calculations, we can rearrange

eq. (3.3) as follows

f ′(A)
(nΩn)

n+1
n−1

n(n− 1)Ωn

dA

A
n+1
n−1

= − 8πG

n(n− 1)
dρ (3.6)

The last equation can be integrated to give the general modified Friedmann equation for

(n+ 1)-dimensional FRW universe due to a general form of the entropy using the first law

of thermodynamics.

− 8πG

n(n− 1)
ρ =

∫
(nΩn)

n+1
n−1

n(n− 1)Ωn
f ′(A)

dA

A
n+1
n−1

(3.7)

Again, if we set f(A) = A, the first Friedmann equation will be satisfied. These mod-

ified equations was gotten first in [38] using the Clausius relation dE = T dS. We are

deriving them here with considering the contribution of the work W in the first law of

thermodynamics.
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4 The generalized uncertainty principle and entropy-area law

We first review briefly the Generalized uncertainty principle (GUP) [14–21] and secondly

we review its effect on the area-entropy law [7–13]. The existence of a minimum measurable

length originates as an intriguing prediction of various frameworks of quantum gravity such

as string theory [14] and black hole physics [15–21]. This implies a direct modification of

the standard uncertainty principle [14–25]:

∆x &
~

∆p

[
1 +

β `2P
~2

(∆p)2

]
, (4.1)

where `P is the Planck length and β is a dimensionless constant which depends on the

quantum gravity theory. The new correction term in eq. (4.1) becomes effective when

the momentum and length scales are of order the Planck mass and of the Planck length,

respectively. It was straightforward to find that eq. (4.1) implies the existence of minimal

measurable length scale as follows:

∆x & ∆xmin = 2β `P (4.2)

By some manipulations, GUP can be represented by another form as follows:

∆p

~
&

∆x

2β `2P

[
1−

√
1−

4β `2P
∆x2

]
(4.3)

There has been investigations devoted to study the impact of GUP on the black hole

thermodynamics and to the Bekenstein-Hawking (black hole) entropy (e.g., [7–13]). These

studies are based on the argument that Hawking radiation is a quantum process and it

should respect the uncertainty principle.

Here we review the analysis of [7] and use the arguments in [33, 34] which say that

the uncertainty principle ∆p ≥ 1/∆x can be represented by the lower bound E ≥ 1/∆x,

so one can get for the GUP case:

E &
∆x

2β`2P

[
1−

√
1−

4β `2P
∆x2

]
. (4.4)

For any black hole absorbing or emitting a quantum particle whose energy E and size R,

the area of the black hole would change by an amount [35, 36].

∆A ≥ 8π `2pER, (4.5)

The quantum particle itself implies the existence of finite bound given by

∆Amin ≥ 8π `2pE∆x. (4.6)

Using GUP by substituting (4.4) into (4.6), we get

∆Amin &
8π∆x2

2β

[
1−

√
1−

4β `2P
∆x2

]
. (4.7)
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The value of ∆x in this analysis is set to be the inverse of surface gravity ∆x = κ−1 = 2rs
where rs is the Schwarzschild radius, where this is probably the most sensible choice of

length scale in the context of near-horizon geometry [7–10]. This implies the following

identity:

∆x2 =
A

π
. (4.8)

Substituting eq. (4.8) into eq. (4.7), we get

∆Amin &
8 A

2β

[
1−

√
1−

4β `2Pπ

A

]
. (4.9)

The area change is then determined as:

∆Amin ' λ
8 A

2β

[
1−

√
1−

4β `2Pπ

A

]
, (4.10)

where the parameter λ will be fixed from the Bekenstein-Hawking entropy formula. Accord-

ing to [1–3], the black hole’s entropy is conjectured to depend on the horizon’s area. From

the information theory [37], it has been stated that the minimal increase of entropy should

be independent of the area. It is just one bit of information which is ∆Smin = b = ln(2).

dS

dA
=

∆Smin

∆Amin
=

b

λ8 A
2β

[
1−

√
1− 4β `2P π

A

] . (4.11)

According to [7], the Bekenstein-Hawking entropy formula has been used to calibrate the

the constants b/λ = 2π, so the we have

dS

dA
=

∆Smin

∆Amin
=

π

2 A
β

[
1−

√
1− 4β `2P π

A

] (4.12)

To simplify the expression of eq. (4.12), we set α = 4β`2Pπ, so we get

dS

dA
=

α

8`2P

1

A
[
1−

√
1− α

A

] . (4.13)

In this paper, we are interested in the exact form of the entropy instead of the approx-

imated one that was used in [7], so we will not make any approximation for the expression

of dS/dA. The exact form of eq. (4.13) would enable us to study the behavior of a general

solution of the modified Friedmann equations (using its fixed points) due to GUP through

the first law of thermodynamics. To get the exact expression of the entropy, we integrate

eq. (4.13) to yield:

S =
1

8`2P

[
A+

√
A2 −Aα− α

2
ln
(
A+

√
A2 −Aα− α

2

)]
+ S0 (4.14)

where S0 is an integration constant. We find that eq. (4.14) modifies Bekenstein-Hawking

entropy as a result of a minimum length scale or the GUP considered above. In the next

section, we will calculate the modified Friedmann equations due to the modified entropy,

eq. (4.14), of the apparent horizon of FRW universe.
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5 Modified Friedmann equations due to GUP

In this section, we implement the modified entropy of eq. (4.14) in the first law of ther-

modynamics relation dE = TdS + WdV , and derive the modified Friedmann equations

with the apparent horizon approach [4–6]. Now, we consider our current case of modified

entropy due to GUP in eq. (4.13) and eq. (4.14). By substituting eq. (4.13) into the gen-

eral modified Friedmann equations eq. (3.5) and eq. (3.7) with n = 3, we get the following

expression:(
Ḣ − k

a2

)
α

2

1

A−
√
A2 −Aα

= −4πG(ρ+ p), (5.1)

8πG

3
ρ = −16π`2P

∫
1

A2

α

8`2P

1

A−
√
A2 − αA

dA,

= 2π

(
1

A
− 2(A2 − αA)3/2

3αA3

)
+ C, (5.2)

where C is a constant of integration and it can be fixed from the initial conditions in

eq. (5.2). As the universe expands, the area of apparent horizon is supposed to go to infinity

with the density having vacuum energy density ρvac = Λ, where Λ is the cosmological

constant. From this argument, C takes the following value:

C =
8πG

3
Λ +

4π

3α
=

8πG

3

(
Λ +

1

2Gα

)
. (5.3)

The area of the apparent horizon is given in section (2) as: [5]

A = 4πr̃2
A =

4π

H2 + k
a2

. (5.4)

Accordingly, the modified Friedmann equations (5.1) and (5.2) due to GUP will be

8πG

3
(ρ− Λ) =

1

2

(
H2 +

k

a2

)
+

4π

3α

[
1−

(
1− α

4π

(
H2 +

k

a2

)) 3
2

]
, (5.5)

−4πG(ρ+ p) =

(
Ḣ − k

a2

)
α

8π

(H2 + k
a2

)[
1−

(
1− α

4π

(
H2 + k

a2

)) 1
2

] . (5.6)

We find that eq. (5.5) and eq. (5.6) give the exact modified Friedmann equations due to

GUP using Akbar-Cai approach [6]. In the next section we are going to discuss conse-

quences of eq. (5.5) and eq. (5.6) on the behavior of the FRW cosmology.

6 Maximum density and curvature singularities

It is interesting to notice that eq. (5.5) leads to a bounded energy density ρ since the

inequality H2 + k
a2
≤ 4π/α must be satisfied, otherwise, the density is complex. Let us

analyze this more closely for cases with k = 0, and k = 1. In order to keep the density

– 9 –
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real the previous inequality requires “a” to have a minimum and “H” to have a maximum.

This leads to a maximum energy density ρmax = Λ + 5
4Gα ∼ ρp (since Λ is tiny), where ρp

is Planck’s density.

Having a maximum value for H (or ρ since they are related) does not necessarily means

a finite curvature or nonsingular behavior. The reason is that curvature invariants such as

Ricci scalar, Riemann tensor squared, etc., depend not only on H but also on Ḣ. But the

behavior of Ḣ is controlled by both ρ and p as it is clear from eq. (5.6). To check whether p

has a diverging behavior or not we don’t have to know the equation of state, it is enough to

know some generally properties of pressure. Here we will follow the discussion in ref. [31]

on general properties of pressure which leaves the mathematical problem addressed by

eq. (5.5) well defined. Here we assume that the pressure, p(H, a) or p(ρ, a) is a continues of

function of its arguments, in order to have a well defined mathematical evolution for H or

ρ. This ensures existence and uniqueness of the general solution of the continuity equation

or eq. (5.6). In addition, having a discontinues pressure in H or ρ could imply a noncausal

evolution since it leads to a divergent dp/dρ, or an unbounded speed of sound! Therefore,

it is natural to assume a continues p(H, a) or p(ρ, a). As a result, one observes that if a has

a minimum value and H is bounded, then Ḣ must be bounded given eq. (5.6). Therefore,

all curvature invariants of the Friedmann-Robertson-Walker metric are finite since they

can be expressed as functions of H and Ḣ.

But what about the k = −1 case, which potentially could still leads to a singular

solution. Here we need to satisfy the inequality H2 + k
a2
≤ 4π/α, for this case too. For a

general continues pressure p(H, a), such that H2 6= a−2 as a → 0, the previous inequality

leads to a minimum value for a and maximum value for H. But for the specific case where

H2 = a−2 + c1 as a → 0 the scale factor a can go to zero and the Hubble rate to infinity

without violating the inequality. In this case, it is interesting to notice that both density

and pressure are finite. A finite pressure can be shown through taking the derivative of

H with respect to time using H =
√
a−2 + c1 and calculating p using eq. (5.6). Analyzing

this case we found that it leads to a specific EoS, namely p = −ρ, which gives a de Sitter

evolution as a → 0. Our conclusion is that the above modified Friedmann equation leads

to a bounded energy density with a maximum value given by the Planck’s density for any

equation of state and all values k. In addition, by assuming a continues pressure p(ρ, a)

one can show that curvatures invariants are finite as a result of maximum density ρ and

minimum scale factor a, therefore, the solution is nonsingular. Our results reveals the

limitation or the breaking down of the spacetime description of gravity near Planck scale

energies which was not evident from general relativity. As an example we will discuss next

the EoS p = ωρ and its Raychaudhuri equation which describes a nonsingular universe

which starts from a finite time with a Planck density.

Now to show some of the features discussed above let us consider the usual equation

of state p = ωρ, in the light of this modified Friedmann equation and check the behavior of

the universe in early times. To do that one can study Raychaudhuri equation or eq. (5.6)

on the following form [31]

Ḣ = F (H) (6.1)

– 10 –



J
H
E
P
0
6
(
2
0
1
4
)
0
9
3

–4

–3

–2

–1

1

F(H)

–1.5 –1 –0.5 0.5 1 1.5
H

Figure 1. Ḣ = F (H) versus H, 4π/α = 1. H has a maximum value Hmax ∼
√
ρp/3.

Using the modified Friedmann equations of eq. (5.5) and eq. (5.6), and the above

equation of state, we get the following form of Raychaudhuri equation.(
Ḣ − k

a2

)
= −3

2
(1 + ω)

[
1

2

(
H2 +

k

a2

)
− 4π

3α

(
1− α

4π

(
H2 +

k

a2

)) 3
2

+ C

]

×

8π

α

(
1−

(
1− α

4π

(
H2 + k

a2

)) 1
2

)
(
H2 + k

a2

)
 . (6.2)

For the flat case with k = 0 the Raychaudhuri equation takes the following form

Ḣ = −3

2
(1 + ω)

[
H2

2
− 4π

3α

(
1− α

4π
H2
) 3

2
+

8πG

3
Λ +

4π

3α

]

×

8π

α

(
1−

(
1− α

4πH
2
) 1

2

)
H2

 (6.3)

Using the general analysis of the eq. (6.1) in [31] for FRW cosmology. The above first-

order system is well studied in dynamical system in cosmological context, see e.g., [31], or

see [39] for more general applications. Knowing F (H) fixed points (i.e., its zeros. Let us call

them Hi) and its asymptotic behavior enables one to qualitatively describe the behavior

of the solution without actually solving the system [31]. Drawing the phase-space diagram

for For eq. (6.3) for ω = 1/3 (i.e., plotting Ḣ versus H) we get the following behavior in

figure 1.

As one can notice we have a future fixed point at Hf =
√

Λ/3, which we can provide

the asymptotic behavior of our universe at late times. In addition this fixed point is reached

in an infinite time since by integrating eq. (6.3) we get

t =

∫ Hf

H0

dH

F (H)
=∞, (6.4)
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where H0 is the initial value of the Hubble rate and F(H) is

F (H) = −24π(1 + ω)

2αH2

[
H2

2
− 4π

3α

(
1− α

4π
H2
) 3

2
+

8πG

3
Λ +

4π

3α

](
1−

(
1− α

4π
H2
) 1

2

)
(6.5)

The interesting observation in this diagram is the existence of a maximum value for the

Hubble rate H, beyond which there is no evolution allowed. We have calculated the time

to reach the maximum Hubble rate Hmax

tm = −
∫ Hmax

H0

dH

F (H)
= finite, (6.6)

Since all curvature invariants of the FRW metric are functions of the Hubble rate and it

first-time-derivative, it is straight forward to show that they are all finite as a result of a

maximum density and the EoS p = wρ given the above modified Friedmann equations. It

is interesting to observe that the big bang singularity is not accessible in this description

since the spacetime itself can not be extended beyond Planck density as a result of the

minimum length or the GUP and the thermodynamic approach to gravity provided which

modifies Friedmann equations.

7 Conclusions

We generalize Akbar-Cai derivation [6] of Friedmann equations from the first law of ther-

modynamics dE = TdS + WdV , to include an arbitrary entropy-area law which could

include possible corrections arise from different approaches to quantum gravity. Studying

the resulted Friedmann equations for an entropy-area law motivated by the generalized un-

certainty principle (GUP) revealed the existence of a maximum energy density with a value

around Planck density. Allowing for a general continuous pressure p(ρ, a) lead to bounded

curvature invariants and a general nonsingular evolution. In this case, the maximum energy

density is reached in a finite time and there is no cosmological evolution beyond this point

from a spacetime prospective. The existence of maximum energy density and a general

nonsingular evolution is independent of the equation of state and the spacial curvature k.

As an example we study the evolution of the equation of state p = wρ, using a phase-space

diagram, to show the existence of a maximum energy density and a finite time to reach it.

Our results reveal that the big bang singularity is not accessible in this description since

the spacetime itself can not be extended beyond Planck density as a result of the minimum

length or the GUP and the thermodynamic approach to gravity which modifies Friedmann

equations.
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